

1 **Genetic variation, environment and demography intersect to shape**
2 **Arabidopsis defense metabolite variation across Europe**

3 Ella Katz¹, Clement Bagaza², Samuel Holden², Ruthie Angelovici², Daniel J. Kliebenstein^{1,3x}

4 ¹Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA,
5 95616, USA

6 ²Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life
7 Sciences Center, University of Missouri, Columbia, Missouri 65211

8 ³DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871,
9 Frederiksberg C, Denmark

10 ^xCorresponding Author: Kliebenstein@ucdavis.edu

11

12 **Abstract**

13 Plants face a variety of challenges within their ever-changing environment. Diverse metabolites
14 are central to the plants ability to overcome these challenges. Understanding the environmental
15 and genetic factors influencing the variation in specialized metabolites is the key to understand
16 how plants survive and develop under changing environments. Here we measure the variation in
17 specialized metabolites across a population of 797 natural *Arabidopsis thaliana* accessions. We
18 show a combination of geography, environmental parameters, demography, and different genetic
19 processes that creates a specific pattern in their accumulation and distribution. By identifying and
20 tracking causal polymorphisms at multiple loci controlling metabolites variation we show that
21 each locus displays extensive allelic heterogeneity with signatures of both parallel and
22 convergent evolutionary processes. These loci combine epistatically and show differing
23 relationships to environmental parameters leading to different distributions. This provides a
24 detailed perspective about the complexity of the forces and mechanisms that shape the
25 accumulation and distribution of a family of specialized metabolites critical for plant fitness.

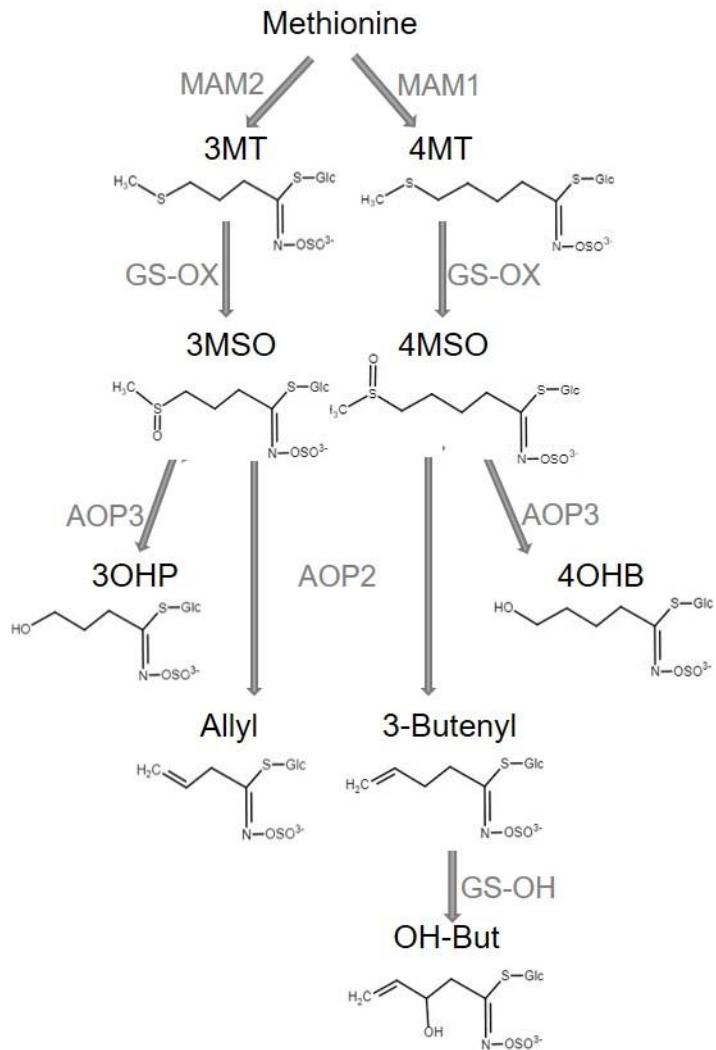
26

27

28

29 **Introduction**

30 The biotic and abiotic components of a plant's habitat/environment are continuously changing.
31 This creates a complex system to which a plant must develop adaptation strategies to ensure
32 survival and reproduction. Metabolites are frequent keys to these strategies, involving the
33 production and accumulation of different metabolites from signaling hormones, primary
34 metabolites and a wide array of multi-functional specialized metabolites (Erb & Kliebenstein,
35 2020; Hanower & Brzozowska, 1975; Hayat et al., 2012; Kim et al., 2012; D J Kliebenstein,
36 2004; Malcolm, 1994; Thakur & Rai, 1982; Wolters & Jürgens, 2009; Yang, Lin, & Kao, 2000).
37 The complete suite of these metabolites helps to determine the plants survival and development.
38 A complication in the plants ability to create an optimal blend of metabolite-based strategies is
39 the fact that individual specialized metabolites can have contrasting effects in a complex
40 environment. For example, individual specialized metabolites can provide defense against some
41 attackers while simultaneously causing sensitivity to other biotic attackers or abiotic stresses
42 (Agrawal, 2000; Bialy, Oleszek, Lewis, & Fenwick, 1990; Erb & Kliebenstein, 2020; Futuyma
43 & Agrawal, 2009; Hu et al., 2018; Lankau, 2007; Opitz & Müller, 2009; Uremis, Arslan,
44 Sangun, Uygur, & Isler, 2009; Züst & Agrawal, 2017). This creates offsetting ecological benefits
45 and costs for individual metabolites that when summed across all the metabolites means that
46 there are complex selective pressures driving the differentiation of metabolic profiles within a
47 species and shaping genetic variation within and between populations depending on the diverse
48 challenges faced (Fan, Leong, & Last, 2019; R. Kerwin et al., 2015; Malcolm, 1994; Sønderby,
49 Geu-Flores, & Halkier, 2010; Szakiel, Pączkowski, & Henry, 2011; Wentzell & Kliebenstein,
50 2008; Züst et al., 2012).


51 Recent decades have seen significant advances in the identification of the genetic variation
52 creating this metabolic variation. A common theme developing from these studies is that the
53 metabolic variation within and between species is the result of structural variation at the enzymes
54 responsible for the chemical structures (Chan, Rowe, Corwin, Joseph, & Kliebenstein, 2011;
55 Chan, Rowe, & Kliebenstein, 2010; Fan et al., 2019; Kroymann, Donnerhacke, Schnabelrauch,
56 & Mitchell-Olds, 2003; Moore et al., 2019; Schilmiller, Pichersky, & Last, 2012). These
57 structural variants and the resulting chemical variation strongly influence plant fitness in
58 response to a broad range of biotic interactions including at least herbivores, but also other plant

59 species and other members of the same plant species (Bednarek & Osbourn, 2009; Brachi et al.,
60 2015; R. E. Kerwin et al., 2017; R. Kerwin et al., 2015; Lankau & Kliebenstein, 2009; Lankau &
61 Strauss, 2007, 2008; Lankau, 2007). Most mechanistic studies of natural variation in specialized
62 metabolism have focused on apparent biallelic phenotypic variation linked to loss-of-function
63 variants. However, it is not clear if biallelic genetic causation is true when extended to a large
64 collection of individuals from wide-ranging populations within a species. If selective pressures
65 are sufficiently strong and non-linear, it is possible to have repeated and independent generation
66 of structural variants creating the same metabolic variation. This raises the possibility for
67 chemical variation within a species to show hallmarks of parallel evolution, wherein
68 phenotypically similar variants independently arise from the same genetic background. Equally it
69 may be possible to find within-species convergent evolution, where different allele with identical
70 metabolic consequences arise from independent genetic backgrounds through different
71 mechanisms. Because these genetic processes are occurring simultaneously with neutral
72 demographic processes like migration, there is a need to better understand how the intersection
73 of environmental pressure, demography and genomic complexity gives rise to the pattern of
74 metabolic variation across a plant species.

75 To better understand how genomic variation, demography and environmental pressures shape the
76 variation of specialized metabolism within a species, we used the model Glucosinolates (GSLs)
77 pathway. GSLs are a diverse class of specialized metabolites produced in the order Brassicales,
78 including the model plant *Arabidopsis* (*Arabidopsis thaliana*), that show extensive variation
79 between and within species across the order (Bakker, Traw, Toomajian, Kreitman, & Bergelson,
80 2008; Benderoth et al., 2006; Brachi et al., 2015; Chan et al., 2010; Daxenbichler et al., 1991;
81 Halkier & Gershenzon, 2006; R. Kerwin et al., 2015; D J Kliebenstein, Gershenzon, & Mitchell-
82 Olds, 2001; D J Kliebenstein, Kroymann, et al., 2001; D J Kliebenstein, Lambrix, Reichelt,
83 Gershenzon, & Mitchell-Olds, 2001; James E. Rodman, Kruckeberg, & Al-Shehbaz, 1981;
84 James Eric Rodman, 1980; Sønderby et al., 2010; Wright, Lauga, & Charlesworth, 2002). GSLs
85 consist of a common core structure with a highly diverse side chain that determines the GSLs
86 biological activity in defense, growth, development and abiotic stress resistance (Beekwilder et
87 al., 2008; Hansen et al., 2008; Hasegawa, Yamada, Kosemura, Yamamura, & Hasegawa, 2000;
88 Katz et al., 2020; Katz, Nisani, Sela, Behar, & Chamovitz, 2015; Malinovsky et al., 2017;
89 Salehin et al., 2019; Yamada et al., 2003). The *Arabidopsis*-GSL system is an optimal model to

90 study the species wide processes driving specialized metabolite variation because the identity of
91 the whole biosynthetic pathway is known, including the major causal loci for natural variation
92 (Benderoth et al., 2006; Brachi et al., 2015; Chan et al., 2011, 2010; Hansen, Kliebenstein, &
93 Halkier, 2007; D J Kliebenstein, Gershenson, et al., 2001; D. Kliebenstein, Pedersen, Barker, &
94 Mitchell-Olds, 2002; Daniel J Kliebenstein, Figuth, & Mitchell-Olds, 2002; Kroymann &
95 Mitchell-Olds, 2005; Pfalz, Vogel, Mitchell-Olds, & Kroymann, 2007; Sønderby et al., 2010;
96 Wentzell et al., 2007). These major loci, have been proven to influence *Arabidopsis* fitness and
97 can be linked to herbivore pressure (Brachi et al., 2015; Hansen et al., 2008; Jander, Cui, Nhan,
98 Pierce, & Ausubel, 2001; R. E. Kerwin et al., 2017; R. Kerwin et al., 2015; Züst et al., 2012).
99 Beyond the major causal loci, there is also evidence from genome wide association studies for
100 highly polygenic variation in the genetic background that further contributes to modulating GSL
101 variation (Chan et al., 2011). The public availability of over 1000 widely distributed accessions
102 with genomic sequences provides the ability to phenotype GSL variation across a large spatial
103 scale and query the distribution and relationship of causal haplotypes at the major GSL causal
104 loci.

105 In *Arabidopsis* and other Brassicas, the main GSLs are Methionine-derived, Aliphatic, GSLs.
106 Genetic variation in Aliphatic GSLs structure is controlled by natural variation at three loci, GS-
107 Elong, GS-AOP and GS-OH with these three loci combining to create a dominant Aliphatic GSL
108 chemotype. In addition to these expressed loci, there is a large suite of loci that can modify these
109 dominant patterns (Brachi et al., 2015; Chan et al., 2011, 2010). GS-Elong differentially
110 elongates the Methionine side chain by structural variation influencing the expression of
111 divergent methylthioalkylmalate synthase enzymes (MAM) that add carbons to the side chain
112 (Abrahams, Pires, & Schranz, 2020). In *Arabidopsis*, MAM2 catalyzes the addition of two
113 carbons to the side chain, creating GSLs with 3 carbon side chains. MAM1 catalyzes the addition
114 of three carbons to make GSLs with 4 carbon side chains (Figure 1). MAM3 (also known as
115 MAM-L) catalyzes the addition of up to 6 carbons (D J Kliebenstein, Lambrix, et al., 2001;
116 Kroymann et al., 2003; Mithen, Clarke, Lister, & Dean, 1995). The core pathway leads to the
117 creation of the methylthio GSL (MT). Then, the MT will be converted to a methylsulfinyl
118 (MSO) with a matching number of carbons (Giamoustaris & Mithen, 1996; Hansen et al., 2007).
119 Structural variation at the GS-AOP locus leads to differential modification of the MSO by
120 differential expression of a family of 2-oxoacid-dependent dioxygenases (2ODD). The AOP2

121

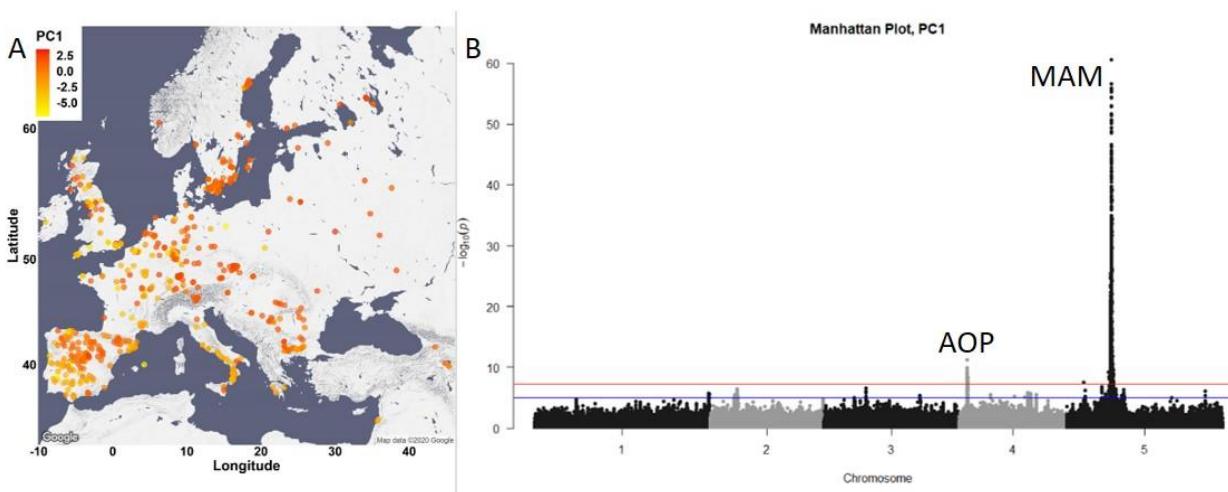
122 Figure 1: **Aliphatic GSL biosynthesis pathway.** Short names and structures of the GSLs are in
123 black. Genes encoding the causal enzyme for each reaction (Arrow) are in grey. GS-OX is a gene
124 family of five or more genes. OH-But= 2-OH-3-Butenyl.

125

126 enzyme removes the MSO moiety leaving an alkenyl sidechain, while AOP3 leaves a hydroxyl
127 moiety. Previous work has suggested three alleles of GS-AOP: AOP3 expressing, AOP2
128 expressing and a null allele (i.e. Col-0 and similar accessions) with nonfunctional copies of
129 AOP2 and AOP3 leading to MSO accumulation, the AOP substrate (Figure 1) (Chan et al., 2010;
130 D J Kliebenstein, Kroymann, et al., 2001; D J Kliebenstein, Lambrix, et al., 2001; Mithen et al.,
131 1995). The 4C alkenyl side-chain can be further modified by adding a hydroxyl group at the 2C
132 via the GS-OH 2-ODD (Figure 1) (Hansen et al., 2008). In spite of the evolutionary distance,
133 independent variation at the same three loci influence the structural diversity in Aliphatic-GSLs

134 within *Brassica*, *Streptanthus* and *Arabidopsis* (D J Kliebenstein & Cacho, 2016; Lankau &
135 Kliebenstein, 2009). For example the C3 MAM in *Arabidopsis* and *Brassica* represent two
136 independent lineages as are the MAMs responsible for C4 GSLs, in fact the MAM locus contains
137 at least three independent lineages that recreate the same length variation (Abrahams et al.,
138 2020). This indicates repeated evolution across species, but it is not clear how frequently these
139 loci are changing within a single species or how ecological or demographic processes may shape
140 within-species variation at these loci.

141 In this work we described GSL variation in seeds of a collection of 797 *Arabidopsis thaliana*
142 natural accessions collected from locations across Europe. The amounts of GSLs can vary across
143 different tissues and life stages, but there is a strong correlation in the type of Aliphatic GSL
144 produced across tissues because the major causal effect loci are not plastic due to structural
145 variation (Brown, Tokuhisa, Reichelt, & Gershenzon, 2003; D J Kliebenstein, Gershenzon, et al.,
146 2001; D J Kliebenstein, Kroymann, et al., 2001; Petersen, Chen, Hansen, Olsen, & Halkier,
147 2002). Thus, the seeds chemotype is the same as the leaves. Further, seeds have the highest level
148 of GSLs in *Arabidopsis* and they are stable at room temperature until germination, hence making
149 seeds a perfect tissue to survey variation. Further, GSLs are known to be important for seed
150 defenses against herbivores and pathogens (Raybould & Moyes, 2001). By measuring GSLs in
151 seeds, we identified that the distribution of GSLs and the causal alleles are influenced by a
152 diverse set of factors with a primary contribution by geography, environmental parameters and
153 their interaction. We describe here the complex genetic architecture of the three main causal loci
154 responsible for the GSL composition, show how it effects the actual phenotype, and how it
155 evolved. Interestingly, the combination of these elements reveal that several evolutionary
156 mechanisms are involved in shaping the GSL variation and distribution, and the integration of
157 them result in the pattern described here.


158

159 **Results**

160 **GSL variation across Europe**

161 To investigate the genetic, environmental and demographic parameters influencing the
162 distribution of *Arabidopsis* GSL chemotypes, we measured GSLs from seeds of a collection of

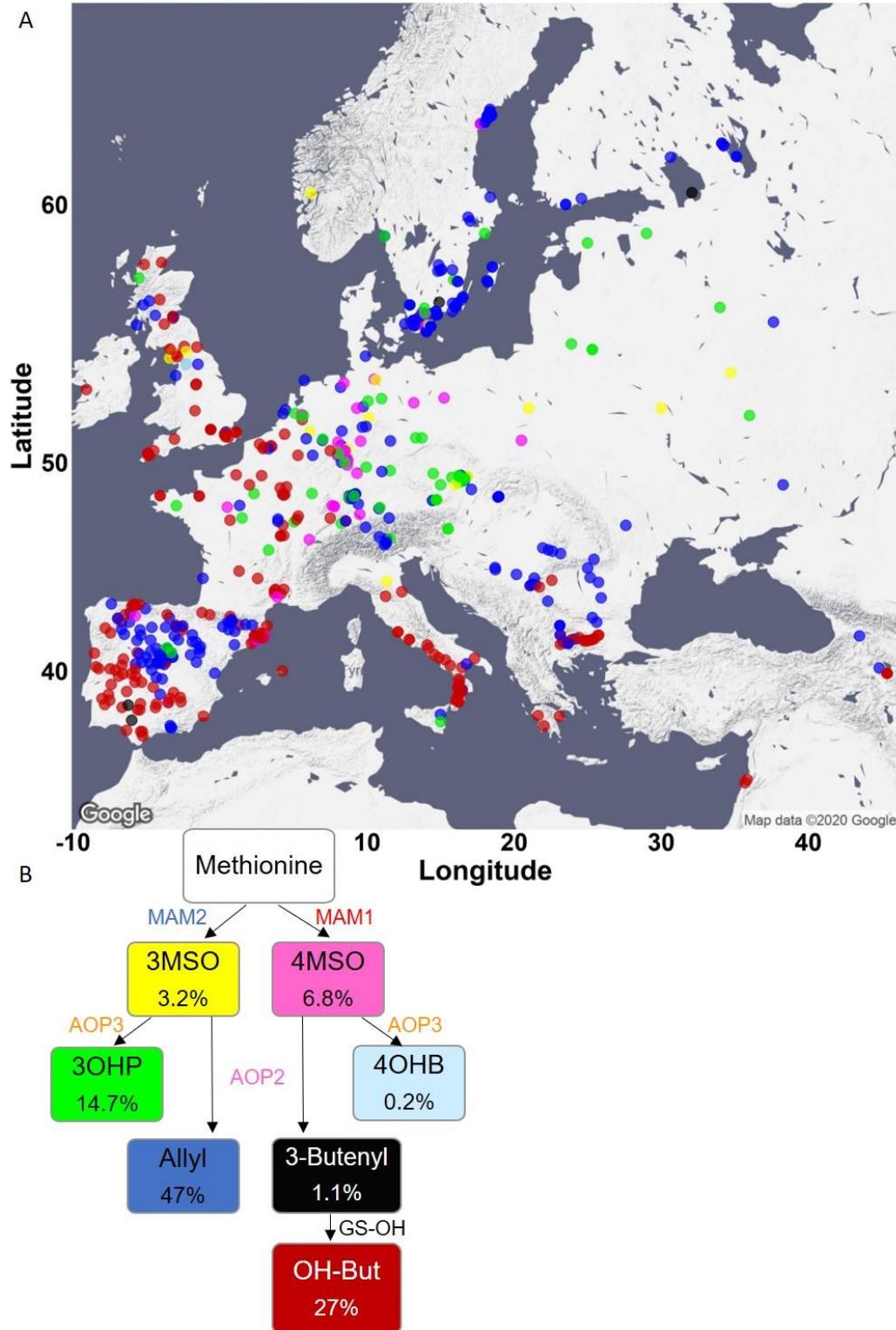
163 797 *Arabidopsis thaliana* natural accessions (The 1001 Genomes Consortium, 2016). These
164 *Arabidopsis* accessions were collected from different geographical locations, mainly in and
165 around Europe. 23 different GSLs were detected and quantified identifying a wide diversity in
166 composition and amount among the natural accessions with a median heritability of 83%,
167 ranging from 34% to 93% (Supplemental Table 1). To summarize the GSL variation among the
168 accessions we performed principal component analyses (PCA) on the accumulation of all the
169 individual GSLs across the accessions as an unbiased first step. The first two PCs only captured
170 33% of the total variation with PC1 describing GSLs with 4 and 7 carbons and PC2 mainly
171 capturing GSLs with 8 carbons in their side chain (supp. Figure 1). Previous work using a
172 collection of predominantly central European accessions had suggested a simple continental
173 gradient chain-elongation variation from the south-west to the north-east (Brachi et al., 2015;
174 Züst et al., 2012). To assess if this was still apparent in this larger collection, we plotted the
175 accessions based on their geographical locations, and colored them based on their PC1 and PC2
176 scores that are linked to chain elongation variation (Figure 2A and supp. Figure 2A,
177 respectively). This larger collection shows that there is not a single gradient shaping GSL
178 diversity across Europe (Figure 2A). Instead the extended sampling of accessions around the
179 Mediterranean in this collection shows that the SW to NE pattern reiterates within the Iberian
180 Peninsula.

181

182 **Figure 2: GSL variation across Europe is dominated by two loci.** A. The accessions are
183 plotted on the map based on their collection site, and colored based on their PC1 score. B.
184 Manhattan plot of GWAS analyses using PC1. Horizontal lines represent 5% significance
185 thresholds using Bonferroni (red) and permutations (blue).

186 To test which of the major causal loci are detectable in this collection and to identify new
187 genomic regions that are associated with the observed GSL variation, we performed genome
188 wide association (GWA, with EMMAX algorithms) analyses using the PC1 and PC2 values.
189 This collection of natural accessions presents a dense variant map and is 3x larger than previous
190 GSL GWA mapping populations. In spite of the large population size, both PC1 and PC2 based
191 analyses identified the same two major peaks covering two of the known causal genes
192 controlling GSL diversity (Figure 2B for PC1 GWA analyses, supp. Figure 2B for PC2 GWA
193 analyses) (Brachi et al., 2015; Chan et al., 2011, 2010). The largest peak in both cases, is the GS-
194 Elong locus on chromosome 5, containing the MAM1 (AT5G23010), MAM2 and MAM3
195 (AT5G23020) genes. The peak on chromosome 4 is the GS-AOP locus containing the AOP2 and
196 AOP3 genes (AT4G03060 and AT4G03050, respectively). Previous F2, QTL and molecular
197 experiments have shown that the genes within GS-AOP and GS-Elong loci are the causal genes
198 for GSL variation within these regions (Benderoth et al., 2006; Brachi et al., 2015; Chan et al.,
199 2011, 2010; D J Kliebenstein, Gershenson, et al., 2001; D. Kliebenstein et al., 2002; Daniel J
200 Kliebenstein et al., 2002; Kroymann & Mitchell-Olds, 2005; Pfalz et al., 2007; Wentzell et al.,
201 2007). Surprisingly, none of the 8 other known natural variants within the GSL biosynthetic
202 pathway were identified by GWA including three that were found with 96 accessions and three
203 that were found with 595 accessions using PC1 and 2 (Brachi et al., 2015; Chan et al., 2011,
204 2010; Daniel J. Kliebenstein, 2009). It is possible that the extended sampling of accessions may
205 have created genomic and demographic issues that influenced this high false-negative error rate
206 where ~80% of validated natural variants found using multiple RIL populations were missed.

207

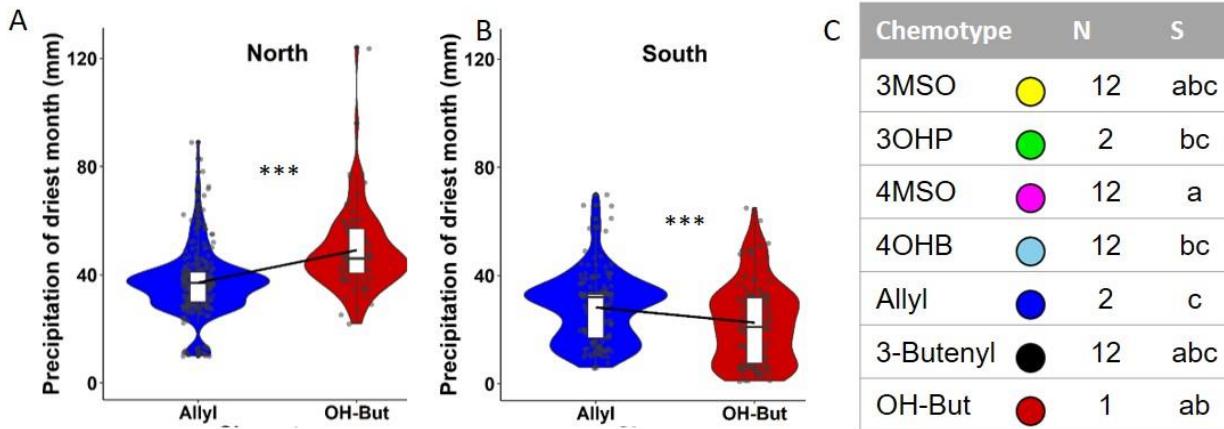

208 **Complex GSL Chemotypic Variation**

209 One potential complicating factor is that GSL chemotypic variation is best described as a discrete
210 multimodal distribution involving the epistatic interaction of multiple genes which PCA's linear
211 decomposition cannot accurately capture (Figure 1). To test if PCA was inaccurately describing
212 GSL chemotypic variation, we directly called the specific GSL chemotypes in each accession.
213 Using *Arabidopsis* QTL mapping populations and GWA, we have shown that the GS-AOP,
214 Elong and OH loci determine seven discrete chemotypes, 3MSO, 4MSO, 3OHP, 4OHB, Allyl,
215 3-Butenyl, 2-OH-3-Butenyl, that can be readily assigned from GSLs phenotypic data (Brachi et

216 al., 2015; Chan et al., 2011, 2010; D J Kliebenstein, Gershenson, et al., 2001). Using accessions
217 with previously known chemotypes and genotypes, we developed a phenotypic classification
218 scheme to assign the chemotype for each accession (Figure 3, for details see methods and supp.
219 Figures 3-5, for structures see Figure 1 and supp. Table 1). Since the Aliphatic GSLs
220 composition in the seeds reliably indicate the GSL structural composition in the other plant's life
221 stages and tissues, assigning a chemotype for each accession based on the seeds composition is
222 expected to be highly stable across tissues of the same accession (Brown et al., 2003; Chan et al.,
223 2011, 2010; D J Kliebenstein, Gershenson, et al., 2001; D J Kliebenstein, Kroymann, et al.,
224 2001). Most accessions were classified as 2-OH-3-Butenyl (27%) or Allyl (47%) with lower
225 frequencies for the other chemotypes. Mapping the chemotypes on Europe showed that the PCA
226 decomposition was missing substantial information on GSL chemotype variation (Figure 3).
227 Instead of a continuous distribution across Europe, the chemotype classifications revealed
228 specific geographic patterns. Central and parts of northern Europe were characterized by a high
229 variability involving the co-occurrence of individuals from all chemotypes. In contrast, southern
230 Europe, including the Iberian Peninsula, Italy and the Balkan, has two predominant chemotypes,
231 Allyl or 2-OH-3-Butenyl, that are separated by a sharp geographic partitioning (Figure 3, and
232 supp. Figure 6). The few accessions in southern Europe belonging to other chemotypes were all
233 accessions previously identified as having genomes identical to accessions in central Europe,
234 suggesting that they are likely stock center seed contaminations (The 1001 Genomes
235 Consortium, 2016). Uniquely, Swedish accessions displayed a striking presence of almost solely
236 Allyl chemotypes that was not mirrored on the eastern coast of the Baltic Sea (Finnish,
237 Lithuanian, Latvian or Estonian accessions). Directly assigning GSL variation by discrete
238 chemotypes provided a more detailed image not revealed by PCA decomposition. Further, the
239 different chemotypic to geographic patterns suggests that there may be different pressures
240 shaping GSL variation particularly when comparing central and southern Europe.

241 **Figure 3: Phenotypic classification based on GSL content.** A. Using the GSL accumulation,
242 each accession was classified to one of seven aliphatic short chained GSL chemotypes based on
243 the enzyme functions as follows: MAM2, AOP null: classified as 3MSO dominant, colored in
244 yellow. MAM1, AOP null: classified as 4MSO dominant, colored in pink. MAM2, AOP3:
245 classified as 3OHP dominant, colored in green. MAM1, AOP3: classified as 4OHB dominant,
246 colored in light blue. MAM2, AOP2: classified as Allyl dominant, colored in blue. MAM1,
247 AOP2, GS-OH non-functional: classified as 3-Butenyl dominant, colored in black. MAM1,
248 AOP2, GS-OH functional: classified as 2-OH-3-Butenyl dominant, colored in red. The

249 accessions were plotted on a map based on their collection sites and colored based on their
250 dominant chemotype. B. The coloring scheme with functional GSL enzymes in the aliphatic
251 GSL pathway is shown with the percentage of accessions in each chemotypes (out of the total
252 797 accessions) shown in each box.


253

254 **Geography and environmental parameters affect GSL variation**

255 Because GSL chemotypes may be more reflective of local environment, we proceed to test if
256 they are associated with weather parameters and landscape conditions. Further, given the
257 difference in chemotype occurrence in central and southern Europe we hypothesized that these
258 environmental connections may change between central and southern Europe. For these tests, we
259 chose environmental parameters that capture a majority of the environmental variance and by
260 that may describe the type of ecosystem (Ferrero-Serrano & Assmann, 2019). We assigned each
261 accession the environmental value based on its location. These environmental parameters include
262 geographic proximity (distance to the coast), precipitation descriptors (precipitation of wettest
263 and driest month) and temperature descriptors (maximal temperature of warmest month and
264 minimal temperature of coldest month) capture major abiotic pressures as well as provide
265 information about the type of ecosystem in which each accession exists. We ran a
266 multivariate analysis of variance (MANOVA) for each geographic area separately (north and
267 central vs south, as shown in supp. Figure 6). This showed significant difference in how the GSL
268 chemotypes associated to the environmental parameters across Europe. This was best illustrated
269 by the two dominant chemotypes, Allyl and 2-OH-3-Butenyl, showing opposing relationships to
270 the precipitation in the driest month. In Northern and Central Europe, the Allyl chemotype is
271 more associated with lower precipitation in the driest month, while accessions with 2-OH-3-
272 Butenyl as the dominant chemotype are associated with higher precipitation in the driest month.
273 In Southern European accessions, this association is inverted (Figure 4A,B). This suggests that
274 the relationship of GSL chemotype to environmental parameters vary across geographic regions
275 of Europe rather than fitting a simple linear model.

276 As the two main chemotypes in the collection differ by the length of the carbon chain (C3 for
277 Allyl, C4 for 2-OH-3-Butenyl), we created a linear model to further check the interaction
278 between each environmental condition to geography in respect to the carbon chain length. Most
279 of the environmental parameters significantly interacted with geography, meaning that the
280 relationship of environment to GSL alleles change across geographic areas (supp. Figure 7, for
281 details on the models see methods). Conducting this analysis for each of the geographic areas
282 separately highlighted this by showing that these parameters have different effects on the carbon
283 chain length in each of the areas (supp. Figure 7). This was true when the model was run with or

284 without ancestral population state being included in the model (The 1001 Genomes Consortium,
285 2016).

286

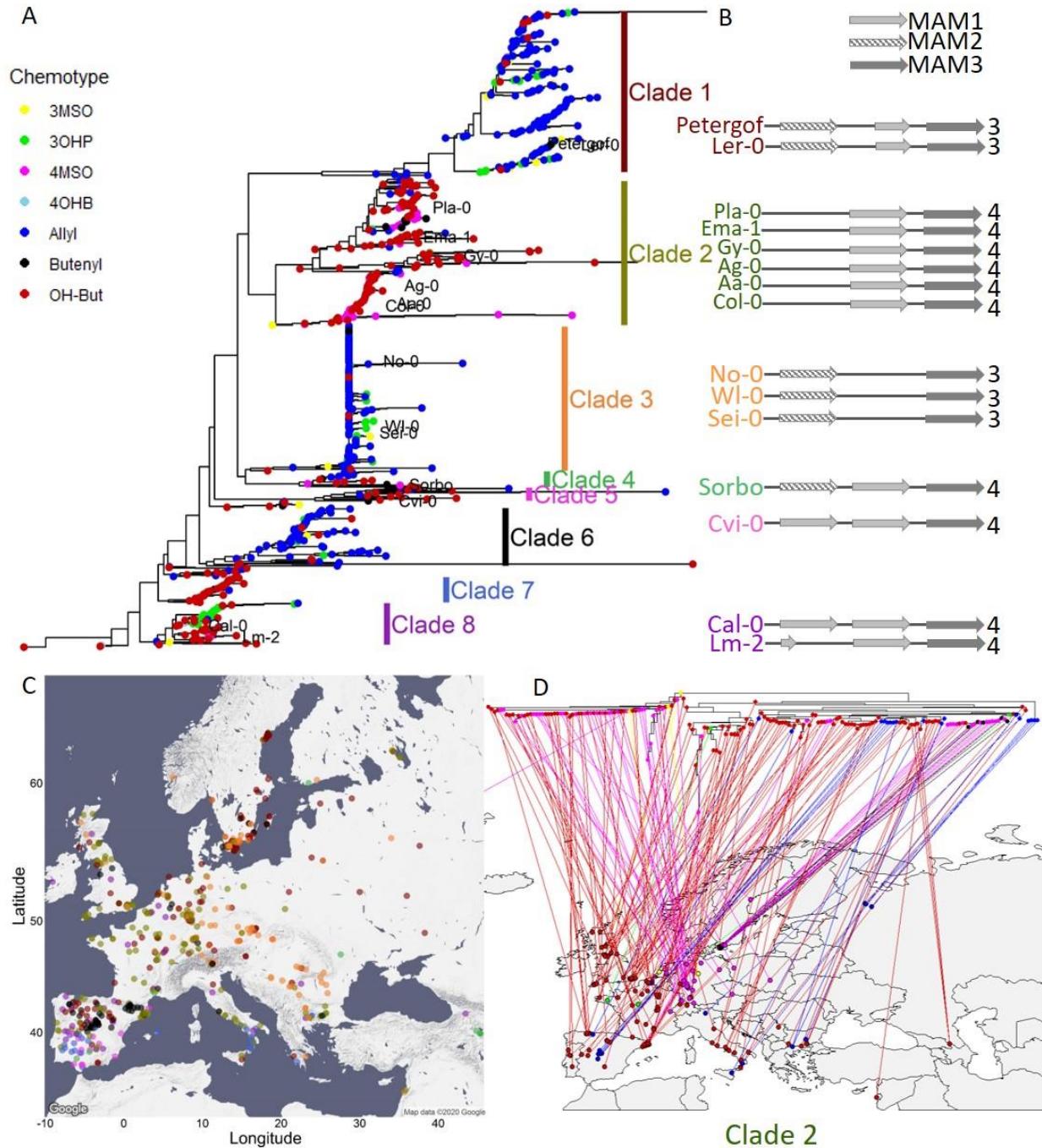
287 **Figure 4: Environmental conditions differentially associate with GSLs across geographic**
288 **location.** A. B. The association of the two major chemotypes allyl and 2-OH-3-Butenyl to
289 precipitation values of the driest month. Significance was tested by t-Test, $P = 0.00000258$ for
290 the North (Slope= 0.01), $P = 0.0005521$ for the South (Slope= -0.007). C. MANOVA was
291 performed for the south and north as indicated in methods section, followed by pairwise
292 comparisons of least-squares means. Numbers indicate chemotypes with significant differences
293 in the North and letters indicate chemotypes with significant differences in the south. OH-But= 294 2-OH-3-Butenyl.

295

296 Using a random forest machine learning approach provided similar results with different
297 environment to chemotype relationships in the north and south (sup. Figure 8), supporting the
298 hypothesis that the GSL chemotype to environment relationships change across regions within
299 Europe.

300

301 The genetic architecture of GSL variation


302 The presence of different GSL chemotype to environmental relationships across Europe raises
303 the question of how these chemotypes are generated. Are these chemotypes from locally derived
304 alleles or obtained by the intermixing of widely distributed causal alleles. Further, if there are
305 multiple alleles, do they display within species convergent or parallel signatures. We focus on
306 the GS-AOP, GS-Elong, and GS-OH loci, the causal genes creating *Arabidopsis* GSL

307 chemotypes, and use the available genomic sequences in all of these accessions to investigate the
308 allelic variation in these genes to map the allelic distribution and test the potential for convergent
309 and/or parallel evolution within each locus.

310 GS-Elong: Because the variation in the GS-Elong locus is caused by complex structural variation
311 in MAM1 and MAM2 that is not resolvable using the available data from short-read genomic
312 sequence, we used the MAM3 sequence within this locus to ascertain the genomic relationship of
313 accessions at the causal GS-Elong locus (Kroymann et al., 2003). We aligned the MAM3
314 sequence from each of the accessions, rooted the tree with the *Arabidopsis lyrata* orthologue
315 (MAMc), and colored the tree tips based on the accessions dominant chemotype.

316 The accessions were distributed across eight distinctive clades with each clade clustering
317 accessions having either a C3 or C4 status (Figure 5A). The clades C3/C4 status altered across
318 the tree with three of the clades C3 dominant (MAM2 expressed), and five clades being C4
319 dominant (MAM1 expressed). Further supporting the use of MAM3 is that the accession
320 assignments to these clades agree with available bacterial artificial chromosome-based
321 sequencing of the GS-Elong region from 15 accessions (Figure 5B). While there are multiple
322 functional alleles for both C3 and C4 chemotypes, the genomic sequence and phylogeny does not
323 appear consistent with a simple parallel evolution model where one allele/population is the basis
324 for the independent derivation of all alternative alleles. This is illustrated by the difference in the
325 genomic arrangement of Clade 4 and 5 which both create C4 GSLs. Clade 4 has a copy of
326 MAM2 and MAM1 while Clade 5 has two copies of MAM1 (Figure 5). It appears that Clade 4 is
327 the basis for two independent C3 alleles via separate deletions of MAM1 (Clades 1 and 3) and a
328 separate C4 allele via a deletion of MAM2 (Clade 2, Figure 5). Unfortunately, no long-read
329 sequencing is available in accessions from Clade 6 or 7 and locus-specific de novo alignment of
330 short-read sequences in these accessions was not able to resolve the regions complexity. Filling
331 in these clades would be necessary to better understand convergent/parallel events giving rise to
332 GSL chemotypes.

333 Interestingly, the most basal clade has no copy of MAM2, raising the question of where MAM2
334 arose (Figure 5). This suggests that true ancestral state(s) of this locus is not represented in this
335 collection and would need to be searched for in other populations of *Arabidopsis thaliana*, if it
336 exists in extant populations.

337

338 Figure 5: **MAM3 phylogeny.** A. MAM3 phylogeny of *Arabidopsis thaliana* accessions, rooted
 339 by *Arabidopsis lyrata* MAMc, that is not shown because of distance. Tree tips are colored based
 340 on the accession chemotype. The named accessions indicate that GSL-Elong region of these
 341 accessions was previously sequenced (Kroymann et. al. 2003). B. The genomic structure of the
 342 GSL-Elong regions in the previously sequenced accessions is shown based on Kroymann et. al.
 343 2003. The accession names are colored based on their clades. The color of the name of the
 344 accession indicates the clade it belongs. Bright grey arrows represents MAM1 sequences, dashed

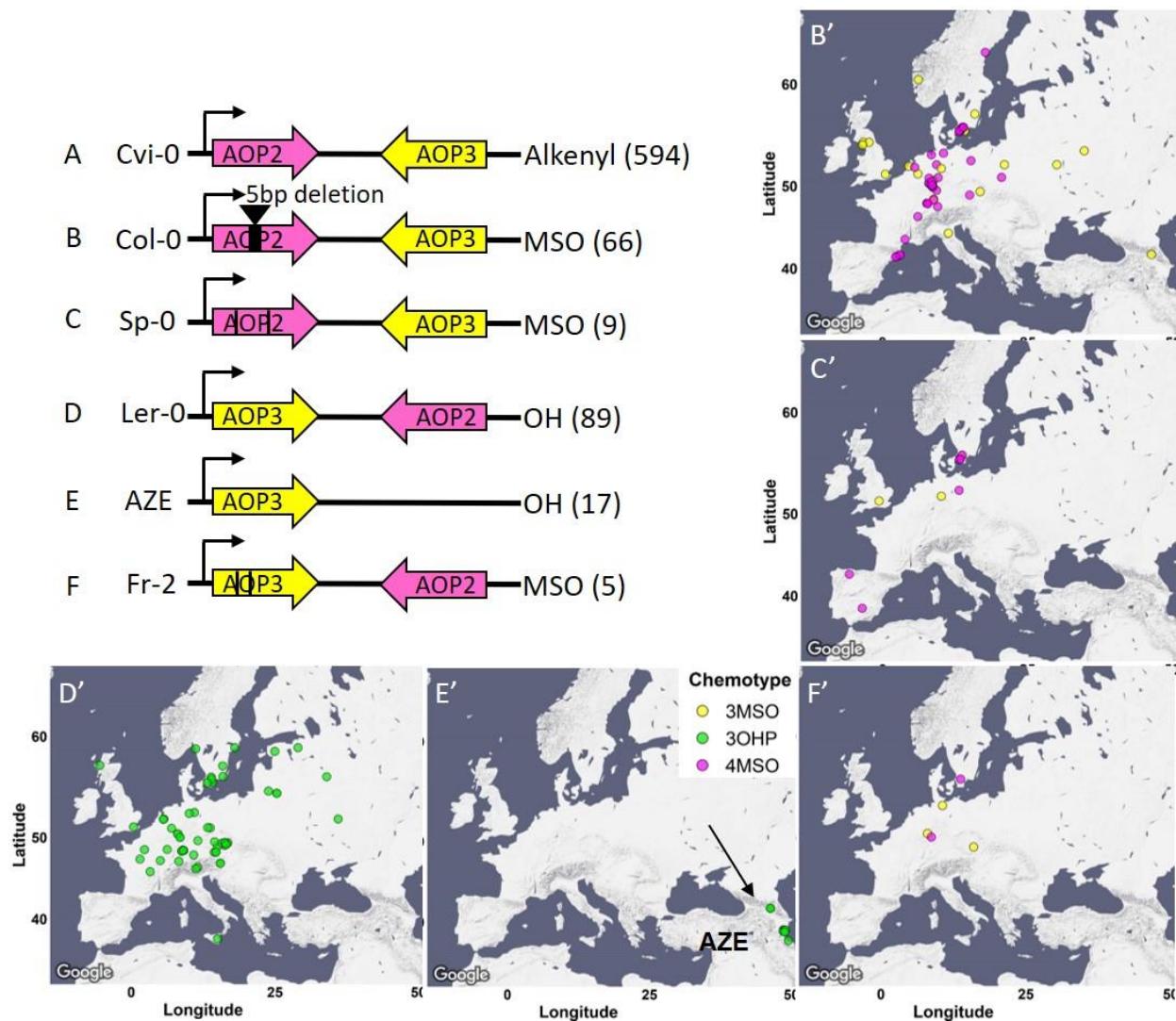
345 arrows represents MAM2 sequences. Dark grey arrows represent MAM3 sequences. The number
346 to the right of the genomic cartoon represents the number of carbons in the side chain. C.
347 Collection sites of the accessions, colored by their clade classification (from section A). D. Clade
348 2 reflection on the map.

349

350 Using this phylogeny, we investigated the presence of the different GS-Elong haplotypes across
351 Europe to ask if each region has a specific allele/clade or if the alleles are distributed across the
352 continent. Specifically, we were interested if the strong C3/C4 partitioning in southern Europe
353 was driven by the creation of local alleles or if this partitioning might contain a wide range of
354 alleles. If the latter is true, this would argue for a selective pressure shaping this C3/C4 divide.
355 We plotted the accessions on the map and colored them based on their GS-Elong clade (Figure
356 5C). This showed that the strong C3/C4 partition in the Iberian Peninsula contains haplotypes
357 from all the GS-Elong clades except Clade 3 and is not caused by local alleles. This suggests that
358 the strong geographic partitioning of the C3/C4 chemotypes in Iberia may be driven by selective
359 pressure causing the partitioning of the chemotypes rather than neutral demographic processes.

360 Shifting focus to all of Europe showed that while most clades were widely distributed across
361 Europe there were a couple over-arching patterns (Figure 5C, and supp. Figure 9). GS-Elong
362 clades 1 and 6 follow a pattern that fits with alleles located within the Iberian glacial refugia that
363 then moved north. In contrast the absence of clade 3 from Iberia is more parsimonious with a
364 glacial refugia in the Balkans followed by a northward movement wherein it mixed with the
365 other clades. Other clades never moved north and are exclusive to the south as shown by clades 5
366 and 7. While these are both C4 clades, other C4 clades like clades 2 and 8 were able to move
367 north (Figure 5D, and supp. Figure 9, respectively). This suggests that there are either differences
368 in their GSL chemotype influencing their distribution or there are neighboring genes known to be
369 under selection in *Arabidopsis* like FLC (AT5G10140) that may have influenced their
370 distribution. In combination, this suggests that a complex demography is involved in shaping the
371 chemotypes identity with some regions, Iberia, showing evidence of local selection while other
372 regions, central Europe, possibly showing a blend requiring further work to delineate (supp.
373 Figure 9).

374 GS-AOP: Side chain modification of the core MSO GSL is determined by the GS-AOP locus.
375 Most of the accessions contain a copy of AOP2 and a copy of AOP3, but only one of them will


376 be functionally expressed (Chan et al., 2010), while in some cases both will be nonfunctional. To
377 better understand the demography and evolution of the GS-AOP locus, we separately aligned the
378 AOP2 and AOP3 sequences, rooted each tree with the *Arabidopsis lyrata* orthologue, and
379 colored the trees tips based on the accessions dominant chemotype.

380 The phylogenetic trees shared a very similar topology, yielding a clear separation between
381 alkenyl (AOP2 expressed) and hydroxyalkyl (AOP3 expressed) accessions. Alkenyl expressing
382 accessions like Cvi-0 with an expressed copy of the AOP2 enzyme formed a single contiguous
383 cluster (Figure 6A). In contrast, hydroxyalkyl accessions clustered into two separate groups with
384 one group of 3OHP dominant accessions partitioning from the rest of the accessions at the most
385 basal split in the tree (supp. Figure 10). This haplotype is marked by having an inversion
386 swapping the AOP2 and AOP3 promoters as shown in bacterial artificial chromosome
387 sequencing of the Ler-0 accession (Figure 6D) (Chan et al., 2010). The tree also identified a
388 second group of 3OHP dominant accessions located among the alkenyl accessions. Analyzing
389 the sequences of these accessions reveals that this small group of 3OHP accessions have a
390 complete deletion of AOP2 and contain only AOP3 (Figure 6E). Thus, there are at least two
391 independent transitions from Alkenyl to Hydroxyalkyl GSLs within *Arabidopsis*, neither of
392 which are related to the Alkenyl to Hydroxyalkyl conversion within *Arabidopsis lyrata*.

393 The null accessions (MSO dominant chemotypes) were identifiable in all the major clades on the
394 tree (supp. Figure 10, middle column of heatmap) suggesting that there are independent LOF
395 mutations that abolish either AOP2 or AOP3. Deeper examination of the sequences of these
396 accessions identified three convergent LOF alleles leading to the MSO chemotype. Most of the
397 null accessions harbor a 5 bps deletion in their AOP2 sequence, that causes a frameshift
398 mutation. This mutation arose within the Alkenyl haplotype and was first reported in the Col-0
399 reference genome (Figure 6B) (D J Kliebenstein, Lambrix, et al., 2001). In addition, there are
400 additional independent LOF events arising in both the alkenyl haplotype (e.g. Sp-0, Figure 6C),
401 and within the Ler-0 inversion haplotype (e.g. Fr-2, Figure 6F). Thus, GS-AOP has repeated
402 LOF alleles arising within all the major AOP haplotypes suggesting convergent evolution of the
403 MSO chemotype out of both the Alkenyl and Hydroxyalkyl chemotypes.

404 Using the combined chemotype/genotype assignments at GS-AOP, we investigated the
405 distribution of the alleles across Europe. The Alkenyl haplotype is spread across the entire

406 continent. In contrast, the hydroxyalkyl haplotypes are more local. The Ler-like 3OHP haplotype
407 is present in only central and north Europe (Figure 6D), while the other 3OHP haplotype,
408 possessing only AOP3, is limited to Azerbaijan, along the Caspian Sea (Figure 6E). In contrast to
409 the distinct hydroxyalkyl locations, the distribution of the independent LOF null haplotypes
410 overlaps with all of them being located within central and north Europe (Figure 6B, C and F).
411 The fact that these independently derived LOF alleles are all contiguous suggests that there may
412 be a benefit to these alleles specific to Central Europe.

413
414 Figure 6: **AOP Genomic structure.** The genomic structure and causality of the major
415 AOP2/AOP3 haplotypes are illustrated. Pink arrows show the AOP2 gene while yellow arrows
416 represent AOP3. The black arrows represent the direction of transcription from the AOP2
417 promoter as defined in the Col-0 reference genome. Its position does not change in any of the
418 regions. The black lines in Sp-0 and Fr-2 presence the position of independent variants creating

419 premature stop codons. The GSL chemotype for each haplotype is listed to the right with the
420 number of the accessions in brackets. The maps show the geographic distribution of the
421 accessions from each structure.

422

423 GS-OH: The final major determinant of natural variation in *Arabidopsis* GSL chemotype is the
424 GS-OH enzyme that adds a hydroxyl group to the 2 carbon on 3-butetyl GSL to create 2-OH-3-
425 butenyl GSL. Previous work had suggested two GS-OH alleles measurable in the seed, a
426 functional allele in almost all accessions and a non-functional allele caused by active site
427 mutations represented by the Cvi-0 accession (Hansen et al., 2008). Because of functional
428 epistasis, we can only obtain functional phenotypic information from accessions that accumulate
429 the GS-OH substrate, 3-butetyl GLS. This identified 11 accessions with a non-functional GS-
430 OH. Surveying these 11 accessions in the polymorph database identified multiple independent
431 LOF events. One of these 11 accessions have the Cvi active site mutations, two accessions have
432 a shared nonsense SNP that introduce premature stop codons, and two accessions have a
433 complete loss of this gene (Table 1). We could not identify the causal LOF allele in the other six
434 accessions due to sequence quality in the databases. All of these independent GS-OH LOF
435 alleles are phylogenetically positioned within groups of accessions that largely do not
436 accumulate 3-butetyl GLS, e.g. 3 carbon or non-alkenyl accessions suggesting that the
437 functional epistasis may be influencing the generation of these alleles. Thus, we searched the
438 accessions that do not accumulate 3-butetyl GLS and have effectively hidden the GS-OH
439 function for these GS-OH LOF events (Supp table 2). In each case, the LOF allele is more
440 frequent in the non 4 carbon-alkenyl accessions than expected by random chance. This suggests
441 that there is a bias against 3-butetyl GSL synthesis as the LOF alleles are more frequent when
442 the GS-OH gene is hidden by functional epistasis. This agrees with the fact that the 3-butetyl
443 chemotype is the most sensitive to generalist lepidopteran herbivory (Hansen et al., 2008). Thus,
444 these mutations may represent ongoing pseudogenization of the GS-OH gene when it is
445 functionally hidden by epistasis at the GS-AOP and GS-Elong loci. These LOF events would
446 then only be displayed upon rare admixture with 2-OH-3-Butenyl accessions.

447

448

Accession	Type of mutation	Allele structure
Sorbo, Pien	polymorphism at SNP10831302	
Cvi-0	Active site mutation	
IP-Mot-0, IP-Tri-0	Gene deletion	
T670	Independent mutation	
FlyA 3	Independent mutation	
Ting-1	Independent mutation	
T880	Independent mutation	
T710	Independent mutation	
T850	Independent mutation	

449

450 Table 1: **GS-OH structure**. The structures of GS-OH in the 3-Butenyl accessions are illustrated.
451 These mutations create premature stop codons.

452

453 Discussion

454 Understanding the genetic, demographic and environmental factors that shape variation within a
455 trait in a population is key to understanding trait evolution. In this work we used Aliphatic GSLs
456 in seeds of *Arabidopsis thaliana* to query how genetics, geography, environment and
457 demography intersect to shape chemotypic variation across Europe. We found that
458 environmental conditions, together with geography affect the presence and distribution of
459 chemotypes within the accessions. This was demonstrated by specific traits that were associated
460 with specific environmental conditions, and this association was shifted across the continent.
461 Comparing the associations of traits to specific environmental conditions in central Europe
462 versus the south revealed different, sometimes even inverse, behaviors. For example, In the
463 Iberian Peninsula, 2-OH-3-Butenyl was positively associated with potential drought while in
464 Central Europe, it was the opposite GS-Elong allele showing association. This showed that

465 chemotypic variation across Europe is created by a blend of all these processes that differ at the
466 individual loci and required the simultaneous analysis of genotype and phenotype to fully
467 interpret.

468 In contrast to the bimodal distribution in the Aliphatic GSL traits, each of the three major
469 Aliphatic GSL loci showed allelic heterogeneity with multiple independent structural variants
470 that recreated the same phenotypic variation. The GS-AOP locus had numerous events with the
471 AOP3 variant of GS-AOP arising via at least two independent events and the Null allele being
472 generated at least 15 independent times. The GS-AOP null alleles convergently arose from all
473 the different functional haplotypes. It is less clear if the independent GS-AOP AOP3 alleles
474 should be classified as convergent or parallel due to a lack of clarity in what is the ancestral state.
475 Similar to the independent GS-AOP null alleles, there were numerous independent GS-OH LOF
476 variants with at least 9 independent events. While these are parallel GS-OH LOF events because
477 they came from a single functional GS-OH group, their ability to accumulate depends on the
478 epistatic silencing of GS-OH by the GS-AOP and GS-Elong loci. The GS-Elong locus also had
479 an extensive level of allelic heterogeneity hallmarked by a shifting expression of the MAM1 or
480 MAM2 gene, again with hallmarks of both parallel and convergent processes. Interestingly, at
481 both the GS-AOP and GS-Elong loci, one gain-of-function event (e.g. AOP3 in GS-AOP locus,
482 and MAM2 in GS-Elong locus) is concurrently linked to a loss-of-function of the other gene at
483 the locus (AOP2 and MAM1, respectively). These structural variants are shaped such that the
484 chemotypes show distinct separations without any intermediate phenotypes. This allelic
485 heterogeneity is in contrast to previous work on other biotic interactions genes like pathogen
486 resistance gene-for-gene loci that typically have two moderate frequency stable alleles creating
487 the phenotypic variation within the species (Atwell et al., 2010; Corrion & Day, 2001;
488 MacQueen, Sun, & Bergelson, 2016). In other cases alleles of genes involved in biotic defense
489 can present more complex patterns, e.g. natural variation in the immune gene *ACCELERATED*
490 *CELL DEATH 6* (ACD6) is caused by a rare allele causing an extreme lesion phenotype. It is not
491 yet clear what selective pressures influence ACD6 genetic variation (Todesco et al., 2010; Zhu et
492 al., 2018). The contrast where Aliphatic GSL loci have high levels of allelic heterogeneity for
493 independent and recurrent LOF and GOF events while other resistance genes have more stable
494 biallelic variation suggests that there are different selective regimes influencing these loci.

495 Further work is needed to assess the range of allelic heterogeneity in loci controlling resistance
496 to diverse biotic traits within the environment.

497

498 The allelic heterogeneity at these loci illustrates the benefit of simultaneously tracking the
499 phenotype and genotype when working to understand the distribution of trait variation. For
500 example, the Iberian Peninsula and the Mediterranean had low variability in Aliphatic GSL
501 chemotype with the chemotypes not overlapping while central/north Europe had high Aliphatic
502 GSL diversity with the chemotypes overlapping. At first glance, this contrasts with previous
503 work showing that the Iberian Peninsula and the Mediterranean are more genetically diverse.
504 However, this discrepancy was caused by one of the causal loci. Specifically, the GS-AOP locus
505 is largely fixed as the Alkenyl allele in Iberia/Mediterranean with the alternative GS-AOP alleles
506 enriched in central Europe. In contrast to GS-AOP, Iberia and the Mediterranean were highly
507 genetically diverse for the GS-Elong locus and appear to contain all the variation in GS-Elong
508 found throughout Europe (The 1001 Genomes Consortium, 2016). Thus, the chemotypic
509 divergence from genomic variation expectations was driven by just the GS-AOP locus. This
510 indicates that the high level of chemotypic variation in central Europe is a blend of alleles that
511 moved from the south (GS-Elong) and alleles that possibly arose locally (GS-AOP, both nulls
512 and AOP3). Further, the chemotypes found in any one region appear to be created by a
513 combination of alleles moving across the continent, local generation of new polymorphisms and
514 local selective pressures that shape the chemotypes distribution across the landscape.

515

516 One difficulty in interpreting the evolutionary processes, e.g. parallel v convergent, especially for
517 structural variants illustrated by all the three loci is the complication in properly identifying the
518 ancestral state of the population. While this could typically be done by relying on shared loci
519 with sister species, this is not possible in this case as *Arabidopsis lyrata* and *halleri* have genetic
520 variation at GS-Elong and GS-AOP creating the exact same phenotypes. Further, neither of these
521 sister species have yet been found to have a functional GS-OH (Heidel, Clauss, Kroymann,
522 Savolainen, & Mitchell-Olds, 2006; Ramos-Onsins, Stranger, Mitchell-Olds, & Aguadé, 2004;
523 Windsor et al., 2005). The MSO chemotypes could be viewed as convergent evolution within a
524 species, as the MSO phenotype independently re-occurred multiple times in the AOP2 and AOP3
525 genetic backgrounds. However, it is not clear how to classify the different AOP3 (AZE v Ler)

526 types as it not clear if the AOP2 or AOP3/Ler haplotype is ancestral within *Arabidopsis thaliana*.
527 Another option to calling ancestral state is deep sampling in the species but even with these
528 accessions, we do not appear to have reached the necessary threshold. For example previous
529 work at the GS-Elong locus had suggested that the Sorbo accession, collected from Tajikistan,
530 was the most likely ancestral state as it had a copy of both MAM1 and MAM2 (Kroymann et al.,
531 2003). However, the phylogeny with this larger collection of accessions suggested that Sorbo is
532 not ancestral. Further, a recent phylogeny of MAM genes across the Brassicales suggests that
533 MAM2 is an *Arabidopsis thaliana* specific gene with an undefined origin (Abrahams et al.,
534 2020). This suggests that to get a better understanding of the ancestral state to define
535 evolutionary processes, especially for loci with allelic heterogeneity and structural variants, we
536 need to broaden our phylogenetic context by deeper sampling within and between species.

537

538 Another complication caused by the allelic heterogeneity and differential selective pressures
539 displayed within this system is that we were unable to detect a number of known and validated
540 natural variants that are causal within this population. Specifically, the GWAS with this
541 collection of 797 accessions was unable to find 80% of the known causal loci including one of
542 the three major effect loci, GS-OH. Maximizing the number of genotypes and the SNP marker
543 density was unable to overcome the complications imposed by the complex pressures shaping
544 the distribution of these traits. In this system, the optimal path to identifying the causal
545 polymorphisms has instead been a small number of Recombinant Inbred Line populations
546 derived from randomly chosen parents. In complex adaptive systems, the optimal solution to
547 identifying causal variants is likely a blend of structured mapping populations and then
548 translating the causal genes from this system to the GWAS results and tracking the causal loci
549 directly.

550 In this work we combined different approaches to uncover some of the parameters shaping the
551 Aliphatic GSL content across Europe. Widening the size of the population will enable us to
552 deepen our understanding on the evolutionary mechanisms shaping a phenotype in a population.

553

554

555

556 **Methods**

557 **Plant materiel:**

558 Seeds for 1135 *Arabidopsis* (*Arabidopsis thaliana*) genotypes were obtained from the 1001
559 genomes catalog of *Arabidopsis thaliana* genetic variation (<https://1001genomes.org/>). All
560 *Arabidopsis* genotypes were grown at 22°C/24°C (day/night) under long-day conditions (16-h of
561 light/8-h of dark). Two independent experiments were performed, each of them included the full
562 set of genotypes. In the analyses only accessions from Europe and around Europe were included
563 (Figure 2A), resulting in an analysis of 797 accessions. List of the accessions can be found in
564 supp. Table 1.

565 **GSL extractions and analyses:**

566 GSLs were measured as previously described (D J Kliebenstein, Gershenzon, et al., 2001; D J
567 Kliebenstein, Kroymann, et al., 2001; D J Kliebenstein, Lambrix, et al., 2001). Briefly, ~3mg of
568 seeds were harvested in 200 µL of 90% methanol. Samples were homogenized for 3 min in a
569 paint shaker, centrifuged, and the supernatants were transferred to a 96-well filter plate with
570 DEAE sephadex. The filter plate with DEAE sephadex was washed with water, 90% methanol,
571 and water again. The sephadex bound GSLs were eluted after an overnight incubation with
572 110µL of sulfatase. Individual desulfo-GSLs within each sample were separated and detected by
573 HPLC-DAD, identified, quantified by comparison to standard curves from purified compounds,
574 and further normalized to the weight. List of GSLs and their structure are in supplementary table
575 1. Row GSLs data are in supplementary table 1B.

576 **Statistics, heritability, and data visualization:**

577 Statistical analyses were conducted using R software (<https://www.R-project.org/>) with the
578 RStudio interface (<http://www.rstudio.com/>). For each independent GLS, a linear model
579 followed by ANOVA was utilized to analyze the effect of accession, replicate, and location in
580 the experiment plate upon the measured GLS amount. Broad-sense heritability (supplementary
581 table 1C) for the different metabolites was estimated from this model by taking the variance due
582 to accession and dividing it by the total variance. Estimated marginal means (emmeans) for each
583 accession were calculated for each metabolite from the same model using the package emmeans
584 (“CRAN - Package emmeans,” n.d.) (supplementary table 1D). Principal component analyses

585 were done with FactoMineR and factoextra packages (Abdi & Williams, 2010). Data analyses
586 and visualization was done using R software with tidyverse (Wickham et al., 2019) and ggplot2
587 (Kahle & Wickham, 2013) packages.

588 Principal component analyses were done with FactoMineR and factoextra packages (Abdi &
589 Williams, 2010).

590 Maps were generated using ggmap package (“<https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf>,” n.d.).

592 **Phenotypic classification based on GSL content:**

593 For each accession the expressed enzyme in each of the following families was determined based
594 on the content (presence and amounts) of short chained Aliphatic GSLs:

595 MAM enzymes: the total amount of 3 carbons GSLs and 4 carbons GSLs was calculated for each
596 accession. 3 carbons GSLs include 3MT, 3MSO, 3OHP and Allyl GSL. 4 carbons GSLs include
597 4MT, 4MSO, 4OHB, 3-butenyl and 2-OH-3-butenyl GSL (for structures and details see supp.
598 Table 1). Accessions that the majority of Aliphatic short chained GSL contained 3 carbons in
599 their side chains classified as MAM2 expressed (supp. Figure 3). Accessions that the majority of
600 Aliphatic short chained GSL contained 4 carbons in their side chains classified as MAM1
601 expressed (supp. Figure 3). The accessions were plotted on a map based on their original
602 collection sites (supp. Figure 3).

603 AOP enzymes: the relative amount of alkenyl GSL, alkyl GSL and MSO GSL were calculated in
604 respect to the total short chained Aliphatic GSL as follows:

605 Alkenyl GSL (AOP2 expressed) =
$$\frac{\text{Allyl} + 2\text{-OH-3-butenyl} + 3\text{-butenyl}}{\text{Total short chained GSL}}$$

606 Alkyl GSL (AOP3 expressed) =
$$\frac{3\text{OHP} + 4\text{OHB}}{\text{Total short chained GSL}}$$

607 MSO GSL (AOP null) =
$$\frac{3\text{MSO} + 4\text{MSO}}{\text{Total short chained GSL}}$$

608 The expressed AOP enzyme was determined based on those ratios: accessions with majority
609 alkenyl GSL were classified as AOP2 expressed. Accessions with majority of alkyl GSL were
610 classified as AOP3 expressed. Accessions with majority of MSO GSL were classified as AOP

611 null. The accessions were plotted on a map based on their original collection sites (supp. Figure
612 4).

613 GS-OH enzyme: the ratio between 2-OH-3-butenyl GSL to 3-butenyl GSL was calculated only
614 for MAM1 expressed accessions (accessions that the majority of GSLs contain 4 carbons in their
615 side chain). Accessions with high amounts of 2-OH-3-butenyl GSL were classified as GS-OH
616 functional. Accessions with high amounts of 3-butenyl GSL were classified as GS-OH non-
617 functional. The accessions were plotted on a map based on their original collection sites (supp.
618 Figure 5).

619 Each accession was classified to one of seven Aliphatic short chained GSLs based on the
620 combination of the dominancy of the enzymes as follows: MAM2, AOP null: classified as
621 3MSO dominant. MAM1, AOP null: classified as 4MSO dominant. MAM2, AOP3: classified as
622 3OHP dominant. MAM1, AOP3: classified as 4OHB dominant. MAM2, AOP2: classified as
623 Allyl dominant. MAM1, AOP2, GS-OH non-functional: classified as 3-Butenyl dominant.
624 MAM1, AOP2, GS-OH functional: classified as 2-OH-3-Butenyl dominant. The accessions were
625 plotted on a map based on their original collection sites and colored based on their dominant
626 chemotype (Figure 3).

627 **Environmental data:**

628 Environmental data was obtained from the 1001 genomes website (<https://1001genomes.org/>, for
629 geographical data) and from the Arabidopsis CLIMtools
630 (<http://www.personal.psu.edu/sma3/CLIMtools.html>, (Ferrero-Serrano & Assmann, 2019)) for
631 environmental data. We used the five variables that captured a majority of the variance in this
632 dataset including maximal temperature of warmest month (WC2_BIO5), minimal temperature of
633 coldest month (WC2_BIO6), precipitation of wettest month (WC2_BIO13), precipitation of
634 driest month (WC2_BIO14), and distance to the coast (in Km).

635 **Environmental MANOVA:**

636 Linear models to test the effect of geographical and environmental parameters (supp. Figure 1, 8)
637 were conducted using dplyr package (“CRAN - Package dplyr,” n.d.) and included the following
638 parameters:

639 Supp. Figure 1- linear models for collection sites: PC score ~ Latitude + Longitude +
640 Latitude * Longitude.

641 Supp. Figure 7 - for all the data: C length (C3 or C4) ~ Genomic group + Geography (north
642 versus south) +Max temperature of warmest month+ Min temperature of coldest month+
643 Precipitation of wettest month+ Precipitation of driest month+ Distance to the coast + Geography
644 *Genomic group + Geography * Max temperature of warmest month + Geography * Min
645 temperature of coldest month+ Geography * Precipitation of driest month+ Geography *
646 Precipitation of wettest month + Geography *Distance to the coast.

647 For the north and the south: C length (C3 or C4) ~ Genomic group + Geography (north versus
648 south) +Max temperature of warmest month+ Min temperature of coldest month+ Precipitation
649 of wettest month+ Precipitation of driest month+ Distance to the coast.

650 Multivariate analysis of variance (MANOVA) models to check the effect of environmental
651 variables on the chemotype identity for each collection (Figure 4 and supp. Figure 7) included
652 the following parameters:

653 Max temperature of warmest month+ Min temperature of coldest month+ Precipitation of wettest
654 month+ Precipitation of driest month+ Distance to the coast~ Chemotype.

655 **Random Forest analyses:** Random forest analyses was conducted using the “randomForest”
656 and “ElemStatLearn” packages in Rstudio (“CRAN - Package ElemStatLearn,” n.d., “CRAN: R
657 News,” n.d.; Liaw & Wiener, 2002). In these analyzes we used the environmental parameters
658 and genomic group data to predict the chemotype identity, after excluding the low frequencies
659 chemotypes (4OHB and 3-Butenyl from all of them, 3MSO from the south).

660 **Genome wide association studies:**

661 The phenotypes for GWAS were each accession value for PC1 and 2. GWAS was implemented
662 with the easyGWAS tool (Grimm et al., 2017) using the EMMAX algorithms (Kang et al.,
663 2010)and a minor allele frequency (MAF) cutoff of 5%. The results were visualized as
664 manhattan plots using the qqman package in R (Turner, 2014).

665 **Phylogeny:**

666 Genomic sequences from the accessions for MAM3 – AT5G23020, AOP2 – Chr4, 1351568 until
667 1354216, AOP3 - AT4G03050.2, and GS-OH – AT2G25450 were obtained using the
668 Pseudogenomes tool (https://tools.1001genomes.org/pseudogenomes/#select_strains).

669 Multiple sequence alignment was done with the msa package in R, using the ClustalW,
670 ClustalOmega, and Muscle algorithms (Bodenhofer, Bonatesta, Horejš-Kainrath, & Hochreiter,
671 2015). Phylogenetic trees were generated with the ggtree package in R (Yu, 2020). Each tree was
672 rooted by the genes matching *Arabidopsis layrata*'s functional orthologue or closest homologue.

673

674 **Acknowledgments**

675 This work was supported by the National Science Foundation, Directorate for Biological
676 Sciences, Division of Molecular and Cellular Biosciences (grant no. MCB 1906486 to D.J.K)
677 and Division of Integrative Organismal Systems (grant no. IOS 1655810 to D.J.K, and IOS
678 1754201 to R.A), and by the United States-Israel Binational Agricultural Research and
679 Development Fund (to D.J.K. and E.K., grant no. FI-560-2017). We thank Dr. Allison
680 Gaudinier (Department of Plant and Microbial Biology, University of California, Berkeley), Dr.
681 Tobias Züst (Institute of Plant Sciences, University of Bern), Dr. Christopher W. Wheat
682 (Department of Zoology, Stockholm University) and Dr. Daniel Runcie (Department of Plant
683 Sciences, University of California Davis.) for critical reading of the manuscript.

684

685

686

687

688

689

690

691

692 **Bibliography**

693 Abdi, H., & Williams, L. J. (2010). Principal component analysis. *Wiley Interdisciplinary*
694 *Reviews: Computational Statistics*, 2(4), 433–459. <https://doi.org/10.1002/wics.101>

695 Abrahams, R. S., Pires, J. C., & Schranz, M. E. (2020). Genomic origin and diversification of the
696 glucosinolate MAM locus. *Frontiers in Plant Science*, 11, 711.
697 <https://doi.org/10.3389/fpls.2020.00711>

698 Agrawal, A. A. (2000). Overcompensation of plants in response to herbivory and the by-product
699 benefits of mutualism. *Trends in Plant Science*, 5(7), 309–313.
700 [https://doi.org/10.1016/S1360-1385\(00\)01679-4](https://doi.org/10.1016/S1360-1385(00)01679-4)

701 Atwell, S., Huang, Y. S., Vilhjálmsson, B. J., Willems, G., Horton, M., Li, Y., ... Nordborg, M.
702 (2010). Genome-wide association study of 107 phenotypes in *Arabidopsis thaliana* inbred
703 lines. *Nature*, 465(7298), 627–631. <https://doi.org/10.1038/nature08800>

704 Bakker, E. G., Traw, M. B., Toomajian, C., Kreitman, M., & Bergelson, J. (2008). Low levels of
705 polymorphism in genes that control the activation of defense response in *Arabidopsis*
706 *thaliana*. *Genetics*, 178(4), 2031–2043. <https://doi.org/10.1534/genetics.107.083279>

707 Bednarek, P., & Osbourn, A. (2009). Plant-microbe interactions: chemical diversity in plant
708 defense. *Science*, 324(5928), 746–748. <https://doi.org/10.1126/science.1171661>

709 Beekwilder, J., van Leeuwen, W., van Dam, N. M., Bertossi, M., Grandi, V., Mizzi, L., ... Bovy,
710 A. (2008). The impact of the absence of aliphatic glucosinolates on insect herbivory in
711 *Arabidopsis*. *Plos One*, 3(4), e2068. <https://doi.org/10.1371/journal.pone.0002068>

712 Benderoth, M., Textor, S., Windsor, A. J., Mitchell-Olds, T., Gershenson, J., & Kroymann, J.
713 (2006). Positive selection driving diversification in plant secondary metabolism.
714 *Proceedings of the National Academy of Sciences of the United States of America*,
715 103(24), 9118–9123. <https://doi.org/10.1073/pnas.0601738103>

716 Bialy, Z., Oleszek, W., Lewis, J., & Fenwick, G. R. (1990). Allelopathic potential of
717 glucosinolates (mustard oil glycosides) and their degradation products against wheat.
718 *Plant and Soil*, 129(2), 277–281. <https://doi.org/10.1007/BF00032423>

719 Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C., & Hochreiter, S. (2015). msa: an R package
720 for multiple sequence alignment. *Bioinformatics*, 31(24), 3997–3999.
721 <https://doi.org/10.1093/bioinformatics/btv494>

722 Brachi, B., Meyer, C. G., Villoutreix, R., Platt, A., Morton, T. C., Roux, F., & Bergelson, J.
723 (2015). Coselected genes determine adaptive variation in herbivore resistance throughout
724 the native range of *Arabidopsis thaliana*. *Proceedings of the National Academy of*
725 *Sciences of the United States of America*, 112(13), 4032–4037.
726 <https://doi.org/10.1073/pnas.1421416112>

727 Brown, P. D., Tokuhisa, J. G., Reichelt, M., & Gershenzon, J. (2003). Variation of glucosinolate
728 accumulation among different organs and developmental stages of *Arabidopsis thaliana*.
729 *Phytochemistry*, 62(3), 471–481. [https://doi.org/10.1016/S0031-9422\(02\)00549-6](https://doi.org/10.1016/S0031-9422(02)00549-6)

730 Chan, E. K. F., Rowe, H. C., Corwin, J. A., Joseph, B., & Kliebenstein, D. J. (2011). Combining
731 genome-wide association mapping and transcriptional networks to identify novel genes
732 controlling glucosinolates in *Arabidopsis thaliana*. *PLoS Biology*, 9(8), e1001125.
733 <https://doi.org/10.1371/journal.pbio.1001125>

734 Chan, E. K. F., Rowe, H. C., & Kliebenstein, D. J. (2010). Understanding the evolution of
735 defense metabolites in *Arabidopsis thaliana* using genome-wide association mapping.
736 *Genetics*, 185(3), 991–1007. <https://doi.org/10.1534/genetics.109.108522>

737 Corrion, A., & Day, B. (2001). Pathogen Resistance Signalling in Plants. In John Wiley & Sons
738 Ltd (Ed.), *eLS* (pp. 1–14). Chichester, UK: John Wiley & Sons, Ltd.
739 <https://doi.org/10.1002/9780470015902.a0020119.pub2>

740 CRAN - Package dplyr. (n.d.). Retrieved June 16, 2020, from <https://CRAN.R-project.org/package=dplyr>

742 CRAN - Package ElemStatLearn. (n.d.). Retrieved June 16, 2020, from <https://CRAN.R-project.org/package=ElemStatLearn>

744 CRAN - Package emmeans. (n.d.). Retrieved June 16, 2020, from <https://CRAN.R-project.org/package=emmeans>

746 CRAN: R News. (n.d.). Retrieved June 16, 2020, from <https://CRAN.R-project.org/doc/Rnews/>

747 Daxenbichler, M. E., Spencer, G. F., Carlson, D. G., Rose, G. B., Brinker, A. M., & Powell, R.
748 G. (1991). Glucosinolate composition of seeds from 297 species of wild plants.
749 *Phytochemistry*, 30(8), 2623–2638. [https://doi.org/10.1016/0031-9422\(91\)85112-D](https://doi.org/10.1016/0031-9422(91)85112-D)

750 Erb, M., & Kliebenstein, D. J. (2020). Plant secondary metabolites as defenses, regulators, and
751 primary metabolites: the blurred functional trichotomy. *Plant Physiology*.
752 <https://doi.org/10.1104/pp.20.00433>

753 Fan, P., Leong, B. J., & Last, R. L. (2019). Tip of the trichome: evolution of acylsugar metabolic
754 diversity in Solanaceae. *Current Opinion in Plant Biology*, 49, 8–16.
755 <https://doi.org/10.1016/j.pbi.2019.03.005>

756 Ferrero-Serrano, Á., & Assmann, S. M. (2019). Phenotypic and genome-wide association with
757 the local environment of *Arabidopsis*. *Nature Ecology & Evolution*, 3(2), 274–285.
758 <https://doi.org/10.1038/s41559-018-0754-5>

759 Futuyma, D. J., & Agrawal, A. A. (2009). Macroevolution and the biological diversity of plants
760 and herbivores. *Proceedings of the National Academy of Sciences of the United States of
761 America*, 106(43), 18054–18061. <https://doi.org/10.1073/pnas.0904106106>

762 Giamoustaris, A., & Mithen, R. (1996). Genetics of aliphatic glucosinolates. IV. Side-chain
763 modification in *Brassica oleracea*. *TAG. Theoretical and Applied Genetics. Theoretische*
764 *Und Angewandte Genetik*, 93(5-6), 1006–1010. <https://doi.org/10.1007/BF00224105>

765 Grimm, D. G., Roqueiro, D., Salomé, P. A., Kleeberger, S., Greshake, B., Zhu, W., ...
766 Borgwardt, K. M. (2017). easyGWAS: A Cloud-Based Platform for Comparing the
767 Results of Genome-Wide Association Studies. *The Plant Cell*, 29(1), 5–19.
768 <https://doi.org/10.1105/tpc.16.00551>

769 Halkier, B. A., & Gershenson, J. (2006). Biology and biochemistry of glucosinolates. *Annual*
770 *Review of Plant Biology*, 57, 303–333.
771 <https://doi.org/10.1146/annurev.arplant.57.032905.105228>

772 Hanower, P., & Brzozowska, J. (1975). Influence d'un choc osmotique sur la composition des
773 feuilles de cotonnier en acides amines libres. *Phytochemistry*, 14(8), 1691–1694.
774 [https://doi.org/10.1016/0031-9422\(75\)85275-7](https://doi.org/10.1016/0031-9422(75)85275-7)

775 Hansen, B. G., Kerwin, R. E., Ober, J. A., Lambrix, V. M., Mitchell-Olds, T., Gershenson, J., ...
776 Kliebenstein, D. J. (2008). A novel 2-oxoacid-dependent dioxygenase involved in the
777 formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect
778 resistance in *Arabidopsis*. *Plant Physiology*, 148(4), 2096–2108.
779 <https://doi.org/10.1104/pp.108.129981>

780 Hansen, B. G., Kliebenstein, D. J., & Halkier, B. A. (2007). Identification of a flavin-
781 monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in
782 *Arabidopsis*. *The Plant Journal: For Cell and Molecular Biology*, 50(5), 902–910.
783 <https://doi.org/10.1111/j.1365-313X.2007.03101.x>

784 Hasegawa, T., Yamada, K., Kosemura, S., Yamamura, S., & Hasegawa, K. (2000). Phototropic
785 stimulation induces the conversion of glucosinolate to phototropism-regulating
786 substances of radish hypocotyls. *Phytochemistry*, 54(3), 275–279.
787 [https://doi.org/10.1016/S0031-9422\(00\)00080-7](https://doi.org/10.1016/S0031-9422(00)00080-7)

788 Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of
789 proline under changing environments: a review. *Plant Signaling & Behavior*, 7(11),
790 1456–1466. <https://doi.org/10.4161/psb.21949>

791 Heidel, A. J., Clauss, M. J., Kroymann, J., Savolainen, O., & Mitchell-Olds, T. (2006). Natural
792 variation in MAM within and between populations of *Arabidopsis lyrata* determines
793 glucosinolate phenotype. *Genetics*, 173(3), 1629–1636.
794 <https://doi.org/10.1534/genetics.106.056986>

795 <https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf>. (n.d.). Retrieved June 16, 2020,
796 from <https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf>

797 Hu, L., Mateo, P., Ye, M., Zhang, X., Berset, J. D., Handrick, V., ... Erb, M. (2018). Plant iron
798 acquisition strategy exploited by an insect herbivore. *Science*, 361(6403), 694–697.
799 <https://doi.org/10.1126/science.aat4082>

800 Jander, G., Cui, J., Nhan, B., Pierce, N. E., & Ausubel, F. M. (2001). The TASTY locus on
801 chromosome 1 of *Arabidopsis* affects feeding of the insect herbivore *Trichoplusia ni*.
802 *Plant Physiology*, 126(2), 890–898. <https://doi.org/10.1104/pp.126.2.890>

803 Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. *The R Journal*,
804 5(1), 144. <https://doi.org/10.32614/RJ-2013-014>

805 Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.-Y., Freimer, N. B., ... Eskin, E.
806 (2010). Variance component model to account for sample structure in genome-wide
807 association studies. *Nature Genetics*, 42(4), 348–354. <https://doi.org/10.1038/ng.548>

808 Katz, E., Bagchi, R., Jeschke, V., Rasmussen, A. R. M., Hopper, A., Burow, M., ... Kliebenstein,
809 D. J. (2020). Diverse allyl glucosinolate catabolites independently influence root growth
810 and development. *Plant Physiology*, 183(3), 1376–1390.
811 <https://doi.org/10.1104/pp.20.00170>

812 Katz, E., Nisani, S., Sela, M., Behar, H., & Chamovitz, D. A. (2015). The effect of indole-3-
813 carbinol on PIN1 and PIN2 in *Arabidopsis* roots. *Plant Signaling & Behavior*, 10(9),
814 e1062200. <https://doi.org/10.1080/15592324.2015.1062200>

815 Kerwin, R. E., Feusier, J., Muok, A., Lin, C., Larson, B., Copeland, D., ... Kliebenstein, D. J.
816 (2017). Epistasis × environment interactions among *Arabidopsis thaliana* glucosinolate
817 genes impact complex traits and fitness in the field. *The New Phytologist*, 215(3), 1249–
818 1263. <https://doi.org/10.1111/nph.14646>

819 Kerwin, R., Feusier, J., Corwin, J., Rubin, M., Lin, C., Muok, A., ... Kliebenstein, D. J. (2015).
820 Natural genetic variation in *Arabidopsis thaliana* defense metabolism genes modulates
821 field fitness. *eLife*, 4. <https://doi.org/10.7554/eLife.05604>

822 Kim, J., Kang, K., Gonzales-Vigil, E., Shi, F., Jones, A. D., Barry, C. S., & Last, R. L. (2012).
823 Striking natural diversity in glandular trichome acylsugar composition is shaped by
824 variation at the Acyltransferase2 locus in the wild tomato *Solanum habrochaites*. *Plant
825 Physiology*, 160(4), 1854–1870. <https://doi.org/10.1104/pp.112.204735>

826 Kliebenstein, D. J. (2004). Secondary metabolites and plant/environment interactions: a view
827 through *Arabidopsis thaliana* tinged glasses. *Plant, Cell & Environment*, 27(6), 675–684.
828 <https://doi.org/10.1111/j.1365-3040.2004.01180.x>

829 Kliebenstein, D. J., & Cacho, N. I. (2016). Nonlinear Selection and a Blend of Convergent,
830 Divergent and Parallel Evolution Shapes Natural Variation in Glucosinolates. In *In S.
831 Kopriva (Ed.), Glucosinolates*. Elsevier. <https://doi.org/10.1016/bs.abr.2016.06.002>

832 Kliebenstein, D. J., Gershenson, J., & Mitchell-Olds, T. (2001). Comparative quantitative trait loci
833 mapping of aliphatic, indolic and benzylid glucosinolate production in *Arabidopsis*
834 thaliana leaves and seeds. *Genetics*, 159(1), 359–370.

835 Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenson, J., &
836 Mitchell-Olds, T. (2001). Genetic control of natural variation in *Arabidopsis*

837 glucosinolate accumulation. *Plant Physiology*, 126(2), 811–825.
838 <https://doi.org/10.1104/pp.126.2.811>

839 Kliebenstein, D J, Lambrix, V. M., Reichelt, M., Gershenzon, J., & Mitchell-Olds, T. (2001).
840 Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-
841 dependent dioxygenases control glucosinolate biosynthesis in *Arabidopsis*. *The Plant
842 Cell*, 13(3), 681–693. <https://doi.org/10.1105/tpc.13.3.681>

843 Kliebenstein, D., Pedersen, D., Barker, B., & Mitchell-Olds, T. (2002). Comparative analysis of
844 quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in
845 *Arabidopsis thaliana*. *Genetics*, 161(1), 325–332.

846 Kliebenstein, Daniel J, Figuth, A., & Mitchell-Olds, T. (2002). Genetic architecture of plastic
847 methyl jasmonate responses in *Arabidopsis thaliana*. *Genetics*, 161(4), 1685–1696.

848 Kliebenstein, Daniel J. (2009). A quantitative genetics and ecological model system:
849 understanding the aliphatic glucosinolate biosynthetic network via QTLs. *Phytochemistry
850 Reviews : Proceedings of the Phytochemical Society of Europe*, 8(1), 243–254.
851 <https://doi.org/10.1007/s11101-008-9102-8>

852 Kroymann, J., Donnerhacke, S., Schnabelrauch, D., & Mitchell-Olds, T. (2003). Evolutionary
853 dynamics of an *Arabidopsis* insect resistance quantitative trait locus. *Proceedings of the
854 National Academy of Sciences of the United States of America*, 100 Suppl 2, 14587–
855 14592. <https://doi.org/10.1073/pnas.1734046100>

856 Kroymann, J., & Mitchell-Olds, T. (2005). Epistasis and balanced polymorphism influencing
857 complex trait variation. *Nature*, 435(7038), 95–98. <https://doi.org/10.1038/nature03480>

858 Lankau, R. A. (2007). Specialist and generalist herbivores exert opposing selection on a
859 chemical defense. *The New Phytologist*, 175(1), 176–184. [https://doi.org/10.1111/j.1469-8137.2007.02090.x](https://doi.org/10.1111/j.1469-
860 8137.2007.02090.x)

861 Lankau, R. A., & Kliebenstein, D. J. (2009). Competition, herbivory and genetics interact to
862 determine the accumulation and fitness consequences of a defence metabolite. *Journal of
863 Ecology*, 97(1), 78–88. <https://doi.org/10.1111/j.1365-2745.2008.01448.x>

864 Lankau, R. A., & Strauss, S. Y. (2007). Mutual feedbacks maintain both genetic and species
865 diversity in a plant community. *Science*, 317(5844), 1561–1563.
866 <https://doi.org/10.1126/science.1147455>

867 Lankau, R. A., & Strauss, S. Y. (2008). Community complexity drives patterns of natural
868 selection on a chemical defense of *Brassica nigra*. *The American Naturalist*, 171(2), 150–
869 161. <https://doi.org/10.1086/524959>

870 Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. *R News* 2.

871 MacQueen, A., Sun, X., & Bergelson, J. (2016). Genetic architecture and pleiotropy shape costs
872 of *Rps2*-mediated resistance in *Arabidopsis thaliana*. *Nature Plants*, 2, 16110.
873 <https://doi.org/10.1038/nplants.2016.110>

874 Malcolm, S. B. (1994). Milkweeds, monarch butterflies and the ecological significance of
875 cardenolides. *Chemoecology*, 5-6(3-4), 101–117. <https://doi.org/10.1007/BF01240595>

876 Malinovsky, F. G., Thomsen, M.-L. F., Nintemann, S. J., Jagd, L. M., Bourgine, B., Burow, M.,
877 & Kliebenstein, D. J. (2017). An evolutionarily young defense metabolite influences the
878 root growth of plants via the ancient TOR signaling pathway. *eLife*, 6.
879 <https://doi.org/10.7554/eLife.29353>

880 Mithen, R., Clarke, J., Lister, C., & Dean, C. (1995). Genetics of aliphatic glucosinolates. III.
881 Side chain structure of aliphatic glucosinolates in *Arabidopsis thaliana*. *Heredity*, 74(2),
882 210–215. <https://doi.org/10.1038/hdy.1995.29>

883 Moore, B. M., Wang, P., Fan, P., Leong, B., Schenck, C. A., Lloyd, J. P., ... Shiu, S.-H. (2019).
884 Robust predictions of specialized metabolism genes through machine learning.
885 *Proceedings of the National Academy of Sciences of the United States of America*,
886 116(6), 2344–2353. <https://doi.org/10.1073/pnas.1817074116>

887 Opitz, S. E. W., & Müller, C. (2009). Plant chemistry and insect sequestration. *Chemoecology*,
888 19(3), 117–154. <https://doi.org/10.1007/s00049-009-0018-6>

889 Petersen, B. L., Chen, S., Hansen, C. H., Olsen, C. E., & Halkier, B. A. (2002). Composition and
890 content of glucosinolates in developing *Arabidopsis thaliana*. *Planta*, 214(4), 562–571.
891 <https://doi.org/10.1007/s004250100659>

892 Pfalz, M., Vogel, H., Mitchell-Olds, T., & Kroymann, J. (2007). Mapping of QTL for resistance
893 against the crucifer specialist herbivore *Pieris brassicae* in a new *Arabidopsis* inbred line
894 population, Da(1)-12 x Ei-2. *Plos One*, 2(6), e578.
895 <https://doi.org/10.1371/journal.pone.0000578>

896 Ramos-Onsins, S. E., Stranger, B. E., Mitchell-Olds, T., & Aguadé, M. (2004). Multilocus
897 Analysis of Variation and Speciation in the Closely Related Species *Arabidopsis halleri*
898 and *A. lyrata*. *Genetics*, 166(1), 373–388. <https://doi.org/10.1534/genetics.166.1.373>

899 Raybould, A. F., & Moyes, C. L. (2001). The ecological genetics of aliphatic glucosinolates.
900 *Heredity*, 87(Pt 4), 383–391. <https://doi.org/10.1046/j.1365-2540.2001.00954.x>

901 Rodman, James E., Kruckeberg, A. R., & Al-Shehbaz, I. A. (1981). Chemotaxonomic diversity
902 and complexity in seed glucosinolates of caulanthus and streptanthus (cruciferae).
903 *Systematic Botany*, 6(3), 197. <https://doi.org/10.2307/2418282>

904 Rodman, James Eric. (1980). Population variation and hybridization in sea-rockets (cakile,
905 cruciferae): seed glucosinolate characters. *American Journal of Botany*, 67(8), 1145–
906 1159. <https://doi.org/10.1002/j.1537-2197.1980.tb07748.x>

907 Salehin, M., Li, B., Tang, M., Katz, E., Song, L., Ecker, J. R., ... Estelle, M. (2019). Auxin-
908 sensitive Aux/IAA proteins mediate drought tolerance in *Arabidopsis* by regulating
909 glucosinolate levels. *Nature Communications*, 10(1), 4021.
910 <https://doi.org/10.1038/s41467-019-12002-1>

911 Schilmiller, A. L., Pichersky, E., & Last, R. L. (2012). Taming the hydra of specialized
912 metabolism: how systems biology and comparative approaches are revolutionizing plant
913 biochemistry. *Current Opinion in Plant Biology*, 15(3), 338–344.
914 <https://doi.org/10.1016/j.pbi.2011.12.005>

915 Sønderby, I. E., Geu-Flores, F., & Halkier, B. A. (2010). Biosynthesis of glucosinolates--gene
916 discovery and beyond. *Trends in Plant Science*, 15(5), 283–290.
917 <https://doi.org/10.1016/j.tplants.2010.02.005>

918 Szakiel, A., Pączkowski, C., & Henry, M. (2011). Influence of environmental biotic factors on
919 the content of saponins in plants. *Phytochemistry Reviews : Proceedings of the*
920 *Phytochemical Society of Europe*, 10(4), 493–502. <https://doi.org/10.1007/s11101-010-9164-2>
921

922 Thakur, P., & Rai, V. (1982). Dynamics of amino acid accumulation of two differentially
923 drought resistant Zea mays cultivars in response to osmotic stress. *Environmental and*
924 *Experimental Botany*, 22(2), 221–226. [https://doi.org/10.1016/0098-8472\(82\)90042-9](https://doi.org/10.1016/0098-8472(82)90042-9)

925 The 1001 Genomes Consortium. (2016). 1,135 Genomes reveal the global pattern of
926 polymorphism in *Arabidopsis thaliana*. *Cell*, 166(2), 481–491.
927 <https://doi.org/10.1016/j.cell.2016.05.063>

928 Todesco, M., Balasubramanian, S., Hu, T. T., Traw, M. B., Horton, M., Epple, P., ... Weigel, D.
929 (2010). Natural allelic variation underlying a major fitness trade-off in *Arabidopsis*
930 *thaliana*. *Nature*, 465(7298), 632–636. <https://doi.org/10.1038/nature09083>

931 Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using Q-Q and
932 manhattan plots. *BioRxiv*. <https://doi.org/10.1101/005165>

933 Uremis, I., Arslan, M., Sangun, M. K., Uygur, V., & Isler, N. (2009). Allelopathic potential of
934 rapeseed cultivars on germination and seedling growth of weeds. *Asian Journal of*
935 *Chemistry*, 21(3), 2170–2184.

936 Wentzell, A. M., & Kliebenstein, D. J. (2008). Genotype, age, tissue, and environment regulate
937 the structural outcome of glucosinolate activation. *Plant Physiology*, 147(1), 415–428.
938 <https://doi.org/10.1104/pp.107.115279>

939 Wentzell, A. M., Rowe, H. C., Hansen, B. G., Ticconi, C., Halkier, B. A., & Kliebenstein, D. J.
940 (2007). Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic
941 pathways. *PLoS Genetics*, 3(9), 1687–1701.
942 <https://doi.org/10.1371/journal.pgen.0030162>

943 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., ... Yutani, H.
944 (2019). Welcome to the tidyverse. *The Journal of Open Source Software*, 4(43), 1686.
945 <https://doi.org/10.21105/joss.01686>

946 Windsor, A. J., Reichelt, M., Figuth, A., Svatos, A., Kroymann, J., Kliebenstein, D. J., ...
947 Mitchell-Olds, T. (2005). Geographic and evolutionary diversification of glucosinolates

948 among near relatives of *Arabidopsis thaliana* (Brassicaceae). *Phytochemistry*, 66(11),
949 1321–1333. <https://doi.org/10.1016/j.phytochem.2005.04.016>

950 Wolters, H., & Jürgens, G. (2009). Survival of the flexible: hormonal growth control and
951 adaptation in plant development. *Nature Reviews. Genetics*, 10(5), 305–317.
952 <https://doi.org/10.1038/nrg2558>

953 Wright, S. I., Lauga, B., & Charlesworth, D. (2002). Rates and patterns of molecular evolution in
954 inbred and outbred *Arabidopsis*. *Molecular Biology and Evolution*, 19(9), 1407–1420.
955 <https://doi.org/10.1093/oxfordjournals.molbev.a004204>

956 Yamada, K., Hasegawa, T., Minami, E., Shibuya, N., Kosemura, S., Yamamura, S., &
957 Hasegawa, K. (2003). Induction of myrosinase gene expression and myrosinase activity
958 in radish hypocotyls by phototropic stimulation. *Journal of Plant Physiology*, 160(3),
959 255–259. <https://doi.org/10.1078/0176-1617-00950>

960 Yang, C. W., Lin, C. C., & Kao, C. H. (2000). Proline, ornithine, arginine and glutamic acid
961 contents in detached rice leaves. *Biologia Plantarum*, 43(2), 305–307.
962 <https://doi.org/10.1023/A:1002733117506>

963 Yu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. *Current Protocols in*
964 *Bioinformatics*, 69(1), e96. <https://doi.org/10.1002/cpbi.96>

965 Zhu, W., Zaidem, M., Van deaaa 1Weyer, A.-L., Gutaker, R. M., Chae, E., Kim, S.-T., ...
966 Weigel, D. (2018). Modulation of ACD6 dependent hyperimmunity by natural alleles of
967 an *Arabidopsis thaliana* NLR resistance gene. *PLoS Genetics*, 14(9), e1007628.
968 <https://doi.org/10.1371/journal.pgen.1007628>

969 Züst, T., & Agrawal, A. A. (2017). Trade-Offs Between Plant Growth and Defense Against
970 Insect Herbivory: An Emerging Mechanistic Synthesis. *Annual Review of Plant Biology*,
971 68, 513–534. <https://doi.org/10.1146/annurev-arplant-042916-040856>

972 Züst, T., Heichinger, C., Grossniklaus, U., Harrington, R., Kliebenstein, D. J., & Turnbull, L. A.
973 (2012). Natural enemies drive geographic variation in plant defenses. *Science*, 338(6103),
974 116–119. <https://doi.org/10.1126/science.1226397>

975