bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.304444; this version posted September 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Metagenomic insights into ecosystem function in the

microbial mats of Blue Holes, Shark Bay

5 Gareth S Kindler! 3, Hon Lun Wong'-?, Anthony W D Larkum?, Michael Johnson?, Fraser I

MacLeod! 3, Brendan P Burns" 3"

!School of Biotechnology and Biomolecular Sciences, The University of New South Wales,

10 Sydney, NSW, Australia.

2Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007,
Australia.
3Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW,

Australia.

15 *Correspondence to: brendan.burns@unsw.edu.au


https://doi.org/10.1101/2020.09.18.304444
http://creativecommons.org/licenses/by-nc/4.0/

20

25

30

35

40

45

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.304444; this version posted September 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Abstract

Microbial mat ecosystems vary in complexity and structure depending on the environmental
constraints placed by nature. Here, we describe in detail for the first time the community
composition and functional potential of the microbial mats found in the supratidal, gypsum-rich,
and hypersaline region of Blue Holes, Shark Bay. This was achieved via high throughput
sequencing of total mat community DNA on the [llumina NextSeq platform. Mat communities
were mainly comprised of Proteobacteria (29%), followed by Bacteroidetes/Chlorobi Group
(11%), and Planctomycetes (10%). These mats were found to also harbor a diverse community of
potentially novel microorganisms including members from the DPANN and Asgard archaea,
Candidate Phyla Radiation (CPR) and other candidate phyla, with highest diversity indices found
in the lower regions of the mat. Major metabolic cycles belonging to sulfur, carbon, nitrogen, and
fermentation were detected in the mat metagenomes with the assimilatory sulfate reduction
pathway being distinctly abundant. Critical microbial interactions were also inferred, and from 117
medium-to-high quality metagenome-assembled genomes (MAGs), viral defense mechanisms
(CRISPR, BREX, and DISARM), elemental transport, osmoprotection, heavy metal and UV
resistance were also detected in the mats. These analyses have provided a greater understanding

of these distinct mat systems in Shark Bay, including key insights into adaptive responses.

Introduction

Microbial mats are vertically stratified organosedimentary aggregations, embedded in a matrix of
minerals, growing in often extreme habitats [1, 2]. Vertical stratification of microbial mats is
attributed to physicochemical gradients, which favour niche differentiation between
microorganisms [3]. The microbial community is a diverse mixture of bacteria, archaea, eukarya
and viruses [4, 5], which vary taxonomically and functionally depending on the environment in
which the mat forms. These microorganisms perform a range of functional roles, with nutrient
cycling capabilities spanning across major elements of carbon, nitrogen, and sulfur [6], resulting

in a self-sustaining community, highlighted by numerous microbial interactions.
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Modern microbial mats are often considered analogues of ancient stromatolites, the fossilised
communities of 3.5 billion years past [7]. During this time Earth was experiencing significant
biogeochemical transitions and extremes [8]. Precambrian stromatolites, lithified laminated
formations represent the oldest ecosystems known, and have played a crucial role in oxygenation
of earth’s atmosphere, enabling higher forms of life to evolve [9, 10]. The same lithification
mechanisms are extremely rare to occur in present day microbial mats, but Late Archaean Earth
harboured similar microbial mat communities [11]. Microbial mats and stromatolites are
considered as major influencers on global biogeochemistry and evolutionary processes for half of
Earth’s history. Modern microbial mats continue to contribute to increased biological productivity,
shared reducing power, and oxidation of Earth’s surface [12]. Distinct phyla of archaea found in
modern microbial mats have recently been suggested to be the origin of eukaryotic cellular

complexity [6, 13].

Microbial mats are exposed to conditions thought to restrict life such as temperature, solar
radiation, desiccation, and salinity. Studies have shown modern microbial mats to be prevalent in
unique locations across the globe such as karstic spring mounds [14], hot springs and geysers [15],
hypersaline and volcanic lakes [16-19], rivers [20], acid mine drainages [21] and supratidal pools
[22]. In the intertidal and subtidal hypersaline marine environments of Shark Bay, Western
Australia [23, 24], modern microbial mats and stromatolites continue to thrive as one of the best

examples in the world.

On the coast of Western Australia, two arms of the sea come together to form the barred basin of
Hamelin Pool (Figure S1). While the microbial mats of Hamelin Pool have been the subject of
recent intense research [6, 24, 25], the distinct ecosystem of Blue Holes is uncharacterized. Located
on the Nanga Peninsula, on an embayment of Hamelin Pool there are series of hypersaline ponds
known as Blue Holes (Figure S2). The site consists of 12 circular holes on a 650 m wide supratidal
flat, with each hole having a depth of up to 2.5 m and diameter between 2 to 30 m [25]. Between
900 years ago and present day sea levels decreased by 1.5 m [26], during this time it is likely the
tidal flat opened up, combined with the groundwater dissolution of fossilised gypsum (CaH4O¢S)
it resulted in the formation of Blue Holes [25]. Blue Holes is located in the now supratidal zone

with periodic recharges of rainwater, abnormal high tides from Hamelin Pool and prolonged on-
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shore winds [26, 27] creating a surface water layer of lower salinity, density, and temperature than
the underlying hypersaline water layer [25]. Stratification of the water column is an intermittent
feature of these holes [27], as periods of low water levels, wind action, and inundation during very
80 high tides can diminish stratification (Figure S3). An early study in 1980 identified microbial mats
of salmon pink and blue-green pigments covering the sedimentary base of Blue Holes [27]. A high
level of microorganism diversity was observed with two dominant cyanobacteria thought to be
responsible for the mat architecture, Phormidium sp. and Aphanothece sp. Recently in 2014, water
from Blue Holes was measured to have a salinity of 78 Practical Salinity Units (PSU), double that
85 of normal seawater, and to be sulfidic [5]. Both interactions were preliminary and mainly served

to add to the intrigue surrounding the holes.

Although important characteristics of the Blue Holes ecosystem have been described, the abiotic
and biotic nature at the molecular scale remains to be illuminated. Previous work on microbial
90 mats from another site in Shark Bay (Nilemah, Figure S1) has found extensive diversity,
contributing to understanding the roles of biogeochemical cycling, adaptations, and novel
pathways and microorganisms in these ecosystems [6, 28]. For the first time, we present detailed
analyses of microbial community structure and function in the mats of Blue Holes, Shark Bay

using high throughput metagenomic sequencing.

95
Methods

Location Description and Sampling, DNA Isolation, Sample Sectioning. Microbial mat and
water samples were collected from Blue Holes (Hamelin Pool, Shark Bay, WA, 26°15'39.6"S
113°56'57.3"E) (Figure S2) on the 30th of October 2017. Of the three most discrete holes, the
100 smallest was sampled. Using a sterile metal spatula, microbial mat slabs of 10 cm? were cut out 1
m from the edge of a pool and at an approximate water depth of 20 cm (Figure S2). Samples were
placed in RNAlater solution. Water overlying the Blue Holes microbial mats was collected along
with water from Nilemah (Hamelin Pool, Shark Bay, WA, 26°27°336°’S, 114°05°762"’E), for
reference (Figure S1). Separation of the vertically stratified Blue Holes microbial mat was based
105 on visible pigmentation along a depth gradient (Figure S2). The sample was sliced longitudinally

to form three equally sized layers (~ 7 mm in depth). The surface layer (green) comprised the first
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7 mm of microbial mat, subsurface (pale red) was designated 7 to 14 mm, and base (translucent)

as 14 to 21 mm (Figure S2).

110 Nucleic Acid Extraction and Sequencing. Extraction of nucleic acids from microbial mat
samples was performed with a PowerBiofilm DNA Isolation Kit (10). Weight of starting microbial
mat material was between the 0.16 and 0.20 g for all extraction samples. Nucleic acids were
extracted in triplicate from each layer of microbial mat, resulting in a total of nine samples (Figure
S4). Extractions were undertaken following the manufacturer’s instructions, with several

115 modifications. During the mechanical bead beating step, the PowerBiofilm Bead Tube was
homogenised using a Fastprep24 instrument at a speed of 5.5 m/s for a 30 s duration. The volume
of BF3/IRS Solution was increased from 100 pL to 200 pL to aid in the removal of inhibitors such
as exopolymeric substances (EPS). All 60 s centrifugation steps were increased to 90 s, excluding
the step involving the selective binding of DNA to the silica membrane. An additional 60 s of

120 centrifugation was also added to the removal of residual wash and release of DNA from Spin Filter
membrane steps. To further purify the extracted nucleic acids, an ethanol precipitation procedure
was employed. To each tube containing suspended DNA, 50 pL of 7.5 M Sodium Acetate and 500
puL of -20°C 100 % ethanol was added. Tubes were incubated at -20°C for 24 h. Following
incubation, tubes were centrifuged for 30 min at 14,600 x g. The supernatant was then removed

125 by pipetting. To wash and resuspend the DNA, 500 puL of 80 % ethanol was added. Tubes were
centrifuged at 14,600 x g for 15 min. The wash step was repeated, followed by the supernatant
being pipetted out, ethanol added to resuspend the DNA, followed by centrifugation for 15 min.
Supernatant was pipetted out and tubes were left to air dry. DNA was resuspended in 100 pL. of
BF7/EB. Tubes were incubated on wet ice for 30 min, then stored at -20°C. A Nanodrop ND-1000

130 Spectrophotometer was used to determine DNA quality and quantity according to the
manufacturers protocol. To check for degradation sample quality was visualised through agarose
gel electrophoresis. Ramaciotti Centre for Genomics (UNSW Sydney, Australia) performed the
library preparation and metagenomic sequencing. Libraries were prepared using the Nextera XT
DNA Sample Preparation Kit, with an input of 1 ng of DNA per sample. A final clean-up step at

135 aratio of 0.7 bead volume to 1 pooled library volume was performed to eliminate larger fragments
of an abnormal sample library. [llumina Nextseq 500 with a run format of Medium Output 2x150

bp was used to sequence the libraries. Prior to assembly, all biological replicate sequence files
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(three from each microbial mat layer) were concatenated to create pooled files from each layer of
microbial mat. Quality checking of nucleic acid reads was performed by FastQC (70).
140 Trimmomatic (71) was used to cut away low quality bases using a sliding window setting of 4:21

and minimum length of 50 bps (Figure S4).

Metagenome analyses. Contig assembly for metagenome analyses was performed using the meta
option through SPAdes [29]. Metagenome statistics were generated using QUAST [30]. Prediction
145 of amino acid sequences was completed using Prodigal [31]. For taxonomic classification, 40
marker genes or COGs corresponding to single-copy gene families universally distributed in
prokaryotic genomes [32] were extracted using FetchMGs [33] (https://github.com/motu-
tool/fetchMGs). We compared our single-copy gene sequences with the non-redundant protein
database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/ on the 22nd May) - RefSeq Release 94 (May
150 17, 2019) [34], through the DIAMOND software (diamond v0.9.24.125) [35] (Figure S4). Only
the best hit of each gene was retained, using a minimum amino acid identity of 50% over at least
80% of the query length [36]. Using an adhoc script in PyCharm, through utilizing the Pandas [37]
and ETE 3 [38] packages, sequence Tax IDs were converted into counts for each marker gene.
Marker gene counts were converted through a compositional normalization process to relative
155 abundances. Using ggplot2 (https://ggplot2.tidyverse.org/) in R software (http://cran.r-

project.org/), the relative abundances were visualized on a stacked bar chart.

Metagenomes were annotated for both function and taxonomy using the KEGG online server [39].
Hits were kept using a GHOSTX cut-off of 100. Using MUSiICC (Metagenomic Universal Single-
160 Copy Correction), gene abundances were normalized [40]. In accordance with previous work,
genes unique to a pathway or cycle were considered to be diagnostic of that metabolism and were
averaged to calculate the metabolic abundances [6, 36, 41, 42]. Using ggplot2, stacked bar charts

containing fill correlated the KEGG-annotated taxonomy with diagnostic genes.

165 Metagenome-assembled genomes. Contig assembly was performed using Megahit [43] (Figure

S4). The minimum k-mer length was set to 27 and incremental k-mer size to 10. Resulting contigs

6
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were then subsampled for lengths greater than 1000 bps, conditions which are a required for
downstream functional annotation. Indexing of reads was performed using BWA [44]. BWA mem
assembled sequences were mapped against the previously trimmed sequences. View and sort
170 functions in SAM Tools was then used to compact files into the practical bam format [45]. Bam

files are used in combination with assembled contig files for downstream analyses.

Input coverage and depth files for binning programs were produced using standard program
settings. To generate genomes, contigs were grouped into bins using MetaBAT [46], Maxbin2 [47]
175 and Concoct [48]. Using the three sets of binning results, optimised and non-redundant bins were
calculated using DAS Tool [49], resulting in bins of improved quality. Refined bins, now referred
to as metagenome-assembled genomes (MAGs) were used for all downstream analysis. Estimation
of quality measurements of MAGs was performed using CheckM [50], on default settings. Quality
of genomes were then categorised using the standards of Minimum Information about
180 Metagenome-Assembled Genomes (MIMAG) [51]. MAGs with greater than 10% contamination
were discarded. To survey MAGs for the presence of subunit rRNA genes, RNAmmer [52] was
used. However, due to incongruent results the rRNA criterion of the MIMAG standards was
exempted from this study, conforming with previous work [6]. Identification of the amount and

types of tRNA sequences was performed using tRNAscan-SE.
185

Due to their ubiquity across bacterial and archaeal genomes, 15 specific ribosomal proteins were
chosen for phylogenomic based analyses (ribosomal proteins L2, L3, L4, L5, L6, L14, L15, L18,
L22, 1L.24, S3, S8, S10, S17, and S19) [53]. MAGs containing greater than six ribosomal protein
sequences generated by Phylosift and of low, medium, and high quality were used for construction
190 of the phylogenetic tree. If ribosomal sequence files contained more than one sequence, the shorter
was deleted. Sequences were aligned using MAFFT [54], followed by BMGE [55] to remove gaps
within sequences. The phylogenetic tree was constructed by maximum likelihood using IQ-TREE
[56]. A total of 1000 bootstrap replicates was used to infer confidence in the final phylogenetic
tree construction. Branches with bootstrap values lower than 50 were deleted in the Interactive
195 Tree of Life online interface (iTOL) [57]. Using CheckM, Phylosift [58] and NCBI Protein
BLAST [59] MAGs were assigned taxonomy and annotated onto the formatted phylogenetic tree


https://doi.org/10.1101/2020.09.18.304444
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.304444; this version posted September 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

in Inkscape [60] (Table S1). Within NCBI Protein BLAST, a threshold of greater than 40% amino-

acid identity and cut-off E-value of 1e-20 was used.

200 Contigs of nucleotide sequences were converted to protein-coding open reading frames (ORFs)
using Prodigal, within CheckM (Table S1). To annotate protein functions of MAGs, a combination
of KEGG server [39] and InterProScan [61] was used. For KEGG annotation, genes were recorded
as present using a KEGG confidence score of greater than 85 [6]. Genes annotated by InterProScan
were considered present using a cut-off value of lower than le-10. Annotated protein sequences

205 of MAGs were compared across a range of genes involved in metabolisms and adaptive responses.
Metagenome-assembled genomes of >70% completeness [62] and <10% contamination (medium
and high quality) were used for metabolic potential analyses and corresponding phylogenomic
analyses. Statistical analysis of MAGs was performed using the R software. Figure 3 was built in
R using the ggplot2 package. Genes related to foreign genetic element defence were recorded as

210 either present, partially present, or absent. Genes related to environmental adaptions were recorded
as either present or absent. Phylogenomic tree attached to Figure 3 was created despite two MAGs

containing less than six ribosomal proteins.

Water chemistry. To determine cation, dissolved nitrogen, and dissolved organic carbon
215 concentrations of water samples the following analyses were conducted in triplicate at the Mark
Wainwright Centre (UNSW Sydney, Australia). Inductively coupled plasma mass spectrometry
(ICP-MS) and liquid chromatography with organic carbon detection (LC-OCD) were used for
these analyses. Salinity measurements were undertaken with a refractometer (Bellingham &
Stanley). Water samples were filtered through a 0.45 pm syringe driven unit (Millipore). Water
220 was sampled from two separate microbial mat sites in Shark Bay (Blue Holes and Nilemah) and
measured in duplicate. Redox potential and pH measurements were undertaken using a pH Cube

(TPS).
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Results

225 We studied the ecosystem of Blue Holes, Shark Bay, focusing our analyses on the microbial mat
and overlying water. Rainfall in Shark Bay over the month preceding collection (October 2017)
was dry, only receiving 1 mm. The average of the month’s daily solar radiation was 25.55 MJ m-
2 with daily temperatures ranging between 15 and 28°C (Table S2). Blue Holes water salinity was
109.8 PSU, sodium (31634 mg/L) was the most abundant cation, followed by magnesium (3804
230 mg/L) (Table S3). Sulfur (2983 mg/L) is the third most abundant cation in the Blue Holes
ecosystem, 151% higher than Nilemah. Dissolved Organic Nitrogen (DON) and Dissolved
Organic Carbon (DOC) were measured at 19.7 mg/L and 11.1 mg/L, respectively. The Blue Holes
microbial mat samples were sectioned along three distinct layers: a surface layer of green and
translucent and filamentous properties (0-7 mm), a subsurface layer of maroon and green (7-14
235 mm), and a base layer saturated by sediment and Fragum erugatum shells (translucent, 14-21 mm)
(Figure S2). We generated metagenomes from concatenating triplicate sequenced samples for each

layer of microbial mat. Each metagenome comprised a GC content greater than 55% (Table S4).

Universal single-copy gene relative abundance
0.5

Surface

Subsurface

Base

. Acidobacteria . Cyanobacteria . Lentisphaerae Bacteria candidate phyla . Unclassified bacteria
. Actinobacteria - Fibrobacteres . Planctomycetes Candidate Division KSB1 . DPANN group
. Bacteroidetes/Chlorobi group . Firmicutes . Proteobacteria . Candidatus Omnitrophica . Euryarchaeota
. Calditrichaeota - Gemmatimonadetes _ Spirochaetes . Candidatus Zixibacteria . Other archaea

. Chloroflexi - Kiritimatiellaeota Verrucomicrobia . Other bacteria . TACK group

240 Figure 1. Overall microbial relative abundance within the microbial mat metagenomes of Blue
Holes (Shark Bay, Australia), as inferred from the taxonomic assignment of 40 universally
distributed single-copy genes (COGs). Candidate Division KSB1, Candidatus Omnitrophica, and

Candidatus Zixibacteria are separate of their respective phyla or other clades. Each metagenome
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is the result of merging the three biological replicates, respectively. Further classification of

245 bacterial and candidate phyla is shown in Figure S5.

Community composition. To characterize the microbial composition of the Blue Holes mats, we
used the occurrence of universally distributed, single-copy marker genes within each metagenome
or layer (Table S5). Based on the assignment of taxonomy to these genes, we detected a range of
250 microbial diversity within the layers of microbial mat as shown through Shannon entropy (2.3-3.1)
and Gini-Simpson (0.8-0.9) indices (Table S4). The surface layer was the least diverse of the three,
and as depth increased so did diversity resulting in the base layer being twice as diverse as the
surface. The middle layer, or subsurface showed a level of diversity similar to the base with 12%
less. At the surface layer, bacteria dominated with representation of Proteobacteria, the
255 Bacteriodetes/Chlorobi group, Planctomycetes, and Spirochaetes (Figure 1). Although in different
orders of prevalence, these four phyla are represented as the most dominant throughout each mat
layer. Cyanobacteria were present within the mat, albeit at low levels (Table S6). Proteobacteria
is the most dominant phylum in each layer of the mat, and accounts for the most in the surface at
38% of all single-copy genes in the metagenome. The majority of bacterial candidate phyla were
260 present in abundances less than 1% of the total metagenome sequences. However, cumulatively
they accounted for 7%, 13%, and 15% from the surface to base microbial mat layers, respectively.
Of the bacterial candidate phyla, 49 phyla accounted for 95-97% of the diversity across the three
microbial mat layers (Figure S5a/Table S6) whilst a total of 105 were detected. Candidatus
Omnitrophica dominated the upper two layers, whilst Candidatus Zixibacteria dominated the lower
265 two layers. Candidatus KSB1 and Candidatus Falkowbacteria followed in abundance in the base
layer. As depth increases, the prevalence of bacteria decreases, from 98% in the surface to 92% in
the base, with archaea filling the space (Figure S5b/Table S6). Woesarchaeota and Euryarchaeota
were profuse throughout the mat layers, following opposing trends along the depth gradient. In
smaller quantities, Aenigmarchaeota, Altiarchaeota, and Bathyarchaeota were present. Of the
270 Asgard archaea, Lokiarchaeota outshone Odinarchaeota and Thorarchaeota to be the most

prevalent.

10
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Figure 2. Metabolism and associated taxonomy in Blue Holes microbial mats. Stacked bar
histograms showing taxonomic classification of the KEGG-annotated metabolic MUSiCC-
normalised gene abundances of the three layers of microbial mat (S, surface; SS, subsurface; B,
base). ASR, Assimilatory sulfate reduction; DSRO, Dissimilatory sulfate reduction and oxidation;
Reductive pentose phosphate cycle (Calvin-Benson-Bassham cycle); Reverse citric acid cycle
(Arnon-Buchanan cycle); R. acetyl-CoA pathway, reductive acetyl-CoA pathway (Wood-
Ljungdahl pathway); Dicarboxylate-hydroxybutyrate (DC-HB) and Hydroxypropionate-
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hydroxybutylate (HP-HB) cycles; Anoxygenic photosynthesis (PRC), photosystem reaction center
in purple bacteria; Anoxygenic photosynthesis (BC), Bacteriochlorophyll biosynthesis in green

non-sulfur.

285 Metabolic cycles and pathways. We correlated MUSICC-normalised gene abundances of
targeted metabolic cycles and pathways with taxonomy to elucidate the likely metabolic roles
different phyla are playing within the mat layers of these ecosystems (Figure 2). Genes unique to
a specific metabolic process were considered diagnostic (Table S7) in accordance with previous
research [36]. Sulfur cycling was the most abundant metabolism investigated, followed by carbon

290 and nitrogen (Table S8), while methanogenesis accounted for the least number of genes. Of all
metabolic pathways, assimilatory sulfate reduction genes were found to be the most prevalent.
Fermentation was the next abundant, followed by dissimilatory sulfate reduction and oxidation.
The reductive acetyl-CoA pathway dominates carbon metabolisms, followed by the reductive
pentose phosphate cycle, DC-HB/HP-HB cycles, 3-HP bicycle, and the reverse citric acid cycle

295 (rTCA). Within the nitrogen cycling capabilities of the mat, nitrogen fixation was the most
prevalent, followed by dissimilatory nitrate reduction. Prominent nitrogen fixers within the mat
were Proteobacteria, Chloroflexi, Cyanobacteria, and Verrucomicrobia, shifting in abundance
depending on the layer. The least number of genes within the mat were associated with
nitrification. Proteobacteria account for 10% of all metabolic genes investigated in this study.

300 Deltaproteobacteria (24%) are responsible for the largest average portion of combined
metagenome genes across all metabolisms, followed by Alphaproteobacteria (12%).
Gammaprotoebacteria, Bacteroidetes, Firmicutes, Planctomyctes account for 33% of metabolic
genes (Table S8). Eukarya genes were identified to be present within carbon, nitrogen,
phototrophy, sulfur, fermentation, and oxidative phosphorylation metabolisms. Anoxygenic

305 photosynthesis genes, mostly contributed by those associated with bacteriochlorophyll
biosynthesis, were five times more abundant than oxygenic photosynthesis genes.
Deltaproteobacteria, Chloroflexi, and Firmicutes contributed to anoxygenic photosynthesis (BC),
whereas oxygenic photosynthesis was associated with Planctomycetes and a diverse selection of
other phyla. Prominent cascades are found in nitrogen fixation and anoxygenic photosynthesis,

310 showing the highest gene occurrences to be within the surface mat layer (Figure 2). Inverse

cascades can be seen in DSRO and the reductive acetyl-CoA pathway. Most nitrogen-associated
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pathways were relatively evenly represented across the mat layers. The mat layer with most
diagnostic metabolic genes was the base, followed by the surface and subsurface. Methanogenesis
genes are the lowest in surface and increase slightly with depth.
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Figure 3. Colour differentiated phylum-level phylogenomic tree and table displaying MAG
functionality. X-axis indicates pathways and genes implicated in environmental adaptions. The
longitudinal lines of the table correspond to MAG labels located on the y-axis. Connected to the
320 y-axis is a phylogenetic tree created from MAG ribosomal proteins, showing bootstrap values.
White squares indicate the absence of a given pathway in a MAG. Abbreviations: clustered
regularly interspaced palindromic repeats (CRISPR), defence island system associated with

restriction—modification (DISARM), and bacteriophage exclusion (BREX) system.

325 Environmental Adaptations. A total of 156 metagenome-assembled genomes (MAGs) of low,
medium, and high-quality were uncovered from the binning process. MAGs of greater than 70%
completeness and less than 10% contamination were included in comparative genomic analysis,
constituting a total of 117 (Figure 3). Defence systems protecting against foreign genetic elements
are present within the Blue Holes microbial mat MAGs. CRISPR-associated (Clustered Regularly

330 Interspaced Short Palindromic Repeats) or cas proteins were identified in a variety of bacterial and
a single Euryarchaeota (BH 18) MAG(s) (Figure 3). The microbial defence system, Defence
Island System Associated with Restriction—Modification (DISARM) (105) genes were identified
to partially present in 48% of bacterial MAGs (complete presence in 39%). Forty-one MAGs
contained protein domain DUF1998 (drmB PF09369) located on the same contig as protein

335 domain drmA (PF00271), indicating community members may harbour the DISARM system
(105) (Table S9). Core genes (pglZ, brxC/pglY) of the recently discovered, Bacteriophage
Exclusion (BREX) system were detected in partial presence across 38% of bacterial MAG phyla
(106).

340 Of transport system genes, phosphate and magnesium transporting genes were the most abundant
in MAGs. Genes related to osmoprotection (opuABDC) and glycine betaine transport (opuD, bet,
proVWX) were detected in 85% of MAGs (Table S9). The presence of heavy metal cations in Blue
Holes water is complemented by the high representation of heavy metal resistance genes across
MAGs. Cobalt-zinc-cadmium (zntA, czcABCD), copper (copAB, cutC, cusAB), arsenic

345 (ARSC12, arsAH, arsB/acr3) genes were present in most bacterial MAGs but are mostly lacking
within the archaea (Figure 3). Despite this, a Bathyarchaeota (BH_98), Woesearchaeota (BH_60)
and Euryarchaeota (BH 18) MAG contain every gene related to all three heavy metals
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investigated. Genes associated with resistance to harmful UV light were ubiquitous across all
MAGs (Figure 3). MAGs contained genes encoding for either an exinuclease (uvrABC), DNA

350 helicase II (uvrD), spore photoproduct lyase lyase (splB), or deoxyribodipyrimidine photo-lyase
(phrB).

Discussion

The microbial mat systems that dominate Shark Bay have been extensively studied, however
355 primarily at the site of Nilemah in Hamelin Pool notably Nilemah’s [3, 6, 63]. Prior to the present
study the intriguing ecosystem of Blue Holes has remained unexplored. We present, for the first
time, an investigation of Blue Holes at the genetic and chemical level. Blue Holes is an ecosystem
governed by constant fluctuation. It experiences an overall salinity range of at least 78-109.8 PSU
[5], in context, the neighboring microbial mat site of Nilemah is consistently exposed to a salinity
360 range of 55-70 PSU [25], double the salinity of open ocean water (Table S3). When taken together
these results indicate the nature and location of the holes make them more vulnerable to the diel,
seasonal, and intermittent weather changes than the broader Shark Bay ecosystem (Figure S3). As
harsh conditions arise (prolonged dry periods, storms, or powerful tides), Blue Holes
microorganisms are likely either being pushed into dormancy [64] or dying off. This is followed
365 by a period of stability in which the microorganisms are resuscitated or re-seeded from the transfer

of sediment or water from surrounding holes or the larger Hamelin Pool (Figure S1).

The Blue Holes microbial mat harbors a diverse community of microorganisms (Figure 1).
Proteobacteria, the Bacteriodetes/Chlorobi group, Planctomycetes and Spirochaetes are the
370 dominant phyla across each mat layer. Although the prevalence of Proteobacteria and the
Bacteroidetes/Chlorobi group are shared features with the Nilemah mats of Shark Bay [65],
abundances of the other phyla greatly differ. The most diversity in the Blue Holes mats is in the
lower mat layers, further away from the overlying water and atmosphere (Table S4). The
increasing diversity indices along the depth gradient is driven by the greater share of bacterial
375 candidate phyla and archaea in the lower layers (Table S6). While most bacterial candidate genes
were accounted for by 49 phyla, more than double that amount was detected. Of those identified

in this study a significant portion belong to the Candidate Phyla Radiation (CPR), such as
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Candidatus Falkowbacteria. Along with CPRs, the DPANN superphylum of archaea detected in

this study contribute to the microbial dark matter (MDM) in Blue Holes mats. Three subgroups
380 belonging to the Asgard archaea were detected in this study and when taken together with findings

from the Nilemah mats [6] are beginning to illuminate the share of diversity MDM has in the Shark

Bay systems. Although higher average GC content of communities has been shown to be

potentially indicative of increased complexity and competition [66], trends between environments

are highly variable [67]. The GC values obtained within this study were higher than average
385 (>55%) (Table S4), similar to other microbial mats [36].

Delta-, Alpha-, Gammaprotoebacteria, Bacteroidetes, Firmicutes, Planctomyctes most likely
account for most of the primary production in Blue Holes mats. Individually, deltaproteobacteria
are the driving force across the investigated metabolisms, accounting for the highest number of
390 detected genes (Table S8). The remaining microorganisms are likely heterotrophic and obtain their
energy through the remaining material of organic or inorganic cascades [36]. Recent observations
of the Blue Holes environment noted the water to smell strongly sulfidic [5], and contain the sulfate
evaporite, gypsum [25]. Sulfur is the third most abundant cation in the Blue Holes water (Table
S3) and within the function of the mat, sulfur cycling, specifically assimilatory sulfate reduction
395 is the most prevalent metabolism showing little disparity between layers as it is anoxygenic (Figure
2). Blue Holes as an ecosystem seems to mimic the sulfate evaporite basins that appeared with the
Great Oxidation Event (GOE) [68]. Like early environments, autotrophs in oligotrophic
environments such as Blue Holes may be at an advantage by assimilating abundant molecules such
as atmospheric COz into cell material. Of the six carbon-based metabolisms, the strictly anaerobic
400 reductive acetyl-CoA pathway is the most prevalent within our mats (Figure 2).
Deltaproteobacteria, Firmicutes, the TACK group are the key drivers of this C fixation pathway.
Claims suggestive of the acetyl-CoA pathway being one of the oldest carbon fixing pathways [69]
and along with the rTCA being ancestral [70], support the premise of modern microbial mats as
windows to the past [36, 63]. The reductive acetyl-CoA pathway, but also the dicarboxylate-
405 hydroxybutyrate (DC-HB), hydroxypropionate-hydroxybutylate (HP-HB) cycles, and the rTCA
cycle showed inverse cascades along the depth gradient. Methanogenesis genes were in relatively
minute amounts but increased with depth, indicating methanogenesis could be occurring deeper in

the mats than examined here [8]. The mat layers most exposed to oxic conditions harboured
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significantly higher gene counts of SOX system, nitrogen fixation, 3-HP, and oxidative
410 phosphorylation (Figure 2). Along with oxygenic photosynthesis, anoxygenic photosynthesis
genes were more abundant in the oxic layers than the anoxic zone, a similarity shared with

microbial mat ponds in the Atacama Desert [36].

Biotic stressors within the Blue Holes ecosystem can come in the form of foreign genetic elements,
415 revealed to play a major role in Shark Bay microbial mats (15), potentially impacting ecosystem
function. As part of the CRISPR-Cas immune system, CRISPRs and CRISPR-associated (Cas)
proteins function to provide an RNA-guided defence mechanism against viruses, plasmids, and
transposable elements [71]. Within Blue Holes, protection against harm from foreign genetic
elements is present in 55% of bacterial MAGs, and 10% of archaecal MAGs (Figure 3). This uneven
420 distribution is inverse to current observations which have identified CRISPR-Cas systems in
approximately 50% of bacterial genomes and 90% of archaeal genomes [72]. The two novel
defence systems DISARM [73] and BREX are widespread in Blue Holes bacterial MAGs and no
presence in the archaeal MAGs. The inverse skew could be explained by the relative paucity of
archaeal genomes or suggested complementarity and heterotrophic lifestyles of phyla such as

425 Woesearchaeota [74].

Abiotic factors such as solar radiation, high elemental concentrations, fluctuating salinity, and
temperature ranges (Table S2/S3)) contribute to the stressors in the Blue Holes ecosystem. In the
overlying water, magnesium is the most abundant cation after sodium, and it follows that genes
430 encoding for a magnesium transporter (mgtE) are among the highest represented transport genes
in MAGs (Table S9). A total of 47% of Blue Holes MAGs encode for both arsenate reductase
(arsC) and an arsenate transporter (acr3), indicating potential protection against arsenic [76], albeit
they are in low levels in Blue Holes water. Through the identification of ‘arsenic-rich’ regions of
fossilised stromatolites, arsenic metabolism has been proposed to have a role in early earth
435 environments belonging to more than 3.4 million years ago [75]. This suggests genes responsible
for arsenic metabolism in Blue Holes could be ‘carried on’ from periods such as the Archaean,
when arsenic was in relatively high abundance. Cations of copper, cobalt, zinc, and cadmium share
this similarity of being minimal in Blue Holes water (Table S3) while occurrence of genes related

to movement of these cations across membranes in MAGs are prevalent. The accumulation of
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440 osmolytes as an adaptive mechanism to high osmolarity environments is evolutionarily conserved
within bacteria and archaea, and highly represented in Blue Holes MAGs (77%). The occurrence
of genes encoding for transporters of glycine betaine and proline (opuD, bet, proVWX) is greater
than the Nilemah, Shark Bay microbial mats (28% of MAGs), which are subjected to less salinity
stress. To combat UV harm the microbial mats of Blue Holes were found to be equipped with

445 genes encoding for excinucleases (uvrABC), DNA helicase II (uvrD), spore photoproduct lyase
(spIB), and deoxyribodipyrimidine photo-lyase (phrB) (Table S9). Excinuclease proteins [77] and
helicase II enzymes [78] function to cleave damaged DNA, and are encoded in 98% of MAGs,

making them the most abundant set of genes in all MAGs.

450 Conclusions. This study described for the first time at millimetre resolution the microbial
community structure and function of the mat ecosystems of Blue Holes, Shark Bay using a
metagenomic approach. While metagenomics provides an excellent platform for understanding
microbial systems, future analyses at the level of gene or protein expression (such as
metatranscriptomics and metaproteomics), or even single cell genomics will provide additional

455 scaffolding to confirm the interactions and major pathways inferred here.
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