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Abstract

Extreme weather events can have devastating impacts on agricultural systems, and the
livelihoods that depend on them. Tools for rapid, comprehensive and cost-effective
assessment of impacts, especially if carried out remotely, can be of great value in planning
systematic recovery of production, as well as assessing risks from future events. Here, we use
openly available remote sensing data to quantify the impacts of hurricanes Irma and Maria in
2017 on banana production area in the Dominican Republic — the world’s largest producer
of organic bananas. Further, we assess the risk to current production area if a similar extreme
event were to re-occur. Hurricane associated damage was mapped using a simple change
detection algorithm applied to Synthetic Aperture Radar (SAR) data over the three main
banana growing provinces of northern Dominican Republic, i.e. Monte Cristi, Valverde and
Santiago. The map of hurricane affected area was overlaid with banana plantation
distributions for 2017 and 2019 that were mapped (accuracy = 99.8%) using a random forest
classifier, and a combination of SAR and multi-spectral satellite data. Our results show that
11.35% of banana plantation area was affected by hurricane damage in 2017. Between 2017
and 2019, there was a high turnover of plantation area, but with a net gain of 10.8%.
However, over a quarter (26.9%) of new plantation area spatially overlapped with regions
which had seen flooding or damage from hurricanes in 2017. Our results indicate that banana
production systems in northern Dominican Republic saw extensive damage in the aftermath
of hurricanes Irma and Maria. While production area has recovered since then, a substantial
proportion of new plantations, and a greater fraction of production area in general, occur at
locations at risk from future extreme events.
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Introduction

Extreme weather events, such as floods and droughts, can have a considerable impact on
agricultural production systems across the globe by reducing agricultural output (IPCC,
2012; Lesk, Rowhani & Ramankutty, 2013). The impacts of these events are felt in terms of
reducing local and regional food security, and can also have significant economic
consequences via their negative influence on income generation and livelihoods (Wheeler &
Braun, 2013). With climate change likely to increase the frequency and severity of extreme
weather (IPCC, 2014), quantifying the extent of damage after such events is valuable
information towards developing required risk management and mitigation strategies.
However, in the immediate aftermath of pulsed and high intensity events, such as flooding
following hurricanes, ensuring human safety, health and rehabilitation take precedence over
physical agricultural surveys. Hence, the ability to rapidly, remotely and cost-effectively
quantify the damage to agricultural production area over large spatial extents can be an
invaluable tool.

In September 2017, within two weeks of each other, hurricanes Irma and Maria grazed the
northern coast of the Dominican Republic causing widespread damage (IFRC, 2018). Irma hit
first, passing the coast of the Dominican Republic on 7th September 2017, causing storm
surges, wind damage and flooding. Irma maintained a 60 hour period of category 5 intensity,
the second longest period on record (Blake, 2018). On 21* September 2017, Maria passed the
northern and eastern coasts at Category 3, bringing strong winds and heavy rain (Blake
2018). The country’s northern provinces of Esapillat, Monte Cristi, Puerto Plata, Santiago,
Samana and Valverde were the worst affected areas (IFRC, 2018). Of these provinces, three
— Monte Cristi, Santiago and Valverde — comprise the Dominican Republic’s main banana
growing area (Espinal, 2015).

Bananas are one of the Dominican Republic’s most important agricultural products, as most
of what is produced is exported (Raynolds, 2008). It is the world’s largest producer of
organic bananas, and the 23™ largest producer of bananas (Lernoud et al., 2017). The country
has an estimated 27,000 ha of banana production with 16,000 ha cultivating bananas for
export to the key markets of Europe and the USA (Espinal, 2015). The banana sector
employs an estimated 32,000 people in the Dominican Republic (ILO, 2015). Uniquely for a
large export focused banana producing country, production has a large smallholder
component with around 2000 small farms, each covering less than 7.5 ha (BAM, 2016). As
such, banana production contributes substantially to the country’s local and national
economy. Export banana production is concentrated in the North West Line regions of
Valverde (31%) and Monte Cristi (38%) (Espinal, 2015). The provinces are dominated by the
drainage basin of the Yaque del Norte river which runs through the Cibao valley. Here the
rivers flood plains are vital for agricultural production, for both domestic and export markets
(World Bank, 2018). The river provides water for irrigation for key agricultural crops
including rice and banana. The drainage basin has suffered from severe deforestation over the
past years and this has affected the hydrological regime, further exasperating the scale of
floods at times of heavy rain, and reducing the available water in the river at times of drought
(World Bank, 2018). Heavy rain during the two consecutive hurricane events in 2017 led to
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soil saturation, increased runoff in the drainage basin, and eventually the Yaque del Norte
bursting its banks in several places (IICA, 2017). In addition, tributaries and drainage canals
also overflowed.

Bananas are a semi-perennial crop, with the exportable Cavendish variety requiring
approximately 9-10 months from planting to first harvest. Thereafter, plants enter a
continuous production and harvest cycle (Heslop-Harrison & Schwarzacher, 2007). This
implies a considerable lag (and knock-on economic consequences) between the loss of
production following flood- or storm-related damage, requiring replacement of plants, and a
return to previous production capacity. Consequently, hurricane impacts to banana growing
regions of the Dominican Republic have food security and economic consequences, making
evaluation of the damage important.

Earth observation or satellite remote sensing data is well suited for quantifying the impacts of
extreme weather events (Sanyal & Lu, 2004; Plank, 2014; de Beurs, McThompson, Owsley,
& Henebry, 2019). Data from Synthetic Aperture Radar (SAR) sensors, such as from the
European Space Agency’s (ESA) Sentinel-1 platform, are particularly useful in detecting
structural changes on the Earth’s surface, and hence have been widely used in natural disaster
mapping and monitoring (Plank, 2014). Detecting open water in a landscape is made
relatively easy when using SAR data, as the surface of water displays characteristically low
reflection (backscatter) of the radar signal back to satellite-borne sensors (Schumann &
Baldassarre, 2010; Twele, Cao, Plank, & Martinis, 2016). Hence, flooded areas are readily
detectable by comparing SAR data for a location immediately before and after a storm or
flooding event.

There is a long history of research using satellite data for land-use cover mapping
(Townshend, Justice, Li, Gurney, & McManus, 1991; Defries & Townshend, 1994; Tuanmu
& Jetz, 2014; Joshi et al., 2016), including the delineation of crop types in a landscape
(Jansenn & Middlekoop, 1992; Inglada et al., 2015). Until recently, such mapping has largely
relied on the analysis of multi-spectral satellite imagery (Jansenn & Middlekoop, 1992; Li,
Wang, Zhang, & Lu, 2015). As SAR data (which has only recently become more widely
available) conveys a measure of crop canopy structure or texture, its inclusion in such
mapping methods adds an extra dimension of information that could increase mapping and
classification accuracy (Inglada, Vincent, Arias, & Marais-Sicre, 2016). An additional
advantage of incorporating SAR data into crop mapping is the ability to leverage temporal
information of the backscatter signature. As SAR data from satellite platforms are not
affected by cloud cover (as multi-spectral sensors are), an uninterrupted time series of SAR
imagery over a landscape of interest can provide temporal parameters, such as periodicity and
variance over time. Such metrics can be very powerful in the separation of crop classes, for
example annuals from perennials, or amongst the annuals, summer and winter crops (Inglada
et al., 2016; Veloso et al., 2017). These properties of SAR data could prove advantageous for
the mapping of banana plantations, as (a) banana plants have a characteristic upright stature
with large leaves, which we expect to result in high backscatter in SAR data; (b) they are
perennial; and (c¢) commercial banana plantations (especially those catering to the export
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market) usually operate under a continuous production system (i.e. plants are infrequently
replanted), and hence should show low variation in backscatter over time (e.g. in a year)
compared to other crop types and vegetation classes.

Here we quantify the area of banana production in the Dominican Republic impacted by
hurricanes Irma and Maria in September 2017, and focus on the Monte Cristi, Santiago and
Valverde provinces, where the majority of the country’s production is concentrated.
Specifically, we aim to (1) map flooded area, or more generally, area impacted by hurricane
damage in the three provinces of interest using ESA’s Sentinel-1 data; (2) develop a
classification algorithm to map commercial banana plantations using a combination of
Sentinel-1, Sentinel-2, and topographic data using post-hurricane ground truth data of banana
plantations; (3) apply the banana plantation classification method to pre-hurricane satellite
data in order to quantify area of plantations affected by Irma and Maria in 2017; and (4)
identify areas of current banana plantations in the study region at risk from similar extreme
weather events. In the process, we also aim to design a classification method to map
commercial plantations that could be more widely applied to banana production systems
globally.

Methods

Our study area includes the provinces of Monte Cristi, Santiago and Valverde in the
Dominican Republic. For reference, hurricanes Irma and Maria struck the region on the 7th
and 21st of September, 2017, respectively. Hence, we label satellite data before this date
range as pre-hurricane, and after this date range as post-hurricane.

Mapping hurricane damage

We primarily rely on ESA’s Sentinel-1 data which we processed using Google Earth Engine
to map hurricane damage. The total extent of damage was mapped as three separate
components which were then combined. First, detectable open water flooding immediately
after each hurricane was classified. We term this component ‘flood-open’ (FO). Second, an
arbitrary fixed distance around each FO patch (100 meters) was also hypothesised to
experience flood damage. This was done because tall vegetation elements, such as banana
plants, which may not have been immediately damaged during the hurricane could, in part,
obscure the signal of open water in the SAR data. However, it is likely that the ground in
these obscured pixels would have been inundated (Figure 1), or saturated enough to stress
any standing crop. This component was termed ‘flood-buffer’ (FB). Third, we mapped
‘flood-legacy’ (FL) as pixels which display large deviations (described in detail below) in the
three months after the hurricanes, relative to time-averaged pixel values for a year prior to the
hurricanes. This latter component accounts for more protracted or delayed damage following
the flooding events. We estimate the total hurricane affected area for the study region as the
spatial union of the three components (i.e. FO U FB U FL), and provide detailed methods for
the mapping of each component below.
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Figure 1. Extensive flooding in a banana plantation in the Dominican Republic in September 2017.
The image shows that some open water flooding could be obscured by the canopy of standing banana
plants [image credit: annon].

For the FO component of flooding, we used SAR imagery for the three provinces
immediately before (B) hurricane Irma, immediately after hurricane Irma (I) and immediately
after hurricane Maria (M). We applied median smoothing using a circular kernel of 100 meter
radius to each image, to reduce speckling noise that SAR data from a single time snapshot
can suffer from. Thereafter, we calculated the pixel-wise differences between I and B (flood
damage due to Irma), and M and B (flood damage due to Maria). We assumed that flood or
storm related structural damage to landscape elements reduces backscatter in the SAR data.
Additionally, pixels which contain open water after a flood event would also show
considerably reduced backscatter compared to values when the pixel was not flooded, i.c.
prior to the flooding event (Schumann & Baldassarre, 2010). Hence, we identified pixels in
the difference data layers which showed values < -2 dB to have experienced flood or storm
damage. A separate binary map of these affected regions was generated for hurricanes Irma
and Maria. Pixels which fell within 100 meters from these FO pixels were categorised as FB
pixels, i.e likely to have experienced soils saturated by moisture, if not inundated by flood
water.

To map flood-legacy (FL), we extracted all Sentinel-1 images for a one year period prior to
the hurricanes (1st September, 2016 to 6th September, 2017) — before image set (BS), and
three months during and after the hurricanes (6th September, 2017 to 30th November, 2017)
— after image set (AS). We only utilised the VV polarisation of the Sentinel-1 data for our
analyses, as many images, especially those in 2016, do not contain the VH polarisation band.
The 26 images from the BS subset were used to calculate the annual pre-hurricane average
VV backscatter for the region (BSpyen). Similarly, we calculated the standard deviation for
each pixel using this annual stack of images (BSsp). The post-hurricane average VV
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backscatter was calculated for the AS subset using its seven images (ASmew). Next, the
amount of the deviation in mean VV values between the pre- and post-hurricane data subsets
was calculated in units of standard deviations D = [(ASmean - BSmean) / BSsp]. All pixels below
an arbitrary threshold of D < -0.5 SD were retained as candidate pixels displaying flood-
legacy effects (here again we assume loss of structural complexity in the wake of storm
damage resulting in lower backscatter intensity). To exclude single pixel artefacts, a 7x7 (i.e.
70 meter x 70 meter) moving window was used to count the number of candidate pixels
around each focal pixel. Each focal pixel within a window was reassigned as having
experienced flood-legacy effects if the number of candidate pixels within the window were >
20 (i.e. approximately 40%). This is an arbitrary threshold which we believe provides a
conservative estimate for the affected area. It is important to note that this FL. component is
not calculated separately for hurricanes Irma and Maria as was the case with the FO and FB
components.

Banana plantation area mapping

Ground truth data of 100 banana farm polygon boundaries for classifying and validating
banana plantation maps was sourced from ground surveys of farms conducted by Bananos
Ecologicos de la Linea Noroeste (BANELINO), a producer co-operative, in 2019. Additional
land-cover classes were also included in our analysis by manually digitising training classes
from images available on Google Earth. These additional classes were urban/semi-urban/rural
built area, other crops (crops that were visually distinguishable from bananas), mangroves,
dense natural/semi-natural tree cover and sparse natural/semi-natural tree cover.

We extracted Sentinel-1 and Sentinel-2 data of the date range corresponding to the ground
truth data in Google Earth Engine for processing. As the commercial cultivation of bananas is
conducted on relatively flat terrain, slope derived from 90 meter resolution Shuttle Radar
Telemetry Mission (SRTM) digital elevation model (DEM) was also included in the
classification procedures.

Sentinel-1 data from one year that spanned the time period that best corresponded with the
ground-truth data was extracted. The 26 images from this period were aggregated to two
derived layers - annual median VV and annual standard deviation of the VV bands. The
surface reflectance product of Sentinel-2 (all images for the same time period as the Sentinel-
1 subset) was used to calculate a median red, green, blue and NDVI layer. These derived
bands were calculated following masking of pixels within each individual Sentinel-2 image
for cloud contamination based on the quality assessment band for each individual image.

The two derived layers from Sentinel-1 imagery, four derived layers from Sentinel-2 imagery
and the slope layer were stacked to form a single multi-band image, and used to build the
classifier. Five hundred random sampling points within polygons of each land-cover class
were generated. These were used to build a random forest classifier using 50 decision trees.
To increase accuracy and reduce classification artefacts, pixels classified as banana were only
retained if they formed a patch of > 50 pixels (i.e. > 0.5 ha). Hence, it is important to note
that the method described here is not suitable to detect small plantations or mixed cropping.
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Accuracy of the classifier was estimated by generating a separate set of 500 random sampling
points within each land-cover class and running the classifier over this test dataset. A
confusion matrix (Stehman, 1997) was then constructed to estimate training and validation
accuracy.

To map pre-hurricane banana production area, we processed Sentinel-1 and Sentinel-2
imagery for one year before the hurricanes (i.e. 1* September, 2016 to 30™ August, 2017) in a
similar way to that described above (the same DEM data was used to derive a slope layer).
The random forest classifier was then used to generate a raster of banana production area
distribution.

Raster layers of the three flooding components and pre-hurricane banana production
distribution were exported to QGIS 3.10 (QGIS.org, 2019) and GRASS 7.4 (GRASS
Development Team, 2018) for further processing. The flood components were combined into
a single layer delineating total hurricane affected area. This layer was intersected with the
pre-hurricane classified banana layer to measure the area of production affected by hurricane
damage. We intersected the total hurricane affected area with the post-hurricane banana map
to estimate the area of current banana production which may be at risk from damage should a
similar extreme event recur. Lastly, we mapped the spatial turnover of plantation area
between 2017 (pre-hurricane) and 2019 (current), which captures the spatial change in
plantation distribution, i.e. where plantation area has been lost, and where there has been a
gain. By overlaying the hurricane affected area data with areas of production area gain in
2019, we then quantified how much of the newly planted area could be at risk from damage
from future storm damage.

Results

A total of 27,618 ha of hurricane-related flood damage was estimated for the three provinces
of Monte Cristi, Valverde and Santiago, equating to 5.01% of the total area of the provinces
(Figure 2). Individually, flood-open (FO), flood-buffer (FB) and flood-legacy (FL) accounted
for 8,302.3 ha, 18,178.21 ha and 15,622.9 ha, respectively. Total affected area is less than the
sum of the three flood classes due to considerable spatial overlap between them. Observed
flood damage was proportionally greater in Monte Cristi (18,102 ha; 9.3%) and Valverde
(6,051 ha; 7.6%) compared to Santiago (3,462 ha; 1.3%). Additionally, flood damage in
Monte Cristi and Valverde appeared to be more spatially aggregated around the Yaque del
Norte river with large areas of open flooding. In contrast, Santiago saw more scattered
occurrences of damage largely classified as legacy effects.

The random forest classifier performed particularly well for mapping banana plantations in
the three provinces. Overall accuracy estimated using a confusion matrix was 99.7% for all
classes and 99.8% for banana plantations. In total, for 2019, we detected 23,898 ha of
plantation area in the three provinces (Figure 3). Projecting the classifier on satellite images
before hurricanes Irma and Maria in September 2017, we detected a total plantation area of
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21,561 ha within the region of analysis (Figure 4).

On overlaying the hurricane damage (Figure 2) and banana plantation maps for 2017 (Figure
4), we estimate 2,446.75 ha of plantations were likely to have experienced damage. This
accounts for 11.35% of area under cultivation before the hurricanes struck the Dominican
Republic (Figure 5). By overlaying the hurricane damage map and banana plantation map for
2019 (Figure 6), we estimate 3,402.55 ha or 14.24% of plantation area may be at risk from
damage should a similar extreme weather event reoccur.

Our analyses also showed a loss of 5,048.37 ha of pre-hurricane banana plantation area
(Figure 7). This amounts to 23.4% of the production area in 2017. Of the plantation area lost
between 2017 and 2019, 1,031.41 ha was identified to have experienced storm damage.
However, by 2019 there was also a gain of 7,384.84 ha of new plantation area. Importantly,
1987.21 ha or 26.9% of this new plantation area overlapped with locations which saw
damage in the aftermath of hurricanes Irma and Maria.

Puerto Plata

Dajabén i) Espaillat
Santiago
Rodriguez

Elias Pifa
; Santiago
B Flood/Hdrricane damage (2017) '
3 Analysis region

San Juan

)

Figure 2. Extent of estimated hurricane damage in the provinces of Monte Cristi, Valverde and
Santiago. Inset illustrates the region of analysis in the Dominican Republic.
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Figure 4. Distribution of banana plantation area in the study region before September 2017 (pre-
hurricane plantation distribution)
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Figure 5. Map identifying locations in the study region where banana plantations in 2017 were
affected by hurricanes Maria and Irma (September 2017)
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Figure 6. Banana plantation areas in 2019 that overlap with locations that saw storm-related damage
due to hurricanes Irma and Maria in 2017. The highlighted regions (red) are considered at high risk
should similar extreme weather events reoccur.
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Figure 7. Map illustrating plantation area turnover in the study region between 2017 and 2019.

Discussion

Damage from hurricanes Irma and Maria was experienced in all the three provinces of Monte
Cristi, Valverde and Santiago, though the area affected in the latter was considerably less,
and spatially more dispersed. Overlaying the hurricane damage map with our classified pre-
hurricane banana plantation map we estimate that 2,446.75 ha, or 11.35% of banana
plantation area across the three provinces was affected by open water and/or protracted storm
damage over a period of three months since the hurricanes. The damage to plantations was
spatially more evenly spread across the three provinces.

These results reveal large scale damage to a key export sector of the Dominican Republic.
Uncertainty around adequate production following the hurricanes led to importers of large
European retailers switching procurement to other countries. To alleviate the economic
consequences to farmers through the loss of market access — even for those whose
production area may have been largely unaffected — the national government had to
intervene by procuring production initially destined for the export market, thereby severely
affecting the country’s economy (FAO, 2018; Polanco, 2018). Rapid assessment of the scale
of damage, as carried out in this study, could allow importers to maintain sourcing in the
Dominican Republic by providing more accurate and up-to-date information to base sourcing
decisions on.

Our analyses estimated that 23.4% (5,048.37 ha) of area under banana cultivation before
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hurricanes Irma and Maria had been converted to non-banana producing area by 2019. The
converted area is much larger than what we estimated as having been affected by the two
hurricanes. Additionally, only 42.2% of the banana plantation area of 2017 that showed
evidence of storm damage was converted to other land-use classes. Hence, we conclude that
losses in banana cultivation area between 2017 and 2019 may have only partly been driven
by direct hurricane damage, and that other local economic factors — which may include
indirect consequences of hurricane impacts — may have been equally as important and
require further investigation.

Despite the localised losses of production area between 2017 and 2019, the area under banana
cultivation across the study area grew by 10.8% with the addition of 7,383.84 ha of new
plantations. Over a quarter (26.9%; 1987.21 ha) of this new production area overlaps with
areas that experienced hurricane related damage in 2017. While the incidence of two large
magnitude hurricanes in rapid succession can be considered as rare, there have been
consistent predictions that the frequency and intensity of such extreme events are likely to
increase due to climate change (IPCC, 2014). Hence, we identify these areas (figure 6) as at
risk. Further, this also results in 14.24% of the areca under banana cultivation at risk from
similar storm events in the future. For context, this is an increase from 11.35% of production
area which saw damage in 2017. A comprehensive assessment, as presented here, could be
used to inform risk management measures and risk transfer solutions, such as investment in
micro-insurance. Additionally, risk maps could enable efficient aggregation of risk across co-
operatives or administrative units spanning the production landscape.

While our analyses suggest that production area in the main banana growing areas of the
Dominican Republic has shown a complete recovery since the hurricanes Irma and Maria,
finer scale (i.e. farm level) patterns of recovery are yet to be investigated. Banana production
in the Dominican Republic comprises a large number of smallholder farmers, and there is
wide consensus in the literature that smallholders are at particular risk from climate change
and associated extreme events (Morton, 2007; Harvey et al., 2014). Future research should
focus on linking satellite derived plantation-scale data at high temporal resolution with
information on farm-scale economic status and decisions, as well as production volumes.
Such models could be important for formulating wider government-led recovery strategies,
and informing importer procurement decisions.

We obtained high levels of accuracy for our classification method to map banana plantations
using a combination of Sentinel-1, Sentinel-2 and elevation data. This gave us a high degree
of confidence in mapping pre-hurricane plantation distribution in the study area, and
consequently, in estimating the extent of hurricane related damage to plantations. Bearing in
mind that the random forest classifier was trained only using 500 sampling points for the
banana class (i.e. approximately 5 ha of plantation area), the high accuracy suggests that even
with relatively low effort in ground-truthing, this method represents a very promising
approach to mapping commercial banana plantations more widely. Bananas are one of the
most extensively cultivated crops in the world (FAOSTAT, 2020). Like any other
commercially cultivated crop, banana production also faces challenges from multiple
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stressors, apart from extreme weather events, such as longer-term climate shifts, pests and
diseases (Ramirez, Jarvis, Van den Bergh, Staver, & Turner, 2011; Ordonez et al., 2015;
Bebber, 2019; Garcia-Bastidas et al., 2019; Varma & Bebber, 2019). Assessing risk from
these stresses, measuring impacts, as well as monitoring rates of recovery, and effectiveness
of mitigation measures require detailed information on plantation distribution. Such spatially
explicit data can also be invaluable in tracking the performance of plantations, by providing
focal areas over which to analyse finer variations in measurements from satellite-borne
sensors. However, such up-to-date and high resolution information on the distribution of
banana plantations is lacking, and methods described here could help address this gap.

In conclusion, this study used remote sensing data and analyses to provide a detailed
assessment of the impacts of hurricanes Irma and Maria on production area of bananas in the
key growing areas of the Dominican Republic. With the open availability of regularly
captured data from satellite platforms, such as ESA’s Sentinel-1 and Sentinel-2, assessments
such as these soon after the occurrence of an extreme weather event can be rapidly and cost
effectively carried out. Our analyses also mapped where current production area may be at
risk from similar high intensity storm events in the future. We observed that there has been a
net increase in banana plantation area in the region between 2017 and 2019, a substantial
proportion of which has occurred in locations which experienced hurricane related damage in
2017. Consequently, there has been an overall increase in production area at risk from future
storm events which should be considered in mitigation and recovery strategies. Lastly, we
have demonstrated a highly accurate method to map banana plantation area that can form the
basis of tracking the trajectory of banana production recovery from extreme weather events.
Research focused on quantifying these patterns of recovery could positively contribute to
government risk management and mitigation planning, importer procurement decision
making, and ultimately, securing farmer livelihoods.
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Abbreviations used:

AS ‘After set’ of images; A three month collection of Sentinel-1 images (seven images)
during and after hurricanes Irma and Maria affected the study area (6th September 2017
to 30th November 2017).

ASinean A single band image of mean pixel values from AS.

B Sentinel-1 image over the study region immediately before hurricane Irma.
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BS ‘Before set’ of images; A one year collection of Sentinel-1 images (26 images) before
hurricane Irma affected the study area (1st September 2016 to 6th September 2017).

BSiean A single band image of mean pixel values from BS.

BSsp A single band image of pixel wise standard deviations from BS.

D A single band image of the difference between ASuean and BSpean €xpressed in terms of
BSSD

DEM Digital Elevation Model

ESA European Space Agency

FB Flood-Buffer; regions upto 100m from pixels detected as open-water flooding (FO)

FL Flood-Legacy; Pixels assessed to have experienced more protracted hurricane/flood
damage. They are characterised by large deviations in pixel values in the three months
following hurricanes Irma and Maria, relative to values observed for the same pixel over
a one year period before the hurricanes.

FO Flood-Open; regions which show characteristics of open-water flooding in Synthetic
Aperture Radar satellite data

I Sentinel-1 image over the study region immediately after hurricane Irma.

M Sentinel-1 image over the study region immediately after hurricane Maria.

NDVI Normalised Difference Vegetation Index

SAR Synthetic Aperture Radar

VH polarisation ~ Vertical transmit - horizontal receive band of Sentinel-1 imagery

VV polarisation ~ Vertical transmit - vertical receive band of Sentinel-1 imagery
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