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Abstract

Extreme  weather  events  can  have  devastating  impacts  on  agricultural  systems,  and  the

livelihoods  that  depend  on  them.  Tools  for  rapid,  comprehensive  and  cost-effective

assessment of impacts, especially if carried out remotely, can be of great value in planning

systematic recovery of production, as well as assessing risks from future events. Here, we use

openly available remote sensing data to quantify the impacts of hurricanes Irma and Maria in

2017 on banana production area in the Dominican Republic — the world’s largest producer

of organic bananas. Further, we assess the risk to current production area if a similar extreme

event were to re-occur.  Hurricane associated damage was mapped using a simple change

detection  algorithm applied  to  Synthetic  Aperture Radar  (SAR) data  over  the three main

banana growing provinces of northern Dominican Republic, i.e. Monte Cristi, Valverde and

Santiago.  The  map  of  hurricane  affected  area  was  overlaid  with  banana  plantation

distributions for 2017 and 2019 that were mapped (accuracy = 99.8%) using a random forest

classifier, and a combination of SAR and multi-spectral satellite data. Our results show that

11.35% of banana plantation area was affected by hurricane damage in 2017. Between 2017

and  2019,  there  was  a  high  turnover  of  plantation  area,  but  with  a  net  gain  of  10.8%.

However, over a quarter (26.9%) of new plantation area spatially overlapped with regions

which had seen flooding or damage from hurricanes in 2017. Our results indicate that banana

production systems in northern Dominican Republic saw extensive damage in the aftermath

of hurricanes Irma and Maria. While production area has recovered since then, a substantial

proportion of new plantations, and a greater fraction of production area in general, occur at

locations at risk from future extreme events.
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Introduction

Extreme weather events, such as floods and droughts, can have a considerable impact on

agricultural  production  systems across  the  globe by reducing  agricultural  output   (IPCC,

2012; Lesk, Rowhani & Ramankutty, 2013). The impacts of these events are felt in terms of

reducing  local  and  regional  food  security,  and  can  also  have  significant  economic

consequences via their negative influence on income generation and livelihoods (Wheeler &

Braun, 2013). With climate change likely to increase the frequency and severity of extreme

weather  (IPCC,  2014),  quantifying  the  extent  of  damage  after  such  events  is  valuable

information  towards  developing  required  risk  management  and  mitigation  strategies.

However, in the immediate aftermath of pulsed and high intensity events, such as flooding

following hurricanes, ensuring human safety, health and rehabilitation take precedence over

physical  agricultural  surveys.  Hence,  the  ability  to  rapidly,  remotely  and cost-effectively

quantify  the  damage  to  agricultural  production  area  over  large  spatial  extents  can  be  an

invaluable tool.  

In September 2017, within two weeks of each other, hurricanes Irma and Maria grazed the

northern coast of the Dominican Republic causing widespread damage (IFRC, 2018). Irma hit

first, passing the coast of the Dominican Republic on 7th September 2017, causing storm

surges, wind damage and flooding. Irma maintained a 60 hour period of category 5 intensity,

the second longest period on record (Blake, 2018). On 21st September 2017, Maria passed the

northern  and eastern  coasts  at  Category  3,  bringing  strong winds and heavy rain  (Blake

2018). The country’s northern provinces of Esapillat, Monte Cristi, Puerto Plata, Santiago,

Samana and Valverde were the worst affected areas (IFRC, 2018). Of these provinces, three

— Monte Cristi, Santiago and Valverde — comprise the Dominican Republic’s main banana

growing area (Espinal, 2015). 

Bananas are one of the Dominican Republic’s most important agricultural products, as most

of  what  is  produced  is  exported  (Raynolds,  2008).  It  is  the  world’s  largest  producer  of

organic bananas, and the 23rd largest producer of bananas (Lernoud et al., 2017). The country

has an estimated  27,000 ha of banana production with 16,000 ha cultivating bananas  for

export  to  the  key  markets  of  Europe  and  the  USA  (Espinal,  2015).  The  banana  sector

employs an estimated 32,000 people in the Dominican Republic (ILO, 2015). Uniquely for a

large  export  focused  banana  producing  country,  production  has  a  large  smallholder

component with around 2000 small farms, each covering less than 7.5 ha (BAM, 2016). As

such,  banana  production  contributes  substantially  to  the  country’s  local  and  national

economy.  Export  banana  production  is  concentrated  in  the  North  West  Line  regions  of

Valverde (31%) and Monte Cristi (38%) (Espinal, 2015). The provinces are dominated by the

drainage basin of the Yaque del Norte river which runs through the Cibao valley. Here the

rivers flood plains are vital for agricultural production, for both domestic and export markets

(World  Bank,  2018).  The  river  provides  water  for  irrigation  for  key  agricultural  crops

including rice and banana. The drainage basin has suffered from severe deforestation over the

past years and this has affected the hydrological regime, further exasperating the scale of

floods at times of heavy rain, and reducing the available water in the river at times of drought

(World Bank, 2018). Heavy rain during the two consecutive hurricane events in 2017 led to
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soil saturation, increased runoff in the drainage basin, and eventually the Yaque del Norte

bursting its banks in several places (IICA, 2017). In addition, tributaries and drainage canals

also overflowed. 

Bananas  are  a  semi-perennial  crop,  with  the  exportable  Cavendish  variety  requiring

approximately  9-10  months  from  planting  to  first  harvest.  Thereafter,  plants  enter  a

continuous  production  and  harvest  cycle  (Heslop-Harrison  & Schwarzacher,  2007).  This

implies  a  considerable  lag  (and  knock-on  economic  consequences)  between  the  loss  of

production following flood- or storm-related damage, requiring replacement of plants, and a

return to previous production capacity. Consequently, hurricane impacts to banana growing

regions of the Dominican Republic have food security and economic consequences, making

evaluation of the damage important.

Earth observation or satellite remote sensing data is well suited for quantifying the impacts of

extreme weather events (Sanyal & Lu, 2004; Plank, 2014; de Beurs, McThompson, Owsley,

& Henebry, 2019). Data from Synthetic Aperture Radar (SAR) sensors, such as from the

European Space Agency’s (ESA) Sentinel-1 platform,  are particularly  useful  in detecting

structural changes on the Earth’s surface, and hence have been widely used in natural disaster

mapping  and  monitoring  (Plank,  2014).  Detecting  open  water  in  a  landscape  is  made

relatively easy when using SAR data, as the surface of water displays characteristically low

reflection  (backscatter)  of  the  radar  signal  back  to  satellite-borne  sensors  (Schumann  &

Baldassarre, 2010; Twele, Cao, Plank, & Martinis, 2016). Hence, flooded areas are readily

detectable by comparing SAR data for a location immediately before and after a storm or

flooding event.

There  is  a  long  history  of  research  using  satellite  data  for  land-use  cover  mapping

(Townshend, Justice, Li, Gurney, & McManus, 1991; Defries & Townshend, 1994; Tuanmu

& Jetz,  2014;  Joshi  et  al.,  2016),  including  the  delineation  of  crop types  in  a  landscape

(Jansenn & Middlekoop, 1992; Inglada et al., 2015). Until recently, such mapping has largely

relied on the analysis of multi-spectral satellite imagery (Jansenn & Middlekoop, 1992; Li,

Wang, Zhang, & Lu, 2015). As SAR data (which has only recently become more widely

available)  conveys  a  measure  of  crop  canopy  structure  or  texture,  its  inclusion  in  such

mapping methods adds an extra dimension of information that could increase mapping and

classification  accuracy  (Inglada,  Vincent,  Arias,  &  Marais-Sicre,  2016).  An  additional

advantage of incorporating SAR data into crop mapping is the ability to leverage temporal

information  of  the  backscatter  signature.  As  SAR  data  from  satellite  platforms  are  not

affected by cloud cover (as multi-spectral sensors are), an uninterrupted time series of SAR

imagery over a landscape of interest can provide temporal parameters, such as periodicity and

variance over time. Such metrics can be very powerful in the separation of crop classes, for

example annuals from perennials, or amongst the annuals, summer and winter crops (Inglada

et al., 2016; Veloso et al., 2017). These properties of SAR data could prove advantageous for

the mapping of banana plantations, as (a) banana plants have a characteristic upright stature

with large leaves, which we expect to result in high backscatter in SAR data; (b) they are

perennial;  and (c)  commercial  banana plantations  (especially  those catering to  the export
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market) usually operate under a continuous production system (i.e. plants are infrequently

replanted),  and hence should show low variation in backscatter over time (e.g. in a year)

compared to other crop types and vegetation classes. 

Here we quantify the area of banana production in the Dominican Republic  impacted by

hurricanes Irma and Maria in September 2017, and focus on the Monte Cristi, Santiago and

Valverde  provinces,  where  the  majority  of  the  country’s  production  is  concentrated.

Specifically, we aim to (1) map flooded area, or more generally, area impacted by hurricane

damage  in  the  three  provinces  of  interest  using  ESA’s  Sentinel-1  data;  (2)  develop  a

classification  algorithm  to  map  commercial  banana  plantations  using  a  combination  of

Sentinel-1, Sentinel-2, and topographic data using post-hurricane ground truth data of banana

plantations; (3) apply the banana plantation classification method to pre-hurricane satellite

data in order to quantify area of plantations affected by Irma and Maria in 2017; and (4)

identify areas of current banana plantations in the study region at risk from similar extreme

weather  events.  In  the  process,  we  also  aim  to  design  a  classification  method  to  map

commercial  plantations  that  could  be more widely  applied  to  banana production  systems

globally.

Methods

Our  study  area  includes  the  provinces  of  Monte  Cristi,  Santiago  and  Valverde  in  the

Dominican Republic. For reference, hurricanes Irma and Maria struck the region on the 7th

and 21st of September,  2017, respectively.  Hence, we label satellite data before this date

range as pre-hurricane, and after this date range as post-hurricane.

Mapping hurricane damage

We primarily rely on ESA’s Sentinel-1 data which we processed using Google Earth Engine

to  map  hurricane  damage.  The  total  extent  of  damage  was  mapped  as  three  separate

components which were then combined. First, detectable open water flooding immediately

after each hurricane was classified. We term this component ‘flood-open’ (FO). Second, an

arbitrary  fixed  distance  around  each  FO  patch  (100  meters)  was  also  hypothesised  to

experience flood damage. This was done because tall vegetation elements, such as banana

plants, which may not have been immediately damaged during the hurricane could, in part,

obscure the signal of open water in the SAR data. However, it is likely that the ground in

these obscured pixels would have been inundated (Figure 1), or saturated enough to stress

any  standing  crop.  This  component  was  termed  ‘flood-buffer’  (FB).  Third,  we  mapped

‘flood-legacy’ (FL) as pixels which display large deviations (described in detail below) in the

three months after the hurricanes, relative to time-averaged pixel values for a year prior to the

hurricanes. This latter component accounts for more protracted or delayed damage following

the flooding events. We estimate the total hurricane affected area for the study region as the

spatial union of the three components (i.e. FO  FB  FL), and provide detailed methods for⤠⁆ ⤠⁆

the mapping of each component below.
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Figure 1. Extensive flooding in a banana plantation in the Dominican Republic in September 2017.

The image shows that some open water flooding could be obscured by the canopy of standing banana

plants [image credit: annon].

For  the  FO  component  of  flooding,  we  used  SAR  imagery  for  the  three  provinces

immediately before (B) hurricane Irma, immediately after hurricane Irma (I) and immediately

after hurricane Maria (M). We applied median smoothing using a circular kernel of 100 meter

radius to each image, to reduce speckling noise that SAR data from a single time snapshot

can suffer from. Thereafter, we calculated the pixel-wise differences between I and B (flood

damage due to Irma), and M and B (flood damage due to Maria). We assumed that flood or

storm related structural damage to landscape elements reduces backscatter in the SAR data.

Additionally,  pixels  which  contain  open  water  after  a  flood  event  would  also  show

considerably reduced backscatter compared to values when the pixel was not flooded, i.e.

prior to the flooding event (Schumann & Baldassarre, 2010). Hence, we identified pixels in

the difference data layers which showed values < -2 dB to have experienced flood or storm

damage. A separate binary map of these affected regions was generated for hurricanes Irma

and Maria. Pixels which fell within 100 meters from these FO pixels were categorised as FB

pixels, i.e likely to have experienced soils saturated by moisture, if not inundated by flood

water.

To map flood-legacy (FL), we extracted all Sentinel-1 images for a one year period prior to

the hurricanes (1st September, 2016 to 6th September, 2017) — before image set (BS), and

three months during and after the hurricanes (6th September, 2017 to 30th November, 2017)

— after image set (AS). We only utilised the VV polarisation of the Sentinel-1 data for our

analyses, as many images, especially those in 2016, do not contain the VH polarisation band.

The 26 images from the BS subset were used to calculate the annual pre-hurricane average

VV backscatter for the region (BSmean). Similarly, we calculated the standard deviation for

each  pixel  using  this  annual  stack  of  images  (BSSD).  The  post-hurricane  average  VV
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backscatter  was  calculated  for  the  AS subset  using  its  seven  images  (ASmean).  Next,  the

amount of the deviation in mean VV values between the pre- and post-hurricane data subsets

was calculated in units of standard deviations D = [(ASmean - BSmean) / BSSD]. All pixels below

an arbitrary threshold of D ≤ -0.5 SD were retained as candidate pixels displaying flood-

legacy effects  (here again we assume loss of structural  complexity in the wake of storm

damage resulting in lower backscatter intensity). To exclude single pixel artefacts, a 7x7 (i.e.

70 meter x 70 meter)  moving window was used to count the number of candidate pixels

around  each  focal  pixel.  Each  focal  pixel  within  a  window  was  reassigned  as  having

experienced flood-legacy effects if the number of candidate pixels within the window were ≥

20 (i.e.  approximately  40%).  This  is  an arbitrary  threshold  which  we believe  provides  a

conservative estimate for the affected area. It is important to note that this FL component is

not calculated separately for hurricanes Irma and Maria as was the case with the FO and FB

components.

Banana plantation area mapping

Ground truth  data of 100 banana farm polygon boundaries  for  classifying and validating

banana plantation maps was sourced from ground surveys of farms conducted by  Bananos

Ecológicos de la Línea Noroeste (BANELINO), a producer co-operative, in 2019. Additional

land-cover classes were also included in our analysis by manually digitising training classes

from images available on Google Earth. These additional classes were urban/semi-urban/rural

built area, other crops (crops that were visually distinguishable from bananas), mangroves,

dense natural/semi-natural tree cover and sparse natural/semi-natural tree cover.

We extracted Sentinel-1 and Sentinel-2 data of the date range corresponding to the ground

truth data in Google Earth Engine for processing. As the commercial cultivation of bananas is

conducted on relatively flat  terrain,  slope derived from 90 meter resolution Shuttle Radar

Telemetry  Mission  (SRTM)  digital  elevation  model  (DEM)  was  also  included  in  the

classification procedures.

Sentinel-1 data from one year that spanned the time period that best corresponded with the

ground-truth data was extracted.  The 26 images from this period were aggregated to two

derived layers -  annual median VV and annual standard deviation of the VV bands.  The

surface reflectance product of Sentinel-2 (all images for the same time period as the Sentinel-

1 subset) was used to calculate a median red, green, blue and NDVI layer. These derived

bands were calculated following masking of pixels within each individual Sentinel-2 image

for cloud contamination based on the quality assessment band for each individual image.

The two derived layers from Sentinel-1 imagery, four derived layers from Sentinel-2 imagery

and the slope layer were stacked to form a single multi-band image, and used to build the

classifier. Five hundred random sampling points within polygons of each land-cover class

were generated. These were used to build a random forest classifier using 50 decision trees.

To increase accuracy and reduce classification artefacts, pixels classified as banana were only

retained if they formed a patch of ≥ 50 pixels (i.e. ≥ 0.5 ha). Hence, it is important to note

that the method described here is not suitable to detect small plantations or mixed cropping.
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Accuracy of the classifier was estimated by generating a separate set of 500 random sampling

points  within  each  land-cover  class  and  running  the  classifier  over  this  test  dataset.  A

confusion matrix (Stehman, 1997) was then constructed to estimate training and validation

accuracy.

To  map  pre-hurricane  banana  production  area,  we  processed  Sentinel-1  and  Sentinel-2

imagery for one year before the hurricanes (i.e. 1st September, 2016 to 30th August, 2017) in a

similar way to that described above (the same DEM data was used to derive a slope layer).

The random forest classifier was then used to generate a raster of banana production area

distribution. 

Raster  layers  of  the  three  flooding  components  and  pre-hurricane  banana  production

distribution  were  exported  to  QGIS  3.10  (QGIS.org,  2019)  and  GRASS  7.4  (GRASS

Development Team, 2018) for further processing. The flood components were combined into

a single layer delineating total hurricane affected area. This layer was intersected with the

pre-hurricane classified banana layer to measure the area of production affected by hurricane

damage. We intersected the total hurricane affected area with the post-hurricane banana map

to estimate the area of current banana production which may be at risk from damage should a

similar  extreme  event  recur.  Lastly,  we  mapped  the  spatial  turnover  of  plantation  area

between  2017  (pre-hurricane)  and  2019  (current),  which  captures  the  spatial  change  in

plantation distribution, i.e. where plantation area has been lost, and where there has been a

gain. By overlaying the hurricane affected area data with areas of production area gain in

2019, we then quantified how much of the newly planted area could be at risk from damage

from future storm damage.

Results

A total of 27,618 ha of hurricane-related flood damage was estimated for the three provinces

of Monte Cristi, Valverde and Santiago, equating to 5.01% of the total area of the provinces

(Figure 2). Individually, flood-open (FO), flood-buffer (FB) and flood-legacy (FL) accounted

for 8,302.3 ha, 18,178.21 ha and 15,622.9 ha, respectively. Total affected area is less than the

sum of the three flood classes due to considerable spatial overlap between them. Observed

flood damage was proportionally greater in Monte Cristi (18,102 ha; 9.3%) and Valverde

(6,051 ha;  7.6%) compared to  Santiago (3,462 ha;  1.3%).  Additionally,  flood damage in

Monte Cristi and Valverde appeared to be more spatially aggregated around the Yaque del

Norte  river  with  large  areas  of  open  flooding.  In  contrast,  Santiago  saw more  scattered

occurrences of damage largely classified as legacy effects.

The random forest classifier performed particularly well for mapping banana plantations in

the three provinces. Overall accuracy estimated using a confusion matrix was 99.7% for all

classes  and  99.8% for  banana  plantations.  In  total,  for  2019,  we  detected  23,898  ha  of

plantation area in the three provinces (Figure 3). Projecting the classifier on satellite images

before hurricanes Irma and Maria in September 2017, we detected a total plantation area of
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21,561 ha within the region of analysis (Figure 4).

On overlaying the hurricane damage (Figure 2) and banana plantation maps for 2017 (Figure

4), we estimate 2,446.75 ha of plantations were likely to have experienced damage. This

accounts for 11.35% of area under cultivation before the hurricanes struck the Dominican

Republic (Figure 5). By overlaying the hurricane damage map and banana plantation map for

2019 (Figure 6), we estimate 3,402.55 ha or 14.24% of plantation area may be at risk from

damage should a similar extreme weather event reoccur.

Our  analyses  also  showed a loss  of  5,048.37 ha of  pre-hurricane  banana plantation  area

(Figure 7). This amounts to 23.4% of the production area in 2017. Of the plantation area lost

between  2017 and 2019,  1,031.41 ha  was  identified  to  have experienced  storm damage.

However, by 2019 there was also a gain of 7,384.84 ha of new plantation area. Importantly,

1987.21  ha  or  26.9% of  this  new  plantation  area  overlapped  with  locations  which  saw

damage in the aftermath of hurricanes Irma and Maria.

Figure 2. Extent of estimated hurricane damage in the provinces of Monte Cristi, Valverde and

Santiago. Inset illustrates the region of analysis in the Dominican Republic.
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Figure 3. Distribution of banana plantation area in the study region in 2019 (post-hurricane)

Figure 4. Distribution of banana plantation area in the study region before September 2017 (pre-

hurricane plantation distribution)
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Figure 5. Map identifying locations in the study region where banana plantations in 2017 were

affected by hurricanes Maria and Irma (September 2017)

Figure 6. Banana plantation areas in 2019 that overlap with locations that saw storm-related damage

due to hurricanes Irma and Maria in 2017. The highlighted regions (red) are considered at high risk

should similar extreme weather events reoccur.
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Figure 7. Map illustrating plantation area turnover in the study region between 2017 and 2019.

Discussion

Damage from hurricanes Irma and Maria was experienced in all the three provinces of Monte

Cristi, Valverde and Santiago, though the area affected in the latter was considerably less,

and spatially more dispersed. Overlaying the hurricane damage map with our classified pre-

hurricane  banana  plantation  map  we  estimate  that  2,446.75  ha,  or  11.35%  of  banana

plantation area across the three provinces was affected by open water and/or protracted storm

damage over a period of three months since the hurricanes. The damage to plantations was

spatially more evenly spread across the three provinces.

These results reveal large scale damage to a key export sector of the Dominican Republic.

Uncertainty around adequate production following the hurricanes led to importers of large

European  retailers  switching  procurement  to  other  countries.  To  alleviate  the  economic

consequences  to  farmers  through  the  loss  of  market  access  —  even  for  those  whose

production  area  may  have  been  largely  unaffected  —  the  national  government  had  to

intervene by procuring production initially destined for the export market, thereby severely

affecting the country’s economy (FAO, 2018; Polanco, 2018). Rapid assessment of the scale

of damage, as carried out in this study, could allow importers to maintain sourcing in the

Dominican Republic by providing more accurate and up-to-date information to base sourcing

decisions on.

Our analyses  estimated  that  23.4% (5,048.37 ha) of area under banana cultivation  before
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hurricanes Irma and Maria had been converted to non-banana producing area by 2019. The

converted area is much larger than what we estimated as having been affected by the two

hurricanes.  Additionally,  only  42.2% of  the  banana plantation  area  of  2017 that  showed

evidence of storm damage was converted to other land-use classes. Hence, we conclude that

losses in banana cultivation area between 2017 and 2019 may have only partly been driven

by direct hurricane damage,  and that  other local  economic factors — which may include

indirect  consequences  of  hurricane  impacts  — may  have  been  equally  as  important  and

require further investigation.

Despite the localised losses of production area between 2017 and 2019, the area under banana

cultivation across the study area grew by 10.8% with the addition of 7,383.84 ha of new

plantations. Over a quarter (26.9%; 1987.21 ha) of this new production area overlaps with

areas that experienced hurricane related damage in 2017. While the incidence of two large

magnitude  hurricanes  in  rapid  succession  can  be  considered  as  rare,  there  have  been

consistent predictions that the frequency and intensity of such extreme events are likely to

increase due to climate change (IPCC, 2014). Hence, we identify these areas (figure 6) as at

risk. Further, this also results in 14.24% of the area under banana cultivation at risk from

similar storm events in the future. For context, this is an increase from 11.35% of production

area which saw damage in 2017. A comprehensive assessment, as presented here, could be

used to inform risk management measures and risk transfer solutions, such as investment in

micro-insurance. Additionally, risk maps could enable efficient aggregation of risk across co-

operatives or administrative units spanning the production landscape.

While our analyses suggest that production area in the main banana growing areas of the

Dominican Republic has shown a complete recovery since the hurricanes Irma and Maria,

finer scale (i.e. farm level) patterns of recovery are yet to be investigated. Banana production

in the Dominican Republic comprises a large number of smallholder farmers, and there is

wide consensus in the literature that smallholders are at particular risk from climate change

and associated extreme events (Morton, 2007; Harvey et al., 2014). Future research should

focus  on  linking  satellite  derived  plantation-scale  data  at  high  temporal  resolution  with

information on farm-scale economic status and decisions,  as well  as production volumes.

Such models could be important for formulating wider government-led recovery strategies,

and informing importer procurement decisions.

We obtained high levels of accuracy for our classification method to map banana plantations

using a combination of Sentinel-1, Sentinel-2 and elevation data. This gave us a high degree

of  confidence  in  mapping  pre-hurricane  plantation  distribution  in  the  study  area,  and

consequently, in estimating the extent of hurricane related damage to plantations. Bearing in

mind that the random forest classifier was trained only using 500 sampling points for the

banana class (i.e. approximately 5 ha of plantation area), the high accuracy suggests that even

with  relatively  low  effort  in  ground-truthing,  this  method  represents  a  very  promising

approach to mapping commercial banana plantations more widely. Bananas are one of the

most  extensively  cultivated  crops  in  the  world  (FAOSTAT,  2020).  Like  any  other

commercially  cultivated  crop,  banana  production  also  faces  challenges  from  multiple
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stressors, apart from extreme weather events, such as longer-term climate shifts, pests and

diseases (Ramirez,  Jarvis, Van den Bergh, Staver, & Turner, 2011; Ordonez et al.,  2015;

Bebber, 2019; García-Bastidas et al.,  2019; Varma & Bebber, 2019). Assessing risk from

these stresses, measuring impacts, as well as monitoring rates of recovery, and effectiveness

of mitigation measures require detailed information on plantation distribution. Such spatially

explicit data can also be invaluable in tracking the performance of plantations, by providing

focal  areas  over  which  to  analyse  finer  variations  in  measurements  from satellite-borne

sensors.  However,  such up-to-date  and high resolution  information  on the  distribution  of

banana plantations is lacking, and methods described here could help address this gap.

In  conclusion,  this  study  used  remote  sensing  data  and  analyses  to  provide  a  detailed

assessment of the impacts of hurricanes Irma and Maria on production area of bananas in the

key  growing  areas  of  the  Dominican  Republic.  With  the  open  availability  of  regularly

captured data from satellite platforms, such as ESA’s Sentinel-1 and Sentinel-2, assessments

such as these soon after the occurrence of an extreme weather event can be rapidly and cost

effectively carried out. Our analyses also mapped where current production area may be at

risk from similar high intensity storm events in the future. We observed that there has been a

net increase in banana plantation area in the region between 2017 and 2019, a substantial

proportion of which has occurred in locations which experienced hurricane related damage in

2017. Consequently, there has been an overall increase in production area at risk from future

storm events which should be considered in mitigation and recovery strategies. Lastly, we

have demonstrated a highly accurate method to map banana plantation area that can form the

basis of tracking the trajectory of banana production recovery from extreme weather events.

Research focused on quantifying these patterns  of recovery could positively contribute to

government  risk  management  and  mitigation  planning,  importer  procurement  decision

making, and ultimately, securing farmer livelihoods.
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Abbreviations used:

AS ‘After set’ of images; A three month collection of Sentinel-1 images (seven images) 

during and after hurricanes Irma and Maria affected the study area (6th September 2017 

to 30th November 2017).

ASmean A single band image of mean pixel values from AS.

B Sentinel-1 image over the study region immediately before hurricane Irma.
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BS ‘Before set’ of images; A one year collection of Sentinel-1 images (26 images) before 

hurricane Irma affected the study area (1st September 2016 to 6th September 2017).

BSmean A single band image of mean pixel values from BS.

BSSD A single band image of pixel wise standard deviations from BS.

D A single band image of the difference between ASmean and BSmean expressed in terms of 

BSSD

DEM Digital Elevation Model

ESA European Space Agency

FB Flood-Buffer; regions upto 100m from pixels detected as open-water flooding (FO) 

FL Flood-Legacy; Pixels assessed to have experienced more protracted hurricane/flood 

damage. They are characterised by large deviations in pixel values in the three months 

following hurricanes Irma and Maria, relative to values observed for the same pixel over 

a one year period before the hurricanes.

FO Flood-Open; regions which show characteristics of open-water flooding in Synthetic 

Aperture Radar satellite data

I Sentinel-1 image over the study region immediately after hurricane Irma.

M Sentinel-1 image over the study region immediately after hurricane Maria.

NDVI Normalised Difference Vegetation Index

SAR Synthetic Aperture Radar

VH polarisation Vertical transmit - horizontal receive band of Sentinel-1 imagery

VV polarisation Vertical transmit - vertical receive band of Sentinel-1 imagery
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