

1 ***Cocculus hirsutus*-derived phytopharmaceutical drug has potent**

2 **anti-dengue activity**

4 Ankur Poddar¹, Rahul Shukla¹, Hemalatha Beesetti², Upasana Arora², Ravi Kant Rajpoot²,
5 Rajgokul K Shanmugam¹, Srinivas Palla², Kaushal Nayyar², Deepika Singh³, Venugopal
6 Singamaneni³, Prasoon Gupta³, Ajai Prakash Gupta³, Sumeet Gairola³, Y. S. Bedi³, Tapesh
7 Jain², Bhupendra Vashishta², Ravindra Patil², Harish Madan², Sumit Madan², Rinku Kalra²,
8 Ruchi Sood², Ram Vishwakarma³, Altaf A Lal², Navin Khanna^{*1}

10 ¹ Translational Health Group, Molecular Medicine Division, International Centre for Genetic
11 Engineering and Biotechnology, New Delhi, INDIA
12 ² Sun Pharmaceutical Industries Limited, Gurugram, Haryana, INDIA
13 ³ CSIR-Indian Institute of Integrative Medicine, Jammu, INDIA

15 **Running Title: *Cocculus hirsutus*-based drug has anti-dengue activity**

16

17

18 *Corresponding author

19 Email: navinkhanna5@gmail.com; navin@icgeb.res.in (Navin Khanna)

20 **Abstract**

21 **Background**

22 Dengue is a serious public health concern worldwide, with ~3 billion people at risk of
23 contracting dengue virus (DENV) infections. Currently, no effective vaccine or drug is
24 available for the prevention or treatment of dengue, which leaves only anti-mosquito
25 strategies to combat this disease. The present study was initiated to determine the *in-vitro*
26 and *in vivo* protective effects of a plant-derived phytopharmaceutical drug for the treatment
27 of dengue.

28

29 **Methodology/Principal Findings**

30 In our previous report, we had identified methanolic extract of the aerial parts of
31 *Cissampelos pareira* to exhibit *in vitro* and *in vivo* anti-dengue activity against all the four
32 DENV serotypes. In the current study, we have identified another Indian medicinal plant,
33 *Cocculus hirsutus*, which has a more potent anti-dengue activity than *C. pareira*. The activity
34 has been evaluated through flow-cytometry-based virus inhibition assay. Interestingly, the
35 stem of *C. hirsutus* was found to be more potent than the aerial part irrespective of the
36 extraction solvent used viz., denatured spirit, hydro-alcohol (50:50) and water. Hence, the
37 aqueous extract of stem of *C. hirsutus* (AQCH) was further advanced for investigations
38 because of greater regulatory acceptance. The AQCH exhibited dose-dependent inhibition of
39 release of DENV and its secretory antigen, NS1. Five chemical markers viz. Sinococuline,
40 20-Hydroxyecdysone, Makisterone-A, Magnoflorine and Coniferyl alcohol were identified as
41 the major chemical ingredients of the AQCH extract. These chemicals were subsequently
42 used for extract standardisation. Importantly, AQCH completely protected AG129 mice at 25
43 mg/kg/dose body weight when fed 4 times a day post-infection with a lethal dose of DENV-2
44 S221 strain. Because of its potential as an effective phytopharmaceutical drug against

45 dengue, AQCH, has been formulated into tablets for further pre-clinical and clinical
46 developments.

47

48 **Conclusions/Significance**

49 We provide evidence of the pan anti-dengue potential of *C. hirsutus*-based
50 phytopharmaceutical drug as determined through *in vitro* and *in vivo* experiments. We have
51 also characterized five chemical entities in the drug substance, which provides means for
52 standardization of drug substance and drug product. Based on these findings, a program to
53 develop a safe and effective *C. hirsutus*-derived phytopharmaceutical drug for the treatment
54 of dengue has been initiated.

55 **Author summary**

56 There is an urgent need to develop a safe and effective drug against dengue, which is a
57 rapidly expanding mosquito-borne viral disease. Half of the world's population has been
58 estimated to be at risk of contracting this disease and the situation remains grim due to lack
59 of an approved drug. We aimed to develop an ethnopharmacological drug against dengue
60 by exploring traditional Indian medicinal science, Ayurveda. This led us to identify a creeper,
61 *Cocculus hirsutus*, as a more potent anti-dengue plant than *Cissampelos pareira*, reported in
62 our earlier published study. The stem part of *C. hirsutus* was found to be more efficacious in
63 inhibiting the propagation of dengue viruses (DENVs) in cell culture than its aerial part.
64 Hence, we chose to advance aqueous extract of stem of *C. hirsutus* (AQCH) for further
65 studies. Importantly, AQCH also protected immune-compromised mice from lethal DENV
66 infection, which is suggestive of its potential clinical relevance. We have identified five
67 chemical marker compounds in AQCH to gauge the quality and consistency of extract
68 preparation and its formulation into stable tablets. Based on the findings of this study, we
69 have undertaken the development of a safe and effective *C. hirsutus*-derived
70 phytopharmaceutical drug for the treatment of dengue.

71 **Introduction**

72 Dengue is a mosquito-borne disease caused by infection of any of the four antigenically
73 distinct dengue virus (DENV) serotypes, which belong to genus *Flavivirus* of *Flaviviridae*
74 family of positive single stranded RNA viruses. Dengue infection has the potential of causing
75 a pandemic with increased outbreaks in many parts of the world [1]. Climate change,
76 population growth, increased international travel, rapid urbanization and ineffective vector
77 control strategies have led to the expansion of dengue footprint worldwide. Dengue is
78 endemic in more than 100 countries of South-East Asia, Eastern Mediterranean, Western
79 Pacific, Americas and Africa [2-4]. The co-circulation of multiple DENV serotypes leading to
80 concurrent infections have also been reported in hyper-endemic nations [5,6].

81 A recent study estimated that every year around 390 million dengue infection cases take
82 place and of these 96 million result in clinical manifestations [7]. Another study revealed that
83 around 3.9 billion people are at risk of contracting dengue disease, making it a serious global
84 health concern [8]. Asia alone is saddled with 70% of the global dengue burden and India is
85 hyperendemic for dengue with a whopping 34% contribution to global burden [7]. It has been
86 estimated that 49% of India's population has already been infected with the DENV, however,
87 the prevalence varies among different regions and age groups [9]. According to a Global
88 Burden of Disease study, dengue alone inflicts a global burden of USD 8.9 billion as per
89 2013 prices [10].

90 Dengue is transmitted among humans through the bite of infected female mosquitoes,
91 primarily *Aedes aegypti*. This results in asymptomatic dengue infection in majority of the
92 infected population, however, 20-25% of infected individuals develop symptomatic disease
93 that persists for 2-7 days post 4-7 days of incubation after the mosquito bite [4,11].
94 Symptomatic dengue infection can range from uncomplicated dengue without warning signs
95 like fever, rash, retro-orbital pain, etc., to dengue with warning signs of fluid accumulation,

96 mucosal bleeding, etc., and severe dengue characterized by severe plasma leakage, severe
97 bleeding, respiratory distress and organ deterioration [4,11,12].

98 As of today, no specific treatment is available for dengue and patients are provided only
99 supportive medical care, especially fluid management [11]. The recent launch of a dengue
100 vaccine, Dengvaxia, by Sanofi Pasteur is of limited use due to its disease enhancement
101 concerns in seronegative vaccinees [13-15].

102 Though several attempts have been made for development of drugs against dengue, the
103 efforts have not yielded a safe and effective drug so far. [16-18]. Several drugs such as
104 chloroquine [19], celgosivir [20], lovastatin [21], balapiravir [22], prednisolone [23] have been
105 evaluated for their ability to treat dengue infection and disease. All these trials failed to meet
106 the efficacy endpoints.

107 A parallel effort of investigating the plant extracts widely known for their traditional use by
108 tribals, traditional healers and local people against dengue-like febrile illnesses has been
109 undertaken [24]. Some of these plants are *Azadirachta indica* [25], *Hippophae rhamnoide*
110 [26], *Carica papaya* [27], *Cissampelos pareira* [28], etc. These herbal formulations, if
111 validated and proved for their clinical efficacy, can form basis for the development of safe
112 and effective drugs against dengue.

113 In our previous study, we identified *C. pareira* plant for its anti-dengue activity against all four
114 DENV serotypes [28]. In the current study, we have expanded the investigation by further
115 exploring herbal repertoire to identify a plant that may have more potent anti-dengue activity
116 and could become promising candidate of dengue drug development program.

117 We have identified *Cocculus hirsutus*, which belongs to the class Magnoliopsida and family
118 Menispermaceae, to have more potent anti-dengue activity than *C. pareira*. This plant is
119 traditionally known to possess many medical properties as it is used as a detoxifier,
120 aphrodisiac, antipyretic, diuretic, laxative, cardiotonic, chronic rheumatism, syphilitic
121 cachexia, skin diseases, constipation, kidney problems, etc [29]. The acute toxicity of

122 aqueous extract of aerial parts of *C. hirsutus* has been established to be >3000 mg/kg body
123 weight in Swiss mice [30].

124 Our study reports for the first time the anti-dengue potential of *C. hirsutus* based on
125 exhaustive scientific validations. We have examined *C. hirsutus* by preparing extracts of its
126 aerial and stem parts using different solvents and varied drying conditions. For all the
127 extracts prepared, anti-dengue activity was established through a flow-cytometry-based virus
128 inhibition assay. Purified aqueous extract of stem of *C. hirsutus* (AQCH) was found to
129 possess the highest pan-DENV inhibitory activity. AQCH demonstrated its ability to reduce
130 NS1 and virus secretion in the supernatant in an *in vitro* analysis in a dose-dependent
131 manner. Through chemical fingerprinting analyses, five marker compounds viz.
132 Sinococuline, Magnoflorine, 20-Hydroxyecdysone, Makisterone-A and Coniferyl alcohol,
133 were identified to be present consistently in multiple AQCH batches. The AQCH also
134 protected the AG129 mice when challenged with lethal dose of DENV-2 S221 strain, which
135 further augments its potential for development as a phytopharmaceutical drug against
136 dengue.

137

138 **Methods**

139 **Animal ethics statement**

140 This study involved experiments on AG129 mice, which were performed at the International
141 Centre for Genetic Engineering and Biotechnology, New Delhi (ICGEB/IAEC/08/2016/RGP-
142 15) in compliance with the 'Committee for the Purpose of Control and Supervision of
143 Experiments on Animals' guidelines issued by the Government of India.

144 **Cells and viruses for *in vitro* and *in vivo* DENV inhibition assays**

145 Vero cell line was purchased from the American Type Cell Culture (ATCC), Virginia, USA.

146 This monkey kidney cell line was maintained using Dulbecco's Modified Eagle medium

147 (DMEM) supplemented with 10% ΔFBS, in a 10% CO₂ humidified incubator at 37°C. WHO
148 reference DENV strains DENV-1 (WP 74), DENV-2 (S16803), DENV-3 (CH53489), and
149 DENV-4 (TVP-360) were received from Dr. Aravinda de Silva's lab, University of North
150 Carolina (UNC), USA. These viruses were cultured in C6/36 cells procured from ATCC,
151 Virginia, USA. Mouse adapted DENV-2 S221, used in animal experiments, was procured
152 from Global Vaccines Inc., North Carolina, USA and cultured in DMEM adapted C6/36 cells.
153 Dengue cross-reactive monoclonal antibodies (mAbs), 4G2 and 2H2, which recognize
154 epitopes in fusion loop and prM protein of DENVs respectively, were produced in-house from
155 their respective hybridomas procured from ATCC, Virginia, USA. 2H2 mAb was labelled in-
156 house with Alexa fluor-488 through commercial labelling kit (Thermo Fischer Scientific,
157 Eugene, USA).

158 **Chemicals and reference compounds for HPLC chromatography**

159 Analytical or HPLC grade organic solvents used in the plant extraction and HPLC analysis,
160 were procured from E. Merck Ltd., Mumbai, India. Prior to use, solvents were filtered through
161 a 0.45 µm membrane filter (Millipore, Billerica, MA, USA). The HPLC column RP18e
162 Purospher-STAR (Hibar) (250 × 4.6 mm; 5 µm) was used for chemical fingerprinting (E.
163 Merck) and Eclipse 5 µm column (9.4 × 250 mm) was used for the purification of marker
164 compounds (Agilent). The chemicals and reagents used for standardisation and quality
165 control were procured from Sigma-Aldrich, USA. Water for extraction and HPLC analysis
166 was obtained from high-purity Milli-Q Advantage A10 water purification system (Millipore,
167 Molsheim, France).

168 **Plant procurement, validation, and extract preparation**

169 The botanical raw materials (BRMs), i.e., aerial or stem parts of *C. pareira* and *C.*
170 *hirsutus*, were collected by the botanist. Identification of the collected BRMs was performed
171 at the Plant Science Division of CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM),
172 Jammu, India. Duly identified herbarium specimens of *C. pariera* (Accession No. RRLH-

173 23148) and *C. hirsutus* (Accession No. RRLH-23152) were submitted to the internationally
174 recognized Janaki Ammal Herbarium (RRLH) at CSIR-IIIM, Jammu. Further, for some
175 studies, BRM of *C. hirsutus* collected from the same area was procured from the local
176 vendor. After critical macroscopic and microscopic examinations, the botanical identity of
177 the procured BRM samples of *C. hirsutus* were confirmed at the Plant Science Division of
178 CSIR-IIIM. The duly identified samples of the procured BRMs, i.e., aerial (Accession Nos.
179 CDR-4037, and CDR-4038) and stem (Accession Nos. CDR-4061, CDR-4064, CDR-4065,
180 and CDR-4078) parts of *C. hirsutus* have been submitted to the Crude Drug Repository
181 (CDR) at CSIR-IIIM, Jammu.

182 Post-confirmation of botanical identity of BRM, extracts were prepared in the extraction
183 solvent (denatured spirit, hydro-alcohol 50:50 and water).

184 **Flow-cytometry-based virus inhibition assay**

185 Vero cells were seeded in a 96-well plate (20,000-25,000 cells/well) in 200 µl DMEM + 10%
186 ΔFBS and incubated for 24 hr in an incubator adjusted at 37°C and 10% CO₂. Next day, cells
187 were infected with 100 µl of DENV-1, -2, -3, and -4 dilutions, prepared in DMEM + 0.5%
188 ΔFBS (dilution media), to yield ~10% infection. After a 2 hr incubation of Vero cells with the
189 virus at 37°C, 10% CO₂, virus was aspirated and 200 µl of a suitable range of AQCH
190 prepared in dilution media was added to the wells in duplicates. Cells were incubated further
191 for another 46 hr in an incubator at 37°C, 10% CO₂. Wells infected with the virus but without
192 any subsequent extract treatment served as virus controls whereas wells with no infection
193 and no treatment served as cell controls. These experimental controls were utilized for
194 relative % virus infection calculations and antibody background signal adjustments,
195 respectively. After completion of the incubation period, cells were stained for the presence of
196 cytosolic DENVs with Alexa-488 labelled 2H2 mAb. For staining, media was aspirated from
197 the top of the cells and washed with 150 µl PBS. Cells were trypsinised and transferred to a
198 96 well U bottom plate. After transfer, cells were centrifuged at 1500 rpm for 5 mins and

199 supernatant was aspirated. Cells were washed with PBS again and then fixed with 50 μ l 4%
200 para-formaldehyde for 20 mins. Cells were centrifuged at 2500 rpm for 5 mins and
201 supernatant was aspirated. Cells were washed twice with 150 μ l permeabilization or perm
202 buffer and blocked with 40 μ l 1% normal mouse sera (prepared in perm buffer) for 30 mins.
203 Without removing the blocking solution, 20 μ l Alexa-488 labelled 2H2 mAb (prepared in
204 blocking solution) was added to stain the cells for DENVs and incubated for 1 hr at 37°C with
205 gentle shaking. Post-incubation, cells were centrifuged at 2500 rpm for 5 mins and
206 supernatant aspirated. Cells were washed twice with perm buffer and re-suspended in 100
207 μ l of PBS. The above processed cells were analysed through a BD FACS Verse flow
208 cytometer and 5000 cells were counted per well. Data was analyzed through FlowJo
209 software to determine the relative percentage of infected cells for each test substance
210 concentration with respect to virus only control group. The 50% inhibitory concentration
211 (IC_{50}) of the test substance was determined as the concentration that inhibited 50% of
212 dengue virus infection with respect to virus control, calculated using non-linear regression
213 analysis of GraphPad Prism software.

214 **NS1 ELISA assay**

215 Vero cells were seeded in a 48 well plate (40,000 cells/well) in 500 μ l DMEM + 10% Δ FBS
216 and incubated at 37°C, 10% CO₂. Next day, cells were infected with DENV- 1, -2, -3, and -4
217 at 0.1 MOI prepared in dilution media. After 2 hr of infection, media was aspirated and the
218 cell monolayer was overlaid with 200 μ l of different concentrations of extract (100, 50, 25,
219 and 12.5 μ g/ml) prepared in dilution media. Wells that did not receive any infection but only
220 dilution media served as negative control. Every day 10 μ l of overlaying culture supernatant
221 was withdrawn from each well for 6 days post-infection for the detection of NS1 antigen
222 using commercial Dengue NS1 Ag Microlisa kits (J. Mitra & Co. Pvt. Ltd.).

223 **Extracellular viral estimation**

224 In this assay, culture supernatant of DENV-infected cells were collected and the virus was
225 titrated in both the AQCH treated and untreated wells. Briefly, Vero cells were seeded and
226 infected with DENVs in six 96 well plates as detailed in flow-cytometry-based virus inhibition
227 assay. After 2 hr of infection, the virus infection media was aspirated and the monolayer was
228 overlaid with 200 μ l of different concentrations of AQCH (100, 50, 25, and 12.5 μ g/ml)
229 prepared in dilution media. Post 24 hr of infection, one plate was harvested each day for the
230 next 6 days and the supernatant was transferred to a 96-well U-bottom plate. Collected
231 samples were stored at 4°C till Day 6. The titre of DENVs in these collected supernatants
232 was evaluated on Vero cells in flow-cytometry-based assay [31] to yield FACS Infectious
233 Units per ml (FIUs/ml).

234 **MTT assay**

235 The *in vitro* cell cytotoxic index (CC_{50}) of AQCH was evaluated through MTT (3-(4, 5-
236 dimethylthiazolyl-2)-2, 5- diphenyltetrazolium bromide) assay. Vero cells were seeded as
237 described in flow-cytometry based virus inhibition assay. Post 24 hr incubation at 37°C and
238 10% CO_2 , overlay media was removed and 200 μ l of a suitable concentration range of
239 AQCH prepared in dilution media was added to the wells in duplicates; cells incubated with
240 dilution media alone were kept as cell control and processed in parallel. Cells were
241 incubated further for another 46 hr in an incubator at 37°C, 10% CO_2 . Post incubation, 10 μ l
242 of 5 mg/ml MTT reagent (procured from Sigma Aldrich, USA) prepared in PBS was added
243 and further incubated for 2 hr at 37°C, 10% CO_2 . Upon formation of formazan crystals, the
244 overlay was removed and 100 μ l of DMSO was added. After the dissolution of crystals in
245 DMSO, absorbance was taken at 570 nm. The % cell cytotoxicity was calculated for each
246 AQCH concentration with respect to cell control. The concentration of AQCH at which 50%
247 cell cytotoxicity was observed is reported as CC_{50} .

248 **AQCH chemical fingerprinting and characterization**

249 AQCH was characterized by chemical fingerprinting using RP18e Purospher-STAR (Hibar)
250 (250 × 4.6 mm; 5 µm) column. The mobile phase containing a buffer (0.1% formic acid in
251 water) and acetonitrile was used at a flow rate of 0.65 ml/min at a column temperature of
252 30°C and monitored at 254 nm. The compounds were isolated by column chromatography
253 using silica gel (60-120 and 230-400 mesh); fractions were monitored by TLC using pre-
254 coated silica gel plates 60 F254 (Merck) and spots were visualized by UV light or by
255 spraying with H₂SO₄-MeOH, anisaldehyde-H₂SO₄ reagents. The isolated compounds were
256 characterized by NMR and mass spectrometry using Bruker 400 MHz spectrometer and
257 Agilent 1100 LC-Q-TOF, respectively.

258 ***In vivo evaluation of the efficacy of AQCH in AG129 primary dengue lethal
259 mouse model***

260 AG129 mice deficient in IFN-α/β and IFN-γ receptors were purchased from the B&K
261 Universal, United Kingdom, and housed and bred at the International Centre for Genetic
262 Engineering and Biotechnology (ICGEB), New Delhi. Experimental mice (six per group), 6 to
263 8 weeks old, were housed in BSL-2 containment facility. They were intravenously injected
264 with a lethal dose (1.0 × 10⁵ FIU) of mouse-adapted DENV-2 strain S221. Half an hour post
265 DENV-2 S221 infection, mice were fed orally four times a day (QID) with either 8.25 or 25
266 mg/kg/dose of AQCH for a period of five days. Three groups of mice served as experimental
267 controls. First, 'Uninfected', that was neither infected with DENV-2 S221 nor was treated with
268 AQCH. Second, 'Only AQCH', which was not infected with DENV-2 S221 but treated with
269 AQCH. Third, 'V' that was infected with DENV-2 S221 but was not treated with AQCH. All
270 mice groups were monitored for their survival, body weight change and morbidity score for a
271 period of 15 days post-infection. Statistical evaluation of survival score was performed
272 through Log Rank (Mantel Cox) test and p value <0.05 was considered statistically
273 significant. Morbidity score was based on 5 point system: 0.5, mild ruffled fur; 1.0, ruffled fur;
274 1.5, compromised eyes; 2, compromised eyes with hunched back; 2.5, loose stools; 3.0,
275 limited movement; 3.5, no movement/hind leg paralysis; 4.0, euthanized if cumulative score

276 was 5. All AQCH doses used for feeding were prepared at once in water with 0.1%
277 methylcellulose (v/v) and stored at 4°C. An appropriate volume of doses was pre-incubated
278 at room temperature before feeding to animals. For a QID dosing, mice were fed with AQCH
279 at 4/4/4/12 hr cycle (7 AM, 11 AM, 3 PM and 7 PM on each day for 5 days).

280 ***In vitro* evaluation of the interaction of paracetamol with AQCH**

281 Interaction between paracetamol and AQCH was determined *in vitro* through flow-cytometry-
282 based virus inhibition assay. The 24 hr seed vero cells were infected for 2 hr with DENV-1
283 (as described in the flow-cytometry-based virus inhibition assay). Post incubation, virus
284 infection media was aspirated and cells were treated for 46 hr with AQCH concentrations
285 ranging from 0 to 25 µg/ml along with parallel treatment of 1, 10 and 100 µg/ml paracetamol
286 in different lanes of a 96-well plate. Each treatment was evaluated in duplicates and IC₅₀ was
287 calculated through non-linear regression analysis using GraphPad Prism.

288 **Stability analyses of AQCH and its tablets**

289 AQCH was formulated into tablets of different strengths (100 mg, 300 mg, and 500 mg)
290 using the approved excipients. The accelerated and long-term stability of AQCH and AQCH
291 tablets was assessed by exposing them to different conditions (30 ± 2°C/ 65 ± 5% RH, and
292 40 ± 2°C/ 75 ± 5% RH). The *in vitro* anti-dengue activity was evaluated for the stored
293 samples at different time points (1, 2, 3, and 6 months) through flow-cytometry-based virus
294 inhibition assay.

295

296 **Results**

297 **Selection of *Coccucus hirsutus* for the evaluation of anti-dengue activity**

298 Guided by the Indian Ayurveda literature and our *in vitro* and *in vivo* bioassays, we had
299 earlier identified and established that methanolic extract of aerial parts of *C. pareira*

300 possesses pan anti-dengue activity [28]. *C. pareira* belongs to family Menispermaceae,
301 which is historically known to be rich in a variety of alkaloids [32]. Menispermaceae family is
302 divided into eight tribes and three sub-tribes and consists of ~72 genera [32]. In our previous
303 study [28], a total of 19 plants were evaluated for their anti-dengue activity, two of which, *C.*
304 *pareira* and *Tinospora cordifolia*, belonged to the family Menispermaceae; both of them were
305 found to possess anti-dengue activity. However, *C. pareira* which belongs to Cocculeae tribe
306 of Menispermaceae exhibited significantly stronger anti-dengue activity than *T. cordifolia*
307 which belongs to Tinosporaceae tribe.

308 Thus, in our quest to find a more potent anti-dengue plant, we focussed our search on plants
309 belonging to Cocculeae tribe of Menispermaceae. An indole alkaloid, hirsutine, derived from
310 *Uncaria rhynchophylla*, was recently reported to inhibit later stages of DENV life cycle [33].
311 Amongst Menispermaceae, hirsutine alkaloids have largely been reported to be present in *C.*
312 *hirsutus* which like *C. pareira*, belongs to Cocculeae tribe [32, 34]. Thus, it was decided to
313 explore *C. hirsutus* for anti-dengue potential.

314

315 ***C. hirsutus* possesses pan anti-dengue activity and is more potent than *C.***
316 ***pareira***

317 With methanolic extract of aerial parts of *C. pareira* as our benchmark [28], we prepared
318 three batches each of methanolic extract of aerial parts of *C. pareira* and *C. hirsutus*. In this
319 study, we evaluated all these six methanolic extracts for anti-dengue activity in an *in vitro*
320 flow-cytometry-based virus inhibition assay instead of conventional plaque based bioassay
321 used previously [28]. The flow-cytometry-based virus inhibition and plaque based bioassays
322 are principally similar. However, evaluations made through flow-cytometry-based virus
323 inhibition assay are advantageous because it is high-throughput and is more stringent as it
324 uses a higher dose of DENV for the evaluation of anti-dengue activity. In the flow-cytometry-
325 based virus inhibition assay used in the current study, the Vero cells were infected with

326 DENVs, and post-infection cells were incubated in media containing extract at various
327 concentrations for 46 hr.

328 Post-incubation cells were fixed, permeabilized and stained with Alexa fluor labelled anti-
329 dengue mAb, 2H2, reactive to all the four DENV serotypes, which were read in a flow
330 cytometer to determine the percentage of DENV infected cells. This was used to calculate
331 the extract concentration at which 50% of the DENV infection was inhibited (IC_{50}). Upon
332 parallel evaluation of all the six extracts in flow-cytometry-based virus inhibition assay, it was
333 observed that all the three batches of methanolic aerial *C. hirsutus* extracts possessed
334 significantly stronger anti-dengue activity against all the four DENV serotypes as compared
335 to methanolic aerial *C. pareira* extracts (Fig 1).

336

337 **Fig 1: *C. hirsutus* possesses a more potent anti-dengue activity than *C. pareira*:** Three
338 batches each of the methanolic extracts of aerial parts of *C. pareira* and *C. hirsutus* were
339 evaluated for their anti-dengue activity at 3.12, 6.25, 12.5, 25, 50 and 100 μ g/ml extract
340 concentrations, and the % DENV infection was recorded in a flow-cytometry-based virus
341 inhibition assay against all the four DENV serotypes. The concentration of extract (μ g/ml)
342 that resulted in 50% inhibition of viral infection as compared to virus control was calculated
343 as IC_{50} using Graphpad Prism. (a) IC_{50} values were calculated separately for each of the
344 three extracts prepared from both the plants and their geometric mean IC_{50} values against
345 each of the four DENV serotypes were calculated as reported in the table. IC_{50} values of
346 aerial methanolic *C. pareira* extract from plaque reduction neutralisation assay reported in
347 Sood *et al.*, 2015 and taken as reference for the current study are also shown in the table,
348 (b) Graph of % DENV-2 infection observed with each of the six extracts with grey and blue
349 curves representing the three *C. pareira* and *C. hirsutus* aerial methanolic extracts,
350 respectively. Dashed horizontal line represents 50% DENV-2 infection value.

351

352 **Selection of aqueous extract of stem of *C. hirsutus* for further evaluation**

353 Upon selection of *C. hirsutus* over *C. pareira* because of its more potent anti-dengue activity,
354 we explored individual preparation of extracts of both the aerial (Fig 2a; dashed curves) and
355 stem parts (Fig 2a; solid curves) of *C. hirsutus* in various solvents viz. denatured spirit,
356 hydro-alcohol (50:50) and water. These extracts were evaluated against all the four DENV
357 serotypes by flow-cytometry-based virus inhibition assay and their IC₅₀ values were
358 compared (Fig 2b). It was observed that the stem part of *C. hirsutus* was significantly more
359 potent than aerial part irrespective of the extraction solvent used. Thus, aqueous extract of
360 stem of *C. hirsutus*, hereafter referred to as AQCH, was advanced further due to simpler
361 regulatory compliance associated with aqueous extracts.

362

363 **Fig 2: Evaluation of extracts of aerial and stem parts of *C. hirsutus* prepared using**
364 **various extraction solvents:** Extracts of aerial and stem only parts of *C. hirsutus* were
365 prepared in different solvents viz., denatured spirit, hydro-alcohol (50:50) and aqueous. The
366 anti-dengue activity of each of these extracts at various concentrations was evaluated
367 against DENV-1 (magenta curve), DENV-2 (green curve), DENV-3 (blue curve) and DENV-4
368 (black curve) by flow-cytometry-based virus inhibition assay. (a) The % DENV infection
369 relative to virus control achieved is represented graphically for denatured spirit (left panel),
370 hydro-alcohol, 50:50 (middle panel) and aqueous (right panel) aerial (dashed curves) and
371 stem (solid curves) extracts. (b) The concentration of extract (μg/ml) that resulted in 50%
372 inhibition of viral infection as compared to virus control (represented by horizontal dotted line
373 in panel 'a'), calculated as IC₅₀ using Graphpad Prism, is shown in the table for all the
374 extracts.

375

376 **Dose-dependent inhibition of secretion of DENV and its antigen by AQCH**

377 The measurement of anti-DENV activity of AQCH through flow-cytometry-based virus
378 inhibition assay quantitates the cytosolic virus 46 hr post-infection. In order to ascertain the
379 DENV inhibition and its kinetics, we evaluated the impact of AQCH on the secreted virus and
380 its secretory antigen NS1 for up to 6 days post infection (Fig 3).

381 Aliquots of culture supernatant from DENV 1-4 infected Vero cells were collected from day 1
382 to 6 post-infection and were analysed for titration of secreted DENV and NS1 by flow-
383 cytometry based virus inhibition assay and commercial ELISA kit, respectively. It was
384 observed that AQCH at 100 and 50 μ g/ml was highly effective in completely inhibiting the
385 secretion of DENV up to 6 days of the experiment and this inhibition was observed to be
386 dose-dependent (Fig 3a; data shown only with DENV-1). Analysis of NS1 levels in the
387 collected supernatants for all the four DENVs on day 6 corroborated this result as 100 and
388 50 μ g/ml of AQCH exhibited 100% inhibition of release of NS1 and this inhibition decreased
389 with the decrease in concentration of AQCH (Fig 3b).

390

391 **Fig 3: AQCH inhibits secretion of DENV and its antigen, NS1, in a dose-dependent**
392 **manner:** DENV 1-4 infected Vero cells were incubated with 2 fold dilutions of AQCH ranging
393 from 100 to 12.5 μ g/ml. Aliquots of the supernatant were collected on each day till day 6
394 post-infection and analyzed for (a) amount of secreted DENV-1 from days 1-6 through FACS
395 based virus titration assay yielding FIUs/ml, and (b) % inhibition of secretion of viral antigen,
396 NS1, evaluated through commercial ELISA kit on day 6 for all the four DENV serotypes.

397

398 **Chemical fingerprinting of AQCH and identification of chemical markers**

399 Another batch of AQCH (ID: KL/DBE/002/18) was prepared and confirmed for its pan anti-
400 dengue activity by flow-cytometry-based virus inhibition assay (Fig 4a). Additionally, the
401 extent of *in vitro* cytotoxicity caused to Vero cells by AQCH was also evaluated by MTT
402 assay and the CC₅₀ was determined to be ~90 μ g/ml (Fig 4a). HPLC chromatography was

403 performed on this AQCH batch for its chemical profiling; the chromatogram obtained is
404 shown in Fig 4b. This was followed by isolation of five marker compounds using
405 chromatographic methods, which were characterised using advanced 1D and 2D NMR
406 spectroscopic and mass analysis. Marker compounds were identified to be Sinococuline (1),
407 Magnoflorine (2), 20-Hydroxyecdysone (3), Makisterone-A (4), and Coniferyl alcohol (5) (Fig
408 4c).

409

410 **Fig 4: Chemical fingerprinting of AQCH:** (a) AQCH batch KL/DBE/002/18 was prepared
411 and its anti-dengue activity against DENV-1 (magenta curve), DENV-2 (green curve), DENV-
412 3 (blue curve) and DENV-4 (black curve) was confirmed by flow-cytometry-based virus
413 inhibition assay as represented by graph of % DENV infection on left y-axis and extract
414 concentration. The extent of cell cytotoxicity caused by AQCH (represented by red curve)
415 was also measured by MTT assay that is reflected on the right y-axis of the graph as % cell
416 cytotoxicity for the given extract concentrations on the x-axis. The CC_{50} and IC_{50} values
417 corresponding to the concentration of AQCH that is toxic for 50% of the cells and at which
418 50% of DENV infection is inhibited as compared to virus control, respectively has been
419 represented by a dotted horizontal line; a table of IC_{50} and CC_{50} values has been provided as
420 an inset. (b) HPLC chemical fingerprinting profile of AQCH with the peaks corresponding to
421 the five identified marker compounds annotated. (c) Chemical structure of the five marker
422 compounds (1-5).

423

424 **Evaluation of robustness and consistency in the preparation of AQCH**

425 Various batches of AQCH were prepared utilising one of the three drying methods- rotary
426 vapour drying, vacuum tray drying and spray drying. Irrespective of the method used for
427 drying, the *in vitro* anti-dengue activity of all the extract batches prepared was comparable
428 (Fig 5a). The HPLC chromatograms of three batches corresponding to the three drying

429 methods were observed to be overlapping (Fig 5b), with high degree of consistency in
430 retention times of the five marker compounds (Fig 5c). This indicates that the AQCH extract
431 preparation method is consistent and robust, and the choice of drying method does not have
432 any implication on its chemical profiling and biological activity. Thus, spray drying was
433 considered as the method of choice, as it resulted in the formation of free-flowing finer
434 extract in a shorter span of time, which is industrially more compatible.

435

436 **Fig 5: AQCH preparation method is consistent and robust:** Various batches of AQCH
437 were prepared and dried through either of the three different methods viz., rotary vapour
438 drying (RD), vacuum tray drying (VTD) or spray drying (SD). The effect of drying method
439 was evaluated through the assessment of (a) anti-dengue activity by flow-cytometry-based
440 virus inhibition assay yielding IC_{50} values (concentration of the extract required to reduce the
441 DENV infection by 50% as compared to virus control), and (b,c) chemical fingerprinting
442 profile; an overlay HPLC chromatograms of the three batches corresponding to the three
443 drying conditions and a table of retention time of five marker compounds are shown in
444 panels 'b' and 'c', respectively.

445

446 **AQCH provides protection against lethal infection of DENV-2 in AG129 mouse
447 model**

448 AG129 are immune-compromised mice deficient in interferon α/β and γ receptor signalling,
449 which allows propagation of mouse adapted DENV-2 S221 strain to result in development of
450 disease. Hence, this mouse model was used to evaluate the efficacy of AQCH *in vivo*. The
451 design of the assay is depicted in Fig 6a, where the AG129 mice were infected through intra-
452 venous route with a lethal dose of DENV-2 S221 (1.0×10^5 FIUs). This was followed by oral
453 feeding for 5 days with either 25 mg/kg/dose (Group 'V + AQCH 25 mg/kg/dose QID', blue
454 curve) or 8.25 mg/kg/dose (Group 'V + AQCH 8.25 mg/kg/dose QID', pink curve) AQCH QID

455 and were monitored for survival, morbidity score and weight change for up to 15 days post-
456 infection. Non-infected and non-AQCH fed (Group 'Uninfected', black curve) and non-
457 infected but AQCH fed (Group 'Only AQCH', orange curve) AG129 mice groups served as
458 negative controls, while virus infected but not fed with AQCH AG129 mice group (Group 'V',
459 grey curve) served as positive control. AG129 mice of Group 'V' did not survive beyond six
460 days, and exhibited highest morbidity scores and % body weight change (Fig 6b-d, grey
461 curve). However, infected AG129 mice that were fed with 25 and 8.25 mg/kg/dose QID
462 AQCH were significantly protected ($p<0.05$), exhibiting 100% and 50% survival, respectively
463 (Fig 6b, blue and pink curves, respectively); their morbidity scores and % body weight
464 change too improved gradually after peaking around day 4-6 (Fig 6c,d). The negative control
465 groups, 'Uninfected' and 'Only AQCH', did not exhibit any mortality (Fig 6b, black and orange
466 curves, respectively) and there was neither significant morbidity nor reduction in body weight
467 observed (Fig 6c,d; black and orange curves, respectively).

468

469 **Fig 6: AQCH protects AG129 mice from DENV-2 S221 lethal infection:** (a) Schematic
470 representation of the design of experiment using five groups of AG129 mice ($n= 6$).
471 'Uninfected' group represented by black curve, was neither infected with DENV-2 S221 nor
472 dosed with AQCH. 'Only AQCH' group, represented by orange curve, was not infected with
473 DENV-2 S221 but received AQCH dose (25 mg/kg/dose QID). 'V' group, represented by
474 grey curve, was infected with DENV-2 S221 but was not dosed with AQCH. Mice in the
475 remaining two groups were infected with DENV-2 S221 and were dosed either with 25
476 mg/kg/dose, QID (blue curve) or 8.25 mg/kg/dose, QID (pink curve). DENV-2 S221 infection
477 was given i.v. at a lethal dose of 1.0×10^5 FIUs, while AQCH was dosed orally post-
478 infection. All the groups were monitored for (b) survival, (c) morbidity score, and (d) body
479 weight change over the next 15 days post-infection. Survival data (panel 'b') were analysed
480 by Log-Rank (Mantel-Cox) test for statistical evaluation of level of significance in difference
481 in survival rates. Survival of mice in 'V+AQCH 25 mg/kg/dose QID' and 'V+AQCH 8.25

482 mg/kg/dose QID' groups was not significantly different from each other ($p= 0.14$), but differed
483 significantly from Group 'V' survival ($p= 0.006$ and $p= 0.016$, respectively). The p value <0.05
484 was considered significant. The Morbidity score in panel 'c' was based on 5 point system:
485 0.5, mild ruffled fur; 1.0, ruffled fur; 1.5, compromised eyes; 2, compromised eyes with
486 hunched back; 2.5, loose stools; 3.0, limited movement; 3.5, no movement/hind leg
487 paralysis; 4.0, euthanized if cumulative score was 5. Body weight in panel 'd' was monitored
488 twice a day in the morning and evening, and the mean taken for plotting the graph.

489

490 **Feasibility of clinical evaluation of AQCH**

491 With the exhibition of *in vitro* and *in vivo* anti-dengue potency by AQCH, it became evident
492 that it has a strong potential to be developed as a drug, however, its clinical suitability was
493 yet to be evaluated. Our first study on that front was to evaluate its interaction with
494 paracetamol which is a standard-of-care drug for treating dengue fever. In this study, a
495 range of concentration of AQCH was separately evaluated against DENV-1 through flow-
496 cytometry-based virus inhibition assay in absence (0 μ g/ml) and presence of 1, 10 and 100
497 μ g/ml paracetamol. Importantly, the anti-dengue activity of AQCH was found to be
498 unaffected by paracetamol in this experiment (Fig 7).

499

500 **Fig 7: Paracetamol does not inhibit the anti-dengue activity of AQCH.** DENV-1 infected
501 Vero cells were treated with various concentrations of AQCH (0-25 μ g/ml) in absence (black
502 curve) and presence of 1 (orange curve), 10 (magenta curve) and 100 (blue curve) μ g/ml of
503 paracetamol separately. The % DENV-1 infection achieved under these conditions was
504 evaluated in a flow-cytometry-based virus inhibition assay, which is depicted in the graph on
505 the left panel. Concentration of AQCH that led to 50% reduction in DENV-1 infection as
506 compared to virus control was calculated separately for each condition as its corresponding
507 IC_{50} and is depicted in the table on the right panel.

508

509 The next aspect of AQCH evaluation was its tablet formulation for clinical utility. Thus, 100,
510 300 and 500 mg strengths of AQCH tablets were formulated and subjected to accelerated
511 and long term stability studies along with the AQCH extract batch from which the tablets
512 were formulated. Samples from stability study were analysed for *in vitro* anti-DENV-2 activity
513 by flow-cytometry-based virus inhibition assay to evaluate any deterioration or loss in
514 bioactivity upon storage under the conditions tested. It was found that there was no
515 significant change in the anti-DENV-2 activity (Table 1) of AQCH and AQCH tablets of all the
516 three strengths (100, 300 and 500 mg) under the conditions tested up to 6 months. The long-
517 term stability study is on-going and samples will be evaluated up to 3 years of storage. This
518 data was encouraging as it ensured the feasibility of formulating AQCH into a stable tablet
519 dosage form, which is advantageous for its clinical evaluation.

520

521 **Table 1: Anti-DENV-2 activity of AQCH and AQCH tablets under the stated conditions**
522 **of storage**

AQCH Extract/ Tablet (Batch ID)	Storage condition	DENV-2 IC ₅₀ (µg/ml) ^a			
		1 Month	2 Month	3 Month	6 Month
Extract (FCH1901002)	40±2°C, 75±5% RH	4.2	4.0	5.4	7.2
	30±2°C, 65±5% RH	nd*	nd*	6.1	5.7
Tablet 100 mg {RYP(6665)079A}	40±2°C, 75±5% RH	4.7	4.6	7.3	5.4
	30±2°C, 65±5% RH	nd*	nd*	7.8	4.7
Tablet 300 mg {RYP(6665)079B}	40±2°C, 75±5% RH	5.2	6.2	6.2	5.3
	30±2°C, 65±5% RH	nd*	nd*	6.1	4.0
Tablet 500 mg {RYP(6665)079C}	40±2°C, 75±5% RH	4.6	2.7	5.1	5.1
	30±2°C, 65±5% RH	nd*	nd*	6.8	4.7

523 ^aAnti-DENV-2 activity is measured as IC₅₀, which corresponds to the concentration at which
524 50% of the virus is inhibited with respect to virus control

525 *nd: not determined; these specific storage conditions were for long-term stability studies
526 and were therefore not sampled on 1st and 2nd month of storage

527

528 **Discussion**

529 Plants have been traditionally and historically used worldwide for their therapeutic potential
530 since time immemorial. Their therapeutic usefulness has been documented all around the
531 globe in various traditional literatures. Hence, these classical troves which detail medicinal
532 utility of plants are an attractive repertoire of knowledge that could be explored through
533 contemporary methods for the development of safe and effective therapies for various
534 maladies. This has ushered the development of many plant-derived molecules which today
535 are in clinical use globally, morphine being the first FDA-approved plant derived molecule
536 [35]. We referred to one of the world's oldest holistic healing system, the Indian traditional
537 medicine of Ayurveda, in our quest to develop an effective therapy against dengue.

538 Dengue is one of the world's rapidly spreading arboviral diseases with the incidence of
539 symptomatic dengue doubling every decade [36]. The highest burden of this disease lies in
540 Southeast Asia with India being one of the epicentres [7, 36]. According to a study, actual
541 dengue cases in India are ~282 times higher than that reported annually, having an
542 economic impact of USD ~1.11 billion [37]. Thus, there is a dire need of an effective dengue
543 vaccine and/or drug to fight against dengue. Dengvaxia is the world's first approved dengue
544 vaccine, however, its utility is limited to only seropositive adults in dengue-endemic nations
545 due to concerns of vaccine-induced enhancement of virus infection [38]. In parallel, rigorous
546 efforts are also being made towards dengue therapeutics with the evaluation of novel and
547 repurposed drugs against DENV [39,40]. However, none of the drugs have yet succeeded in
548 proof-of-concept trials and thus, a dengue antiviral still remains an unmet need.

549 Guided by the Indian Ayurveda literature, our group had earlier evaluated 19 medicinal
550 plants for their anti-dengue activity that led to the identification of *C. pareira* of
551 Menispermaceae family as the most potent plant [28]. Our continued exploration of more
552 plants belonging to Menispermaceae family through scientific and Ayurvedic literature [32-

553 34] led us to select *C. hirsutus* for the evaluation of its anti-dengue activity. Thus, methanolic
554 extracts of aerial parts of *C. hirsutus* and *C. pareira* were compared head-on in an *in vitro*
555 flow-cytometry-based virus inhibition assay. It was observed that *C. hirsutus* is a significantly
556 more potent anti-dengue herb than *C. pareira* (Fig 1).

557 For greater regulatory acceptance, we wanted to evaluate if methanol could be replaced with
558 milder solvents like denatured spirit, hydro-alcohol (50:50) or water for extract preparation.
559 Thus, each of these solvents were explored for separate extract preparations of stem and
560 aerial parts of *C. hirsutus*, and evaluated for their anti-dengue activity (Fig 2). This
561 experiment yielded two important outcomes. First, irrespective of the solvent used, stem part
562 of *C. hirsutus* was significantly more potent in its anti-dengue activity than the aerial part.
563 Second, stem extract prepared in water was comparable in its anti-dengue activity to other
564 tested solvents. Thus, aqueous extract of stem of *C. hirsutus* (AQCH) was selected as the
565 extract of choice for further evaluations owing to greater regulatory acceptance of water as a
566 solvent.

567 The effect of AQCH on the secretion of DENV and its secretory antigen NS1 was monitored
568 over a period of 6 days through *in vitro* evaluations (Fig 3). AQCH was found to inhibit the
569 secretion of both DENV and NS1 in a dose-dependent manner, with complete inhibition
570 being observed at 100 and 50 μ g/ml extract. This is relevant because DENV load and NS1
571 have been implicated in dengue disease pathogenesis in humans [41,42].

572 The cytotoxicity of AQCH was determined *in vitro* on Vero cells through MTT assay and the
573 CC₅₀ was observed to be more than 10-fold higher as compared to its IC₅₀ (Fig 4a),
574 indicating a good therapeutic window for AQCH. We further evaluated the industrial viability
575 of AQCH production. For this an AQCH batch was profiled through HPLC chromatography
576 and five marker compounds- Sinococuline, Magnoflorine, 20-Hydroxyecdysone,
577 Makisterone-A and Coniferyl alcohol were identified (Fig 4b,c). The chemical profiling data of
578 a bioactive batches of AQCH were used to monitor the quality of extract prepared during
579 optimization of extraction method. Thus, various batches of AQCH were prepared using

580 three different drying methods viz. rotary vapour, vacuum tray or spray drying. All the AQCH
581 batches were found to exhibit similar anti-dengue activity (Fig 5a) irrespective of the drying
582 process, indicating the robustness and consistency of the method of extraction. This was
583 corroborated by their HPLC chemical fingerprinting that yielded similar chromatograms (Fig
584 5b,c). Spray-dried AQCH extracts were utilized for further evaluations due to greater
585 industrial compatibility.

586 AQCH was evaluated for its protective efficacy *in vivo* in the AG129 mouse model (Fig 6),
587 which is an established model for the evaluation of antivirals [43,44]. AG129 mice being
588 deficient in IFN α/β and γ receptors allow propagation of DENV and development of dengue
589 disease-like symptoms [45]. AQCH, when fed at 25 mg/kg/dose QID, was found to provide
590 100% protection to AG129 mice that were lethally infected with DENV-2; 8.25 mg/kg/dose
591 QID AQCH resulted in 50% protection (Fig 6). Demonstration of potent anti-dengue activity
592 by AQCH in *in vitro* and *in vivo* analyses lays the ground for its clinical development.

593 Paracetamol, a standard care drug in treating dengue, was found to have no effect on the
594 anti-dengue activity of AQCH (Fig 7). Also, spray-dried AQCH was formulated into tablets of
595 various strengths, which were found to be stable upon storage (Table 1). This supports the
596 case for the clinical use of AQCH tablets along with paracetamol in treating dengue.

597 In conclusion, this is the first study reporting an aqueous extract of the stem of *C. hirsutus* to
598 possess significant pan anti-dengue activity; the extraction process is robust and consistent,
599 making this plant industrially viable for further clinical development. At this time when there is
600 no approved anti-dengue drug available, this phytopharmaceutical formulation can be a
601 breakthrough in providing a safe and effective drug against dengue, which is urgently
602 needed globally.

603

604

605

606 **Acknowledgments**

607 Authors are thankful to Dr. Mohan Prasad, Dr. Azadar Khan, Mr. Narendra Lakkad, Dr. Romi
608 Singh, Dr. Atul Raut, Mr. Gaurav Sahal, Mr. Rakesh Sinha, Mr. Kohinoor Das from Sun
609 Pharmaceutical Industries Ltd., Dr. Dinakar Salunke from International Centre for Genetic
610 Engineering and Biotechnology, New Delhi, and Dr. Mohammad Aslam from Department of
611 Biotechnology, Government of India for their support during the entire study period.

612

613 **Author Contributions**

614 **Conceptualisation:** NK and AAL

615 **Project Administration:** RK

616 **Data Generation: BRM collection-** SP, KN, SG; **Extract preparation-** SP, KN;
617 **Virus inhibition assays-** AP, HB, RKS; **NS1 assay-** AP; **MTT Assay-** RKR; **Animal**
618 **experiments-** RS; **Tablet formulation and stability studies-** TJ, BV, RP, HM, SM;
619 **Chemical fingerprinting and marker compound isolation-** DA, VS, PG, APG, DS,
620 YSB, RV

621 **Data Analysis:** AP, RS, HB, UA, RKR, NK, RSo, AAL, DA, VS, PG, APG, DS, YSB,
622 RV, SP, KN, RP, HM, SM, TJ, BV, RK

623 **Data Curation:** UA

624 **Manuscript Writing:** RKR, UA

625 **Manuscript Review:** NK, AAL, UA, RKR

626

627

628 References

- 629 1) WHO weblink on dengue control. What is Dengue? Available at
630 <https://www.who.int/denguecontrol/disease/en/>. Accessed on 13th June 2020.
- 631 2) Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st)
632 Century. *Trop Med Health*. 2011;39(4 Suppl):3-11.
- 633 3) Struchiner CJ, Rocklov J, Wilder-Smith A, Massad E. Increasing Dengue Incidence in
634 Singapore over the Past 40 Years: Population Growth, Climate and Mobility. *PLoS One*.
635 2015;10(8):e0136286.
- 636 4) Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. *Lancet*. 2019;393(10169):350-63.
- 637 5) Andrade EH, Figueiredo LB, Vilela AP, Rosa JC, Oliveira JG, Zibaoui HM, et al. Spatial-
638 Temporal Co-Circulation of Dengue Virus 1, 2, 3, and 4 Associated with Coinfection
639 Cases in a Hyperendemic Area of Brazil: A 4-Week Survey. *Am J Trop Med Hyg*.
640 2016;94(5):1080-4.
- 641 6) Shrivastava S, Tiraki D, Diwan A, Lalwani SK, Modak M, Mishra AC, et al. Co-circulation
642 of all the four dengue virus serotypes and detection of a novel clade of DENV-4
643 (genotype I) virus in Pune, India during 2016 season. *PLoS One*. 2018;13(2):e0192672.
- 644 7) Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global
645 distribution and burden of dengue. *Nature*. 2013;496(7446):504-7.
- 646 8) Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining
647 the global spatial limits of dengue virus transmission by evidence-based consensus.
648 *PLoS Negl Trop Dis*. 2012;6(8):e1760.
- 649 9) Murhekar MV, Kamaraj P, Kumar MS, Khan SA, Allam RR, Barde P, et al. Burden of
650 dengue infection in India, 2017: a cross-sectional population based serosurvey. *Lancet*
651 *Glob Health*. 2019;7(8):e1065-e73.
- 652 10) Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of
653 dengue: a systematic analysis. *Lancet Infect Dis*. 2016;16(8):935-41.

- 654 11) Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition.
655 WHO Guidelines Approved by the Guidelines Review Committee. Geneva2009.
656 12) Muller DA, Depelsenaire AC, Young PR. Clinical and Laboratory Diagnosis of Dengue
657 Virus Infection. *J Infect Dis.* 2017;215(suppl_2):S89-S95.
658 13) Aguiar M, Stollenwerk N, Halstead SB. The risks behind Dengvaxia recommendation.
659 *Lancet Infect Dis.* 2016;16(8):882-3.
660 14) World Health O. Dengue vaccine: WHO position paper, July 2016 - recommendations.
661 *Vaccine.* 2017;35(9):1200-1.
662 15) Thomas SJ, Yoon IK. A review of Dengvaxia(R): development to deployment. *Hum*
663 *Vaccin Immunother.* 2019;15(10):2295-314.
664 16) Beesetti H, Khanna N, Swaminathan S. Investigational drugs in early development for
665 treating dengue infection. *Expert Opin Investig Drugs.* 2016;25(9):1059-69.
666 17) Lim SP. Dengue drug discovery: Progress, challenges and outlook. *Antiviral Res.*
667 2019;163:156-78.
668 18) Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on
669 anti-dengue drug discovery. *Eur J Med Chem.* 2019;176:431-55.
670 19) Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, et al. A randomized controlled trial
671 of chloroquine for the treatment of dengue in Vietnamese adults. *PLoS Negl Trop Dis.*
672 2010;4(8):e785.
673 20) Low JG, Sung C, Wijaya L, Wei Y, Rathore APS, Watanabe S, et al. Efficacy and safety
674 of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-
675 blind, placebo-controlled, proof-of-concept trial. *Lancet Infect Dis.* 2014;14(8):706-15.
676 21) Whitehorn J, Nguyen CVV, Khanh LP, Kien DTH, Quyen NTH, Tran NTT, et al.
677 Lovastatin for the Treatment of Adult Patients With Dengue: A Randomized, Double-
678 Blind, Placebo-Controlled Trial. *Clin Infect Dis.* 2016;62(4):468-76.
679 22) Nguyen NM, Tran CN, Phung LK, Duong KT, Huynh Hie A, Farrar J, et al. A randomized,
680 double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult
681 dengue patients. *J Infect Dis.* 2013;207(9):1442-50.

- 682 23) Tam DT, Ngoc TV, Tien NT, Kieu NT, Thuy TT, Thanh LT, et al. Effects of short-course
683 oral corticosteroid therapy in early dengue infection in Vietnamese patients: a
684 randomized, placebo-controlled trial. *Clin Infect Dis.* 2012;55(9):1216-24.
- 685 24) Singh PK, Rawat P. Evolving herbal formulations in management of dengue fever. *J*
686 *Ayurveda Integr Med.* 2017;8(3):207-10.
- 687 25) Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (*Azadirachta*
688 *indica* Juss) leaves on dengue virus type-2 replication. *J Ethnopharmacol.*
689 2002;79(2):273-8.
- 690 26) Jain M, Ganju L, Katiyal A, Padwad Y, Mishra KP, Chanda S, et al. Effect of *Hippophae*
691 *rhamnoides* leaf extract against Dengue virus infection in human blood-derived
692 macrophages. *Phytomedicine.* 2008;15(10):793-9.
- 693 27) Kasture PN, Nagabhushan KH, Kumar A. A Multi-centric, Double-blind, Placebo-
694 controlled, Randomized, Prospective Study to Evaluate the Efficacy and Safety of *Carica*
695 *papaya* Leaf Extract, as Empirical Therapy for Thrombocytopenia associated with
696 Dengue Fever. *J Assoc Physicians India.* 2016;64(6):15-20.
- 697 28) Sood R, Raut R, Tyagi P, Pareek PK, Barman TK, Singhal S, et al. *Cissampelos pareira*
698 Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes.
699 *PLoS Negl Trop Dis.* 2015;9(12):e0004255.
- 700 29) Marya BH, Bothara SB. Ethnopharmacological properties of *Cocculus hirsutus* (L.) Diels-
701 A review. *International Journal of Pharmaceutical Sciences Review and Research.*
702 Volume 7, Issue 1, March – April 2011; Article-022
- 703 30) Ganapaty S, Dash GK, Subburaju T, Suresh P. Diuretic, laxative and toxicity studies of
704 *Cocculus hirsutus* aerial parts. *Fitoterapia.* 2002;73(1):28-31.
- 705 31) Lambeth CR, White LJ, Johnston RE, de Silva AM. Flow cytometry-based assay for
706 titrating dengue virus. *J Clin Microbiol.* 2005;43(7):3267-72.
- 707 32) Barbosa-Filho JM, Da-Cunha EVL, Gray AI. Alkaloids of the Menispermaceae. In: The
708 Alkaloids: Chemistry and Biology. Academic Press; 2000; 54: 1-190.

- 709 33) Hishiki T, Kato F, Tajima S, Toume K, Umezaki M, Takasaki T, Miura T. Hirsutine, an
710 indole alkaloid of Uncaria rhynchophylla, inhibits late step in dengue virus life cycle.
711 Front Microbiol. 2017; 8:1674.doi: 10.3389/fmicb.2017.01674
- 712 34) Rasheed T, Khan MNI, Zhadi SSA. Hirsutine: A new alkaloid from *Cocculus hirsutus*. J
713 Nat Prod. 1991; 54(2): 582-584.
- 714 35) Li FS, Weng JK. Demystifying traditional herbal medicine with modern approach. Nat
715 Plants. 2017;3:17109.
- 716 36) Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The
717 global burden of dengue: an analysis from the Global Burden of Disease Study 2013.
718 Lancet Infect Dis. 2016;16(6):712-23.
- 719 37) Shepard DS, Halasa YA, Tyagi BK, Adhish SV, Nandan D, Karthiga KS, et al. Economic
720 and disease burden of dengue illness in India. Am J Trop Med Hyg. 2014;91(6):1235-42.
- 721 38) Halstead SB. Dengvaxia sensitizes seronegatives to vaccine enhanced disease
722 regardless of age. Vaccine. 2017;35(47):6355-8.
- 723 39) Botta L, Rivara M, Zuliani V, Radi M. Drug repurposing approaches to fight Dengue virus
724 infection and related diseases. Front Biosci (Landmark Ed). 2018;23:997-1019.
- 725 40) Low JG, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and
726 Development. J Infect Dis. 2017;215(suppl_2):S96-S102.
- 727 41) Chen HR, Lai YC, Yeh TM. Dengue virus non-structural protein 1: a pathogenic
728 factor, therapeutic target, and vaccine candidate. J Biomed Sci. 2018;25(1):58.
- 729 42) Tricou V, Minh NN, Farrar J, Tran HT, Simmons CP. Kinetics of viremia and NS1
730 antigenemia are shaped by immune status and virus serotype in adults with
731 dengue. PLoS Negl Trop Dis. 2011;5(9):e1309.
- 732 43) Chan KW, Watanabe S, Kavishna R, Alonso S, Vasudevan SG. Animal models for
733 studying dengue pathogenesis and therapy. Antiviral Res. 2015;123:5-14.
- 734 44) Watanabe S, Vasudevan SG. Evaluation of dengue antiviral candidates *in vivo* in mouse
735 model. Methods Mol Biol. 2014;1138:391-400.

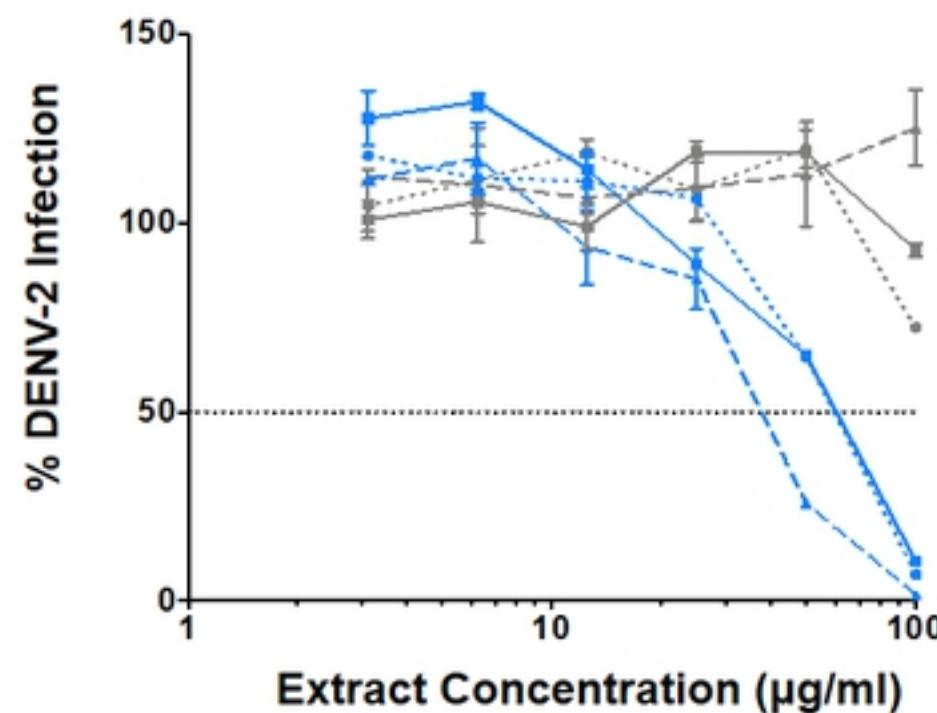
736 45) Julander JG, Perry ST, Shresta S. Important advances in the field of anti-dengue virus
737 research. *Antivir Chem Chemother*. 2011;21(3):105-16.

a.

Plant	Part	Extraction Solvent	Geometric mean IC_{50} (μ g/ml)			
			DENV-1	DENV-2	DENV-3	DENV-4
^a <i>Cissampelos pareira</i>	Aerial	Methanol	100	125	78	100
^b <i>Cissampelos pareira</i>	Aerial	Methanol	>100	>100	>100	>100
^b <i>Cocculus hirsutus</i>	Aerial	Methanol	36.23	69.73	42.02	43.11

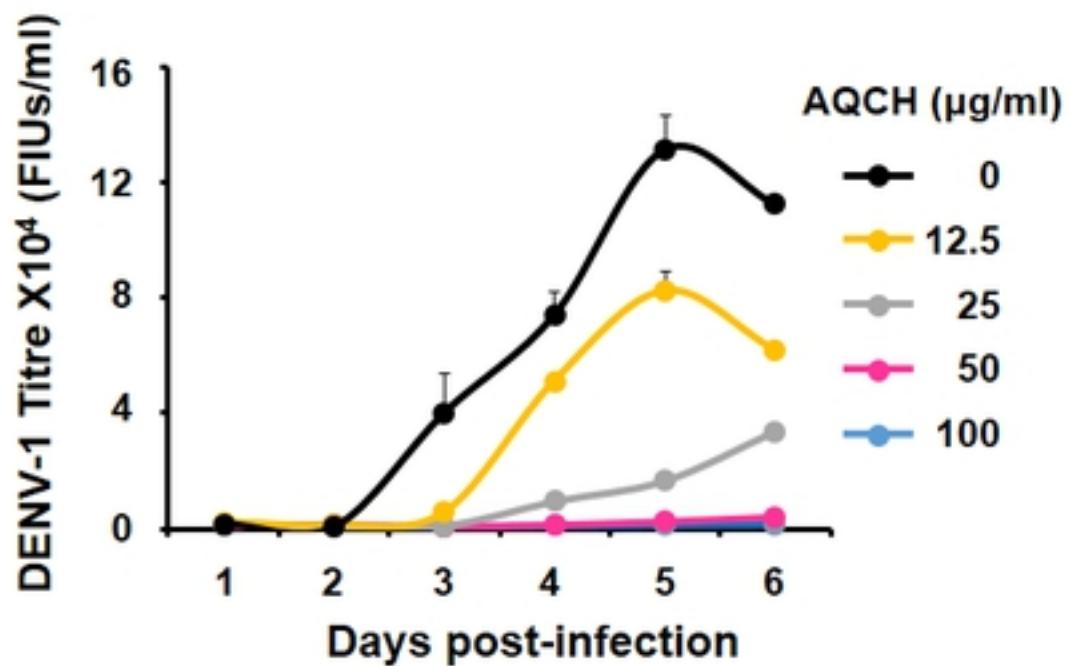
^aData from study reported in Sood *et al.*, 2015

^bData from current study



b.

Figure 1



b.

DENV	IC ₅₀ of extracts ($\mu\text{g/ml}$)					
	Denatured Spirit		Hydro-alcohol (50:50)		Aqueous	
	Aerial	Stem	Aerial	Stem	Aerial	Stem
DENV-1	30.82	6.96	>25	2.07	>25	2.65
DENV-2	40.03	9.2	>25	3.1	>25	4.9
DENV-3	26.18	6.1	>25	1.28	>25	2.28
DENV-4	36.05	7.4	>25	2	>25	2.4

Figure 2

a.

b.

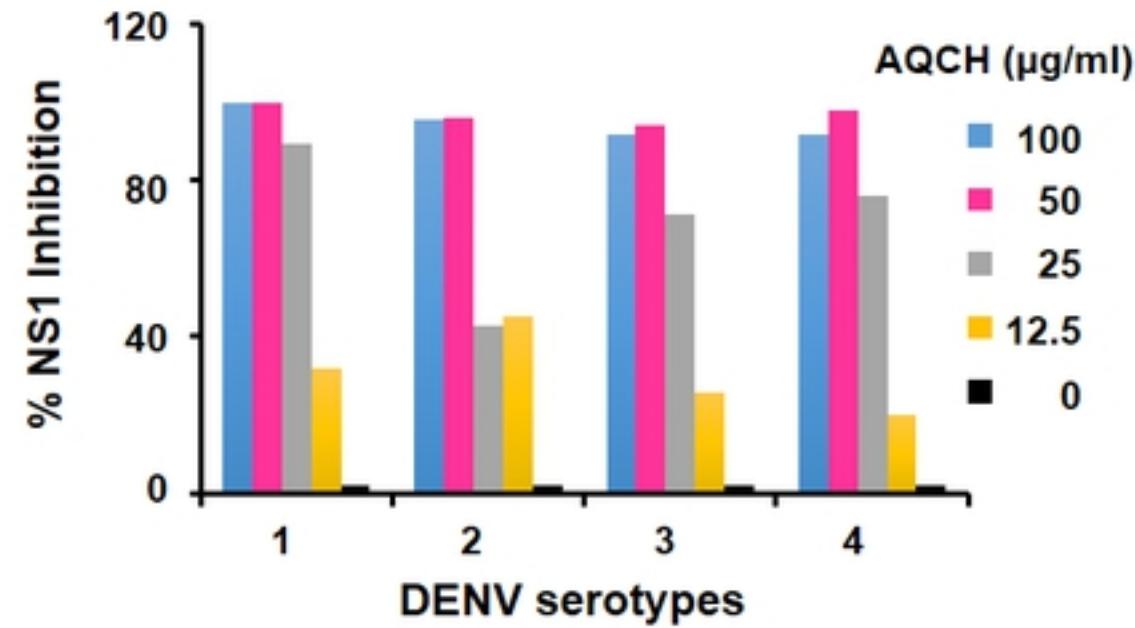


Figure 3

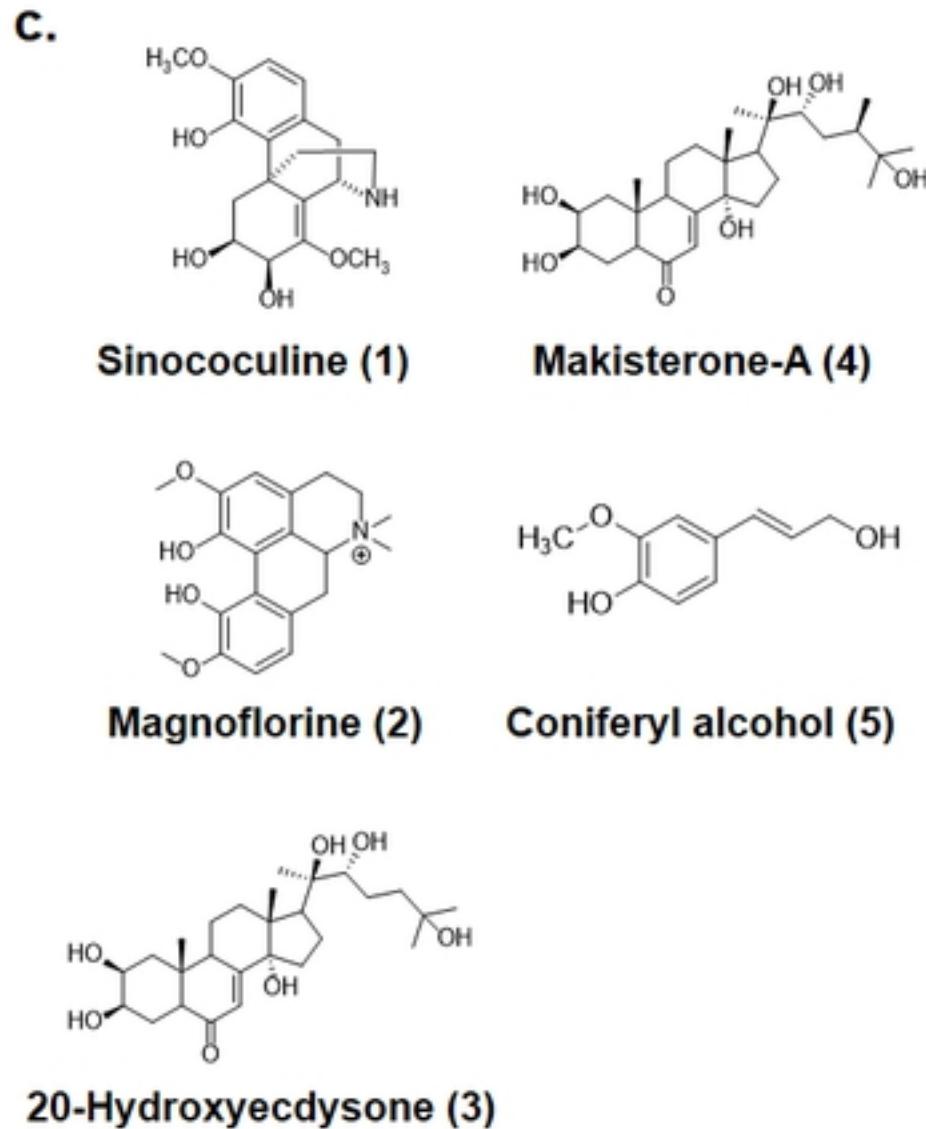
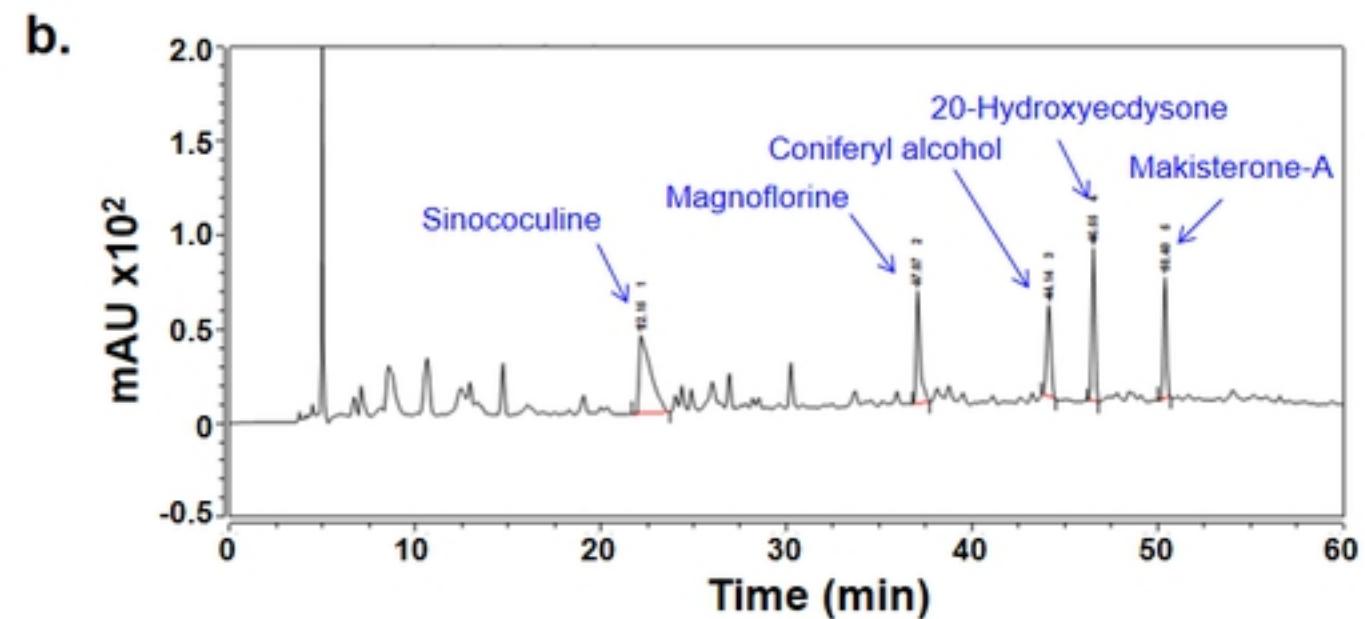
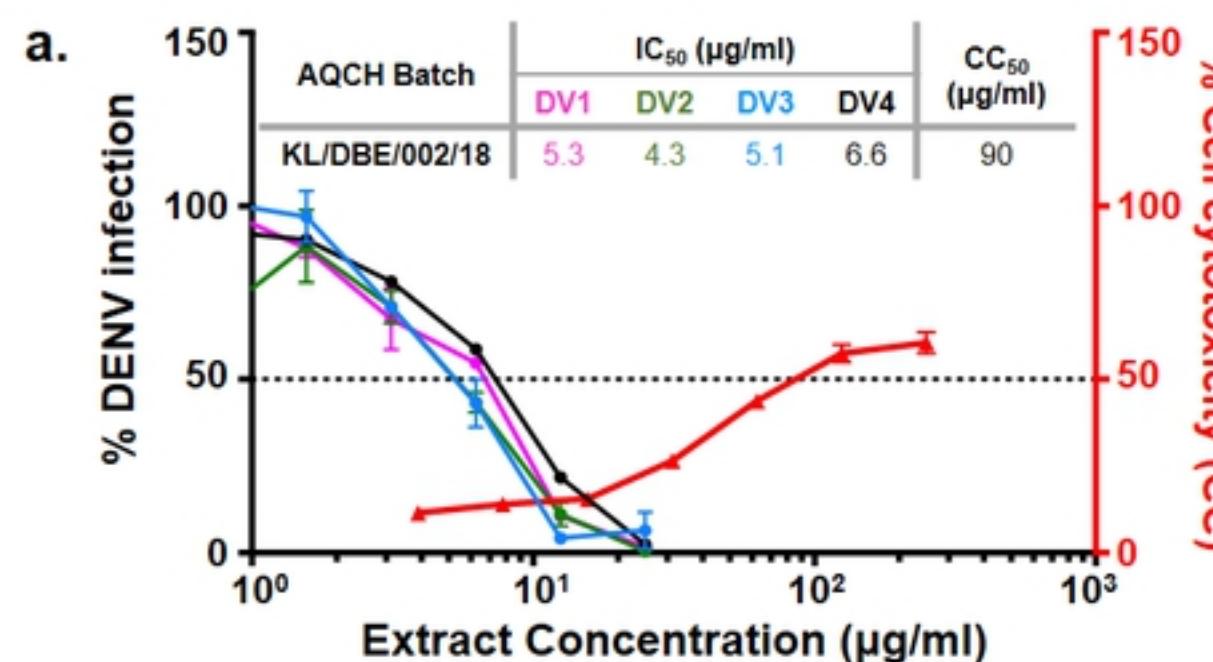
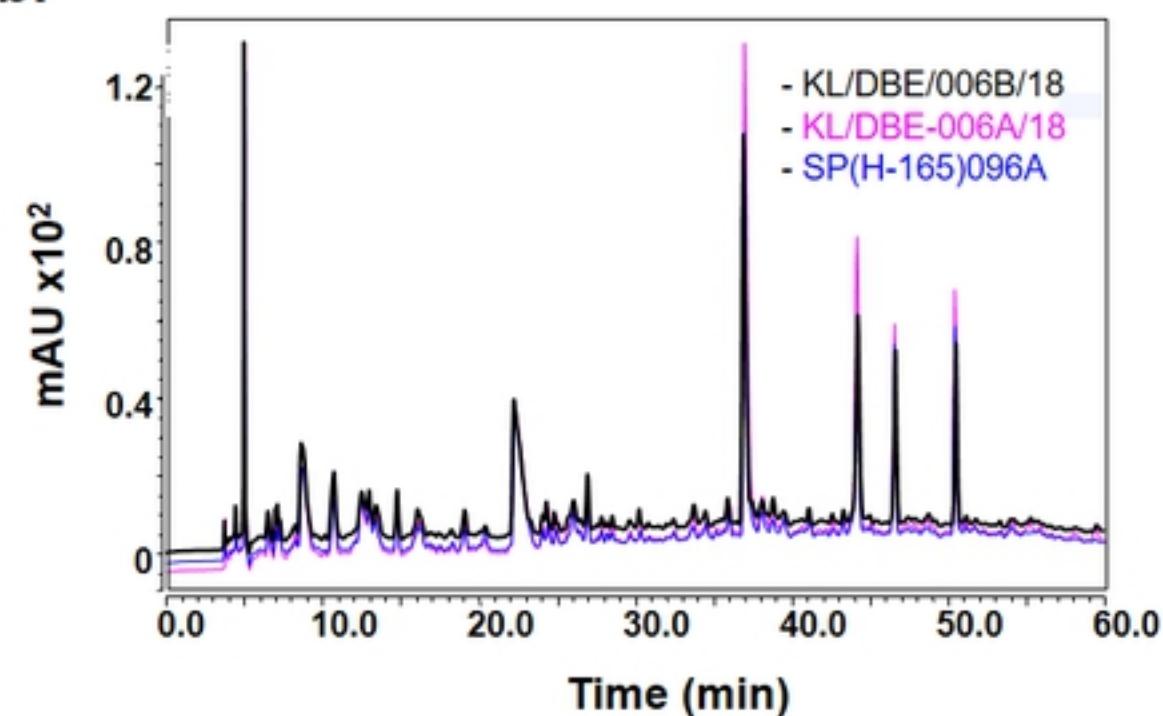
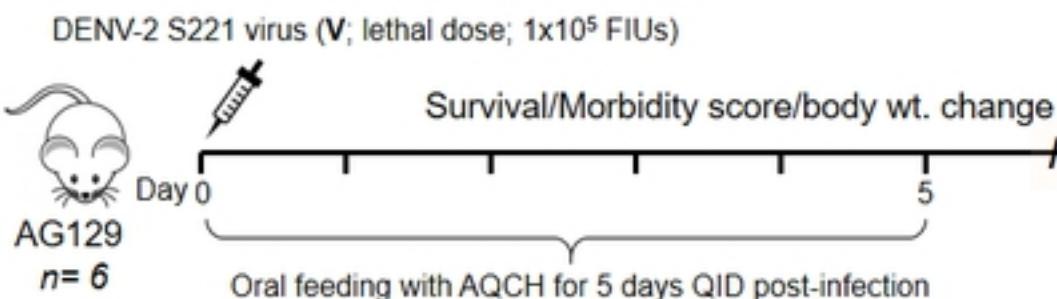
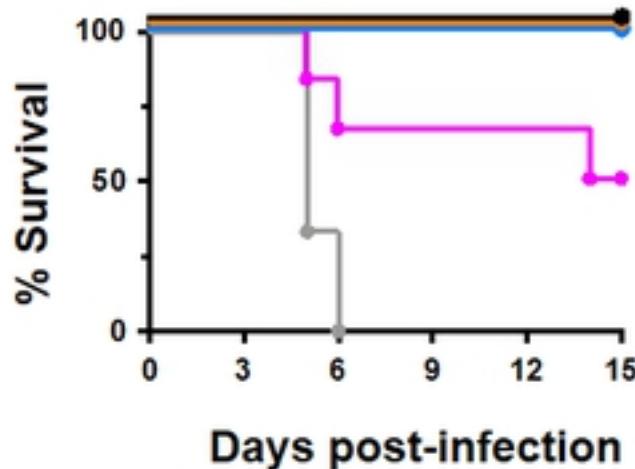
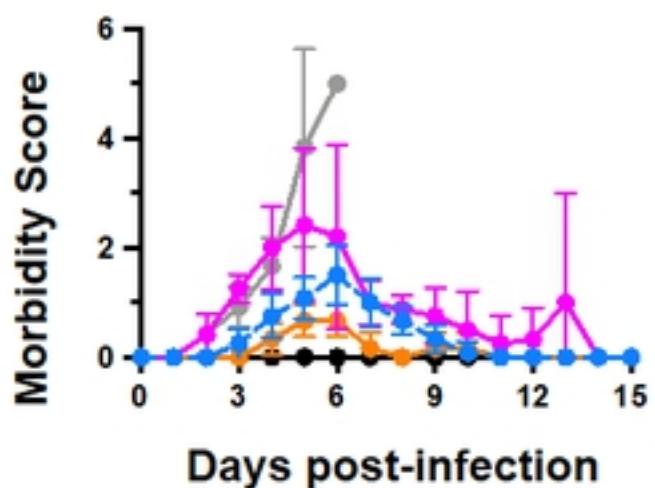





Figure 4


a.

AQCH batch ID	Drying mode	IC ₅₀ (µg/ml)			
		DENV-1	DENV-2	DENV-3	DENV-4
KL/DBE/006A/18	RD	6.2	5.4	3.8	7.3
KL/DBE/007/18	RD	4.7	4.2	3.0	5.7
KL/DBE/002/18	RD	5.3	4.3	5.1	6.6
SP(H-165)061	VTD	2.9	4.7	2.5	4.7
KL/DBE/006B/18	VTD	6.0	4.7	5.2	8.0
SP(H-165)096	SD	7.3	5.8	4.2	11.0
SP(H-165)096A	SD	5.4	7.9	4.8	10.2



b.**c.**

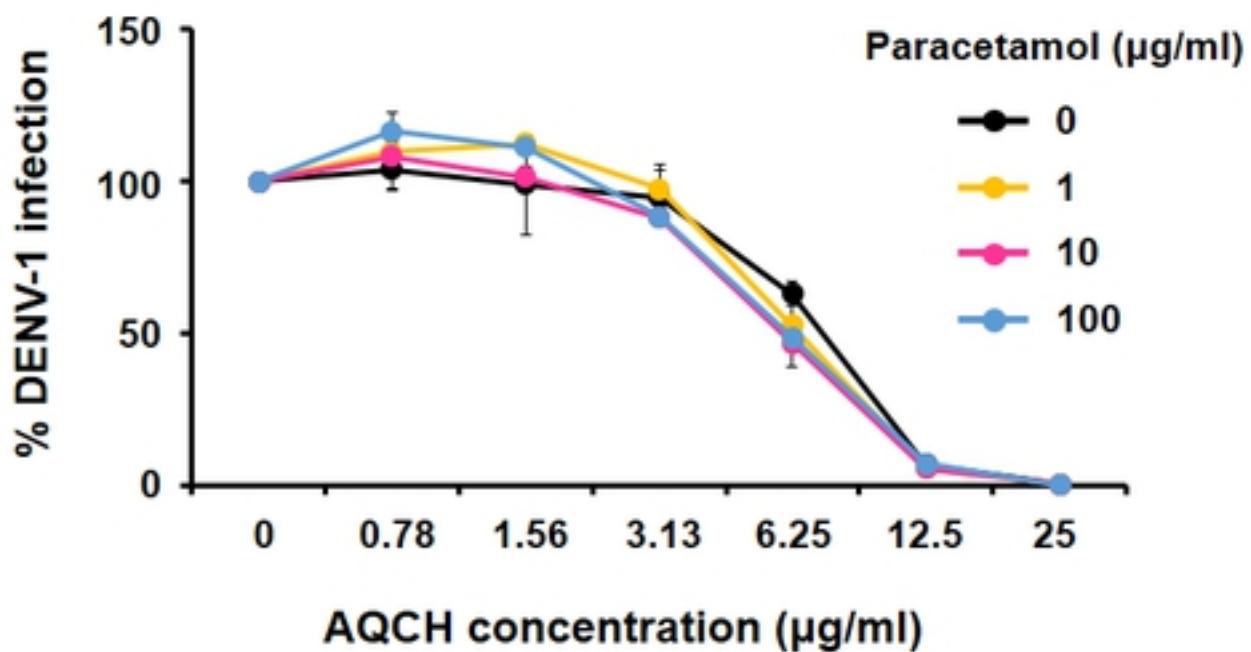

Marker	Retention time of marker compounds in different AQCH Batches (min)		
	KL/DBE/006A/18	KL/DBE/006B/18	SP(H-165)096A
Sinococuline (1)	23.05	22.27	23.09
Magnoflorine (2)	37.13	36.94	37.03
20-Hydroxyecdysone (3)	46.68	46.67	46.47
Makisterone-A (4)	50.47	50.54	50.53
Coniferyl alcohol (5)	44.04	44.15	44.09

Figure 5

a.

Group	Represented as	DENV-2 S221 infection (i.v.)	Oral AQCH dosing
Uninfected	●	No	No
Only AQCH	■	No	Yes
V	○	Yes	No
V + AQCH 25 mg/kg/dose QID	●	Yes	Yes
V + AQCH 8.25 mg/kg/dose QID	●	Yes	Yes

b.**c.****d.****Figure 6**

Paracetamol ($\mu\text{g/ml}$)	IC_{50} ($\mu\text{g/ml}$) of AQCH against DENV-1
0	7.3
1	7.4
10	6.3
100	6.9

Figure 7