

1 **Insight into glycosphingolipid crypticity: Crystal structure of the anti-**
2 **tumor antibody 14F7 and recognition of NeuGc GM3 ganglioside**

3

4 Kaare Bjerregaard-Andersen^{1,8#}, Hedda Johannessen^{1,2#}, Fana Abraha^{3,8}, Aleksandra
5 Šakanović⁴, Daniel Großer^{5,6}, Ünal Coskun^{5,6}, Gregor Anderluh⁴, Stefan Oscarson³,
6 Ernesto Moreno^{7*}, Michal Grzybek^{5,6*}, Ute Krengel^{1*}

7

8

9 ¹ Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway

10 ² Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway

11 ³ School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland

12 ⁴ Department of Molecular Biology and Nanobiotechnology, The National Institute of
13 Chemistry, 1000, Ljubljana, Slovenia

14 ⁵ Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the
15 University Hospital and Faculty of Medicine Carl Gustav Carus of Technische
16 Universität Dresden, Dresden, Germany

17 ⁶ German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany

18 ⁷ Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia

19 ⁸ Present addresses: Kaare Bjerregaard-Andersen, H. Lundbeck A/S, Valby,
20 Denmark; Fana Abraha, Recipharm OT Chemistry, Uppsala, Sweden

21

22 [#]Authors contributed equally

23 ^{*}Correspondence: Ernesto Moreno (emoreno@udem.edu.co); Michal Grzybek
24 (michal.grzybek@tu-dresden.de) and Ute Krengel (ute.krengel@kjemi.uio.no)

25

26

27 **Keywords:** anti-tumor antibody; carbohydrate-antibody interactions; carbohydrate-
28 carbohydrate stacking; gangliosides; glycosphingolipid crypticity; lipid rafts;
29 liposomes; *N*-glycolyl GM3; protein-carbohydrate interactions; X-ray crystal structure

30 **Abstract**

31 Tumor-associated glycolipids such as NeuGc GM3 are auspicious molecular targets in
32 antineoplastic therapies and vaccine strategies. 14F7 is an anti-tumor antibody with
33 high clinical potential, which has extraordinary specificity for NeuGc GM3, but does
34 not recognize the very similar, ubiquitous NeuAc GM3. Here we present the 2.3 Å
35 crystal structure of the 14F7 binding domain (14F7 scFv) in complex with the NeuGc
36 GM3 trisaccharide. Intriguingly, a water molecule appears to shape the specificity of
37 14F7. Using model membrane systems, we show that 14F7 recognizes NeuGc GM3
38 only above lipid concentrations that are likely to form glycolipid-rich domains. This
39 “all-or-nothing” effect was exacerbated in giant unilamellar vesicles and multilamellar
40 vesicles, whereas no binding was observed to 100 nm liposomes, emphasizing that the
41 14F7–NeuGc GM3 interaction is additionally modulated by membrane curvature.
42 Unexpectedly, adding NeuAc GM3 strongly increased binding affinity to NeuGc GM3-
43 containing liposomes. This effect may be important for tumor recognition, where the
44 ubiquitous NeuAc GM3 may enhance 14F7 binding to NeuGc GM3-expressing cancer
45 cells.

46

47 Introduction

48 Cancer cells differ from healthy cells by aberrant glycosylation patterns, displaying
49 tumor-associated carbohydrate antigens (TACAs)¹⁻³. Immunotherapy offers the
50 possibility of specifically targeting TACAs with high affinity through structure-based
51 engineering of monoclonal antibodies⁴⁻⁶. The monoclonal antibody (mAb) 14F7 is an
52 IgG₁ raised by immunizing a BALB/c mouse with *N*-glycolyl GM3 (NeuGc GM3)
53 complexed with very low-density lipoproteins (VLDLs)⁷. This antibody is known for
54 its exquisite specificity and high affinity to NeuGc GM3, determined by ELISA to be
55 in the low nanomolar range⁷⁻⁹. 14F7 has been used to verify the presence of the NeuGc
56 GM3 in a range of tumors including retinoblastoma¹⁰, non-small cell lung cancer¹¹,
57 colon cancer¹², breast cancer^{7,13} and melanoma⁷. Humanizing the mAb yielded 14F7hT
58 (here referred to as 14F7 mAb), which retained its original ability to induce antibody-
59 dependent cellular cytotoxicity in both human and murine NeuGc GM3-expressing
60 cells^{14,15}. 14F7 mAb has been reported to kill primary tumor cells by a complement-
61 independent mechanism^{16,17}, however, the details of its mode of action are unknown.

62 The ability of 14F7 to effectively differentiate between the highly similar NeuGc and
63 NeuAc epitopes is intriguing. In fact, the two glycolipids only differ by the presence of
64 one additional oxygen atom (H to OH) present in NeuGc GM3 (Figure 1A). Mutational
65 studies have highlighted key residues involved in NeuGc binding¹⁸. The structural basis
66 of the discrimination between NeuGc and NeuAc GM3 has, however, remained elusive.
67 Partial understanding has been gained through the crystal structure of the 14F7 Fab¹⁹
68 and the more recent structure of a 14F7-derived single-chain variable fragment (scFv)
69 harboring an alternative light chain⁹. Both 14F7 formats feature a long CDR H3 loop,
70 which exhibits key residues for antigen binding.

71 NeuGc GM3 is composed of a ceramide tail, buried in the plasma membrane of the cell,
72 and an exposed trisaccharide head group featuring the sialic acid NeuGc at its tip²⁰.
73 While NeuGc GM3 is expressed in most mammals, it is absent from healthy adult
74 human cells due to a partial deletion in the cytidine monophosphate-*N*-
75 acetylneuraminic acid hydroxylase (*CMAH*) gene converting NeuAc to NeuGc^{21,22}.
76 However, dietary uptake of NeuGc GM3, *e.g.*, from meat, can lead to low levels present
77 in healthy tissue²³⁻²⁷. This in turn leads to a low level of autoantibodies, and NeuGc
78 GM3 is therefore referred to as a xeno-autoantigen²⁸. In contrast to NeuGc GM3, its *N*-
79 acetyl counterpart is found ubiquitously in human cells and plays a role in control of

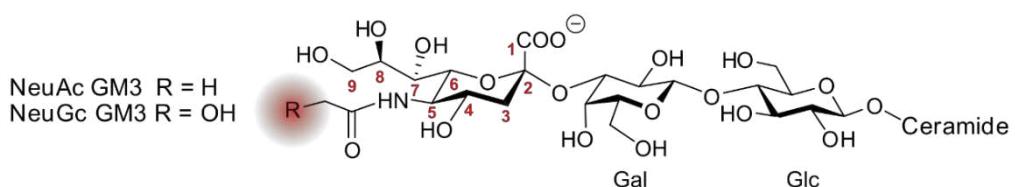
80 numerous cellular signaling pathways^{29,30}. NeuAc GM3 has also been shown to interact
81 with integral membrane proteins, such as the insulin receptor³¹, or the epidermal growth
82 factor receptor^{32,33}. By mechanisms that are not yet well understood^{23,28,34-37}, NeuGc
83 GM3 is displayed to a larger extent by certain cancer cells and thus represents an
84 attractive TACA.

85 Here we present the X-ray crystal structure of the scFv–NeuGc complex, elucidating
86 the molecular basis for its discrimination between NeuAc and NeuGc GM3. Analysis
87 of the crystal structure has been expanded through molecular modeling to propose an
88 alternative binding mode of the GM3 lactose moiety that better explains previous
89 mutagenesis data. Furthermore, our binding experiments of the 14F7 mAb and scFv to
90 NeuGc GM3 reconstituted in liposomes show that the antibodies efficiently recognize
91 the ganglioside only at high concentrations. Interestingly, the presence of NeuAc GM3
92 potentiates antibody recognition of NeuGc GM3, suggesting that 14F7 mAb and scFv
93 can be potent tools for targeting low molar concentrations of the NeuGc GM3 antigen
94 in NeuAc GM3-expressing cells.

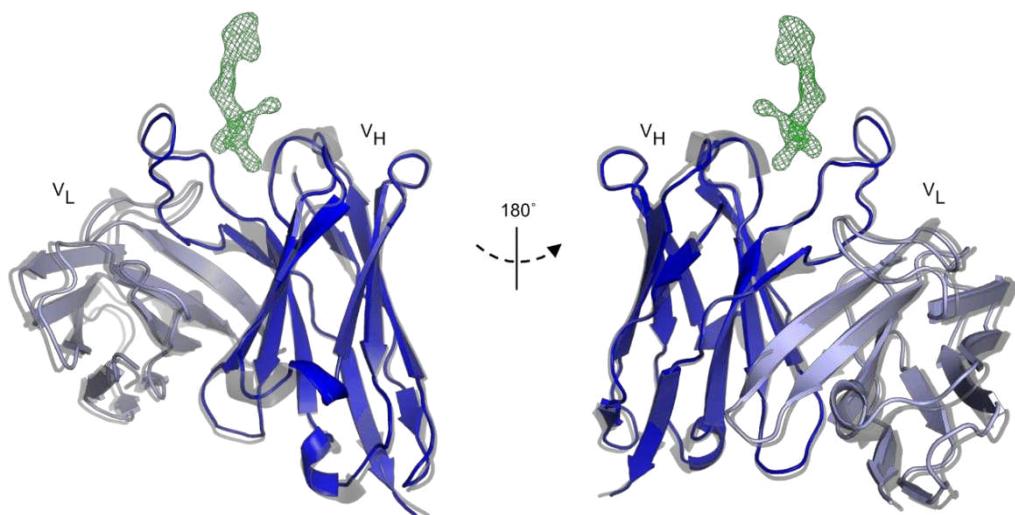
95

96 **Results**

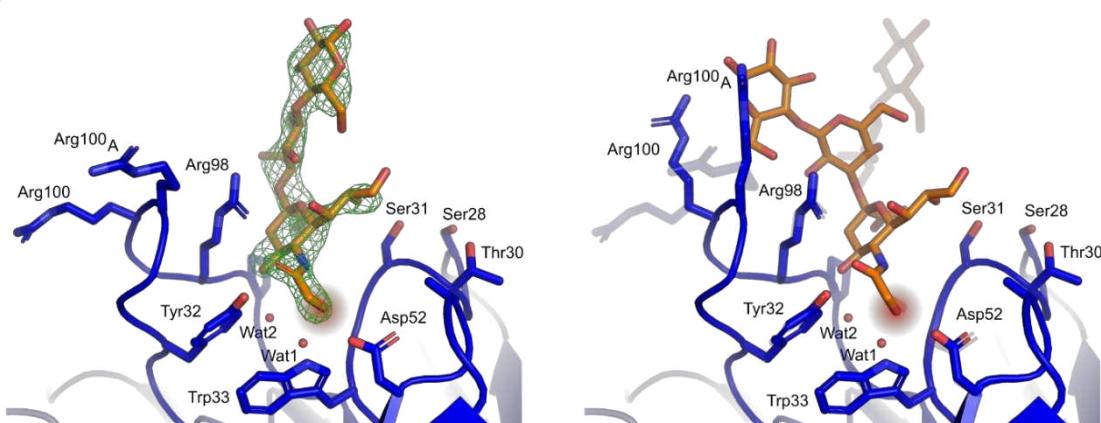
97 **Crystal structure of 14F7 scFv in complex with NeuGc GM3 trisaccharide**

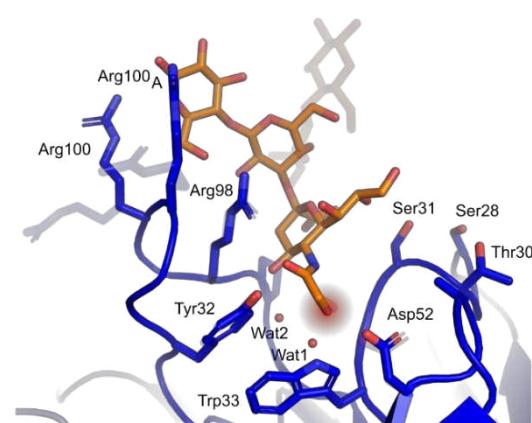

98 The structure of the 14F7 scFv in complex with the NeuGc GM3 trisaccharide was
99 determined to 2.3 Å resolution from a single trisaccharide-soaked crystal. Data
100 collection and refinement statistics are summarized in

101 Table 1. The crystal was obtained from the same batch of crystallization setups that
102 earlier yielded the scFv apo-structure (PDB ID: 6FFJ⁹) and retained *P*2₁ symmetry upon
103 soaking, with similar unit cell parameters and four scFv molecules in the asymmetric
104 unit. Two of the four molecules (chains A and B) were well defined by electron density
105 in the CDR regions and could be modeled without breaks, whereas parts of CDR H3
106 could not be traced in chains C and D. One of the molecules (chain A) contained
107 additional electron density corresponding to the trisaccharide ligand (Figure 1B).
108 Inspection of the ligand complex revealed that only the sialic acid component (NeuGc)
109 of the trisaccharide interacts with the antibody (Figure 1C), whereas the glucose moiety
110 extends outwards towards the solvent, where it makes contacts with residues of a
111 neighboring scFv within the same crystallographic asymmetric unit. In this binding
112 mode, the glycosidic linkage between NeuGc and Gal adopts a synclinal
113 conformation³⁸.


114 Overall, the structure of the scFv–NeuGc GM3 trisaccharide complex is highly similar
115 to the previously published scFv apo-structure⁹, with an average r.m.s.d. value of 0.6 Å
116 for C α atoms indicating very little structural change upon binding (Figure 1B). Also,
117 the side chain conformations of amino acid residues in proximity of the saccharide
118 binding site are very similar between the scFv complex and the apo-structure. Tyr32
119 and Tyr100_D, both in direct contact with the ligand through H-bonds, shift by
120 approximately 1 Å to accommodate binding. Most noticeably, Arg98 adopts a new
121 conformation upon ligand binding, where it stacks against the sialic acid residue of the
122 NeuGc GM3 trisaccharide (Figure 1C and D).

123


A


B

C

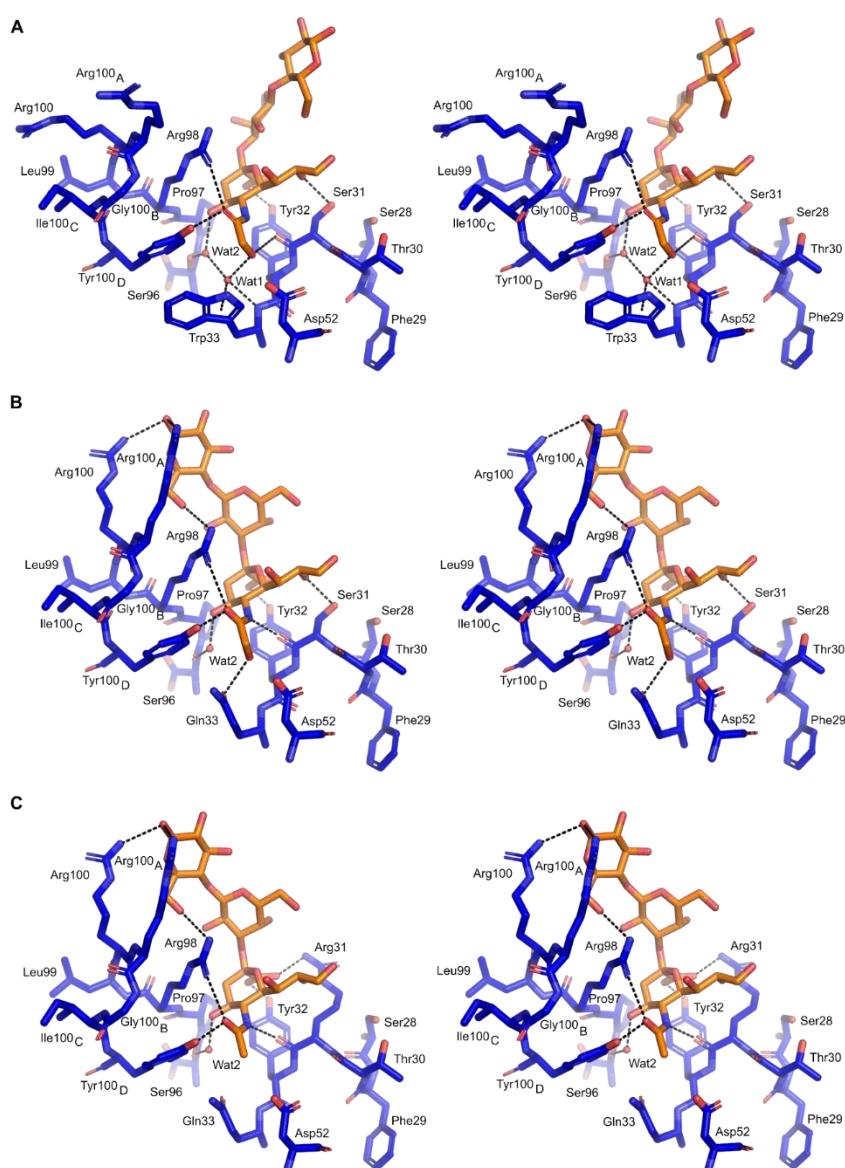
D

124

Figure 1. 14F7 scFv complex with NeuGc GM3 trisaccharide. **A** Ganglioside structure. Neu5Gc GM3 is a xeno-antigen with a very similar structure to the common cellular glycolipid Neu5Ac GM3. The only difference consists of an additional oxygen atom in the *N*-glycolyl group of NeuGc compared to the *N*-acetyl group of NeuAc (highlighted in salmon) in the context of the trisaccharide Neu α 2-3Gal β 1-4Glc β . **B** 14F7 scFv light (light blue) and heavy (dark blue) chains (PDB ID: 6S2I, chain A; this work). The 14F7 scFv apo-structure (PDB ID: 6FFJ⁹, chain A) is superimposed in grey. Difference electron density (mF_o-DF_c) for the carbohydrate ligand is shown at 3.0 σ (green mesh). **C** Structural model of 14F7scFv—NeuGc trisaccharide complex (synclinal conformation). Key amino acid residues and water molecules interacting with the glycan (orange) are labeled. **D** Alternative conformation of NeuGc GM3 trisaccharide with anticinal glycosidic linkage between NeuGc and Gal (modeled), which buries a larger surface area on 14F7 scFv compared to the synclinal conformation observed in the crystal structure (transparent). Panel A was prepared with ChemDraw, panels B-D with PyMOL 2.2.0.

Table 1. Crystallographic data collection and refinement statistics

14F7 scFv – NeuGc complex (PDB ID: 6S2I)*			
Data collection		Refinement	
Beam line	ID30A-3, ESRF	Resolution (Å)	62.9-2.29 (2.34-2.29)
Wave length (Å)	0.9677	No. unique reflections	42066 (2675)
Space group	<i>P</i> 2 ₁	No. reflections in test set	2151 (126)
Unit cell parameters		<i>R</i> -work / <i>R</i> -free	0.220 / 0.255
<i>a</i> , <i>b</i> , <i>c</i> (Å)	63.9 113.7 67.0	No. atoms	
α , β , γ (°)	90 91.2 90	Protein	7239
Solvent content (%)	51.0	Water	103
Resolution (Å)	62.9-2.29 (2.34-2.29)**	Ligand	44
<i>R</i> _{sym} (%)	9.7 (69.7)	<i>B</i> -factors (Å ²)	
<i>R</i> _{meas} (%)	11.1 (76.8)	Protein	52.1
<i>I</i> / σ (<i>I</i>)	9.3 (2.1)	Water	48.6
Completeness (%)	98.8 (99.2)	Ligand	52.0
Multiplicity	4.2 (4.4)	R.m.s. deviations	
CC 1/2	0.99 (0.83)	Bond lengths (Å)	0.002
Wilson <i>B</i> -factor (Å ²)	44.0	Bond angles (°)	0.6
		Ramachandran plot	
		Favored (%)	97.3
		Allowed (%)	2.7
		Outliers (%)	0.0


125 *Data collected on a single crystal.

126 **Values in parentheses are for high-resolution shell.

127 Structural basis for 14F7 discrimination between NeuGc and NeuAc GM3

128 The interactions between 14F7 and the NeuGc GM3 trisaccharide are shown in
129 Figure 2A and listed in Table 2. 14F7 has repeatedly been shown to strongly
130 differentiate between NeuGc and NeuAc GM3 *in vitro*, *e.g.*, probed by ELISA^{7,9}.
131 Therefore, the key determinant for discrimination must be found in the trisaccharide
132 head group, where the only difference is the presence of an additional hydroxyl group
133 in the *N*-glycolyl moiety of the sialic acid. Intriguingly, the *N*-glycolyl hydroxyl group
134 does not itself provide any direct interaction with the scFv, except for a backbone
135 interaction with Tyr32, but manifests its presence through a water molecule (Wat1;
136 Figure 2A). Wat1 is part of a hydrated pocket coordinated by Trp33 and is also present
137 in the 14F7 scFv apo-structure (PDB ID: 6FFJ⁹), thus it may be regarded as an extension
138 of CDR H1. Wat1 not only interacts with the *N*-glycolyl hydroxyl group of NeuGc, but
139 also with its 4-OH group, *via* a second water molecule (Wat2), which binds to the
140 backbone oxygen of Ser96. On the protein side, Wat1 establishes an H-bond with the
141 backbone NH of Trp33 and a weaker, out-of-plane H-bond with the aromatic π face of
142 its indole pyrrole ring. Mutagenesis of Trp33 reveals that specificity is only maintained
143 when this residue is exchanged by another aromatic residue, *i.e.*, Phe and Tyr¹⁸.

144 Especially the possible replacement by Phe emphasizes the importance of the aromatic
145 interaction with Wat1. This trisaccharide-water complex, unable to form with NeuAc,
146 places itself like a cassette into the bottom of the binding pocket formed by the
147 backbone and side chains of Ser31, Tyr32, Pro97, Arg98 and Tyr100D. The difference
148 in energetic contribution to binding of this exciting water-mediated ligand binding site
149 remains to be explored.

150

Figure 2. Stereo pictures showing the specificity of Trp33, W33Q and W33Q/S31R 14F7 variants in complex with NeuGc or NeuAc. A Crystal structure of 14F7 Trp33 (blue) bound to NeuGc (orange) in its experimentally determined conformation (PDB ID: 6S2I, chain A; this work). **B** Model of 14F7 W33Q variant, with NeuGc in the *in silico*-optimized anticalinal conformation. **C** Model of the cross-reactive 14F7 S31R/W33Q variant, with NeuAc in the anticalinal conformation. The figure was prepared with PyMOL 2.0.0.

Table 2. Protein-carbohydrate interactions.

Synclinal (crystal) conformation			Anticinal (modeled) conformation		
Sugar Residue-Atom	Protein Amino acid-Atom ^a	Dist. (Å)	Sugar Residue-Atom	Protein Amino acid-Atom ^a	Dist. (Å)
SIA-O1A	Tyr32-OH	2.5			
SIA-O1A	Pro97-CB	3.4			
SIA-O1B	Tyr32-OH	3.1			
SIA-C3	Tyr32-CE1	4.4			
SIA-C3	Arg98-NE	4.0			
SIA-C4	Tyr32-CD1	4.2			
SIA-O4	Wat2	2.4			
SIA-O4	Arg98-N	2.9			
SIA-O4	Arg98-CG	3.4			
SIA-O4	Arg98-CD	3.4			
SIA-C5	Arg98-CZ	4.5			
SIA-N5	Ser31-O	2.8			
SIA-O5	Tyr100 _D -OH	2.6			
SIA-C5A	Tyr100 _D -CE1	3.6			
SIA-OGc	Wat1	2.4			
SIA-OGc	Ser31-O	3.4			
SIA-OGc	Trp33-NE1	3.3			
SIA-OGc	Tyr32-CA	3.7			
SIA-C6	Ser31-O	3.3			
SIA-C7	Ser31-CB	4.4			
SIA-C7	Ser31-CG	4.4			
SIA-O8	Ser31-OG	2.8			
SIA-O8	Arg23-NH1 #	2.9	Crystal contact not relevant		
SIA-O5	Arg98-NH1	3.2	SIA-O5	Arg98-NH1	2.7
Absent			SIA-O7	Arg98-NH1	3.1
			GAL-O1	Arg100 _A -NH2	2.9
			GAL-O2	Arg98-NE	4.1
			GAL-O5	Arg100 _A -NE	3.6
			GLC-O1	Arg100-NH2	3.2
			GLC-O5	Arg100-NE	3.8
			GLC-C6	Arg100-CG	4.1
			GLC-O6	Arg98-NH2	3.5
			GLC-O6	Arg98-NE	3.7
			GLC-O6	Arg100 _A -CG	3.6
			GLC-O6	Arg100 _A -N	4.1
GLC-O1	Ser74-O #	2.5	Crystal contacts not relevant		
GLC-O5	Asn76-ND2 #	3.3			
Buried protein surface ^b					
218 Å ²			293 Å ²		

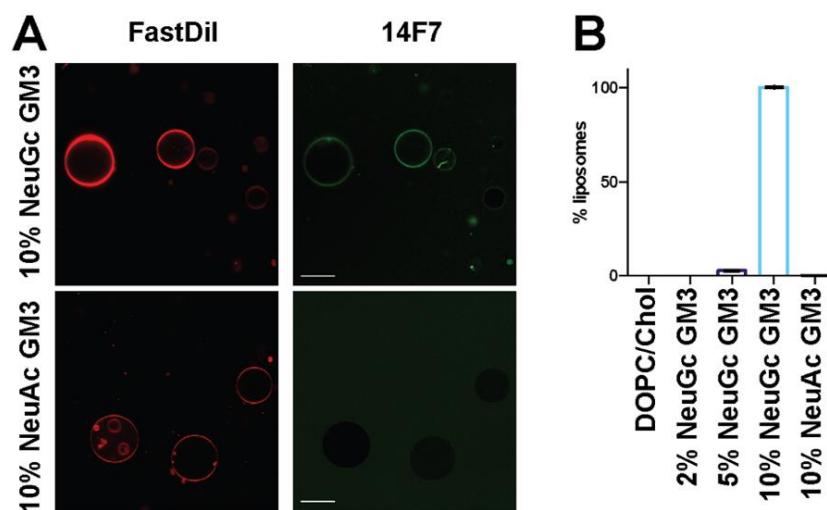
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254

159 **Alternative trisaccharide binding mode**

160 In the crystal, NeuGc GM3 adopts synclinal torsion angles between NeuGc and Gal. In
161 solution, a common alternative conformation of the NeuGc GM3 trisaccharide has an
162 anticlinal glycosidic linkage. Reasoning that crystal packing might have forced the
163 orientation of the lactose moiety of NeuGc GM3 into the conformation observed in the
164 crystal structure, we modeled an alternative binding mode for the trisaccharide, where
165 NeuGc remained exactly as in the crystal structure, but the two torsion angles of its
166 glycosidic linkage with galactose adopt the anticlinal conformation (Figure 1D). We
167 found that this binding geometry, which is hindered by the crystal packing, brings
168 additional favorable contacts between the trisaccharide and CDR-H3, including
169 interactions between both Arg100 and Arg100_A with the trisaccharide glucose residue
170 (Table 2). It also increases the buried surface area by more than one third, from 218 Å²
171 to 293 Å². Furthermore, in this binding mode, Arg98 becomes more tightly packed
172 against the trisaccharide (Figure 1D, Figure 2AB). This is in good agreement with
173 mutagenesis data showing the critical role of this amino acid, which did not tolerate any
174 substitution¹⁸.

175

176 **Models of 14F7 variants explore functional mapping data**


177 In previous work, we used phage display to perform extensive mutagenesis studies on
178 the 14F7 heavy chain CDRs¹⁸. These studies identified several positions in CDRs H1
179 and H3 as important for recognizing NeuGc GM3, *e.g.* Trp33, Asp52, Arg98, Arg100,
180 Arg100_A and Tyr100_D. In addition we found that several single residue substitutions,
181 yielding *e.g.*, S28R, T30R, S31R and W33Q conferred different levels of cross-
182 reactivity to the antibody; and some double or triple combinations even raised the
183 affinity to NeuAc GM3 to the same level as for NeuGc GM3¹⁸. Here we modeled one
184 of these variants (W33Q) in complex with NeuGc GM3 (Figure 2B) and another
185 (S31R/W33Q) in complex with NeuAc GM3 (Figure 2C), in order to interpret the
186 mutagenesis data. The introduction of an arginine residue in the antigen binding site is
187 likely to yield a salt bridge with the sialic acid carboxylate. Gln33 (as in W33Q)
188 probably interacts directly with the *N*-glycolyl OH of NeuGc GM3, replacing Wat1
189 (Figure 2B).

190

191 **14F7 binding to NeuGc GM3 occurs only at high glycolipid densities**

192 To better understand the mode of interaction between 14F7 and NeuGc GM3 in the
193 lipid bilayer, we performed a series of binding experiments using different model
194 membrane systems. First, we chemically labeled 14F7 mAb and scFv with fluorescent
195 dyes and tested their binding to giant unilamellar vesicles (GUVs) containing various
196 amounts of NeuGc or NeuAc GM3 in a background of DOPC and cholesterol
197 (Figure 3). Below 2 % NeuGc GM3, no binding to GUVs was detected. Even upon
198 increasing the glycolipid concentration from 2 % to 5 % NeuGc GM3, only ~3 % of all
199 vesicles showed antibody binding. However, when 10 % NeuGc GM3 was used for
200 GUV formation, all vesicles were labeled (Figure 3), suggesting that 14F7 mAb is not
201 capable of recognizing individual NeuGc GM3 glycolipids as antigens. Upon
202 surpassing a critical glycolipid density threshold, however, antigen recognition
203 becomes highly efficient. In contrast, no binding was observed for 10 % NeuAc,
204 confirming the specificity of 14F7 (Figure 3).

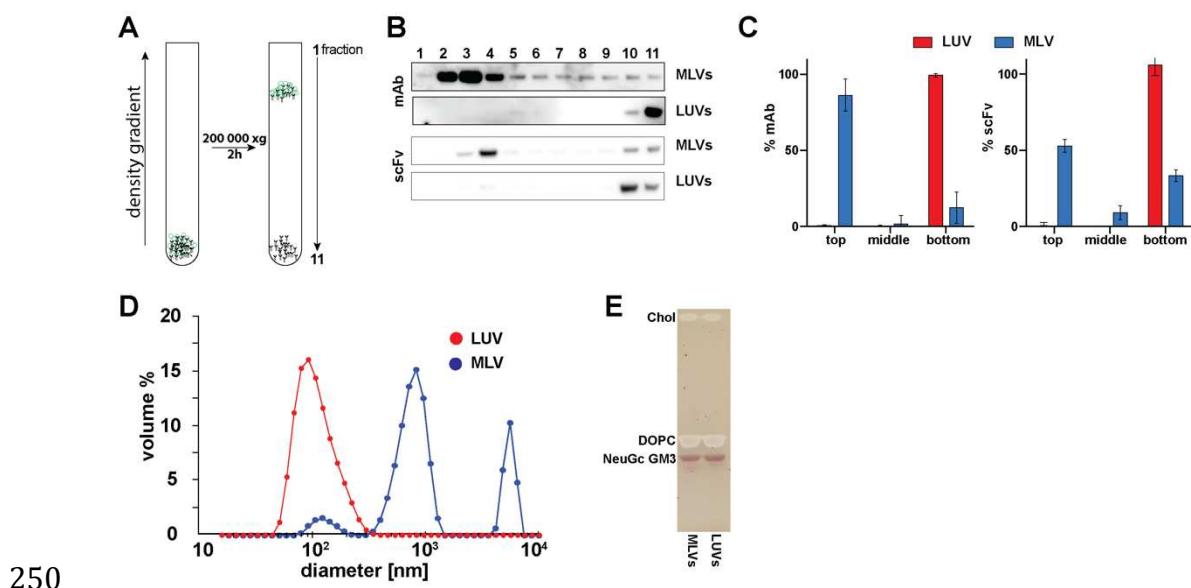
205

206

207 **Figure 3. Binding of 14F7 to GUVs composed of DOPC/Chol/GM3.** **a** 14F7 was chemically
208 labeled with Dylight-488 (green) and was added to GUVs containing FastDil as a membrane
209 marker (red). The scale bar corresponds to 20 μ m. **b** Percentage of GUVs showing binding of
210 14F7-488. Representative images for all lipid compositions are shown in Figure S1.

211

212 The experiment was repeated with fluorescently labeled 14F7 scFv instead of 14F7
213 mAb, however, no binding was observed, even at high NeuGc concentrations. To test
214 whether this failure in binding was related to loss of function in the 14F7 scFv or an


215 artifact of chemical labeling, we performed differential-scanning calorimetry
216 (nanoDSF) of the unlabeled and labeled scFv fragment (Figure S3). After chemical
217 labeling with Dylight488-NHS, the T_m of 67 °C for the native 14F7 scFv flattened and
218 shifted its maximum to 72 °C (Figure S3). In addition, the scattering of the solution
219 increased substantially, suggesting that the sample becomes polydisperse. Both of these
220 results indicate an overall change in the structure of the scFv upon labeling that
221 probably also perturbs the binding site. We therefore opted for liposomal flotation
222 experiments that do not require labeling of the protein.

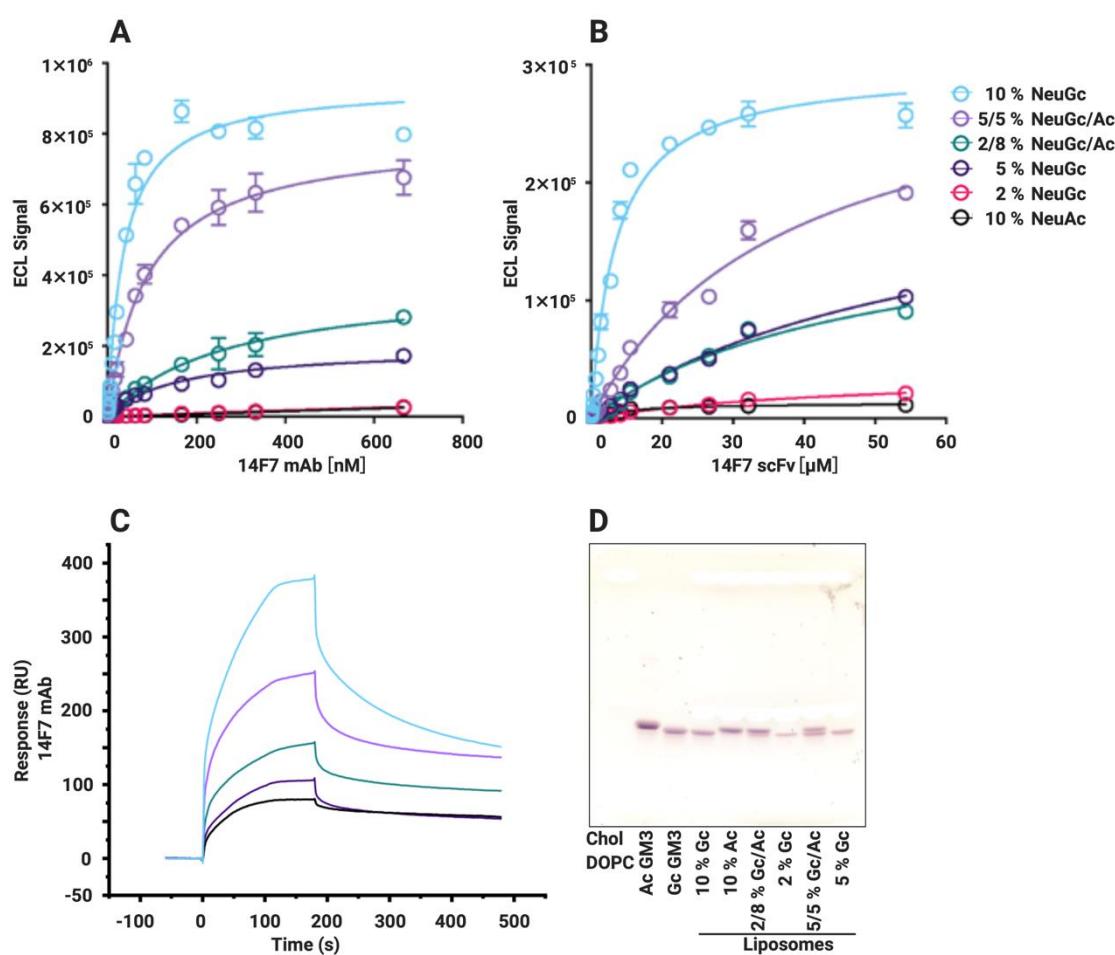
223

224 **Membrane curvature can affect NeuGc GM3 presentation**

225 To test if both 14F7 mAb and scFv can recognize NeuGc GM3-containing liposomes,
226 we performed flotation assays with unlabeled protein. Large unilamellar vesicles
227 (LUVs) have an advantage over GUVs in that they form more homogenous liposome
228 populations due to their preparation method, using freeze-thaw cycles, followed by
229 multiple extrusions through polycarbonate filters. After the flotation assay, the
230 gradients were fractionated from top to bottom, and binding of 14F7 to vesicles was
231 detected by Western blotting. Antibody binding to LUVs is indicated by its presence in
232 the top, low-density fractions (fractions 2-4), otherwise, the protein would be pelleted
233 at the bottom (fractions 10-11) (Figure 4A). In the initial experiment, LUVs containing
234 10 % NeuGc GM3 were used, but only a small portion of either 14F7 mAb or scFv was
235 detected in the liposome-containing fractions, suggesting a very weak interaction with
236 the LUVs (Figure 4BC). Thin layer chromatography (TLC) analysis of the liposomes
237 recovered after flotation confirmed the presence of NeuGc GM3 in the vesicles, thus
238 the weak binding was puzzling. The major difference between the LUVs and the
239 liposomes used in the fluorescent study (GUVs) was their size (Figure 4D). Therefore,
240 we repeated the flotation experiment using non-extruded, multilamellar liposomes
241 (MLVs), which correspond in size to the GUVs. Interestingly, strong binding for both
242 14F7 mAb and scFv was observed for the MLVs, suggesting that membrane curvature
243 plays an important role for antigen recognition (Figure 4BC). A comparative analysis
244 of lipid composition of both LUVs and MLVs confirmed that in both cases the
245 composition of the vesicles was the same (Figure 4E). In fact, the amount of NeuGc
246 GM3 that was available for binding should be much higher in LUVs than in MLVs, as
247 only the outermost membrane leaflet can be probed by the antibodies. When NeuAc

248 GM3 was used in either LUVs or MLVs, no binding was observed, neither for 14F7
249 mAb nor for scFv, again confirming the high specificity of 14F7 (Figure S2).

250


Figure 4. Binding of 14F7 to LUVs and MLVs composed of DOPC/Chol/NeuGc GM3 in flotation assays. **A** Setup of the LUV flotation assay. After the centrifugation, 11 fractions were collected from the top. Proteins bound to vesicles accumulate in fractions 2-4, while unbound proteins are in the bottom fractions (10-11). **B** Representative Western blot of fractions collected after flotation. **C** Binding was quantified using the AIDA software as follows: top (fractions 1-4), middle (5-8) and bottom (9-11). Error bars represent standard deviations of three independent experiments. **D** Dynamic light-scattering measurement of the size of the vesicles used in the flotation assay. **E** Thin layer chromatography (TLC) of lipids extracted from the vesicles after flotation (combined fractions 2-4). The lipids were stained with orcinol.

251 **NeuAc GM3 potentiates 14F7 binding to NeuGc GM3**

252 We decided to probe 14F7 mAb and scFv binding to MLVs containing various NeuGc
253 GM3 concentrations (0-10 %) by electrochemiluminescence immunoassay (EIA), and
254 also tested combinations of NeuGc and NeuAc GM3. The K_D values for vesicles
255 containing 10 % NeuGc GM3 were estimated to be approximately 34 nM and 3.4 μ M
256 for 14F7 mAb and scFv, respectively by EIA (Figure 5AB), representing a large gain
257 in apparent affinity (approximately 100-fold) for the mAb *versus* the scFv, in contrast
258 to the previous ELISA studies^{8,9}. Interestingly, NeuGc GM3 binding and recognition
259 by 14F7 greatly increased when NeuAc GM3 was introduced into the same vesicles,
260 *e.g.*, binding of both 14F7 mAb and scFv to liposomes containing a mixture of 2 %
261 NeuGc and 8 % NeuAc GM3 was significantly higher compared to liposomes
262 containing only 2 % NeuGc. In fact, 14F7 scFv bound equally strongly to vesicles
263 containing 5 % NeuGc or a 2/8 % mixture of NeuGc and NeuAc GM3. For 14F7 mAb,

264 binding to the 2/8 % mixture even exceeded the binding efficiency observed for vesicles
265 containing 5 % pure NeuGc GM3. This effect of potentiation was also observed for
266 liposomes containing an equal molar ratio of NeuGc/NeuAc GM3 (5/5 %), which
267 showed higher binding efficiency compared to vesicles that only contained 5 %
268 NeuGc GM3 (Figure 5AB). Similar results were obtained by surface plasmon
269 resonance (SPR) spectroscopy (Figure 5C). This demonstrates that not only the amount
270 of NeuGc GM3, but also the overall GM3 ganglioside concentration affects the ability
271 of 14F7 to recognize and bind NeuGc GM3.

272

273

Figure 5. Addition of NeuAc GM3 increases binding efficiency of 14F7 to NeuGc GM3.
Binding of (A) 14F7 mAb and (B) 14F7 scFv to MLVs composed of DOPC/Chol/GM3 measured by EIA. Representative plots of 3 independent measurements. C SPR spectroscopy of 14F7 mAb binding to an HPA chip with a monolayer of DOPC/Chol/GM3. The sensorgram represents one of two independent measurements (to save scarce sample), resulting in the same trend observed by EIA. D Thin layer chromatography of lipids extracted from the vesicles used in EIA assay. NeuAc and NeuGc GM3 were abbreviated Ac and Gc, respectively. The lipids were stained with orcinol.

274 **Discussion**

275 Gangliosides are sialic-acid containing glycosphingolipids present in the plasma
276 membranes of all vertebrates. Together with cholesterol, sphingomyelin and specific
277 membrane proteins, they are concentrated in membrane nanodomains often referred to
278 as lipid rafts³⁹⁻⁴⁵. Gangliosides are functionally important and are known to modulate
279 cellular signaling⁴⁶⁻⁴⁹. Despite decades of studies, the structure and function of these
280 cell surface antigens remain to be fully appreciated, and only few anti-ganglioside
281 antibodies have been raised⁵⁰.

282

283 **14F7 specificity**

284 14F7 can distinguish the very small chemical difference between the gangliosides
285 NeuGc and NeuAc GM3^{7,9}, and even more remarkably, we have now discovered that it
286 does so indirectly, through a water molecule. NeuGc GM3 engages in two water-
287 mediated interactions with Trp33, one with its main chain and one with the π -system of
288 the indole side chain (both through Wat1; Figure 2A). Such an interaction is weaker
289 than an ordinary hydrogen bond⁵¹, however, the importance of this interaction is
290 highlighted by the fact that substitution of Trp33 with Phe or Tyr maintains specificity,
291 while non-aromatic residues abolish binding or allow cross-reactivity with NeuAc
292 GM3¹⁸. H-bonds commonly mediate specificity in antibody-antigen recognition
293 through direct contact between paratope and epitope side chains⁵². In the case of 14F7,
294 Wat1 is already present in the protein apo-structure (PDB ID: 6FFJ⁹). A thorough
295 analysis of water-tryptophan interactions indicates that the six-membered ring of the
296 indole side chain favors π -OH interaction, while the five-membered pyrrole ring favors
297 π -lone pair interaction⁵³. The latter appears to be the case for Wat1, thus positioning it
298 as an H-bond donor for the *N*-glycolyl group of NeuGc GM3. While it is well known
299 that the hydration shell is important for protein structure and function^{54,55}, including the
300 recognition of carbohydrates⁵⁶⁻⁵⁸ and antibody-antigen interactions⁵⁹⁻⁶², the complexity
301 of antibody engineering is highlighted by our finding of this indirect, water-mediated
302 specificity.

303

304

305 **Selectivity *versus* cross-reactivity**

306 NeuGc is bound to the bottom of a cleft formed by the variable heavy chain of 14F7
307 (Figure 2A), which is separated from the variable light chain through the long CDR H3
308 loop. The predicted NeuGc recognition site has previously been functionally mapped
309 by a combinatorial phage display strategy using an alternative format of 14F7 scFv¹⁸.
310 The study revealed that substitution of Trp33 in combination with residues 28, 30 or 31
311 could yield cross-reactive 14F7 variants (e.g., S28R/S30R/W33Q, S31R/W33Q and
312 S28R/S31R, and to a lesser extent by single amino acid substitutions)¹⁸. Therefore
313 cross-reactivity is likely mediated through direct interactions with the sialic acid
314 residue, in particular by a salt-bridge to the negatively charged carboxylate group found
315 in both NeuGc and NeuAc GM3. To further explore the mutagenesis data, we modeled
316 the 14F7 S31R/W33Q variant in complex with NeuAc GM3 (Figure 2C). Substituting
317 Trp33 as in 14F7 W33Q likely leads to the replacement of Wat1 by the glutamine side
318 chain amide, which can interact directly with the *N*-glycolyl OH of NeuGc GM3
319 (Figure 2B). This mutation alone decreased NeuGc GM3 binding, but promoted a weak
320 interaction to the NeuAc variant of GM3¹⁸. Substitution of Ser31 with Arg (S31R)
321 probably trades an H-bond to one of the NeuGc glycerol hydroxyls for a charge
322 interaction of the guanidinium moiety with the sialic acid carboxyl group found in both
323 NeuGc and NeuAc GM3 (Figure 2C), thus conferring some cross-reactivity to the
324 antibody. Arginine substitutions of Ser28 (S28R) or Thr30 (T30R) likely elicit similar
325 effects. Interestingly, in spite of this additional interaction, substituting Ser31 for Arg,
326 either alone or combined with other amino acid substitutions, hardly increased the
327 affinity for NeuGc GM3¹⁸.

328 Although it may seem counterintuitive that NeuAc could bind to a polar pocket, a polar
329 environment is not unprecedented for NeuAc. For example, cross-reactive rotaviruses
330 that recognize both NeuAc and NeuGc GM3 have been shown to display similar polar,
331 water-containing pockets to accommodate the acetyl or glycolyl groups of their glycan
332 receptors⁶³. Favorable interactions elsewhere, e.g., with the sialic acid carboxylate or
333 glycerol chain, may well compensate for less favorable interactions of the *N*-acetyl
334 group. In fact, it is likely that selectivity of NeuGc over NeuAc GM3 requires a fine
335 balance of interactions, and that too tight binding of the sialic acid residue may prevent
336 selectivity and would tip the balance towards cross-reactivity towards NeuGc and
337 NeuAc GM3.

338 **Glycan conformation and antibody recognition**

339 In the crystal structure of the scFv–saccharide complex (PDB ID: 6S2I; this work), the
340 saccharide adopts a synclinal conformation (Figure 1C), and the only interaction with
341 14F7 is *via* the sialic acid (Figure 2A). However, the carbohydrate conformation may
342 be forced by the crystal, into which the ligand was soaked. For example, we note that
343 the anticlinal conformation would lead to clashes with other protein molecules in the
344 crystal, whereas the synclinal conformation is stabilized by an interaction of the sialic
345 acid glycerol chain with V_L residue Arg23 of a neighboring scFv in the crystal
346 (Table 2). In a biological context (and in solution), the saccharide would be free to adopt
347 both conformations (Figure 1D) – also the anticlinal conformation, which provides a
348 larger contact surface with the antibody (293 *versus* 218 Å²). Dynamic binding may in
349 fact provide an entropic advantage. In both conformations, the glycosidic linkage
350 between NeuGc and Gal places the key CDR H3 residue Arg98 in a central position for
351 interaction with the NeuGc GM3 trisaccharide (Figure 2AB), explaining why any
352 substitution of this residue renders it incompatible with binding. In anticlinal
353 conformation, Arg98 can additionally interact with the glucose moiety of NeuGc GM3
354 through H-bonds. This is also true for Arg100 and Arg100_A, which are located at the tip
355 of CDR-H3. Moreover, the arginine residues exposed on CDR H3 create a strongly
356 positively charged surface patch that will likely also interact with other components of
357 the plasma membrane. The observation that these residues, in general, can be
358 exchanged while maintaining a positive charge¹⁸, indicate non-specific interactions
359 with the membrane through negative charges found in the proximity of the target
360 antigen, such as other phospholipids, gangliosides or proteins.

361

362 **14F7–membrane interactions: “All-or-nothing” effect**

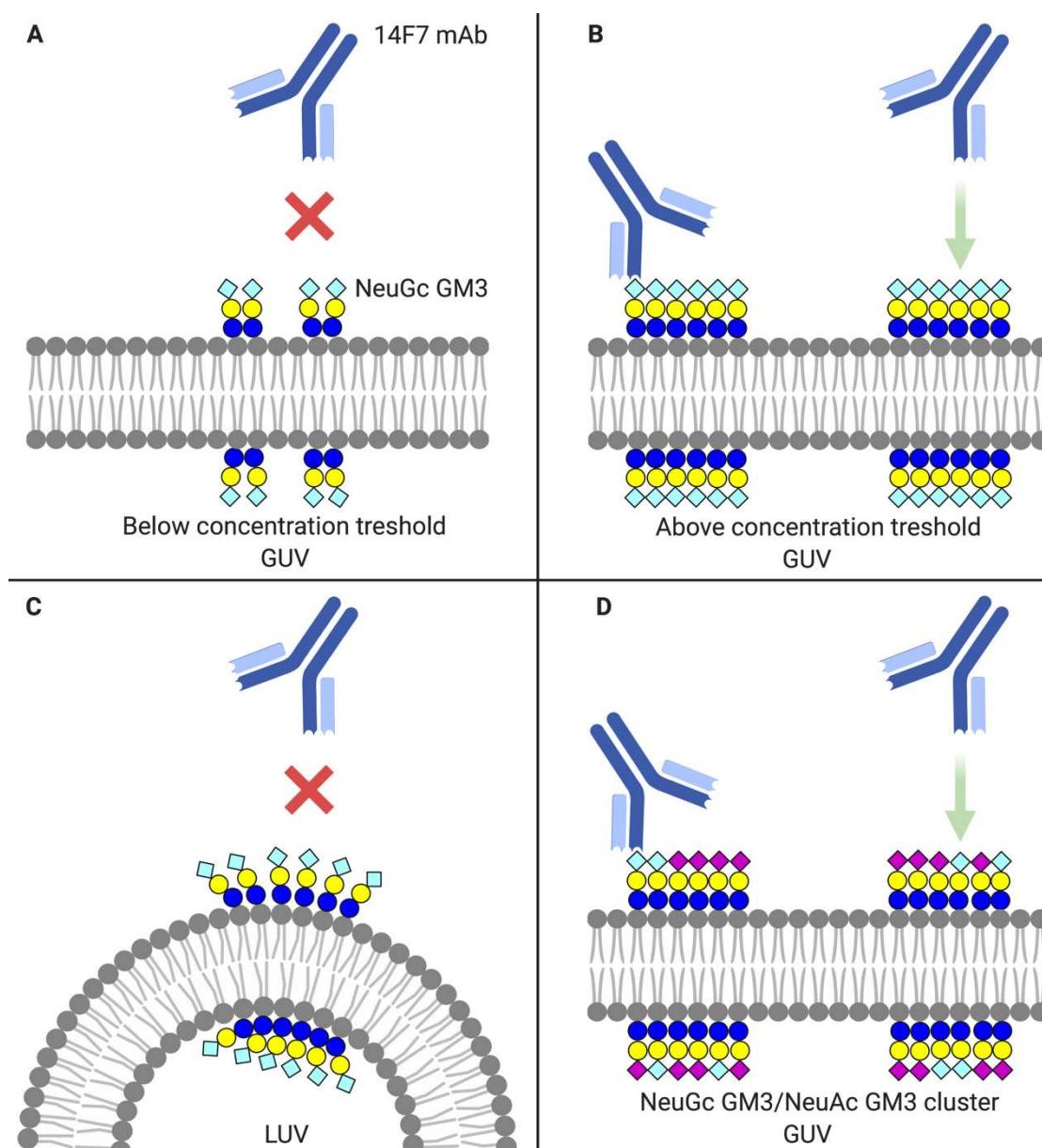
363 To better understand the mode of interaction between the 14F7 and NeuGc GM3 in the
364 context of a membrane, we performed binding measurements using different
365 membrane-mimetic systems. These studies confirmed the selectivity of 14F7. However,
366 binding was only observed above a concentration threshold of the NeuGc GM3
367 (Figure 3B). The observed “all-or-nothing” effect for glycolipid recognition is not a
368 new concept in itself. For example, Nores *et al.* observed that the murine mAb M2590
369 only recognized the GM3 antigen when the ganglioside concentration in a membrane

370 reached a threshold of 8 %, as determined by binding to liposomes⁶⁴. That 14F7 mAb
371 recognizes NeuGc GM3 in a similar manner is intriguing and suggests that at low
372 concentrations, the antigen remains “cryptic”. For mAbs, avidity immediately springs
373 to mind as logical explanation for such a threshold effect, *i.e.*, if recognition by both
374 Fabs is required to detect and enhance binding. However, since the same effect is also
375 observed for the 14F7 scFv, both related to density and curvature, this clearly indicates
376 that avidity cannot be the main cause of the observed effect. Instead, it suggests that at
377 low concentrations, the glycolipid conformation in the membrane does not allow
378 recognition by the antibody (Figure 6A). At high concentrations, the gangliosides may
379 pack differently, for example through carbohydrate stacking⁶⁵, and expose their *N*-
380 glycolyl group to enable recognition (Figure 6B). The surrounding sialic acid residues
381 from other GM3 molecules close-by may further enhance affinity due to the increased
382 negative charge. The fact that the addition of NeuAc GM3 to low concentrations of
383 NeuGc GM3 enables and enhances 14F7 binding (Figure 5), supports this hypothesis.

384

385 **NeuGc GM3 clustering**

386 In contrast to the receptor-binding B-pentamer of the cholera toxin (CTB), which is
387 commonly used to label GM1 molecules and can lead to ganglioside clustering⁶⁶, 14F7
388 appears to bind only to pre-existing NeuGc GM3 assemblies and not drive the
389 formation of such. This conclusion is based on the observation that (i) the monovalent
390 scFv fragment showed similar binding characteristics as the mAb, and (ii) we never
391 observed any domain formation in GUVs, even after overnight incubation with the
392 divalent 14F7 mAb. For CTB, domain formation was observed when the protein was
393 incubated with GUVs containing substantially lower amounts of its main glycolipid
394 receptor, GM1⁶⁶.


395

396 **Curvature effect**

397 The collective behavior of lipids and physicochemical membrane properties can be
398 directly modulated by temperature, pressure and molecular stress^{67,68}. Another
399 important parameter is membrane curvature^{49,69-71}. Unexpectedly, we observed that the
400 anti-tumor antibody 14F7 preferentially recognizes NeuGc GM3 present in GUVs or
401 MLVs, but not in 100 nm LUVs. We hypothesize that high positive curvature might

402 disrupt carbohydrate stacking interactions critical for exposure of the NeuGc *N*-glycolyl
403 group, preventing NeuGc GM3 recognition as illustrated in Figure 6C.

404

Figure 6. Model of NeuGc GM3 recognition by 14F7. **A** 14F7 binding is not observed at low NeuGc GM3 concentrations. **B** Above a ganglioside concentration threshold, 14F7 attaches to NeuGc GM3-containing glycolipid clusters on low-curvature membrane surfaces (GUV). **C** 14F7 does not bind to NeuGc GM3 in highly curved LUVs. **D** The addition of NeuAc GM3 to NeuGc GM3-containing liposomes enables 14F7 binding even at low NeuGc GM3 concentrations, possibly through the formation of functional glycolipid clusters. Carbohydrate symbols follow the nomenclature of the Consortium for Functional Glycomics: *N*-acetyl neuraminic acid – purple diamond; *N*-glycolyl neuraminic acid – light blue diamond; galactose – yellow circle; glucose – blue circle. Prepared with BioRender.

406

407 Many lipids have a cone shape rather than a cylindrical shape⁷². In a flat lipid bilayer,
408 the packing of cone-shaped lipids leads to packing tension (line-tension) that can be
409 relieved by the spontaneous formation of higher-order submicron clusters^{69,70}. This
410 could be the driving force for NeuGc GM3 clustering, where ganglioside and
411 cholesterol form liquid-ordered structures surrounded by liquid-disordered regions^{73,74}.
412 It would be interesting to test if also negatively curved interfaces (*e.g.*, caveola and
413 endocytic pits) elicit the preferable conformation for 14F7 recognition.

414

415 **New applications for 14F7?**

416 In biological membranes, gangliosides are found in conjunction with cholesterol,
417 sphingomyelin and specific membrane proteins. Cholesterol is well known to modulate
418 glycolipid conformation and enable receptor binding^{42,75-79}. Here, we show that also the
419 interaction between different gangliosides (*i.e.*, NeuAc and NeuGc GM3, Figure 6D)
420 can influence the conformation of glycolipids in the membrane – and make the
421 gangliosides amenable to recognition by 14F7. This is valuable information, for two
422 reasons: For one, it allows the detection of NeuGc GM3 even at low concentrations.
423 This is the case in human cells (and although NeuGc GM3 content appears to increase
424 in certain cancers, it is unclear if high concentrations can be reached). In contrast, the
425 non-binding NeuAc GM3 is naturally expressed in all cells and may thus potentiate the
426 recognition of low concentrations of NeuGc GM3 in cellular membranes, exposing the
427 antigen for specific targeting. So far, we have only studied 14F7's capacity to recognize
428 NeuGc GM3 clusters in a membrane mimetic system, however, it is reasonable to
429 assume that a similar effect occurs in a cellular environment. Although further
430 investigation is certainly required, this would open up for completely new applications
431 of 14F7, in the clinical setting as well as for biochemical analysis.

432

433 **Conclusions**

434 We set out to characterize the exquisite specificity of 14F7 for NeuGc GM3, and its
435 selectivity over NeuAc GM3, and have now solved the crystal structure of this
436 promising anti-tumor antibody in complex with its target antigen by high-resolution X-
437 ray crystallography. Complementary qualitative and quantitative liposome interaction

438 studies with NeuGc GM3 additionally yielded unique insights into the formation and
439 characteristics of glycolipid clusters and, potentially, membrane nanodomains.

440 Generally, antigen and immunogen are thought to have identical structures. Our data
441 suggest that NeuGc GM3 concentration in the membrane influences its presentation
442 and, in consequence, strongly affects recognition by 14F7. Therefore, although the
443 immunogen is NeuGc GM3, the actual antigen recognized by 14F7 antibody is "high
444 density NeuGc GM3". Similar results were previously described for the M2590 mAb
445 for NeuAc GM3⁶⁴. Here we show additionally that different gangliosides can
446 conformationally modulate each other, *i.e.*, the presence of NeuAc GM3 helps convert
447 NeuGc GM3 to its antigenic form. The switch between conformations appears to be
448 abrupt, as caused by a phase transition, at sufficiently high concentration. However,
449 binding requires that the membrane surface is relatively flat, as in GUVs and MLVs,
450 and probably in biological membranes. We suspect that high positive curvature may
451 disrupt the alignment of the saccharide head groups, abrogating binding of 14F7
452 (Figure 6). It may also dilute the concentration of negative charges, affecting
453 electrostatic membrane-antibody interactions.

454 Our findings further suggest that under favorable conditions, such as the presence of
455 interacting molecules like NeuAc GM3, NeuGc GM3 can be recognized even at
456 relatively low concentrations in cellular membranes, despite requirement of a "high-
457 density-form". Our data thus inform new concepts for designing new immunotherapy
458 strategies targeting glycolipids.

459

460 **Methods**

461 **Synthesis of NeuGc trisaccharide**

462 The NeuGc GM3 trisaccharide was synthesized through an IBr/AgOTf-promoted
463 glycosylation of a benzylated lactose acceptor with a NeuGc thioglycoside donor,
464 followed by global deprotection of the obtained trisaccharide as reported earlier⁹.

465

466 **Expression and purification of 14F7 derived scFv**

467 The 14F7 scFv was produced by a variation of a protocol described by Bjerregaard-
468 Andersen *et al.*⁹. Compared to the original 14F7 mAb, this construct contains an
469 alternative light chain identified by Rojas *et al.*⁸. The linker was chosen on the basis of
470 a vector system established for expression of single chain T-cell receptors (TCRs) and
471 single-chain variable fragments (scFvs) in *Escherichia coli*^{80,81}. Briefly, the scFv was
472 expressed in *E. coli* by a pFKPEN vector-based system. The vector encodes a pelB
473 leader sequence, thus promoting the translocation of the protein to the periplasm.
474 Purification included limited lysis of the *E. coli* outer membrane to release the mature
475 scFv, and subsequent purification by protein L affinity chromatography and size
476 exclusion chromatography to reach a highly pure and homogenous preparation for
477 crystallization and binding experiments.

478

479 **Crystallization of the 14F7 scFv in complex with NeuGc trisaccharide**

480 Crystallization of the 14F7 scFv was performed as described earlier⁹. Crystals of good
481 diffraction quality were obtained from the Morpheus screen (Hampton Research, US)
482 after seeding with small crystals from initial hits. Remaining crystals from the D12
483 condition (12.5 % w/v PEG 1000, 12.5 % w/v PEG 3350, 12.5 % v/v MPD, 0.02 M
484 1,6-hexandiol, 0.02 M 1-butanol, 0.02 M(RS)-1,2-propanediol, 0.02 M 2-propanol,
485 0.02 M 1,4-butanediol, 0.02 M 1,3-propanediol, 0.1 M Bicine/Tris base pH 8.5), used
486 for determination of the 14F7 scFv apo-structure⁹, were soaked by the addition of the
487 synthesized NeuGc trisaccharide in powder form. The crystals were incubated for 1h
488 before flash-cooling in liquid nitrogen and stored for diffraction experiments.

489

490 **Data collection and structure determination**

491 Diffraction data extending to 2.3 Å were collected at the ID30A-3 beam line at the
492 European Synchrotron Radiation Facility (ESRF), Grenoble, France. X-ray data were
493 auto-processed at the ESRF by the EDNA pipeline⁸². The structure was phased by
494 molecular replacement with the PHENIX crystallographic software package⁸³, using
495 the 14F7 scFv apo-structure (PDB ID: 6FFJ⁹) as search model, and refined in alternating
496 cycles of manual model building and refinement with PHENIX⁸³ and COOT⁸⁴. Water
497 molecules were built in at late stages of the refinement, initially using the automated
498 finding by PHENIX. These sites were then inspected individually and assessed for
499 removal in case of electron density sigma level >1.10 e/Å³ or bond distances >3.5 Å or
500 <2.2 Å. Likewise, missing water molecules were added manually. The phased map
501 revealed additional electron density in one of the four scFv molecules in the asymmetric
502 unit, which was modelled as NeuGc GM3 trisaccharide. The trisaccharide ligand was
503 built using eLBOW⁸⁵ and modeled into the electron density of the binding pocket at
504 final stages of structure building and adjusting occupancy by matching ligand *B*-factors
505 to interacting protein residues. An OMIT difference density map was made by
506 removing the trisaccharide ligand from the final model, followed by five refinement
507 cycles using PHENIX⁸³. The final model was deposited in the Protein Data Bank with
508 accession code 6S2I.

509

510 **Modeling**

511 The program VMD⁸⁶ was used to for visualization and analysis, as well as for molecular
512 modeling. The two amino acid substitutions in the heavy variable domain – S31R and
513 W33Q – were made using the Mutator plugin implemented in VMD. Side chain
514 conformations were modeled using the Molefacture plugin. This same tool was used to
515 model the anticlinal conformation of the GM3 trisaccharide, keeping the sialic acid in
516 its crystal position and modifying only the two torsion angles of its glycosidic linkage
517 with galactose.

518

519 **Preparation of giant unilamellar vesicles (GUVs)**

520 1,2-dioleoyl-*sn*-glycero-3-phosphocholine (DOPC) and cholesterol (both from Avanti,
521 US) stocks were dissolved in chloroform/methanol (10:1), *N*-Acetyl (Matreya, US)

522 and/or *N*-glycolyl GM3 (isolated from horse erythrocytes⁸⁷ and kindly provided by
523 CIM, Havana, Cuba) were dissolved in chloroform/methanol/water (2:1:0.1). GUVs
524 were prepared by the polyvinyl alcohol (PVA; Mw 146,000-186,000, Sigma Aldrich,
525 Germany) assisted method in the absence of divalent ions. Black, 96-well glass bottom
526 plates (Greiner Bio-One) were coated with 2 % PVA and evaporated by heating at
527 70 °C for 20 min. In total 10 µl of desired lipid mixtures at 1 mg/mL in
528 chloroform/methanol/water 1/2/0.8 (v/v) was spread on top of the PVA coated wells,
529 followed by subsequent incubation under vacuum for at least 1 h to form a lipid film
530 and allow removal of organic solvents. Sucrose containing swelling buffer (280 mM
531 sucrose, 25 mM HEPES-NaOH, pH 7.4; 300 µl per well) was added and incubated for
532 at least 20 min to induce vesicle formation.

533

534 **Confocal imaging**

535 GUVs were deposited in a 1 % BSA precoated imaging chamber (384-Well Glass-
536 Bottom Plates, Greiner Bio-One, Austria). Labeled 14F7 mAb (14F7hT) was added and
537 the sample was left for 30 min incubation at 23 °C before confocal imaging. GUVs
538 were imaged with a Zeiss LSM 780 confocal microscope. 488 nm and 543 nm lasers
539 were used for excitation of green and red fluorophores, respectively. BP 530-550, BP
540 585-615 filters in multi-track mode were used to eliminate the cross talk.

541

542 **Preparation of liposomes**

543 For vesicle preparation, lipids (DOPC and cholesterol from Avanti, US, NeuAc GM3
544 from Matreya, US, and NeuGc GM3 from CIM, Havana, Cuba) were mixed at the
545 desired molar ratios and dried under nitrogen gas stream, followed by incubation under
546 vacuum for 4 h to remove organic solvents. The dried lipid film was re-hydrated in
547 HEPES-buffered saline (HBS) (10 mM HEPES -NaOH, 150 mM NaCl, pH 7.4) to a
548 final concentration of 1 mg/mL, for 15 min at 600 rpm. Multilamellar vesicles (MLV)
549 were either used directly or further processed to yield unilamellar vesicles (LUVs).
550 LUVs where produced by subjecting the liposomes to 10 cycles of freezing in liquid
551 nitrogen and subsequent thawing in a heating block at 30 °C. The vesicle solution was
552 extruded 21 times through a 100 nm diameter polycarbonate membrane (Whatman®
553 Nuclepore, Fisher Scientific, US) using an extrusion kit (Avanti, US). The size of the

554 liposomes was determined by dynamic light scattering using a Zetasizer Nano ZS
555 (Malvern Instruments, UK).

556

557 **Lipid extraction and validation by thin-layer chromatography (TLC)**

558 Lipid composition of liposomes was assayed by thin layer chromatography as described
559 previously⁸⁸. Briefly, lipids were extracted using two step extraction protocol
560 (chloroform:methanol 10:1 followed by 2:1)⁸⁸. After each step, the lipid containing
561 organic phase was pooled and dried under a nitrogen stream. The lipids were
562 resuspended in a small volume of chloroform/methanol (2:1) and applied to a HPTLC
563 plate (Silica Gel 60, Merck, Germany) together with DOPC/cholesterol and
564 NeuGc/NeuAc GM3 as standards. The plate was placed under vacuum for 30 min. For
565 development, chloroform/methanol/ 0.2 % calcium chloride (60/35/6) was used. To
566 visualize glycolipids, the plate was sprayed with orcinol (Sigma Aldrich, Germany) and
567 heated (200 °C until desired signal was observed).

568

569 **Flotation assay**

570 50 µl of liposomes was mixed with 14F7 mAb (14F7hT) or scFv (20 µg/mL final
571 concentration) and incubated for 30 min on ice. Thereafter, iodixanol (Optiprep; Sigma
572 Aldrich, Germany) was added to a final concentration of 30 % and a step gradient was
573 built on top (10 %, 2.5 %, and 0 % iodixanol in HBS). Protein-liposome complexes
574 were separated from unbound protein by centrifugation (2 h at 45.000 rpm, 4 °C,
575 MLS50 rotor -Beckman Coulter) in the density gradient. After flotation, 11 fractions
576 were collected from top of the tube. Samples were precipitated with 10 % TCA and
577 pelleted by centrifugation (20 min, 20,000 x g, 4 °C). The supernatant was discarded,
578 and the remaining pellet was neutralized with 1.5 M Tris -HCl, pH 8.8. SDS loading
579 buffer (250 mM Tris-HCl pH 6.8, 12.5 mM EDTA, 10 % SDS, 25 % glycerol, 200 mM
580 DTT) was added to all samples before loading on a 4-12 % Bis-Tris gel for SDS-
581 electrophoresis.

582

583

584

585 **Electrochemiluminescence immunoassay (EIA)**

586 Liposomes were passively adsorbed on the electrode surface (1 h, 23 °C), and the
587 residual sites on the surface were blocked with 0.2 % porcine gelatin (1 h, 23 °C). The
588 surface was then washed three times with HBS and porcine gelatin solutions containing
589 the desired concentrations of 14F7 mAb or scFv (were added to each well). Binding
590 was carried out for 2 h at 23 °C. Wells were then washed and a solution of goat anti-
591 human-SulfoTAG (Mesoscale Discovery, US) or protein L-SulfoTAG was added
592 (1 µg/mL, 23 °C, 1 h). The wells were washed and reading buffer was added (MSD
593 surfactant-free reading buffer). The background was determined from binding of
594 secondary antibodies or protein L to liposomes. Data were acquired on a SECTOR
595 Imager 6000. The recorded data were analyzed using GraphPad Prism 6.0 software
596 using one site-specific binding algorithm.

597

598 **Labeling of humanized 14F7 mAb (14F7hT) and protein L**

599 14F7hT was labeled using the DyLight 488-NHS ester (Thermo Fisher, US) for
600 detection during confocal microscopy. Protein L was labeled with SulfoTAG-NHS
601 ester (Mesoscale Discovery, US) at a 1:20 molar ratio for scFv detection during EIA.
602 The mixture was incubated for 1 h at 4 °C. The reaction was stopped by the addition of
603 at least 5-fold molar excess of ethanolamine over the NHS-reagent, followed by the
604 removal of excess label-molecules by a gravity spin column (GE Healthcare, Germany).

605

606 **Thermal stability measurements using nanoDSF**

607 For nanoDSF measurements, scFv was diluted with HBS to reach a final concentration
608 of 0.5 mg/mL, and subsequently filled into nanoDSF standard treated capillaries.
609 Thermal unfolding and aggregation was monitored in a temperature ramp with 1 °C/min
610 from 20 °C to 95 °C with a resolution of ~ 20 data points/min. Analysis of unfolding
611 and aggregation was performed using the PR.Control Software.

612

613 **Surface Plasmon Resonance**

614 SPR experiments were performed using a BIACore X100 instrument on an HPA sensor
615 chip⁸⁹ (GE Healthcare, Germany). An HPA chip was cleaned with 40 mM octyl-

616 glucoside (10 μ L/min, 5 min). Next, LUVs consisting of DOPC, cholesterol (both from
617 Avanti, US), NeuGc GM3 (CIM, Havana, Cuba) and/or NeuAc GM3 (Matreya, US) at
618 the desired molar ratios, were injected across the sensor chip at a low flow rate. The
619 LUVs (400 μ M) were allowed to collapse and form a monolayer on the HPA chip
620 (2 μ L/min, 15 min). Then, the chip was washed twice with 10 M NaOH (10 μ L/min,
621 30 s), and once with HBS (10 mM HEPES, 150 mM NaCl, pH 7.4) (80 μ L/min, 60 s) to
622 remove any unbound liposomes. The end-response was between 900 and 1300 RU.
623 14F7 mAb (500 nM) in HBS was injected at 30 μ L/min for 3 min. The dissociation
624 phase was measured for 5 min. At the end of the binding assay, the surface of the sensor
625 chip was regenerated with two injections of 3:2 10 M NaOH/isopropanol (10 μ L/min,
626 30 s). The binding response of the 14F7 mAb was obtained after subtracting the binding
627 signal from the reference flow cell containing vesicles without gangliosides. The
628 experiment was repeated twice with similar results.

629

630 **Western blot**

631 Proteins were transferred to a 0.45 μ m membranes (Millipore) for immunoblotting. The
632 membrane was incubated for 1 h on a tilting tray (10 rpm, 23 °C) in TM-PBS buffer
633 (0.1 % Tween 20, 5 % nonfat dry milk powder in 1x PBS), before a 20 sec wash in
634 fresh TM-PBS. Secondary antibody (Goat anti-human IgG, 1.25 μ g/mL, SulfoTAG)
635 diluted in TM-PBS was added, and the membrane was incubated for 1 h (10 rpm,
636 23 °C). The membrane was washed thrice in 5 min intervals, twice in T-PBS (0.1 %
637 Tween 20 in 1x PBS) and once in 1x PBS. Detection was performed with a CCD imager
638 (Imager 600, GE Healthcare) using SuperSignal West Pico PLUS (Thermo Fisher, US)
639 as substrate.

640

641 **Acknowledgements**

642 We thank the staff of ESRF (Guillaume Gotthard) for assistance and support in using
643 beamline ID30A-3, and the Center of Molecular Immunology (CIM), Havana for
644 providing us with 14F7 mAb and the NeuGc GM3 ganglioside. Work at UiO was
645 funded by the University of Oslo (including the postdoc position of KBA and the PhD
646 position of HJ). Work in Dresden was supported by the German Federal Ministry of
647 Education and Research (BMBF) grant to the German Center for Diabetes Research
648 (DZD e.V.; Ü.C.) and the Deutsche Forschungsgemeinschaft (DFG; Project Number
649 251981924 – TRR 83; Ü.C.). Work at UdeM was supported with funds from the
650 Colombian Government (NanoBioCáncer program, grant FP44842-211-2018), and
651 work at UCD was funded by Science Foundation Ireland, grants No. 08/SRC/B1393
652 and13/IA/1959. Work at NIC was supported by the Slovenian Research Agency
653 (program grant P1-0391).

654

655 **Author contributions**

656 H.J., M.G., Ü.C. and U.K. conceived the study. F.A. synthesized the trisaccharide,
657 supervised by S.O.. H.J. expressed and purified the constructs, supervised by U.K..
658 K.B.-A. was in charge of the crystallography, with U.K. validating the crystal structure.
659 E.M. performed the modeling studies. Liposome experiments were performed by H.J.,
660 D.G. and M.G., who also served as supervisor for this part of the work. SPR
661 experiments were performed by H.J. and A.S., supervised by G.A.. K.B.-A. and H.J.
662 wrote the first draft of the manuscript, which was revised in tight collaboration with
663 E.M., M.G. and U.K., and approved by all authors.

664

665

666

667

668

669

670

671

672

673

674 **References**

675 1 Dennis, J. W., Laferté, S., Waghorne, C., Breitman, M. L. & Kerbel, R. S. β 1-6
676 branching of Asn-linked oligosaccharides is directly associated with metastasis.
677 *Science* **236**, 582-585, doi:10.1126/science.2953071 (1987).

678 2 Hakomori, S. in *The molecular immunology of complex carbohydrates-2. Advances in experimental medicine and biology* Vol. 491 (ed Albert M. Wu) Ch. Tumor-
679 associated carbohydrate antigens defining tumor malignancy: basis for development
680 of anti-cancer vaccines, 369-402 (Springer, Boston, MA, 2001).

682 3 Pochechueva, T., Jacob, F., Fedier, A. & Heinzelmann-Schwarz, V. Tumor-
683 associated glycans and their role in gynecological cancers: accelerating translational
684 research by novel high-throughput approaches. *Metabolites* **2**, 913-939,
685 doi:10.3390/metabo2040913 (2012).

686 4 Scott, A. M., Geleick, D., Rubira, M., Clarke, K., Nice, E. C., Smyth, F. E., Stockert,
687 E., Richards, E. C., Carr, F. J., Harris, W. J., Armour, K. L., Rood, J., Kypridis, A.,
688 Kronina, V., Murphy, R., Lee, F.-T., Liu, Z., Kitamura, K., Ritter, G., Laughton, K.,
689 Hoffman, E., Burgess, A. W. & Old, L. J. Construction, production, and
690 characterization of humanized anti-Lewis Y monoclonal antibody 3S193 for targeted
691 immunotherapy of solid tumors. *Cancer Res* **60**, 3254-3261 (2000).

692 5 Yu, A. L., Gilman, A. L., Ozkaynak, M. F., London, W. B., Kreissman, S. G., Chen,
693 H. X., Smith, M., Anderson, B., Villablanca, J. G., Matthay, K. K., Shimada, H.,
694 Grupp, S. A., Seeger, R., Reynolds, C. P., Buxton, A., Reisfeld, R. A., Gillies, S. D.,
695 Cohn, S. L., Maris, J. M. & Sondel, P. M. for the Children's Oncology Group. Anti-
696 GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. *N
697 Engl J Med* **363**, 1324-1334, doi:10.1056/NEJMoa0911123 (2010).

698 6 Hutchins, L. F., Makhoul, I., Emanuel, P. D., Pennisi, A., Siegel, E. R., Jousheghany,
699 F., Guo, X., Pashov, A. D., Monzavi-Karbassi, B. & Kieber-Emmons, T. Targeting
700 tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-
701 peptide vaccine in stage IV breast cancer subjects. *Oncotarget* **8**, 99161-99178,
702 doi:10.18632/oncotarget.21959 (2017).

703 7 Carr, A., Mullet, A., Mazorra, Z., Vázquez, A. M., Alfonso, M., Mesa, C., Rengifo,
704 E., Pérez, R. & Fernández, L. E. A mouse IgG1 monoclonal antibody specific for *N*-
705 glycolyl GM3 ganglioside recognized breast and melanoma tumors. *Hybridoma* **19**,
706 241-247, doi:10.1089/02724570050109639 (2000).

707 8 Rojas, G., Talavera, A., Muñoz, Y., Rengifo, E., Krengel, U., Ångström, J.,
708 Gavilondo, J. & Moreno, E. Light-chain shuffling results in successful phage display
709 selection of functional prokaryotic-expressed antibody fragments to *N*-glycolyl GM3
710 ganglioside. *J Immunol Methods* **293**, 71-83, doi:10.1016/j.jim.2004.07.002 (2004).

711 9 Bjerregaard-Andersen, K., Johannessen, H., Abdel-Rahman, N., Heggelund, J. E.,
712 Hoås, H. M., Abraha, F., Bousquet, P. A., Høydahl, L. S., Burschowsky, D., Rojas,
713 G., Oscarson, S., Løset, G. Å. & Krengel, U. Crystal structure of an L chain
714 optimised 14F7 anti-ganglioside Fv suggests a unique tumour-specificity through an
715 unusual H-chain CDR3 architecture. *Sci Rep* **8**, 1-11, doi:10.1038/s41598-018-28918-
716 5 (2018).

717 10 Torbidoni, A. V., Scurtoni, A., Camarero, S., Segatori, V., Gabri, M., Alonso, D.,
718 Chantada, G. & de Dávila, M. T. G. Immunoreactivity of the 14F7 Mab raised against
719 *N*-glycolyl GM3 ganglioside in retinoblastoma tumours. *Acta Ophthalmol* **93**, e294-
720 e300, doi:10.1111/aos.12578 (2015).

721 11 Blanco, R., Rengifo, C. E., Cedeño, M., Frómeta, M., Rengifo, E. & Carr, A.
722 Immunoreactivity of the 14F7 Mab (raised against *N*-glycolyl GM3 ganglioside) as a

723 724 positive prognostic factor in non-small-cell lung cancer. *Patholog Res Int* **2012**, 1-12,
doi:10.1155/2012/235418 (2012).

725 726 727 728 12 Lahera, T., Calvo, A., Torres, G., E Rengifo, C., Quintero, S., Arango, M. d. C.,
Danta, D., Vázquez, J. M., Escobar, X. & Carr, A. Prognostic role of 14F7 Mab
immunoreactivity against N-glycolyl GM3 ganglioside in colon cancer. *J Oncol* **2014**,
1-8, doi:10.1155/2014/482301 (2014).

729 730 731 732 733 734 13 Oliva, J. P., Valdés, Z., Casacó, A., Pimentel, G., González, J., Álvarez, I., Osorio,
M., Velazco, M., Figueroa, M., Ortiz, R., Escobar, X., Orozco, M., Cruz, J., Franco,
S., Díaz, M., Roque, L., Carr, A., Vázquez, A. M., Mateos, C., Rubio, M. C., Pérez,
R. & Fernández, L. E. Clinical evidences of GM3 (NeuGc) ganglioside expression in
human breast cancer using the 14F7 monoclonal antibody labelled with ^{99m}Tc. *Breast
Cancer Res and Treat* **96**, 115-121, doi:10.1007/s10549-005-9064-0 (2006).

735 736 737 738 739 14 Fernández-Marrero, Y., Roque-Navarro, L., Hernández, T., Dorvignit, D., Molina-
Pérez, M., González, A., Sosa, K., López-Requena, A., Pérez, R. & Mateo de Acosta,
C. A cytotoxic humanized anti-ganglioside antibody produced in a murine cell line
defective of N-glycolylated-glycoconjugates. *Immunobiology* **216**, 1239-1247,
doi:10.1016/j.imbio.2011.07.004 (2011).

740 741 742 743 744 15 Dorvignit, D., Boligan, K. F., Relova-Hernández, E., Clavell, M., López, A., Labrada,
M., Simon, H.-U., López-Requena, A., Mesa, C. & von Gunten, S. Antitumor effects
of the GM3(Neu5Gc) ganglioside-specific humanized antibody 14F7hT against
Cmah-transfected cancer cells. *Sci Rep* **9**, 1-12, doi:10.1038/s41598-019-46148-1
(2019).

745 746 747 16 Carr, A., Mesa, C., Arango, M. d. C., Vázquez, A. M. & Fernández, L. E. *In vivo* and
in vitro anti-tumor effect of 14F7 monoclonal antibody. *Hybrid Hybridomics* **21**, 463-
468, doi:10.1089/153685902321043990 (2002).

748 749 750 751 17 Roque-Navarro, L., Chakrabandhu, K., de León, J., Rodríguez, S., Toledo, C., Carr,
A., de Acosta, C. M., Hueber, A.-O. & Pérez, R. Anti-ganglioside antibody-induced
tumor cell death by loss of membrane integrity. *Mol Cancer Ther* **7**, 2033-2041,
doi:10.1158/1535-7163.MCT-08-0222. (2008).

752 753 754 18 Rojas, G., Pupo, A., Gómez, S., Krengel, U. & Moreno, E. Engineering the binding
site of an antibody against N-glycolyl GM3: from functional mapping to novel anti-
ganglioside specificities. *ACS Chem Biol* **8**, 376-386, doi:10.1021/cb3003754 (2013).

755 756 757 758 19 Krengel, U., Olsson, L.-L., Martínez, C., Talavera, A., Rojas, G., Mier, E., Ångström,
J. & Moreno, E. Structure and molecular interactions of a unique antitumor antibody
specific for N-glycolyl GM3. *J Biol Chem* **279**, 5597-5603,
doi:10.1074/jbc.M311693200 (2004).

759 760 761 762 20 Labrada, M., Dorvignit, D., Hevia, G., Rodríguez-Zhurbenko, N., Hernández, A. M.,
Vázquez, A. M. & Fernández, L. E. GM3(Neu5Gc) ganglioside: an evolution fixed
neoantigen for cancer immunotherapy. *Semin Oncol* **45**, 41-51,
doi:10.1053/j.seminoncol.2018.04.003 (2018).

763 764 765 766 21 Chou, H.-H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., Wright, K. L.,
Muchmore, E. A., Nelson, D. L., Warren, S. T. & Varki, A. A mutation in human
CMP-sialic acid hydroxylase occurred after the *Homo-Pan* divergence. *Proc Natl
Acad Sci U S A* **95**, 11751-11756, doi:10.1073/pnas.95.20.11751 (1998).

767 768 769 22 Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T. & Suzuki, A. The molecular basis
for the absence of N-glycolylneuraminic acid in humans. *J Biol Chem* **273**, 15866-
15871, doi:10.1074/jbc.273.25.15866 (1998).

770 771 23 Varki, A. N-glycolylneuraminic acid deficiency in humans. *Biochimie* **83**, 615-622,
doi:10.1016/S0300-9084(01)01309-8 (2001).

772 24 Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A. &
773 Muchmore, E. Human uptake and incorporation of an immunogenic nonhuman
774 dietary sialic acid. *Proc Natl Acad Sci U S A* **100**, 12045-12050,
775 doi:10.1073/pnas.2131556100 (2003).

776 25 Bardor, M., Nguyen, D. H., Diaz, S. & Varki, A. Mechanism of uptake and
777 incorporation of the non-human sialic acid *N*-glycolylneuraminic acid into human
778 cells. *J Biol Chem* **280**, 4228-4237, doi:10.1074/jbc.M412040200 (2005).

779 26 Byres, E., Paton, A. W., Paton, J. C., Löfeling, J. C., Smith, D. F., Wilce, M. C.,
780 Talbot, U. M., Chong, D. C., Yu, H., Huang, S., Chen, X., Varki, N. M., Varki, A.,
781 Rossjohn, J. & Beddoe, T. Incorporation of a non-human glycan mediates human
782 susceptibility to a bacterial toxin. *Nature* **456**, 648-652, doi:10.1038/nature07428
783 (2008).

784 27 Banda, K., Gregg, C. J., Chow, R., Varki, N. M. & Varki, A. Metabolism of
785 vertebrate amino sugars with *N*-glycolyl groups: mechanisms underlying
786 gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen *N*-
787 glycolylneuraminic acid. *J Biol Chem* **287**, 28852-28864,
788 doi:10.1074/jbc.M112.364182 (2012).

789 28 Dhar, C., Sasmal, A. & Varki, A. From «serum sickness» to «xenosialitis»: past,
790 present, and future significance of the non-human sialic acid Neu5Gc. *Front Immunol*
791 **10**, 1-16, doi:10.3389/fimmu.2019.00807 (2019).

792 29 Bremer, E. G., Schlessinger, J. & Hakomori, S. Ganglioside-mediated modulation of
793 cell growth. Specific effects of GM₃ on tyrosine phosphorylation of the epidermal
794 growth factor receptor. *J Biol Chem* **261**, 2434-2440 (1986).

795 30 Hanai, N., Nores, G. A., MacLeod, C., Torres-Mendez, C.-R. & Hakomori, S.
796 Ganglioside-mediated modulation of cell growth. Specific effects of GM₃ and lyso-
797 GM₃ in tyrosine phosphorylation of the epidermal growth factor receptor. *J Biol*
798 *Chem* **263**, 10915-10921 (1988).

799 31 Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M.,
800 Igarashi, Y. & Inokuchi, J. Dissociation of the insulin receptor and caveolin-1
801 complex by ganglioside GM3 in the state of insulin resistance. *Proc Natl Acad Sci U*
802 *S A* **104**, 13678-13683, doi:10.1073/pnas.0703650104 (2007).

803 32 Kawashima, N., Yoon, S.-J., Itoh, K. & Nakayama, K.-i. Tyrosine kinase activity of
804 epidermal growth factor receptor is regulated by GM3 binding through carbohydrate
805 to carbohydrate Interactions. *J Biol Chem* **284**, 6147-6155,
806 doi:10.1074/jbc.M808171200 (2009).

807 33 Coskun, Ü., Grzybek, M., Drechsel, D. & Simons, K. Regulation of human EGF
808 receptor by lipids. *Proc Natl Acad Sci U S A* **108**, 9044-9048,
809 doi:10.1073/pnas.1105666108 (2011).

810 34 Malykh, Y. N., Schauer, R. & Shaw, L. *N*-glycolylneuraminic acid in human
811 tumours. *Biochimie* **83**, 623-634, doi:10.1016/S0300-9084(01)01303-7 (2001).

812 35 Yin, J., Hashimoto, A., Izawa, M., Miyazaki, K., Chen, G.-Y., Takematsu, H.,
813 Kozutsumi, Y., Suzuki, A., Furuhata, K., Cheng, F.-L., Lin, C.-H., Sato, C., Kitajima,
814 K. & Kannagi, R. Hypoxic culture induces expression of sialin, a sialic acid
815 transporter, and cancer-associated gangliosides containing non-human sialic acid on
816 human cancer cells. *Cancer Res* **66**, 2937-2945 (2006).

817 36 Alisson-Silva, F., Kawanishi, K. & Varki, A. Human risk of diseases associated with
818 red meat intake: Analysis of current theories and proposed role for metabolic
819 incorporation of a non-human sialic acid. *Mol Aspects Med* **51**, 16-30,
820 doi:10.1016/j.mam.2016.07.002 (2016).

821 37 Bousquet, P. A., Sandvik, J. A., Jeppesen Edin, N. F. & Krengel, U. Hypothesis:
822 hypoxia induces *de novo* synthesis of NeuGc gangliosides in humans through CMAH
823 domain substitute. *Biochem Biophys Res Commun* **495**, 1562-1566,
824 doi:10.1016/j.bbrc.2017.11.183 (2018).

825 38 Siebert, H.-C., Reuter, G., Schauer, R., von der Lieth, C.-W. & Dabrowski, J.
826 Solution conformations of GM3 gangliosides containing different sialic acid residues
827 as revealed by NOE-based distance mapping, molecular mechanics, and molecular
828 dynamics calculations. *Biochemistry* **31**, 6962-6971, doi:10.1021/bi00145a014
829 (1992).

830 39 Simons, K. & van Meer, G. Lipid sorting in epithelial cells. *Biochemistry* **27**, 6197-
831 6202, doi:10.1021/bi00417a001 (1988).

832 40 Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-
833 rich membrane rafts. *J Biol Chem* **275**, 17221-17224, doi:10.1074/jbc.R000005200
834 (2000).

835 41 Pencer, J., Mills, T., Anghel, V., Krueger, S., Epand, R. M. & Katsaras, J. Detection
836 of submicron-sized raft-like domains in membranes by small-angle neutron
837 scattering. *Eur Phys J E Soft Matter* **18**, 447-458, doi:10.1140/epje/e2005-00046-5
838 (2005).

839 42 Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. *Science*
840 **327**, 46-50, doi:10.1126/science.1174621 (2010).

841 43 Simons, K. & Sampaio, J. L. Membrane organization and lipid rafts. *Cold Spring
842 Harb Perspect Biol* **3**, 1-17, doi:10.1101/csfperspect.a004697 (2011).

843 44 Nickels, J. D., Chatterjee, S., Stanley, C. B., Qian, S., Cheng, X., Myles, D. A. A.,
844 Standaert, R. F., Elkins, J. G. & Katsaras, J. The *in vivo* structure of biological
845 membranes and evidence for lipid domains. *PLoS Biol* **15**, 1-22,
846 doi:10.1371/journal.pbio.2002214 (2017).

847 45 Semeraro, E. F., Devos, J. M., Porcar, L., Forsyth, V. T. & Narayanan, T. *In vivo*
848 analysis of the *Escherichia coli* ultrastructure by small-angle scattering. *IUCrJ* **4**,
849 751-757, doi:doi:10.1107/S2052252517013008 (2017).

850 46 Bremer, E. G., Hakomori, S., Bowen-Pope, D. F., Raines, E. & Ross, R. Ganglioside-
851 mediated modulation of cell growth, growth factor binding, and receptor
852 phosphorylation. *J Biol Chem* **259**, 6818-6825 (1984).

853 47 Hakomori, S. The glycosynapse. *Proc Natl Acad Sci U S A* **99**, 225-232,
854 doi:10.1073/pnas.012540899 (2002).

855 48 Klokk, T. I., Kavaliauskienė, S. & Sandvig, K. Cross-linking of glycosphingolipids at
856 the plasma membrane: consequences for intracellular signaling and traffic. *Cell Mol
857 Life Sci* **73**, 1301-1316, doi:10.1007/s00018-015-2049-1 (2016).

858 49 Cheng, X. & Smith, J. C. Biological membrane organization and cellular signaling.
859 *Chem Rev* **119**, 5849-5880, doi:10.1021/acs.chemrev.8b00439 (2019).

860 50 Krengel, U. & Bousquet, P. A. Molecular recognition of gangliosides and their
861 potential for cancer immunotherapies. *Front Immunol* **5**, 1-11,
862 doi:10.3389/fimmu.2014.00325 (2014).

863 51 Gierszal, K. P., Davis, J. G., Hands, M. D., Wilcox, D. S., Slipchenko, L. V. & Ben-
864 Amotz, D. π -hydrogen bonding in liquid water. *Phys Chem Lett* **2**, 2930-2933,
865 doi:10.1021/jz201373e (2011).

866 52 Peng, H.-P., Lee, K. H., Jian, J.-W. & Yang, A.-S. Origins of specificity and affinity
867 in antibody–protein interactions. *Proc Natl Acad Sci U S A* **111**, E2656-2665,
868 doi:10.1073/pnas.1401131111 (2014).

869 53 Durec, M., Marek, R. & Kozelka, J. Water–tryptophan interactions: lone-pair··· π or
870 O–H··· π ? Molecular dynamics simulations of β -galactosidase suggest that both modes
871 can co-exist. *Chemistry* **24**, 5849–5859, doi:10.1002/chem.201705364 (2018).

872 54 Levy, Y. & Onuchic, J. N. Water mediation in protein folding and molecular
873 recognition. *Annu Rev Biophys Biomol Struct* **35**, 389–415,
874 doi:10.1146/annurev.biophys.35.040405.102134 (2006).

875 55 Bellissent-Funel, M.-C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P.,
876 Sterpone, F., van der Spoel, D., Xu, Y. & Garcia, A. E. Water determines the
877 structure and dynamics of proteins. *Chem Rev* **116**, 7673–7697,
878 doi:10.1021/acs.chemrev.5b00664 (2016).

879 56 Weis, W. I. & Drickamer, K. Structural basis of lectin–carbohydrate recognition.
880 *Annu Rev Biochem* **65**, 441–473, doi:10.1146/annurev.bi.65.070196.002301 (1996).

881 57 Janin, J. Wet and dry interfaces: the role of solvent in protein–protein and protein–
882 DNA recognition. *Structure* **7**, R277–279, doi:10.1016/s0969-2126(00)88333-1
883 (1999).

884 58 Holmner, Å., Lebents, M., Teneberg, S., Ångström, J., Ökvist, M. & Krengel, U.
885 Novel binding site identified in a hybrid between cholera toxin and heat-labile
886 enterotoxin: 1.9 Å crystal structure reveals the details. *Structure* **12**, 1655–1667,
887 doi:10.1016/j.str.2004.06.022 (2004).

888 59 Braden, B. C., Fields, B. A. & Poljak, R. J. Conservation of water molecules in an
889 antibody–antigen interaction. *J Mol Recognit* **8**, 317–325, doi:10.1002/jmr.300080505
890 (1995).

891 60 Cohen, G. H., Silverton, E. W., Padlan, E. A., Dyda, F., Wibbenmeyer, J. A., Willson,
892 R. C. & Davies, D. R. Water molecules in the antibody–antigen interface of the
893 structure of the Fab HyHEL-5-lysozyme complex at 1.7 Å resolution: comparison
894 with results from isothermal titration calorimetry. *Acta Crystallogr D Biol
895 Crystallogr* **61**, 628–633, doi:10.1107/s0907444905007870 (2005).

896 61 Marino, S. F., Olal, D. & Daumke, O. A complex water network contributes to high-
897 affinity binding in an antibody–antigen interface. *Data Brief* **6**, 394–397,
898 doi:10.1016/j.dib.2015.12.023 (2015).

899 62 Horita, S., Nomura, Y., Sato, Y., Shimamura, T., Iwata, S. & Nomura, N. High-
900 resolution crystal structure of the therapeutic antibody pembrolizumab bound to the
901 human PD-1. *Sci Rep* **6**, 1–8, doi:10.1038/srep35297 (2016).

902 63 Yu, X., Coulson, B. S., Fleming, F. E., Dyason, J. C., von Itzstein, M. & Blanchard,
903 H. Novel structural insights into rotavirus recognition of ganglioside glycan receptors.
904 *J Mol Biol* **413**, 929–939, doi:10.1016/j.jmb.2011.09.005 (2011).

905 64 Nores, G. A., Dohi, T., Taniguchi, M. & Hakomori, S. Density-dependent recognition
906 of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a
907 possible immunogen: requirements for tumor-associated antigen and immunogen. *J
908 Immunol* **139**, 3171–3176 (1987).

909 65 Stewart, R. J. & Boggs, J. M. A carbohydrate–carbohydrate interaction between
910 galactosylceramide–containing liposomes and cerebroside sulfate-containing
911 liposomes: dependence on the glycolipid ceramide composition. *Biochemistry* **32**,
912 10666–10674, doi:10.1021/bi00091a017 (1993).

913 66 Sezgin, E., Levental, I., Grzybek, M., Schwarzmann, G., Mueller, V., Honigmann, A.,
914 Belov, V. N., Eggeling, C., Coskun, Ü., Simons, K. & Schwille, P. Partitioning,
915 diffusion, and ligand binding of raft lipid analogs in model and cellular plasma

916 67 membranes. *Biochim Biophys Acta* **1818**, 1777-1784,
917 doi:10.1016/j.bbamem.2012.03.007 (2012).

918 67 Bolmatov, D., Soloviov, D., Zhernenkov, M., Zav'yalov, D., Mamontov, E., Suvorov, A., Cai, Y. Q. & Katsaras, J. Molecular picture of the transient nature of lipid rafts. *Langmuir* **36**, 4887-4896, doi:10.1021/acs.langmuir.0c00125 (2020).

921 68 Collard, L., Perez-Guaita, D., Faraj, B. H. A., Wood, B. R., Wallis, R., Andrew, P. W. & Hudson, A. J. Light scattering by optically-trapped vesicles affords unprecedented temporal resolution of lipid-raft dynamics. *Sci Rep* **7**, 1-11, doi:10.1038/s41598-017-08980-1 (2017).

925 69 Kollmitzer, B., Heftberger, P., Rappolt, M. & Pabst, G. Monolayer spontaneous curvature of raft-forming membrane lipids. *Soft Matter* **9**, 10877-10884, doi:10.1039/c3sm51829a (2013).

928 70 Meinhardt, S., Vink, R. L. C. & Schmid, F. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers. *Proc Natl Acad Sci U S A* **110**, 4476-4481, doi:10.1073/pnas.1221075110 (2013).

931 71 Sadeghi, S., Müller, M. & Vink, R. L. C. Raft formation in lipid bilayers coupled to curvature. *Biophys J* **107**, 1591-1600, doi:10.1016/j.bpj.2014.07.072 (2014).

933 72 Seddon, J. M. & Templer, R. H. in *Handbook of Biological Physics. Structure and dynamics of membranes: from cells to vesicles* Vol. 1 (eds R. Lipowsky & E. Sackmann) Ch. 3. Polymorphism of lipid water systems, 97-160 (Elsevier Science B.V., 1995).

937 73 Ipsen, J. H., Karlström, G., Mouritsen, O. G., Wennerström, H. & Zuckermann, M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. *Biochim Biophys Acta Biomembr* **905**, 162-172, doi:10.1016/0005-2736(87)90020-4 (1987).

940 74 Ipsen, J. H., Mouritsen, O. G. & Zuckermann, M. J. Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. *Biophys J* **56**, 661-667, doi:10.1016/S0006-3495(89)82713-4 (1989).

943 75 Pascher, I. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. *Biochim Biophys Acta Biomembr* **455**, 433-451, doi:10.1016/0005-2736(76)90316-3 (1976).

947 76 Nyholm, P.-G., Pascher, I. & Sundell, S. The effect of hydrogen bonds on the conformation of glycosphingolipids. Methylated and unmethylated cerebroside studied by X-ray single crystal analysis and model calculations. *Chem Phys Lipids* **52**, 1-10, doi:10.1016/0009-3084(90)90002-9 (1990).

951 77 DeMarco, M. L. & Woods, R. J. Atomic-resolution conformational analysis of the G_{M3} ganglioside in a lipid bilayer and its implications for ganglioside–protein recognition at membrane surfaces. *Glycobiology* **19**, 344-355, doi:10.1093/glycob/cwn137 (2009).

955 78 Yahi, N., Aulas, A. & Fantini, J. How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's β amyloid peptide (A_{β1-40}). *PloS One* **5**, 9079-9079, doi:10.1371/journal.pone.0009079 (2010).

958 79 Giri, R. P., Chakrabarti, A. & Mukhopadhyay, M. K. Cholesterol-induced structural changes in saturated phospholipid model membranes revealed through X-ray scattering technique. *J Phys Chem B* **121**, 4081-4090, doi:10.1021/acs.jpcb.6b12587 (2017).

962 80 Løset, G. Å., Løbersli, I., Kavlie, A., Stacy, J. E., Borgen, T., Kausmally, L., Hvattum, E., Simonsen, B., Hovda, M. B. & Brekke, O. H. Construction, evaluation

964 and refinement of a large human antibody phage library based on the IgD and IgM
965 variable gene repertoire. *J Immunol Methods* **299**, 47-62,
966 doi:10.1016/j.jim.2005.01.014 (2005).

967 81 Gunnarsen, K. S., Lunde, E., Kristiansen, P. E., Bogen, B., Sandlie, I. & Løset, G. Å.
968 Periplasmic expression of soluble single chain T cell receptors is rescued by the
969 chaperone FkpA. *BMC Biotechnol* **10**, 1-13, doi:10.1186/1472-6750-10-8 (2010).

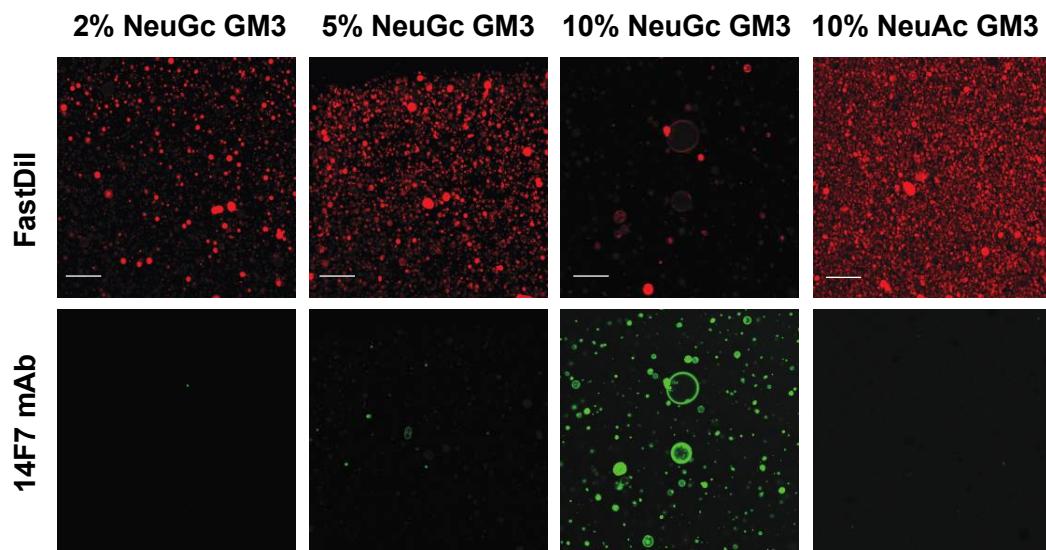
970 82 Incardona, M.-F., Bourenkov, G. P., Levik, K., Pieritz, R. A., Popov, A. N. &
971 Svensson, O. *EDNA*: a framework for plugin-based applications applied to X-ray
972 experiment online data analysis. *J Synchrotron Radiat* **16**, 872-879,
973 doi:10.1107/s0909049509036681 (2009).

974 83 Adams, P. D., Afonine, P. V., Bunkóczki, G., Chen, V. B., Davis, I. W., Echols, N.,
975 Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J.,
976 Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S.,
977 Terwilliger, T. C. & Zwart, P. H. *PHENIX*: a comprehensive Python-based system for
978 macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221,
979 doi:10.1107/S0907444909052925 (2010).

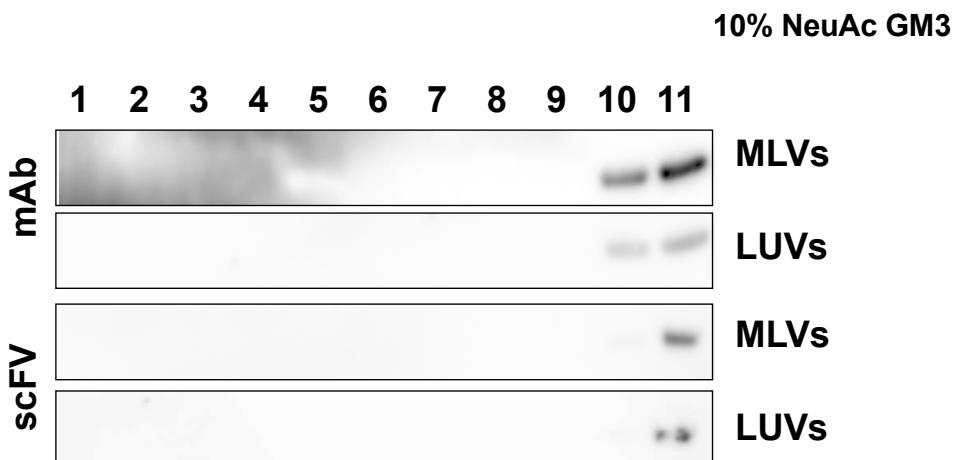
980 84 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of
981 *Coot*. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501,
982 doi:10.1107/S0907444910007493 (2010).

983 85 Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. *electronic Ligand Builder*
984 and *Optimization Workbench (eLBOW)*: a tool for ligand coordinate and restraint
985 generation. *Acta Crystallogr D Biol Crystallogr* **65**, 1074-1080,
986 doi:10.1107/S0907444909029436 (2009).

987 86 Humphrey, W., Dalke, A. & Schulter, K. VMD: visual molecular dynamics. *J Mol*
988 *Graph* **14**, 33-38, 27-38, doi:10.1016/0263-7855(96)00018-5 (1996).


989 87 Folch, J., Arsove, S. & Meath, J. A. Isolation of brain strandin, a new type of large
990 molecule tissue component. *J Biol Chem* **191**, 819-831 (1951).

991 88 Ejsing, C. S., Sampaio, J. L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R.
992 W., Simons, K. & Shevchenko, A. Global analysis of the yeast lipidome by
993 quantitative shotgun mass spectrometry. *Proc Natl Acad Sci U S A* **106**, 2136-2141,
994 doi:10.1073/pnas.0811700106 (2009).


995 89 Šakanovič, A., Hodnik, V. & Anderluh, G. Surface plasmon resonance for measuring
996 Interactions of proteins with lipids and lipid membranes. *Methods Mol Biol* **2003**, 53-
997 70, doi:10.1007/978-1-4939-9512-7_3 (2019).

998

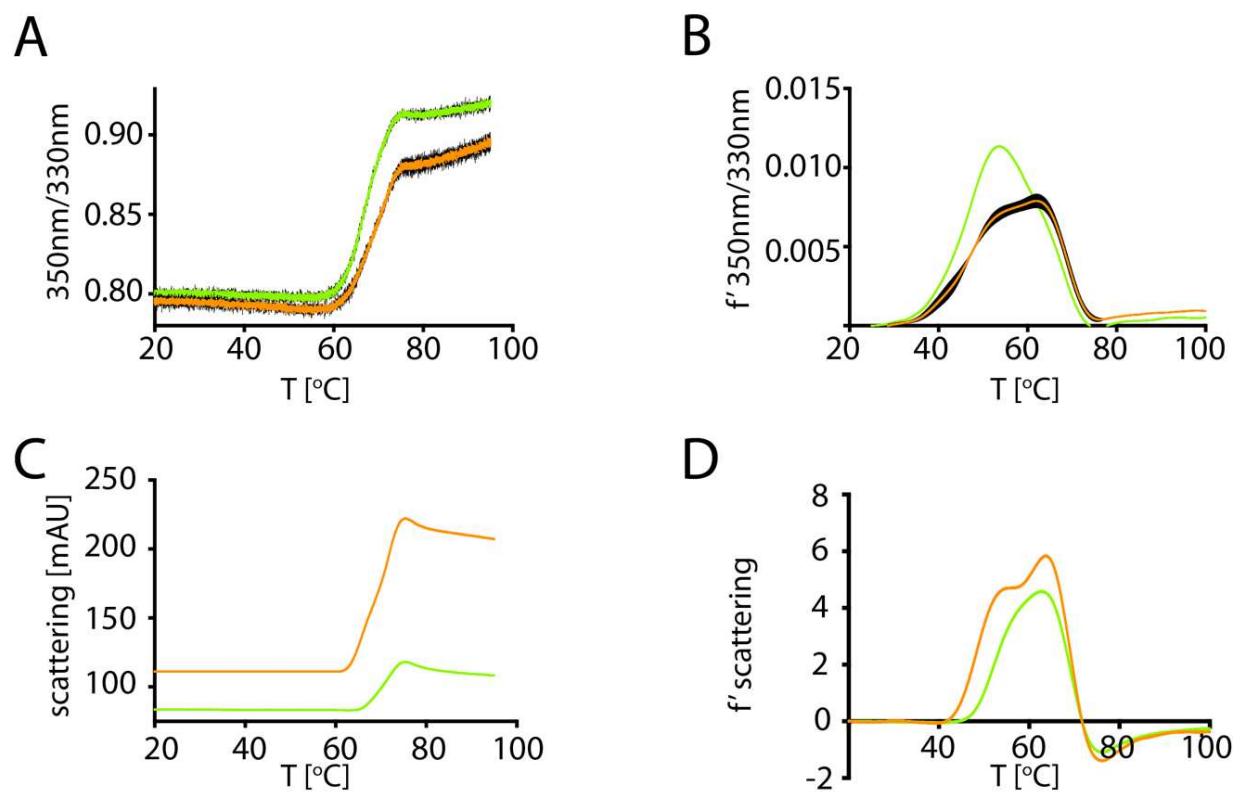

Supplementary Information

Figure S1. Binding of 14F7 to GUVs composed of DOPC/Chol/GM3. 14F7 was chemically labeled with Dylight-488 (green) and added to GUVs containing FastDil as a membrane marker (red). While there was negligible interaction between 14F7 mAb and GUVs with 2 % and 5 % NeuGc GM3, 14F7 bound strongly to GUVs containing 10 % NeuGc GM3. No 14F7 mAb binding was observed for GUVs with 10 % NeuAc GM3. The scale bar corresponds to 20 μ m.

Figure S2. Binding of 14F7 to LUVs and MLVs composed of 10 % NeuAc GM3/DOPC/ cholesterol in a flotation assay. After centrifugation, 11 fractions were collected from the top. Proteins bound to vesicles accumulated in fractions 2-4. For all flotation assays with 10 % NeuAc GM3, the protein was located in the bottom fractions (10-11), where unbound proteins accumulate.

Figure S3. nanoDSF measurements of native (green) and Dylight488-labeled (orange) 14F7 scFv.
A Thermal unfolding curves. **B** First derivative of unfolding curves. **C** Aggregation propensity curves. **D** First derivative of aggregation propensity curves.