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Abstract

Background: Single-cell RNA-seq (scRNA-seq) enables the profiling of genome-wide gene
expression at the single-cell level and in so doing facilitates insight into and information about
cellular heterogeneity within a tissue. Perhaps nowhere is this more important than in cancer,
where tumor and tumor microenvironment heterogeneity directly impact development,
maintenance, and progression of disease. While publicly available scRNA-seq cancer datasets
offer unprecedented opportunity to better understand the mechanisms underlying tumor
progression, metastasis, drug resistance, and immune evasion, much of the available
information has been underutilized, in part, due to the lack of tools available for aggregating and
analysing these data.

Results: We present CHARacterizing Tumor Subpopulations (CHARTS), a computational
pipeline and web application for analyzing, characterizing, and integrating publicly available
scRNA-seq cancer datasets. CHARTS enables the exploration of individual gene expression,
cell type, malignancy-status, differentially expressed genes, and gene set enrichment results in
subpopulations of cells across multiple tumors and datasets.

Conclusion: CHARTS is an easy to use, comprehensive platform for exploring single-cell
subpopulations within tumors across the ever-growing collection of public scRNA-seq cancer
datasets. CHARTS is freely available at charts.morgridge.org.

Introduction

Over the past three decades, the cancer research community has amassed large quantities of
gene expression data from tumors. The premier example of such data was generated by The

Cancer Genome Atlas (Cancer Genome Atlas Research Network et al., 2013), which generated
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bulk RNA-seq and microarray data from thousands of tumors across dozens of cancer types.
These data have enabled a greater understanding into the molecular biology of cancer and
have revealed great heterogeneity not only between cancer types, but also between tumors of
the same cancer type (Bedard et al., 2013). Unfortunately, investigations utilizing this resource
are limited by the fact that gene expression was profiled using bulk methods, which measure
gene expression on average across thousands, or tens of thousands, of cells in a sample. With
the advent of single-cell RNA-seq (scRNA-seq), investigators are now able to measure gene
expression at the single-cell level thereby gaining access to the substantial heterogeneity of
cells within a tumor and the tumor microenvironment (Gonzalez-Silva et al., 2020). Publicly
available scRNA-seq cancer datasets offer unprecedented opportunity to better understand the
mechanisms of tumor progression, metastasis, drug resistance, and immune evasion. However,
analyzing these data in the aggregate is challenging, especially for those without strong
computational skills. To this end, easy-to-use web-based tools are important for enabling the
broader research community to perform integrative analyses and, in doing so, to increase their
ability to leverage their knowledge and comprehensively examine scientific and/or clinically

relevant hypotheses in multiple datasets.

While a few web-based tools for analyzing scRNA-seq data are available, they are not designed
specifically for cancer research or do not easily enable exploration of existing public datasets.
For example, recent tools such as Alona (Franzén and Bjorkegren, 2020) and Granatum (Zhu et
al., 2017) enable scRNA-seq analysis in the web browser; however, these tools are not
cancer-specific and therefore do not enable important cancer-specific tasks such as classifying
cells as being either transformed malignant cells or untransformed cells of the tumor
microenvironment. Furthermore, these tools do not enable exploration of preprocessed, publicly
available scRNA-seq datasets. Another tool, GREIN (Mahi et al., 2019), enables exploration of
public gene expression data, but it is neither single-cell specific nor cancer-specific and,
consequently, does not implement features necessary for single-cell analysis such as cell type
identification, clustering, or gene set enrichment, nor does it implement cancer-specific analyses
such as malignancy classification. CancerSEA (Yuan et al., 2019) enables exploration of gene
set enrichment scores for gene sets pertaining to cancer-related processes, but does not enable
visualization, differential expression, or cell type identification. In short, while web-based tools
exist for exploring expression data, most do not allow for detailed analysis of scRNA-seq data

across diverse tumors and datasets.


https://paperpile.com/c/696qAk/KpAW
https://paperpile.com/c/696qAk/PuKf
https://paperpile.com/c/696qAk/vBLl
https://paperpile.com/c/696qAk/vBLl+tWbv
https://paperpile.com/c/696qAk/vBLl+tWbv
https://paperpile.com/c/696qAk/TGwR
https://paperpile.com/c/696qAk/13zI
https://doi.org/10.1101/2020.09.23.310441
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310441; this version posted September 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To address this gap, we present CHARacterizing Tumor Subpopulations (CHARTS), a web
application and associated computational pipeline for analyzing and characterizing cancer
scRNA-seq datasets. As described in detail below, for each tumor in its database, CHARTS
identifies clusters and enables exploration via interactive dimension-reduction methods. Derived
clusters are annotated with cell types from the Cell Ontology (Bard et al., 2005) via CellO
(Bernstein et al., 2020), with information provided on the probability of the specific cell type as
well as its ancestors. For example, the data may provide substantial evidence to classify cells
within a cluster as T cells, but less evidence may be available to classify cells into more specific
functional groups (e.g. helper or memory T cells). In addition, for each cluster within each tumor,
enrichment of genes involved in biological processes and pathways is provided. Genes that are
differentially expressed between the cluster and others are also available. Finally, CHARTS can
be used to distinguish malignant vs. non-malignant cells allowing for precise exploration into the
interactions between cell subpopulations within the tumor microenvironment. CHARTS currently
enables exploration of 61 tumors across six cancer types, and data is being continually added.

CHARTS is freely available at charts.morgridge.org.

Implementation

Publicly available expression data were downloaded from the Gene Expression Omnibus
(Edgar et al., 2002) and normalized to units of log(TPM+1). An offline computational pipeline
implements a number of analyses in order to enable comprehensive characterization and
comparison of tumor subpopulations within and between tumors (Fig. 1). All analyses output is
stored in a backend database, which is quickly and easily accessible to a user through a

frontend web application.

Dimension Reduction

A user may construct interactive dimension-reduction scatterplots using two or
three-dimensional UMAP (Mclnnes et al.) or PHATE (Moon et al., 2019). Each cell can be
colored by the expression of a user-specified gene, cluster, malignancy score, cell type, or gene
set enrichment. Two scatterplots are placed side-by-side enabling users to compare two
characteristics (e.g. two different genes’ expression values or a gene’s expression value and the
predicted cell types) within the same tumor or to compare a single characteristic (e.g. a single

gene’s expression values) between two tumors.
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Clustering

Clustering is performed using the Leiden community detection algorithm (Traag et al., 2019), as
implemented in Python’s Scanpy library (Wolf et al., 2018). Leiden’s resolution parameter is set
to 4.0, a higher value than the default resolution of 1.0, due to the empirical observation that for
tumor datasets consisting of thousands of cells, the default resolution of 1.0 resulted in clusters

that combined multiple putative cell types (data not shown).

Cell Type Annotation

Each cluster is annotated with cell types from the Cell Ontology (Bard et al., 2005) via CellO
(Bernstein et al., 2020). The Cell Ontology is a hierarchically structured knowledgebase of
known cell types. Specifically, the Cell Ontology forms a directed acyclic graph (DAG) where
edges in the graph represent “is a” relationships. Because of this DAG structure, each cell is
assigned to a specific cell type as well as all ancestors of this specific cell type within the DAG.
CellO was trained using the isotonic regression correction algorithm. CHARTS exposes both
CellO’s binary cell type decisions for each cell type as well as CellO’s estimated probability that

each cell is of a given type.

Gene Set Enrichment

Each cluster’'s mean gene expression profile is scored for enrichment of gene sets describing
molecular processes. Specifically, CHARTS uses GSVA (Hanzelmann et al., 2013) to score
each cluster for enrichment of gene sets in the hallmark gene set collection from MSigDB

(Liberzon et al., 2015) and the gene set collection used by CancerSEA.

Malignancy Status

Each cell is assigned a malignancy score that describes the likelihood that the cell is malignant.
The malignancy scoring approach builds upon the approaches used by (Tirosh et al., 2016) and
(Couturier et al.,, 2020) for classifying cells as either transformed, malignant cells or

untransformed cells within the tumor microenvironment (Supplementary Methods).

Differential Expression
For each cluster within each tumor, CHARTS uses a Wilcoxon rank-sum test, as implemented in
Scanpy, to compute the set of genes differentially expressed in the given cluster versus cells

outside the cluster within the given tumor. CHARTS presents all genes meeting a false
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discovery rate threshold of 0.05 after correction via the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995).

Implementation Details

The CHARTS website is implemented with Plotly’s Dash framework (https://plotly.com/dash/).
The data analysis pipeline was implemented with Snakemake (Kdster and Rahmann, 2012).
The software that implements the website and backend pipeline is freely available for users to

run CHARTS locally in order to explore their own data alongside existing public data.

Results

Two case studies demonstrate how CHARTS can be used, both to examine and generate new

hypotheses.

Case study: dysfunctional CD8+ T cells in lung adenocarcinoma

Investigators have recently reported a dysfunctional population of CD8+ T cells in lung cancer
(Thommen et al., 2018) and melanoma (Li et al., 2019) that express genes associated with
immune suppression. In some melanoma samples, this population was also found to be highly
proliferative (Li et al., 2019). We used CHARTS to explore whether this dysfunctional state was
common across the majority of CD8+ T cells, and to evaluate whether dysfunctional CD8+ T
cells were also highly proliferative. We found that in the majority of lung adenocarcinomas, only
a subset of CD8+T cells express marker genes for this dysfunctional state. Two
adenocarcinomas from Laughney et al. (2020) are shown in Fig. 2. Using the gene set
enrichment feature of CHARTS, we further found that dysfunctional cells are enriched for cell
cycle genes, which may indicate that these dysfunctional CD8+ T cells are highly proliferative in

lung adenocarcinoma, as has been recently observed in melanoma.

Case study: monocarboxylate transporters in glioblastoma

We investigated the expression of MCT4, a prognostic biomarker of glioblastoma aggression
(Lai et al., 2020; Zuo et al., 2019). Using CHARTS, we found that MCT4 tended to be expressed
in the myeloid tumor-infiltrating immune cells. Two tumors from Yuan et al. (2018) are shown in
Fig. 3A and 3B. While MCT4 is known to be involved in a metabolic symbiosis between hypoxic
tumor cells, which express MCT4 to expel lactate, and oxidative tumor cells, which express

MCT1 to intake lactate (Payen et al., 2020) (Fig.3C), the specific cell types expressing MCT4 in
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glioblastoma have not been well characterized. We used CHARTS to determine which cells
express MCT1 in glioblastoma and found that this gene was primarily expressed in cells with
high malignancy scores (Fig. 3A, B). Using the gene set enrichment feature of CHARTS, we
observed that cells expressing MCT1 tended to express genes enriched for hypoxia, whereas
cells expressing MCT4 tended to express genes that were less enriched for hypoxia (Fig. 3A,
B). This observation indicates a possible metabolic symbiosis between malignant cells and
myeloid cells in the tumor microenvironment of glioblastoma, which to the best of our

knowledge, has not been well characterized.
Conclusion

In this work, we present CHARTS: a comprehensive framework for exploring single-cell
subpopulations within tumors and the tumor microenvironment across ever-growing datasets.
CHARTS can be used to develop and explore new hypotheses underlying tumor progression,

drug resistance, and immune evasion.

Availability of data and materials

Code implementing the web application and offline data analysis pipeline is available at
https://github.com/stewart-lab/CHARTS.
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Figure Legends

Figure 1. Overview. A schematic diagram of the CHARTS pipeline. Public scRNA-seq datasets
are collected and analyzed with a custom pipeline. This pipeline computes clusters, malignancy
scores, dimension reduction transformations, cell type annotations, gene set enrichment scores,
and differentially expressed genes for each cluster. Results are stored in a backend database
and are accessed from the frontend web application.

Figure 2. Dysfunctional CD8+ T Cells in Lung Adenocarcinoma. For lung adenocarcinoma
tumors LX676 (A) and LX682 (B), we used CHARTS to visualize the probability that each cell is
a T cell as well as expression of CD8A, expression of the dysfunctional CD8+ T cell marker
PDCD1, and each cell’s enrichment score for genes in CancerSEA’s cell cycle gene set as
produced by GSVA.

Figure 3. Monocarboxylate Transporter Expression in Glioblastoma. For glioblastoma
tumors PJ025 (A) and PJ035 (B), we used CHARTS to visualize the expression of MCT4, the
expression of MCT1, malignancy score, the probability that each cell is a myeloid cell, and each
cell’'s enrichment score for genes in the Hallmark hypoxia gene set as produced by GSVA. (C) A
schematic illustration of the metabolic symbiosis between hypoxic, glycolytic tumor cells
expressing MCT4 and oxidative tumor cells expressing MCT1.
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