

1 **Characterising the methylome of *Legionella longbeachae***
2 **serogroup 1 clinical isolates and assessing geo-temporal**
3 **genetic diversity**

4 Slow S^{1*}, Anderson T², Murdoch DR¹, Bloomfield S^{3, #a}, Winter D⁴, Biggs PJ^{3,4}

5 ¹Department of Pathology and Biomedical Science, University of Otago, Christchurch, New
6 Zealand

7 ²Microbiology, Canterbury Health Laboratories, Christchurch, New Zealand

8 ³Molecular Epidemiology and Veterinary Public Health Laboratory, Infectious Disease
9 Research Centre, School of Veterinary Science, Massey University, Palmerston North, New
10 Zealand

11 ⁴Bioinformatics and Statistics Group, School of Fundamental Sciences, Massey University,
12 Palmerston North, New Zealand

13 ^{#a}Currently at the Quadram Institute Bioscience, Norwich Research Park, Norwich, United
14 Kingdom

15 Short title: The methylome and geo-temporal genetic diversity of *Legionella longbeachae*
16 sg1

17 *Corresponding author: sandy.slow@otago.ac.nz.

18

19 Abstract

20 *Legionella longbeachae* is an environmental bacterium that is commonly found in
21 soil and composted plant material. In New Zealand (NZ) it is the most clinically significant
22 *Legionella* species causing around two-thirds of all notified cases of Legionnaires' disease.
23 Here we report the sequencing and analysis of the geo-temporal genetic diversity of 54 *L.*
24 *longbeachae* serogroup 1 (sg1) clinical isolates that were derived from cases from around
25 NZ over a 22-year period, including one complete genome and its associated methylome.

26 Our complete genome consisted of a 4.1 Mb chromosome and a 108 kb plasmid. The
27 genome was highly methylated with two known epigenetic modifications, m⁴C and m⁶A,
28 occurring in particular sequence motifs within the genome. Phylogenetic analysis
29 demonstrated the 54 sg1 isolates belonged to two main clades that last shared a common
30 ancestor between 108 BCE and 1608 CE. These isolates also showed diversity at the
31 genome-structural level, with large-scale arrangements occurring in some regions of the
32 chromosome and evidence of extensive chromosomal and plasmid recombination. This
33 includes the presence of plasmids derived from recombination and horizontal gene transfer
34 between various *Legionella* species, indicating there has been both intra-species and inter-
35 species gene flow. However, because similar plasmids were found among isolates within
36 each clade, plasmid recombination events may pre-empt the emergence of new *L.*
37 *longbeachae* strains.

38 Our high-quality reference genome and extensive genetic diversity data will serve as
39 a platform for future work linking genetic, epigenetic and functional diversity in this globally
40 important emerging environmental pathogen.

41 Author Summary

42 Legionnaires' disease is a serious, sometimes fatal pneumonia caused by bacteria of
43 the genus *Legionella*. In New Zealand, the species that causes the majority of disease is
44 *Legionella longbeachae*. Although the analyses of pathogenic bacterial genomes is an
45 important tool for unravelling evolutionary relationships and identifying genes and
46 pathways that are associated with their disease-causing ability, until recently genomic data
47 for *L. longbeachae* has been sparse. Here, we conducted a large-scale genomic analysis of 54
48 *L. longbeachae* isolates that had been obtained from people hospitalised with Legionnaires'
49 disease between 1993 and 2015 from 8 regions around New Zealand. Based on our genome
50 analysis the isolates could be divided into two main groups that persisted over time and last
51 shared a common ancestor up to 1700 years ago. Analysis of the bacterial chromosome
52 revealed areas of high modification through the addition of methyl groups and these were
53 associated with particular DNA sequence motifs. We also found there have been large-scale
54 rearrangements in some regions of the chromosome, producing variability between the
55 different *L. longbeacache* strains, as well as evidence of gene-flow between the various
56 *Legionella* species via the exchange of plasmid DNA.

57

58

59

60 Introduction

61 In both natural and man-made environments *Legionella spp.* bacteria are ubiquitous
62 intracellular parasites of protozoa. Humans are “accidental hosts” when lung macrophages
63 become infected following exposure to contaminated materials, causing Legionnaires’
64 disease (LD), an often severe form of pneumonia. In New Zealand (NZ), which has the
65 highest reported incidence of LD in the world [1, 2], *Legionella longbeachae* is the species
66 responsible for causing nearly two-thirds of all notified cases [2-4]. Of the two serogroups,
67 serogroup 1 (sg1) is the most clinically relevant. Unlike *L. pneumophila*, the predominant
68 disease causing species in the UK, Europe and USA [1, 5], *L. longbeachae* is primarily found
69 in soil and composted plant material [6, 7]. As a result, most cases of LD in NZ occur over the
70 spring and summer seasons when people at greatest risk are those involved in gardening
71 activities, particularly following exposure to potting mixes and compost [2, 4, 7-9].

72 Although, whole genome sequencing and interrogation of the resulting data
73 provides invaluable insights into the biology, evolution and virulence of pathogenic
74 organisms, until recently, genomic data for *L. longbeachae* has been sparse, consisting of a
75 single complete genome from an Australian sg1 isolate (NSW150) and four draft genomes;
76 two sg1 and two sg2 isolates [10, 11]. As a result, sequence and comparative genomic
77 analyses between *L. longbeachae* and other *Legionella* species has been limited, with many
78 using the complete NSW150 genome as the sole *L. longbeachae* representative [12, 13].
79 Despite this, such analyses revealed a larger (\approx 500 kb) and differently organised
80 chromosome than *L. pneumophila* with numerous genes that contribute to its virulence and
81 reflect its soil habitat [10-12, 14].

82 The recent emergence of *L. longbeachae* as an important cause of LD in Europe and
83 the UK [15], particularly a 2013 outbreak in Scotland [16], prompted concerted efforts in
84 genomic sequencing. This has resulted in a substantial increase in the amount of available
85 genomic data with a large-scale sequencing project of 64 clinical and environmental isolates
86 being reported in 2017 [17]. The availability of a much larger amount of sequence data has
87 revealed further complexity in the *L. longbeachae* genome; variation is driven largely by
88 extensive intra-species horizontal gene transfer and recombination, and there is evidence
89 that there is inter-species gene transfer via plasmids that are the result of recombination
90 between various plasmids of the different *Legionella* species. [17]. Two more complete
91 genomes have also been sequenced, including for the ATCC type strain from one of the first
92 reported cases of LD caused by *L. longbeachae* in Long Beach, California in 1980 (GenBank:
93 FDAARGOS_201; [18]) and one we have obtained from a NZ patient hospitalised with LD in
94 2014 (F1157CHC; GenBank NZ_CP020894; [19]) that was sequenced as part of this study.

95 Although the available genomic data to date have provided valuable information
96 about the biology [10] and genetic diversity [17] of *L. longbeachae*, there is scope for further
97 large-scale genomic sequencing in order to more fully assess genetic relationships,
98 determine changes over time and define regions that are important for virulence and
99 pathogenesis. Given the clinical significance of *L. longbeachae* in NZ, particularly the sg1
100 strain, we have obtained the genome sequence of 54 sg1 clinical isolates, including one
101 complete NZ reference genome [19] and its associated epigenomic data. The isolates were
102 derived from non-outbreak LD cases from 8 regions around NZ over a 22-year period (1993-
103 2015), allowing us to examine its geo-temporal genetic diversity through ancestral state
104 reconstruction and phylogenetic analysis, and for the first time, characterise its epigenome.

105 Results & discussion

106 Genome architecture

107 Chromosome.

108 Given there are few complete *L. longbeachae* genomes available we chose one of our
109 sg1 isolates as the reference genome to further analyse our other 53 NZ isolates. This
110 isolate, called F1157CHC, was sequenced using both Illumina short read sequencing in the
111 initial comparative dataset, and then subsequently sequenced with PacBio long read
112 sequencing. The complete chromosome has been recently published [19], and therefore the
113 description of this genome is kept relatively brief and is more comparative in nature with
114 the other available reference *L. longbeachae* genomes (NSW150, Genbank accession no.
115 NC_013861; FDAARGOS_201, Genbank accession no. NZ_CP020412).

116 We compared all three reference genomes using the MAUVE plugin within Geneious (v
117 9.1.8) and the results of this analysis are shown in Fig 1. At 4,142,881 bp, F1157CHC is larger
118 by 65,549bp when compared to NSW150 and smaller by 19,851bp to FDAARGOS_201.
119 Overall the genomes of F1157CHC, NSW150 and FDAARGOS_201 are very similar in their
120 organisation with the MAUVE alignment showing four (81 – 2,264kb) collinear blocks in the
121 genomes, hereafter called LCB1, LCB2, LCB3 and LCB4 by visualisation in Geneious, but does
122 not reflect their genomic order. At an overall genome level, the order and orientation of
123 these blocks indicates a greater similarity between NSW150 and F1157CHC, while
124 FDAARGOS_201 is slightly different (S1 Table).

125 Three of these blocks (LCB2, LCB3 and LCB4) are found in all three genomes, and a
126 further one (LCB1) is found only in NSW150 and FDAARGOS_201. The genomic coordinates

127 and the percentage of the collinear block that contains genomic sequence are described in
128 S1 Table. In addition, there are two and three small regions in two of the genomes that are
129 not found in collinear blocks totaling 4.2 and 4.4kb for NSW150 and FDAARGOS_201,
130 respectively. For FDAARGOS_201 and NSW150, two of these unique regions are found
131 flanking the shortest collinear block of 81kb (LCB1), and for NSW150 the third region is a
132 short sequence at the start of the chromosome (unusually for this chromosome the start of
133 the *dnaA* gene is not annotated to be at position 1 of the chromosome). The LCB1 block
134 shows the greatest disparity in content with the genomic length in NSW150 being 31.3kb,
135 whereas it is 73.6kb in FDAARGOS_201, hence there are many gaps that are incorporated
136 into the collinear block alignments.

137 It should be noted that as the MAUVE aligner within Geneious works on a linear
138 chromosome, the LCBs at the end of the chromosome form part of the same larger collinear
139 block, meaning that on the circular chromosomes for these three *L. longbeachae* isolates
140 there are in effect only three blocks, with the block of ~1807kb (LCB3) being flanked by the
141 content variable 81kb block LCB1. There are thus only a few boundaries around the main
142 collinear blocks. The boundary between LCB2 and LCB3 in FDAARGOS_201 and FH1157CHC
143 occurs within the *traF* gene, part of the *tra* operon. The organization is more complex in
144 NSW150 in that the 31.5kb block of LCB1 and a 3.9kb region containing three hypothetical
145 genes is found between LCB2 and LCB3, with the *tra* operon being found on LCB1. The *tra*
146 operon forms part of the Gram-positive type IV secretion system (T4SS) for the transfer of
147 plasmids via conjugation [20], so it is therefore an important operon for pathogenicity. For
148 the other main boundary between LCB3 and LCB4, the transfer messenger RNA (tmRNA)
149 *ssrA* gene is present at the end of LCB4 for all three chromosomes. The tmRNA genes are

150 part of the trans-translocation machinery which can overcome ribosome stalling during
151 protein biosynthesis. Trans-translocation has been found to be essential for viability within
152 the *Legionella* genus, with the *ssrA* gene being unable to be deleted in *L. pneumophila* [21].
153 Under the control of an inducible promoter, it was found that decreasing tmRNA levels led
154 to significantly higher sensitivity to ribosome-targeting antibiotics, including erythromycin
155 [21]. At the end of LCB3 in FH1157CHC and NSW150, there is an IS6 family transposase and
156 an SOS response-associated peptidase, about which little is known for either of these genes.
157 The flanking gene in FDAARGOS_201 comes from a small orphan block of 1.3kb between
158 LCB1 and is a short DUF3892 domain-containing protein, as defined by Pfam [22]. Whilst
159 being of unknown function this gene is found widely across bacteria and archaea, and within
160 the Legionellales order.

161 As described above, the collinear blocks defined by MAUVE include gaps, and except for
162 LCB1, all other defined blocks in the isolates are found with the genomic length being
163 greater than 87% of the block length. Within the blocks themselves, LCB1 shares a common
164 region of ~23.8kb and a larger non-overlapping (i.e. different gene content) region in
165 FDAARGOS_201 compared to NSW150. For the remaining three blocks there are
166 combinations of absence and presence of genetic material within these blocks and across
167 the three isolates. For the regions over 10kb, these can be summarized as regions that are
168 present in only a single isolate (37.1kb in LCB3 of F1157CHC), or in two isolates (12.0kb in
169 LCB2 of FDAARGOS_201 and NSW150), and those that are different across all three isolates
170 (86.3kb in LCB2, 12.2kb in LCB2 and 18.1kb in LCB3). Other more complex combinations of
171 the three isolates account for a further six regions of the blocks involving three regions for
172 F1157CHC and NSW150 (19.3kb in LCB2 with a differing FDAARGOS_201 sequence; 64.4kb

173 in LCB3 with an extra sequence in NSW150; and 43.4kb in LCB3, a large FDAARGOS_201
174 sequence), two for FDAARGOS_201 & NSW150 (40.0kb in LCB4 with different flanking
175 sequence for FDAARGOS_201 and F1157CHC; and 11.3kb in LCB2 with a different sequence
176 for F1157CHC), and one for FDAARGOS_201 & F1157CHC (101.3kb in LCB3 with a different
177 sequence for NSW150). The gene content in these blocks is varied, and the boundaries can
178 be close to tRNA genes, site-specific integrase genes, SDR family oxidoreductase genes,
179 ankyrin repeat domain-containing genes, or in intragenic space, but for some of the
180 boundaries transposase genes (IS3, IS4, IS6, and IS926 families) are involved. In bacteria,
181 tRNAs have been shown to be integration sites [23], so finding them at boundaries of the
182 defined collinear blocks may not be all that surprising, especially given the presence of
183 integrases at these locations.

184 In order to visualise the data from the comparison of the 54 samples in the dataset and
185 to show multiple facets of this study simultaneously, an overarching Circos figure (Fig 2) was
186 generated using the complete PacBio genome of F1157CHC as a backbone. The tracks in the
187 figure are described in detail in the figure legend. Overall it can be seen that the regions
188 detected for recombination by Gubbins are unevenly distributed around the genome, with
189 some clusters around the genome (~600kb, ~800kb, ~1900 – 2050kb), and large, slightly less
190 dense region (2300 – 2800kb).

191 **Plasmid.**

192 Of the three available reference genomes, only NSW150 and our genome F1157CHC
193 were found to contain a plasmid (pNSW150, Genbank accession no. NC_014544;
194 pLLO_F1157CHC, Genbank accession no. CP020895; [19]). At 108,267 bp pLLO_F1157CHC is
195 36,441 bp larger when compared to pNSW150. To assess plasmid architecture more fully,

196 we identified three additional *L. longbeachae* plasmids through further sequencing of two of
197 our clinical isolates, B1445CHC and B41211CHC. Isolate B1445CHC was found to contain two
198 plasmids of 73,728 bp and 150,426 bp (pB1445CHC_73k; Genbank accession CP045304; and
199 B1445CHC p150k; GenBank accession CP045305), while B41211CHC contained only one
200 plasmid of 76,153 bp (pB41211CHC_76k; GenBank accession CP045307). All five *L.*
201 *longbeachae* reference plasmids were aligned using MAUVE and visualised in Geneious, with
202 the results shown in Fig 3. The plasmids share a common backbone consisting of
203 conjugational genes (yellow collinear block), which range in size from ~25,000 to ~28,000
204 bp, as well as several other collinear blocks that vary in size and orientation (Fig 3). These
205 blocks are separated by variable regions around mobile genetic elements, such as insertion
206 sequences. Similarly, analysis of the larger plasmid pB1445CHC_150k revealed this is the
207 same as plasmid pLELO (Genbank accession NC_018141), which was first reported in *L.*
208 *pneumophila*. MAUVE alignment of the *L. longbeachae* plasmids, pLELO and two *L.*
209 *sainthelensi* plasmids (LST pLA01-117_165k Genbank accession CP025492; LST pLA01-
210 117_122k Genbank accession CP025493, [24]) (S2 Fig) again shows the *Legionella* plasmids
211 have a common backbone including conjugational genes (yellow collinear blocks) separated
212 by variable regions. Although the number of plasmids in our analysis is limited, the data also
213 show that the *Legionella* plasmids identified to date can be broadly divided into two groups;
214 one that consists of the smaller plasmids of around ~70kb that appear to be primarily a *L.*
215 *longbeachae* group (pNSW150, pB1445CHC_73k, pB41211CHC_76k) and another group
216 consisting of the larger plasmids that occur in various species, including our *L. longbeachae*
217 complete genome (pLLO_F1157CHC, pLELO LST, pLA01-117_165k). Combined these data
218 suggest there has been extensive plasmid recombination as well as intra-species and inter-
219 species transfer, and plasmids may be an important means of exchanging genetic material

220 both between and within different *Legionella* species, supporting the findings of Bacigalupo
221 et al., [17].

222 Interestingly, pB1445CHC_73 k has a repetitive region that has identified as a
223 clustered regularly interspaced short palindromic repeat (CRISPR) element. This element
224 belongs to the type I-F system with the same repeat region between 20 to 33 spacer regions
225 and cas1-cas6f associated enzyme (Fig 4). While there are few reports of naturally occurring
226 CRISPR-Cas arrays on plasmids, previous studies [25, 26] as well as a recent comparative
227 genomics analysis of all publically available bacterial and archaeal genomes has
228 demonstrated that type IV CRISPR-Cas systems are primarily encoded by plasmids [27]. To
229 our knowledge, our findings are the first report of a type I-F CRISPR-Cas array being present
230 on a plasmid. Further analysis of the other *L. longbeachae* isolates sequenced as part of this
231 study showed that this CRISPR element is also found in 5 other strains reported here
232 (F2519CHC, LA01-195, LA01-196, LA03-576).

233

234 **Genetic diversity of *L. longbeachae* sg1 clinical isolates**

235 **Gene content and functional gene categories.**

236 As indicated in the gene rings in Fig 2, the genome of F1157CHC was functionally
237 annotated and categorized using the amino acid sequences from the NCBI PGAP predictions
238 against the eggNOG-mapper database (v. 2.0). The genes were then coloured according to
239 their COG categories (S1 Fig). We found that for the 3,622 predicted genes, 3,410 (94.14%)
240 annotations resulted, and of those 2,741 (80.38%) were categorized with COG functional
241 categories meaning that 669 (19.61%) genes were not annotated. In terms of the

242 performance of the eggNOG server, this level of annotation for *L. longbeachae* is slightly
243 above the level of 76% reported for the Legionellales order, and close to the eggNOG v. 5.0
244 database average of 80% [28]. The main functional groups i.e. those with a single COG
245 category definition account for 2,522 (73.96%) of the annotations. COG category S –
246 “function unknown” – is the largest single category, and accounts for 547 (16.04%) of the
247 returned annotations, though with the output, all genes for which a COG category has been
248 defined have a gene description. The eggNOG output can be found in S2 Table.

249 We used our set of 53 draft genomes to investigate both the core and pangenome of
250 the isolates in the BioProject PRJNA417721. A genome summary of these 53 draft genomes,
251 plus the complete PacBio F1157CHC and the NSW150 and FDAARGOS_201 complete
252 genomes, can be found in S3 Table. The 53 draft genomes all have a similar length
253 (4148006.3 bp \pm 78321.3), GC content (37.11% \pm 0.05), coding sequences (3576.2 \pm 81.8),
254 signal peptides (277.6 \pm 7.8) and tRNAs (45.1 \pm 3.0) amongst themselves. These values are
255 all lower compared to the values from the complete genomes (genome length: 4194301.3
256 bp \pm 66793.1; coding sequences: 3609.7 \pm 76.8; signal peptides: 282.7 \pm 5.5; and tRNAs: 48.3
257 \pm 3.2), except for the GC content which is slightly higher (37.15% \pm 0.10). Due to the draft
258 nature of the assemblies, on a proportional basis the biggest difference is seen in the
259 number of rRNAs (6.89 \pm 0.42) which is much less than the 12 found in the complete
260 genomes, but this is to be expected with repetitive DNA sequences and short read
261 sequencing.

262 In comparison to the recent study of Bacigalupe et al., [17] covering sg1 isolates from
263 mostly Scotland (n = 50), as well as the USA (n = 1), Australia (n = 1) and New Zealand (n =
264 4), we found that the range of our coding sequences was not different to the 3,558 genes

265 they reported. However, as only summary gene numbers per genome were provided, we
266 cannot say if there is any real difference in gene numbers between the NZ strains reported
267 here, and the primarily Scottish strains in the Bacigalupe et al. study [17], but it seems
268 unlikely to be the case.

269 We used Roary [29] to analyse the core and pangenome of the 56 *L. longbeachae*
270 isolates. We found a pangenome of 6,517 genes, and a core genome of 2,952 genes, which
271 in this case indicates the number of genes present in all 56 isolates, including the reference
272 genomes. This number is therefore ~86.3% of the number of genes in the F1157CHC
273 genome, indicating a large core genome and a small accessory genome amongst the *L.*
274 *longbeachae* isolates in this study. Given the geotemporal collection of our study, within a
275 22-year period in New Zealand that may not be a surprising finding that an average of 468
276 genes were found in the accessory genome. Bacigalupe et al., [17] also reported a core
277 genome (2,574 genes) and pangenome (6,890 genes) for the 56 *L. longbeachae* sg1 strains
278 they studied, which were over a shorter, but contemporaneous, timeframe. Given the
279 isolate numbers are almost the same (excluding reference isolates), but that the
280 methodologies for calculating the core genome were different, it is interesting to observe a
281 smaller number of genes in the core but a larger number of genes in the pangenome. It is
282 tempting to speculate that there might be a smaller gene repertoire for *L. longbeachae* in
283 New Zealand, again as a result of its relative geographical isolation, or maybe that
284 environmental conditions are different, requiring the use of different sets of genes to
285 survive within the New Zealand soil. Using the categories defined within Roary, we found
286 157, 865 and 2,543 genes in the soft core (95 to 99% of strains), shell (15 to 95%) and cloud
287 (0 to 15%) genomes respectively. The Roary output is shown in S1 File.

288 Currently, there are 61 recognised species and 3 subspecies within the *Legionella*
289 genus (<http://www.bacterio.net/legionella.html>). Of these, 58 species have had at least
290 draft genome sequencing performed on isolates or type strains in order to understand the
291 evolution of the genus [30], for which a core genome has been estimated to be only 1,008
292 genes, highlighting the diversity within the genus. *L. pneumophila* is regarded as the most
293 clinically important pathogen within the genus [1] with a GC content of ~39% and a smaller
294 genome of ~3.3Mb. A recent Australian study [31] has estimated the core genome of this
295 species to be 2,181 genes, with a pangenome of 5,919 genes, representing a 36.7% fraction
296 of all genes in the *L. pneumophila* pangenome being in the core genome. In comparison, in
297 our study, analogous numbers indicate a fraction of 45.3% for *L. longbeachae*. This suggests
298 that the *L. longbeachae* genome is probably more stable than the *L. pneumophila* genome.

299 Finally, we used FastGeP [32] to perform an *ad-hoc* whole genome MLST analysis of
300 the 56 isolates using the 3,420 CDSs in the F1157CHC (CP020894) reference genome. We
301 found that 2,756 loci were shared by the 56 genomic sequences of which 1,321 (47.93%)
302 were identical at the allelic level. One-hundred and eight of the shared loci were excluded
303 because of hypothetical gene duplications, and 664 were excluded because of incomplete
304 information, such as missing alleles, truncation or nucleotide ambiguities. After removal of
305 these loci, 2,648 (of which 1,327 were polymorphic) were used to construct the
306 distance/difference matrix. With the different methodological approach, it is not surprising
307 that this value is different to that calculated by Roary. Visualization of the FastGeP matrix in
308 iTOL [33] is shown in S2 File.

309

310

311 **Antimicrobial resistance and virulence genes.**

312 The 54 *L. longbeachae* sg1 isolates all contained a chromosomal class D β -Lactamase
313 gene that is homologous to *bla_{OXA}* enzyme family. This 795 bp *bla_{OXA-like}* gene, whose
314 phenotypic features are uncharacterized, is also found in *L. oakridgensis* (100% nucleotide
315 match). Twenty-one isolates also have another molecular class D β -Lactamase with 100%
316 nucleotide match to *bla_{OXA-29}* that are contained on a plasmid similar to *L. pneumophila*
317 pLELO. The *bla_{OXA-29}* gene was first identified in the *Fluoribacter gormanii* type strain ATCC
318 33297^T (Genbank accession number NG_049586.1; [34]). The majority of the known class D
319 β -Lactamases are found on mobile genetic elements and indicate the intra-species transfer
320 of *bla_{OXA-29}* on conjugative plasmids amongst the various *Legionella* species such as *L.*
321 *pneumophila*, *L. sainthelensi*, and *L. heckeliae*. This *bla_{OXA-29}* β -Lactamase is part of a group
322 of structurally related serine enzymes that have high activity against penicillins, reduced
323 activity against cephalosporins and no activity against carbapenems [35]. The *bla_{OXA}* genes
324 are located downstream of the *blal* (transcriptional regulator gene) and accounts for the
325 intrinsic resistance of *Legionella* spp. to the penicillins. All isolates also contained a
326 tetracycline deactivase gene, *tet56*, which had previously been identified in *L. longbeachae*
327 through comparative gene analysis by Forsberg et al., [36] and was shown to confer
328 tetracycline resistance when expressed. Tet56 belongs to a recently identified family of
329 flavoprotein monoxygenases that inactivate tetracycline antibiotics through covalent
330 modification to the antibiotic scaffold [36, 37]. Previously, the antimicrobial susceptibilities
331 of 16 isolates that were sequenced in the current study had been investigated [38]. For
332 these isolates, the tetracycline MIC₉₀ was found to be high, ranging between 16 to 64

333 mg/mL when the isolates were grown in BYE broth, suggesting that tet56 was expressed in
334 these isolates and was functional, inactivating the tetracycline (S4 Table).

335 Virulence factors database analysis showed the 54 isolates had between 33 and 36
336 virulence factor genes (S5 Table). Many of these encoded various components of the type
337 IVB Dot/Icm secretion system, which has been found to be present in all *Legionella* species
338 examined to date and is essential for its virulence [39].

339

340 **Geo-temporal and phylogenetic relationships**

341 **New Zealand *L. longbeachae* isolates**

342 The 54 *L. longbeachae* sg1 isolates were found to share 5,383 core SNPs (2,338 post
343 Gubbins) and phylogenetic modelling estimated that these isolates contained a substitution
344 rate of $3.58 \times 10^{-8} - 1.51 \times 10^{-7}$ substitutions site $^{-1}$ year $^{-1}$ (95% HPD interval) and shared a
345 date of common ancestor between the years 108 BCE - 1608 CE (95% HPD interval). The
346 isolates had undergone a large amount of recombination, as evidenced by the large number
347 of recombinant SNPs identified via Gubbins (3,045) and were shown to belong to two main
348 clades (Fig 5). The larger of the two clades consisted of isolates from multiple different
349 regions in New Zealand, while the smaller clade consisted of isolates from the Canterbury
350 district only (S3 Fig). However, as the Canterbury district was oversampled in this study, this
351 finding could just be due to random chance.

352 Alignment of the New Zealand *L. longbeachae* read sets to the six *Legionella*
353 reference plasmids demonstrated that some of the New Zealand *L. longbeachae* isolates

354 contained an exact copy of the reference plasmids investigated with reads aligning to the
355 entire reference sequence, some contained similar plasmids with reads aligning to sections
356 of the reference plasmids, and some contained reads that aligned to sections of more than
357 one reference plasmid (Fig 5). This again illustrates that the *Legionella* plasmids share a
358 common back bone separated by variable regions and that there is extensive recombination
359 amongst them (S4 Fig). The plasmid results also correlated with the clades identified via
360 phylogenetic analysis, suggesting that plasmid recombination events may pre-empt the
361 emergence of new *L. longbeachae* strains.

362 **Global *L. longbeachae* isolates.**

363 The 89 *L. longbeachae* isolates from the United Kingdom and New Zealand shared
364 3,219 core SNPs and belonged to multiple small clades. Most of the clades consisted only of
365 isolates from a single country, whilst a small number consisted of isolates from both
366 countries (S5 Fig). This indicates some recent global transmission of *L. longbeachae*.

367

368 ***L. longbeachae* methylome**

369 Methylome analysis of our NZ reference genome strain identified two classes of
370 modified base, N4-cytosine (m^4C) and N6-methyladenine (m^6A). Bases in the chromosomal
371 sequence were more likely to be modified (1.49% of As and 6.4% of Cs being methylated)
372 than those in the plasmid (1% of As and 2.4% of Cs) (Fig 6A). Modifications were evenly
373 distributed within a given molecule, with the exception of a single cluster of m^6A in the
374 chromosome (Fig 6B). The majority (73.6%) of m^6A bases occurred in three sequence motifs
375 (ATGN>NNNNRTGG/CCAYNNNNNNCAT, GATC and GGGAG). Two of these motifs

376 (ATGNNNNNNRTGG/CCAYNNNNNNCAT and GATC) are almost always methylated (97-99.5%
377 of occurrences in the genome) while the third (GGGAG) is frequently modified (77.2% of
378 occurrences). By contrast, the m⁴C modifications are not strongly concentrated in motifs.
379 The motif most frequently associated with this modification (CSNNNTB) is only modified in
380 9.2% of occurrences in the reference genome (about 3 times the background rate for all
381 cytosines).

382 DNA methylation in bacteria is often associated with restriction modifications (RM)
383 systems, which protect the bacterial cell from foreign DNA. These systems combine a
384 restriction endonuclease that digests un-methylated copies of a target sequences and a
385 DNA methyltransferase that methylates this sequence motif in the bacterium's own DNA.
386 The strong association between m⁶A modification and three sequence motifs in the *L.*
387 *longbeachae* genome suggests this modification is part of an RM system.

388 Using REBase, we identified putative methyltransferases and endonucleases in the
389 *L. longbeachae* genome. This analysis revealed three neighbouring genes that encode a type
390 I RM system associated with the ATGNNNNNNRTGG/CCAYNNNNNNCAT motif. Specifically,
391 gene B0B39_08545 encodes a SAM-dependent DNA methyltransferase with target
392 recognition domains for both ends of this motif, while genes B0B39_08550 and
393 B0B39_08555 encode the S and R subunits of an associated endonuclease. The enzymes
394 responsible for the CATC and GGGAG motifs are less clear. Two proteins
395 (LloF1157ORF6795P and LloF1157ORF8795P) are homologous to methyltransferases that
396 recognize GATC in other species. Neither of these proteins are associated with a restriction
397 endonuclease.

398 The m⁴C modification is not strongly associated with any sequence motif in *L.*
399 *longbeachae*. Although many bacterial genomes contain this modification, the biological
400 functions encoded by it remain unclear [40]. There is some evidence that this mark may
401 contribute to the regulation of gene expression. Notably, the deletion of a single m⁴C
402 methyltransferase in *Helicobacter pylori* alters the expression of more than 100 genes and
403 leads to reduced [OBJ]virulence[OBJ]. We used our genome annotation and methylation data to
404 tests for any associations between m⁴C methylation and genome features of functional
405 classes of genes that might suggest this mark contribute to gene regulation in *L.*
406 *longbeachae*. We found this mark is considerably more common within protein coding
407 genes than in intergenic spaces (Fig 7A). However, there is no association between the
408 presence of this mark in a gene sequence and any of the functional classifications present in
409 our COG data (Fig 7B). Although the over-representation of m⁴C bases in genetic sequences
410 suggests this mark might be associated with, or a passive consequence of, transcription in *L.*
411 *longbeachae*, we find no evidence that this mark contributes to particular biological
412 functions.

413 In summary, this study has demonstrated that most variability in the *L. longbeachae*
414 genome is from recombination and there have been large-scale rearrangements within the
415 bacterial chromosome. Our 54 sg1 clinical isolates could be grouped into two highly related
416 clades that persisted over time. The most genetically distinct clade consisted of isolates
417 from only the Canterbury region but this could just reflect oversampling from this region
418 and further sequencing of isolates from other regions is required. Most *L. longbeachae*
419 isolates sequenced in this study were found to contain a plasmid. The plasmids showed high
420 levels of recombination and horizontal gene transfer with evidence for both intra- and inter-

421 species gene-flow. The genome of *L. longbeachae* was also highly modified, with m6A
422 modifications being the most common and strongly associated with particular sequence
423 motifs.

424 Materials and methods

425 Bacterial isolates, sequencing and genome assembly

426 A total of 60 isolates previously identified as *L. longbeachae* (including 57 serotyped
427 as sg1 and 3 serotyped either as sg2 or undefined) were sequenced. Isolates were obtained
428 from either the NZ *Legionella* Reference Laboratory (ESR, Porirua, New Zealand; n=39) or
429 Canterbury Health Laboratories (CHL) culture collection (Christchurch, New Zealand; n=21).
430 All isolates were derived from sporadic LD cases that occurred between 1993 and 2015 from
431 8 regions (S7 Fig) around the country and included the first NZ case in which *L. longbeachae*
432 was successfully cultured from a patient specimen (LA93_171; S3 Table).

433 The isolates were grown on buffered-charcoal-yeast-extract (BCYE) agar at 37°C for
434 72 hours. DNA was extracted from each fresh culture using GenElute Bacterial Genomic kits
435 (Sigma-Aldrich, MO, USA) according to the manufacturer's instructions, including proteinase
436 K and RNase treatments. Libraries were prepared from the genomic DNA using the Nextera
437 XT kit (Illumina, San Diego, CA, USA) and were sequenced using Illumina MiSeq technology
438 (2 x 250bp paired-end) and version 2 chemistry by New Zealand Genomics Ltd (NZGL;
439 University of Otago, Dunedin, New Zealand). The quality of the raw reads was checked using
440 FastQC (v. 0.11.4; <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). They were
441 mapped against PhiX using Bowtie2 (v. 2.0.2; [42]), and any that mapped to PhiX were
442 removed from the SAM file, and read pairs were reconstructed using the SamToFastq.jar
443 program from the Picard suite (v. 1.107; <https://broadinstitute.github.io/picard/>) using the
444 default parameters. Any adaptors were removed through the "fastq-mcf" program (using
445 the default parameters) from the ea-utils suite of tools (v. 1.1.2-621;

446 <https://expressionanalysis.github.io/ea-utils/>). Finally the reads were quality trimmed using
447 SolexaQA++ (v. 3.1.4; [43]) at a probability threshold of 0.01 and sorted on length to remove
448 any sequences < 50 bp prior to assembly. Sequence reads from each isolate was assembled
449 using the SPAdes (v. 1.2, [44]) *de novo* assembler in “careful” mode, with default settings.

450

451 Sequenced strains analysed

452 Of the 60 isolates sequenced (S3 Table), 57 were found to be *L. longbeachae* sg1,
453 two were sg2 and one had been mistyped and was found to be *Legionella sainthelensi*.
454 Analyses were limited to the sg1 isolates but because poor sequence data were obtained for
455 three genomes (2 from Auckland and 1 from Waikato), only 54 were included (Table 1). We
456 also included the two other publically available complete genomes for *L. longbeachae* sg1,
457 NSW150 (Australia; GenBank: NC_013861) and FDAARGOS_201 (USA; GenBank:
458 NZ_CP020412) in our core genome and cluster of orthologous groups (COG) analyses.

459 The reads of a further 65 previously published *L. longbeachae* isolates (Bioproject
460 number PRJEB14754, SRA accession numbers ERS1345649 to ERS1345585; [17]) were
461 downloaded and compared with our 54 sg1 isolates. However, 30 of these read sets were
462 either of poor quality, aligning to less than 80% of our reference genome (F1157CHC;
463 GenBank NZ_CP020894; [19]), or were not *L. longbeachae* sg1 isolates. These were excluded
464 and the remaining 35 read sets were included in our global phylogenetic analyses (S6 Table).

465

466

467

468 **Table 1: Number of isolates sequenced and analysed by year group and region**

Region	Year Group					Total
	1993-1997	1998-2002	2003-2007	2008-2012	2013-2015	
Northland	-	2	-	-	-	2
Auckland	-	-	-	2	9	11
Waikato	1	-	1	-	-	2
Bay of Plenty	-	-	1	-	-	1
Rotorua	-	-	-	-	1	1
Manawatu	-	1	-	-	-	1
Canterbury	6	1	9	14	4	34
Otago	-	-	-	-	2	2
Total	7	4	11	16	16	54

469

470 **Complete New Zealand reference genome, gene prediction and annotation**

471 To generate our own complete NZ reference genome, one isolate (F1157CHC;
472 GenBank NZ_CP020894.2) was further sequenced using the PacBio RSII system (Pacific
473 Biosciences, CA, USA) as previously described [19]. Briefly, the isolate was cultured (as
474 above) and the DNA was extracted from fresh culture using the Blood and Cell Culture DNA
475 Midi Kit (Qiagen, Hilden, Germany). One SMRTbell DNA library was constructed according to
476 the manufacturer's 20kb protocol, size selected using a 15 kb cut-off with BluePippin (Sage
477 Science, MA, USA) and sequenced using P6-C4 chemistry and a 240 minute data collection
478 time on one SMRT cell by the Doherty Institute for Infection & Immunity, University of
479 Melbourne (Melbourne, Australia). A pre-assembly filter removed reads shorter than 500 bp
480 or with a quality lower than 80%. The data was assembled using the HGAP2 assembly
481 pipeline in SMRTanalysis v. 2.3.0. The minimum seed read length was 6000 bp and the
482 Celera assembler stage assumed an approximate genome size of 5 Mb and allowed an
483 overlap error rate of 0.06 and a minimum overlap length of 40 bp. The assembly was
484 polished using Quiver and the MiSeq reads were mapped onto the final RSII assembly using

485 Pilon (v. 1.20; [45]) to assess accuracy (99.99%). Gene prediction and annotation was
486 performed using the NCBI Prokaryotic Genome Annotation Pipeline (2013).

487

488 **Genome architecture**

489 **Chromosome.** In order to assess the genome architecture, F1157CHC was used as the basis
490 for all analyses in which comparisons were made against a reference. The genome was
491 visualized using Circos software (v. 0.69.3, [46]) and in this way, various other tracks of
492 information described herein could be included on the plot. This included mapping the
493 annotation prediction from PGAP, as well an overlay of the results of a functional
494 annotation with the eggNOG web annotation server (see below), mapping of both the
495 methylation results (see below) and recombinant regions detected with Gubbins (see
496 below), SNP density of the comparative samples, and finally a visualization of the repeats
497 within the F1157CHC genome using Reputer ([47, 48]).

498 The genome was analysed with the following Reputer parameters (number of best
499 hits: 10000; minimum length: 30bp; and maximum Hamming distance: 3), and the output
500 parsed through a MySQL database with a custom Perl script to generate the tracks to allow
501 the links between all repeated regions to be visualized on the Circos plot. Of the four
502 possible detectable repeats, only the forward (in blue) and palindromic (in red) repeats
503 were detected, reverse and complement were not. Furthermore, depending on the
504 Hamming distance between the two repeats, the links were coloured to show those with a
505 smaller Hamming distance as a darker colour. In order to assess the overall genome
506 architecture in comparison to other *L. longbeachae* genomes, the MAUVE plugin within

507 Geneious (v. 9.1.8) was used to visualize the F1157CHC genome against NSW150 and
508 FDAARGOS_201.

509

510 **Plasmid.** The five *L. longbeachae* reference plasmids pB1445CHC_73k (CP045304),
511 pB1445CHC_150k (CP045305), pB41211CHC_76k (CP045307), pLLO-F1157CHC (CP020895)
512 and pNSW150 (NC_014544) were aligned and visualised using MAUVE plugin within
513 Geneious (v.9.1.8).

514

515 **Genetic diversity of *L. longbeachae* sg1 clinical isolates**

516 **Core genome and COG analyses.** The eggNOG-mapper [28, 49] webserver ([http://eggnog-
517 mapper.embl.de/](http://eggnog-mapper.embl.de/)) was used to annotate the F1157CHC PGAP-derived amino acid
518 sequences. Default parameters were used for the annotation. The Prokka pipeline (v. 1.12;
519 [50]) was used to annotate our draft isolates using default parameters. The Prokka-
520 generated GFF files were analysed with Roary using default parameters, and the comparison
521 script roary_plots.py was used to visualize the output. FastGeP was used with default
522 parameters to perform a whole genome MLST analysis of the 56 isolates, which meant that
523 the generated allele sequences were searched with BLAST+ at an identity threshold $\geq 80\%$.
524 CP020894 was used as the reference genome for this analysis. SplitsTree (v.4.15.2, [51, 52])
525 was used to convert the FastGeP Nexus file into a Newick file (as a Neighbour-joining tree)
526 for visualization and annotation in iTOL with the inclusion of metadata for region and the
527 sample type.

528

529 **Single nucleotide polymorphism identification.** Single nucleotide polymorphisms (SNPs)
530 were identified using Snippy v2.6 (<https://github.com/tseeman/snippy>). Snippy is a pipeline
531 that uses the Burrows-Wheelers Aligner [53] and SAMtools [54] to align reads from different
532 isolates to our reference genome (F1157CHC; GenBank CP020894) and FreeBayes [55] to
533 identify variants among the alignments. Gubbins was used to remove areas of
534 recombination on the full alignment [56]. Such data was visualised on the Circos plot of
535 F1157CHC described above.

536

537 **Antimicrobial Resistance and Virulence Genes.** The contigs of each isolate were screened
538 and acquired resistance and virulence genes were identified using ABRIcate (v. 2;
539 <https://github.com/tseemann/abricate>).

540

541 **Determination of the geo-temporal and phylogenetic relationships**

542 **Ancestral state reconstruction and phylogenetic analysis.** Snippy v2.6
543 (<https://github.com/tseeman/snippy/>) was used to align reads of 54 New Zealand *L.*
544 *longbeachae* isolate to the reference genome *Legionella longbeachae* F1157CHC
545 (CP020895) and identify SNPs. Gubbins was used to remove areas of recombination [56].
546 SNPs were exported into BEAUTi v2.5 to create an Extensive Markup Language (xml) file for
547 BEAST v2.5 [57]. The *Legionella longbeachae* reference genome consists of 1,306,681
548 adenine, 765,717 cytosine, 772,189 guanine and 1,298,289 nucleotides. These nucleotides
549 were added as constant sites to keep the model representative of *L. longbeachae*.
550 bModelTest [58] was used to choose the substitution model. Multiple molecular clock and
551 tree models were trialed. Nested sampling (NS) [59] was used to select the model (S3 File)

552 [60]. A 121123 Generalised Time-Reversible (GTR) [61] model was used to model nucleotide
553 substitutions, an Extended Bayesian Skyline [62] was used to model the effective
554 population size, and an uncorrelated relaxed clock [63] was used to model the molecular
555 clock and was calibrated by tip dates. The .xml file was run in BEAST for 100 million steps,
556 three times with different starting seeds, before LogCombiner was used to combine the
557 runs with a 10% burn-in. Tracer v1.6 (Rambaut et al, <http://beast.bio.ed.ac.uk/Tracer>) was
558 used to visualise the results. TreeAnnotator v2.6 was used to form a maximum clade
559 credibility tree from the trees produced using BEAST. Evolview v2 [64] was used to visualise
560 and edit the tree. The raw reads of the 54 New Zealand *L. longbeachae* isolates were
561 uploaded to NCBI (PRJNA562040), along with the four excluded from analysis.

562

563 **Plasmid Analyses.** The assemble contig reads of the 54 New Zealand *L. longbeachae* sg 1
564 isolates were aligned to the five *L. longbeachae* reference plasmids pB1445CHC_73k,
565 pB1445CHC_150k, pB41211CHC_76k, pLLO-F1157CHC and pLLO-NSW150, using Burrows-
566 Wheeler aligner [53]. For each read set, the proportion of the plasmid with a read depth of
567 ten or higher was calculated using samtools v1.9 [54]. The plasmid sequences were
568 annotated using Prokka v1.14.4 [50] and a dendrogram of gene presence-absence was
569 formed using Roary v3.11.2 [29], before the sequences were aligned using EasyFig v2.2.4
570 [65].

571 **Global *L. longbeachae* isolates.** The reads of 64 previously published *L. longbeachae* isolates
572 [17] were downloaded and were compared with the 54 New Zealand isolates using the SNP-
573 identification method described above. Of these read sets, 29 were of poor-quality, aligning
574 to less than 80% of the reference, or were distantly related from the rest of the isolates,

575 indicating that they were not *L. longbeachae* sg1. These isolates were excluded from
576 analysis. In total, 89 *L. longbeachae* isolates from New Zealand and United Kingdom were
577 investigated. RaxML [66] was used to form a maximum likelihood tree of the isolates based
578 on their SNP data and was visualised using EvolView v2.

579

580 *L. longbeachae* Methylome

581 Methylated bases were detected for isolate F1157CHC, using the
582 “RS_Modification_and Motif Analysis” protocol implemented in SMRTAnalysis v2.3.0 using
583 the SMRTbell DNA library described above as input. This pipeline takes advantage of BLASR
584 (v1, [67]) to map sequencing reads to the assembled genome and MotifFinder v1 to identify
585 sequence motifs associated with particular modifications. The resulting files were submitted
586 to REBASE [68] along with our annotated reference genome to identify protein coding genes
587 that may be responsible for the inferred methylation patterns.

588 The distribution of methylated bases on the reference genome, and with regard to
589 genomic features was analysed using bedtools (v2.25.0, [69]) and the R statistical language
590 (v3.4). We tested for differences in methylation rate between genes of different functional
591 classes using anova, as implemented in R. A complete record of the code used to perform
592 statistical analyses and visualisation of the methylome data is provided in (S4 File).

593

594

595

596

597 Acknowledgements

598 This work was funded through a University of Otago Research Grant and the PacBio
599 sequencing of our complete reference genome was funded by a Millenium Science SMRT
600 Grant. The PacBio sequencing service was provided by the Doherty Institute for Infection
601 and Immunity, University of Melbourne, Australia. The Illumina MiSeq sequencing service
602 was provided by the Massey Genome Service (Massey University, Palmerston North, New
603 Zealand), as part of NZ Genomics Ltd, Dunedin, New Zealand.

604 We thank David Harte from the Legionella Reference Laboratory, ESR, Porirua, New Zealand
605 and Canterbury Health Laboratories, Christchurch, New Zealand for supplying the clinical *L.*
606 *longbeachae* isolates.

607 References

- 608 1. Phin N, Parry-Ford F, Harrison T, Stagg HR, Zhang N, Kumar K, et al. Epidemiology and
609 clinical management of Legionnaires' disease. *The Lancet infectious diseases*.
610 2014;14(10):1011-21. doi: 10.1016/S1473-3099(14)70713-3. PubMed PMID:
611 24970283.
- 612 2. Priest PC, Slow S, Chambers ST, Cameron CM, Balm MN, Beale MW, et al. The burden
613 of Legionnaires' disease in New Zealand (LegiNZ): a national surveillance study. *The
614 Lancet infectious diseases*. 2019;19(7):770-7. Epub 2019/06/15. doi: 10.1016/S1473-
615 3099(19)30113-6. PubMed PMID: 31196812.
- 616 3. Harte D. Laboratory-based legionellosis surveillance, 2012. 2013.
- 617 4. Murdoch DR, Podmore RG, Anderson TP, Barratt K, Maze MJ, French KE, et al. Impact
618 of routine systematic polymerase chain reaction testing on case finding for
619 Legionnaires' disease: a pre-post comparison study. *Clinical infectious diseases* : an
620 official publication of the Infectious Diseases Society of America. 2013;57(9):1275-
621 81. doi: 10.1093/cid/cit504. PubMed PMID: 23899682.
- 622 5. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, et al. Distribution
623 of Legionella species and serogroups isolated by culture in patients with sporadic
624 community-acquired legionellosis: an international collaborative survey. *The Journal
625 of infectious diseases*. 2002;186(1):127-8. Epub 2002/06/29. doi: 10.1086/341087.
626 PubMed PMID: 12089674.
- 627 6. Lindsay DS, Brown AW, Brown DJ, Pravinkumar SJ, Anderson E, Edwards GF.
628 Legionella longbeachae serogroup 1 infections linked to potting compost. *Journal of
629 medical microbiology*. 2012;61(Pt 2):218-22. Epub 2011/09/24. doi:
630 10.1099/jmm.0.035857-0. PubMed PMID: 21940651.
- 631 7. Whiley H, Bentham R. Legionella longbeachae and legionellosis. *Emerging infectious
632 diseases*. 2011;17(4):579-83. Epub 2011/04/08. doi: 10.3201/eid1704.100446.
633 PubMed PMID: 21470444; PubMed Central PMCID: PMCPMC3377390.
- 634 8. Kenagy E, Priest PC, Cameron CM, Smith D, Scott P, Cho V, et al. Risk Factors for
635 Legionella longbeachae Legionnaires' Disease, New Zealand. *Emerging infectious
636 diseases*. 2017;23(7):1148-54. Epub 2017/06/20. doi: 10.3201/eid2307.161429.
637 PubMed PMID: 28628460; PubMed Central PMCID: PMCPMC5512494.
- 638 9. O'Connor BA, Carman J, Eckert K, Tucker G, Givney R, Cameron S. Does using potting
639 mix make you sick? Results from a Legionella longbeachae case-control study in
640 South Australia. *Epidemiology and infection*. 2007;135(1):34-9. Epub 2006/06/20.
641 doi: 10.1017/S095026880600656X. PubMed PMID: 16780608; PubMed Central
642 PMCID: PMCPMC2870547.
- 643 10. Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, et
644 al. Analysis of the Legionella longbeachae genome and transcriptome uncovers
645 unique strategies to cause Legionnaires' disease. *PLoS genetics*. 2010;6(2):e1000851.
646 Epub 2010/02/23. doi: 10.1371/journal.pgen.1000851. PubMed PMID: 20174605;
647 PubMed Central PMCID: PMCPMC2824747.
- 648 11. Kozak NA, Buss M, Lucas CE, Frace M, Govil D, Travis T, et al. Virulence factors
649 encoded by Legionella longbeachae identified on the basis of the genome sequence

650 analysis of clinical isolate D-4968. *Journal of bacteriology*. 2010;192(4):1030-44. Epub
651 2009/12/17. doi: 10.1128/JB.01272-09. PubMed PMID: 20008069; PubMed Central
652 PMCID: PMCPMC2812971.

653 12. Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O, Gilbert JA, et al. Genomic analysis
654 of 38 *Legionella* species identifies large and diverse effector repertoires. *Nature*
655 *genetics*. 2016;48(2):167-75. Epub 2016/01/12. doi: 10.1038/ng.3481. PubMed
656 PMID: 26752266; PubMed Central PMCID: PMCPMC5050043.

657 13. Joseph SJ, Cox D, Wolff B, Morrison SS, Kozak-Muiznieks NA, Frace M, et al. Dynamics
658 of genome change among *Legionella* species. *Scientific reports*. 2016;6:33442. Epub
659 2016/09/17. doi: 10.1038/srep33442. PubMed PMID: 27633769; PubMed Central
660 PMCID: PMCPMC5025774.

661 14. Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C. Comparative and functional
662 genomics of legionella identified eukaryotic like proteins as key players in host-
663 pathogen interactions. *Frontiers in microbiology*. 2011;2:208. Epub 2011/11/08. doi:
664 10.3389/fmicb.2011.00208. PubMed PMID: 22059087; PubMed Central PMCID:
665 PMCPMC3203374.

666 15. den Boer JW, Yzerman EP, Jansen R, Bruin JP, Verhoef LP, Neve G, et al. Legionnaires'
667 disease and gardening. *Clinical microbiology and infection : the official publication of*
668 *the European Society of Clinical Microbiology and Infectious Diseases*. 2007;13(1):88-
669 91. Epub 2006/12/23. doi: 10.1111/j.1469-0691.2006.01562.x. PubMed PMID:
670 17184293.

671 16. Potts A, Donaghy M, Marley M, Othieno R, Stevenson J, Hyland J, et al. Cluster of
672 Legionnaires disease cases caused by *Legionella longbeachae* serogroup 1, Scotland,
673 August to September 2013. *Euro surveillance : bulletin European sur les maladies*
674 *transmissibles = European communicable disease bulletin*. 2013;18(50):20656. Epub
675 2013/12/18. doi: 10.2807/1560-7917.es2013.18.50.20656. PubMed PMID:
676 24342515.

677 17. Bacigalupo R, Lindsay D, Edwards G, Fitzgerald JR. Population Genomics of *Legionella*
678 *longbeachae* and Hidden Complexities of Infection Source Attribution. *Emerging*
679 *infectious diseases*. 2017;23(5):750-7. Epub 2017/04/19. doi:
680 10.3201/eid2305.161165. PubMed PMID: 28418314; PubMed Central PMCID:
681 PMCPMC5403047.

682 18. McKinney RM, Porschen RK, Edelstein PH, Bissett ML, Harris PP, Bondell SP, et al.
683 *Legionella longbeachae* species nova, another etiologic agent of human pneumonia.
684 *Annals of internal medicine*. 1981;94(6):739-43. Epub 1981/06/01. doi:
685 10.7326/0003-4819-94-6-739. PubMed PMID: 7235414.

686 19. Slow S, Anderson T, Miller J, Singh S, Murdoch D, Biggs PJ. Complete Genome
687 Sequence of a *Legionella longbeachae* Serogroup 1 Strain Isolated from a Patient
688 with Legionnaires' Disease. *Genome Announc*. 2017;5(24). Epub 2017/06/18. doi:
689 10.1128/genomeA.00564-17. PubMed PMID: 28619815; PubMed Central PMCID:
690 PMCPMC5473284.

691 20. Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. Conjugation in Gram-Positive
692 Bacteria. *Microbiol Spectr*. 2014;2(4):PLAS-0004-2013. Epub 2015/06/25. doi:
693 10.1128/microbiolspec.PLAS-0004-2013. PubMed PMID: 26104193.

694 21. Brunel R, Charpentier X. Trans-translation is essential in the human pathogen
695 *Legionella pneumophila*. *Scientific reports*. 2016;6:37935. Epub 2016/11/29. doi:
696 10.1038/srep37935. PubMed PMID: 27892503; PubMed Central PMCID:
697 PMCPMC5124942.

698 22. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam
699 protein families database in 2019. *Nucleic acids research*. 2019;47(D1):D427-D32.
700 Epub 2018/10/26. doi: 10.1093/nar/gky995. PubMed PMID: 30357350; PubMed
701 Central PMCID: PMCPMC6324024.

702 23. Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA
703 genes: sublocation preference of integrase subfamilies. *Nucleic acids research*.
704 2002;30(4):866-75. Epub 2002/02/14. doi: 10.1093/nar/30.4.866. PubMed PMID:
705 11842097; PubMed Central PMCID: PMCPMC100330.

706 24. Slow S, Anderson T, Biggs P, Kennedy M, Murdoch D, Cree S. Complete Genome
707 Sequence of *Legionella sainthelensi* Isolated from a Patient with Legionnaires'
708 Disease. *Genome Announc*. 2018;6(5). Epub 2018/02/14. doi:
709 10.1128/genomeA.01588-17. PubMed PMID: 29437115; PubMed Central PMCID:
710 PMCPMC5794962.

711 25. Koonin EV, Makarova KS. Mobile Genetic Elements and Evolution of CRISPR-Cas
712 Systems: All the Way There and Back. *Genome Biol Evol*. 2017;9(10):2812-25. Epub
713 2017/10/07. doi: 10.1093/gbe/evx192. PubMed PMID: 28985291; PubMed Central
714 PMCID: PMCPMC5737515.

715 26. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An
716 updated evolutionary classification of CRISPR-Cas systems. *Nat Rev Microbiol*.
717 2015;13(11):722-36. Epub 2015/09/29. doi: 10.1038/nrmicro3569. PubMed PMID:
718 26411297; PubMed Central PMCID: PMCPMC5426118.

719 27. Pinilla-Redondo R, Mayo-Munoz D, Russel J, Garrett RA, Randau L, Sorensen SJ, et al.
720 Type IV CRISPR-Cas systems are highly diverse and involved in competition between
721 plasmids. *Nucleic acids research*. 2020;48(4):2000-12. Epub 2019/12/28. doi:
722 10.1093/nar/gkz1197. PubMed PMID: 31879772; PubMed Central PMCID:
723 PMCPMC7038947.

724 28. Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forsslund SK, Cook H, et al.
725 eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology
726 resource based on 5090 organisms and 2502 viruses. *Nucleic acids research*.
727 2019;47(D1):D309-D14. Epub 2018/11/13. doi: 10.1093/nar/gky1085. PubMed
728 PMID: 30418610; PubMed Central PMCID: PMCPMC6324079.

729 29. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid
730 large-scale prokaryote pan genome analysis. *Bioinformatics*. 2015;31(22):3691-3.
731 Epub 2015/07/23. doi: 10.1093/bioinformatics/btv421. PubMed PMID: 26198102;
732 PubMed Central PMCID: PMCPMC4817141.

733 30. Gomez-Valero L, Rusniok C, Carson D, Mondino S, Perez-Cobas AE, Rolando M, et al.
734 More than 18,000 effectors in the *Legionella* genus genome provide multiple,
735 independent combinations for replication in human cells. *Proceedings of the
736 National Academy of Sciences of the United States of America*. 2019;116(6):2265-73.
737 Epub 2019/01/20. doi: 10.1073/pnas.1808016116. PubMed PMID: 30659146;
738 PubMed Central PMCID: PMCPMC6369783.

739 31. Timms VJ, Rockett R, Bachmann NL, Martinez E, Wang Q, Chen SC, et al. Genome
740 Sequencing Links Persistent Outbreak of Legionellosis in Sydney (New South Wales,
741 Australia) to an Emerging Clone of *Legionella pneumophila* Sequence Type 211.
742 *Applied and environmental microbiology*. 2018;84(5). Epub 2017/12/17. doi:
743 10.1128/AEM.02020-17. PubMed PMID: 29247056; PubMed Central PMCID:
744 PMC5812946.

745 32. Zhang J, Xiong Y, Rogers L, Carter GP, French N. Genome-by-genome approach for
746 fast bacterial genealogical relationship evaluation. *Bioinformatics*. 2018;34(17):3025-
747 7. Epub 2018/04/03. doi: 10.1093/bioinformatics/bty195. PubMed PMID: 29608746.

748 33. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
749 developments. *Nucleic acids research*. 2019;47(W1):W256-W9. Epub 2019/04/02.
750 doi: 10.1093/nar/gkz239. PubMed PMID: 30931475; PubMed Central PMCID:
751 PMC6602468.

752 34. Franceschini N, Boschi L, Pollini S, Herman R, Perilli M, Galleni M, et al.
753 Characterization of OXA-29 from *Legionella* (*Fluoribacter*) gormanii: molecular class
754 D beta-lactamase with unusual properties. *Antimicrob Agents Chemother*.
755 2001;45(12):3509-16. Epub 2001/11/16. doi: 10.1128/AAC.45.12.3509-3516.2001.
756 PubMed PMID: 11709332; PubMed Central PMCID: PMC90861.

757 35. Avison MB, Simm AM. Sequence and genome context analysis of a new molecular
758 class D beta-lactamase gene from *Legionella pneumophila*. *The Journal of
759 antimicrobial chemotherapy*. 2002;50(3):331-8. Epub 2002/09/03. doi:
760 10.1093/jac/dkf135. PubMed PMID: 12205057.

761 36. Forsberg KJ, Patel S, Wencewicz TA, Dantas G. The Tetracycline Destructases: A Novel
762 Family of Tetracycline-Inactivating Enzymes. *Chem Biol*. 2015;22(7):888-97. Epub
763 2015/06/23. doi: 10.1016/j.chembiol.2015.05.017. PubMed PMID: 26097034;
764 PubMed Central PMCID: PMC4515146.

765 37. Markley JL, Wencewicz TA. Tetracycline-Inactivating Enzymes. *Frontiers in
766 microbiology*. 2018;9:1058. Epub 2018/06/15. doi: 10.3389/fmicb.2018.01058.
767 PubMed PMID: 29899733; PubMed Central PMCID: PMC5988894.

768 38. Isenman H, Anderson T, Chambers ST, Podmore RG, Murdoch DR. Antimicrobial
769 susceptibilities of clinical *Legionella longbeachae* isolates. *The Journal of
770 antimicrobial chemotherapy*. 2018;73(4):1102-4. Epub 2017/12/23. doi:
771 10.1093/jac/dkx484. PubMed PMID: 29272402.

772 39. Qin T, Zhou H, Ren H, Liu W. Distribution of Secretion Systems in the Genus
773 *Legionella* and Its Correlation with Pathogenicity. *Frontiers in microbiology*.
774 2017;8:388. Epub 2017/03/30. doi: 10.3389/fmicb.2017.00388. PubMed PMID:
775 28352254; PubMed Central PMCID: PMC5348487.

776 40. Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang XS, Davis-Richardson A, et al.
777 Metagenomic binning and association of plasmids with bacterial host genomes using
778 DNA methylation. *Nat Biotechnol*. 2018;36(1):61-9. Epub 2017/12/12. doi:
779 10.1038/nbt.4037. PubMed PMID: 29227468; PubMed Central PMCID:
780 PMC5762413.

781 41. Kumar S, Karmakar BC, Nagarajan D, Mukhopadhyay AK, Morgan RD, Rao DN. N4-
782 cytosine DNA methylation regulates transcription and pathogenesis in *Helicobacter
783 pylori*. *Nucleic acids research*. 2018;46(7):3815. Epub 2018/03/15. doi:

784 10.1093/nar/gky195. PubMed PMID: 29538771; PubMed Central PMCID:
785 PMCPMC5909436.

786 42. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*.
787 2012;9(4):357-9. Epub 2012/03/06. doi: 10.1038/nmeth.1923. PubMed PMID:
788 22388286; PubMed Central PMCID: PMCPMC3322381.

789 43. Cox MP, Peterson DA, Biggs PJ. SolexaQA: At-a-glance quality assessment of Illumina
790 second-generation sequencing data. *BMC Bioinformatics*. 2010;11:485. Epub
791 2010/09/30. doi: 10.1186/1471-2105-11-485. PubMed PMID: 20875133; PubMed
792 Central PMCID: PMCPMC2956736.

793 44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a
794 new genome assembly algorithm and its applications to single-cell sequencing. *J
795 Comput Biol*. 2012;19(5):455-77. Epub 2012/04/18. doi: 10.1089/cmb.2012.0021.
796 PubMed PMID: 22506599; PubMed Central PMCID: PMCPMC3342519.

797 45. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an
798 integrated tool for comprehensive microbial variant detection and genome assembly
799 improvement. *PLoS one*. 2014;9(11):e112963. Epub 2014/11/20. doi:
800 10.1371/journal.pone.0112963. PubMed PMID: 25409509; PubMed Central PMCID:
801 PMCPMC4237348.

802 46. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an
803 information aesthetic for comparative genomics. *Genome Res*. 2009;19(9):1639-45.
804 Epub 2009/06/23. doi: 10.1101/gr.092759.109. PubMed PMID: 19541911; PubMed
805 Central PMCID: PMCPMC2752132.

806 47. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter:
807 the manifold applications of repeat analysis on a genomic scale. *Nucleic acids
808 research*. 2001;29(22):4633-42. Epub 2001/11/20. doi: 10.1093/nar/29.22.4633.
809 PubMed PMID: 11713313; PubMed Central PMCID: PMCPMC92531.

810 48. Kurtz S, Schleiermacher C. REPuter: fast computation of maximal repeats in complete
811 genomes. *Bioinformatics*. 1999;15(5):426-7. Epub 1999/06/15. doi:
812 10.1093/bioinformatics/15.5.426. PubMed PMID: 10366664.

813 49. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al.
814 Fast Genome-Wide Functional Annotation through Orthology Assignment by
815 eggNOG-Mapper. *Mol Biol Evol*. 2017;34(8):2115-22. Epub 2017/05/02. doi:
816 10.1093/molbev/msx148. PubMed PMID: 28460117; PubMed Central PMCID:
817 PMCPMC5850834.

818 50. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*.
819 2014;30(14):2068-9. Epub 2014/03/20. doi: 10.1093/bioinformatics/btu153.
820 PubMed PMID: 24642063.

821 51. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. *Bioinformatics*.
822 1998;14(1):68-73. Epub 1998/04/01. doi: 10.1093/bioinformatics/14.1.68. PubMed
823 PMID: 9520503.

824 52. Kloepper TH, Huson DH. Drawing explicit phylogenetic networks and their
825 integration into SplitsTree. *BMC Evol Biol*. 2008;8:22. Epub 2008/01/26. doi:
826 10.1186/1471-2148-8-22. PubMed PMID: 18218099; PubMed Central PMCID:
827 PMCPMC2253509.

828 53. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
829 transform. *Bioinformatics*. 2009;25(14):1754-60. Epub 2009/05/20. doi:
830 10.1093/bioinformatics/btp324. PubMed PMID: 19451168; PubMed Central PMCID:
831 PMCPMC2705234.

832 54. Li H. A statistical framework for SNP calling, mutation discovery, association mapping
833 and population genetical parameter estimation from sequencing data.
834 *Bioinformatics*. 2011;27(21):2987-93. Epub 2011/09/10. doi:
835 10.1093/bioinformatics/btr509. PubMed PMID: 21903627; PubMed Central PMCID:
836 PMCPMC3198575.

837 55. Garrison E MG. Haplotype-based variant detection from short-read sequencing.
838 arXiv. 2012;arXiv:1207.3097.[q-bio.GN].

839 56. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid
840 phylogenetic analysis of large samples of recombinant bacterial whole genome
841 sequences using Gubbins. *Nucleic acids research*. 2015;43(3):e15. Epub 2014/11/22.
842 doi: 10.1093/nar/gku1196. PubMed PMID: 25414349; PubMed Central PMCID:
843 PMCPMC4330336.

844 57. Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software
845 platform for Bayesian evolutionary analysis. *PLoS Comput Biol*. 2014;10(4):e1003537.
846 Epub 2014/04/12. doi: 10.1371/journal.pcbi.1003537. PubMed PMID: 24722319;
847 PubMed Central PMCID: PMCPMC3985171.

848 58. Bouckaert RR, Drummond AJ. bModelTest: Bayesian phylogenetic site model
849 averaging and model comparison. *BMC Evol Biol*. 2017;17(1):42. Epub 2017/02/09.
850 doi: 10.1186/s12862-017-0890-6. PubMed PMID: 28166715; PubMed Central
851 PMCID: PMCPMC5294809.

852 59. Russel PM, Brewer BJ, Klaere S, Bouckaert RR. Model Selection and Parameter
853 Inference in Phylogenetics Using Nested Sampling. *Syst Biol*. 2019;68(2):219-33.
854 Epub 2018/07/03. doi: 10.1093/sysbio/syy050. PubMed PMID: 29961836.

855 60. Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV. Improving
856 the accuracy of demographic and molecular clock model comparison while
857 accommodating phylogenetic uncertainty. *Mol Biol Evol*. 2012;29(9):2157-67. Epub
858 2012/03/10. doi: 10.1093/molbev/mss084. PubMed PMID: 22403239; PubMed
859 Central PMCID: PMCPMC3424409.

860 61. S. T. Some probabilistic and statistical problems in the analysis of DNA sequences:
861 American Mathematical Society; 1986.

862 62. Heled J, Drummond AJ. Bayesian inference of population size history from multiple
863 loci. *BMC Evol Biol*. 2008;8:289. Epub 2008/10/25. doi: 10.1186/1471-2148-8-289.
864 PubMed PMID: 18947398; PubMed Central PMCID: PMCPMC2636790.

865 63. Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with
866 confidence. *PLoS Biol*. 2006;4(5):e88. Epub 2006/05/11. doi:
867 10.1371/journal.pbio.0040088. PubMed PMID: 16683862; PubMed Central PMCID:
868 PMCPMC1395354.

869 64. He Z, Zhang H, Gao S, Lercher MJ, Chen WH, Hu S. Evolview v2: an online
870 visualization and management tool for customized and annotated phylogenetic
871 trees. *Nucleic acids research*. 2016;44(W1):W236-41. Epub 2016/05/02. doi:

872 10.1093/nar/gkw370. PubMed PMID: 27131786; PubMed Central PMCID:
873 PMCPMC4987921.

874 65. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer.
875 Bioinformatics. 2011;27(7):1009-10. Epub 2011/02/01. doi:
876 10.1093/bioinformatics/btr039. PubMed PMID: 21278367; PubMed Central PMCID:
877 PMCPMC3065679.

878 66. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
879 large phylogenies. Bioinformatics. 2014;30(9):1312-3. Epub 2014/01/24. doi:
880 10.1093/bioinformatics/btu033. PubMed PMID: 24451623; PubMed Central PMCID:
881 PMCPMC3998144.

882 67. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local
883 alignment with successive refinement (BLASR): application and theory. BMC
884 Bioinformatics. 2012;13:238. Epub 2012/09/20. doi: 10.1186/1471-2105-13-238.
885 PubMed PMID: 22988817; PubMed Central PMCID: PMCPMC3572422.

886 68. Lim Y-L, Roberts RJ, Yin W-F, Chan K-G. Complete genome sequence and methylome
887 analysis of *Aeromonas hydrophila* strain YL17 isolated from a compost pile. Genome
888 Announcements. 2016;4:e00060-16. doi: 10.1128/genomeA.00060-16.

889 69. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
890 features. Bioinformatics. 2010;26(6):841-2. Epub 2010/01/30. doi:
891 10.1093/bioinformatics/btq033. PubMed PMID: 20110278; PubMed Central PMCID:
892 PMCPMC2832824.

893

894

895 Supporting Information

896 Supplementary Figure 1: Colours of functional COG categories as depicted in the Circos plot-
897 figure 2.

898 Supplementary Figure 2: Mauve alignment of *Legionella* plasmids.

899 Supplementary Figure 3: NeighbourNet tree of 54 *L. longbeachae* clinical isolates based on
900 1,271 core SNPs.

901 Supplementary Figure 4: Dendrogram of *L. longbeachae* reference plasmid sequences based
902 on gene presence-absence, and alignment of sequences.

903 Supplementary Figure 5: Maximum likelihood tree of 89 *L. longbeachae* isolates from New
904 Zealand and the United Kingdom.

905 Supplementary Figure 6: Regional Origin of the Sequenced Isolates. The number of isolates
906 sequenced from each region is shown in brackets.

907

908 Supplementary Table 1: Mauve collinear blocks

909 Supplementary Table 2: eggNOG annotations/output

910 Supplementary Table 3: Meta- and genome summary data from Prokka of the *Legionella*
911 *longbeachae* clinical isolates sequenced and analysed in the current study.

912 Supplementary Table 4: MIC₉₀ (mg/L) values for *L. longbeachae* isolates by broth dilution
913 (BYE; Isenman et al., 2018).

914 Supplementary Table 5: Virulence factor genes identified the *L. longbeachae* isolates
915 sequenced in the current study.

916 Supplementary Table 6: Sg1 clinical and environmental isolates from Bacigalupae et al.,
917 2017^t that were included in the global phylogenetic analysis.

918

919 Supplementary File 1: R-Plots-Roary outputs file

920 Supplementary File 2: FastGeP matrix in iTOL output file

921 S3 File: Molecular Clock and Tree Model Trialing

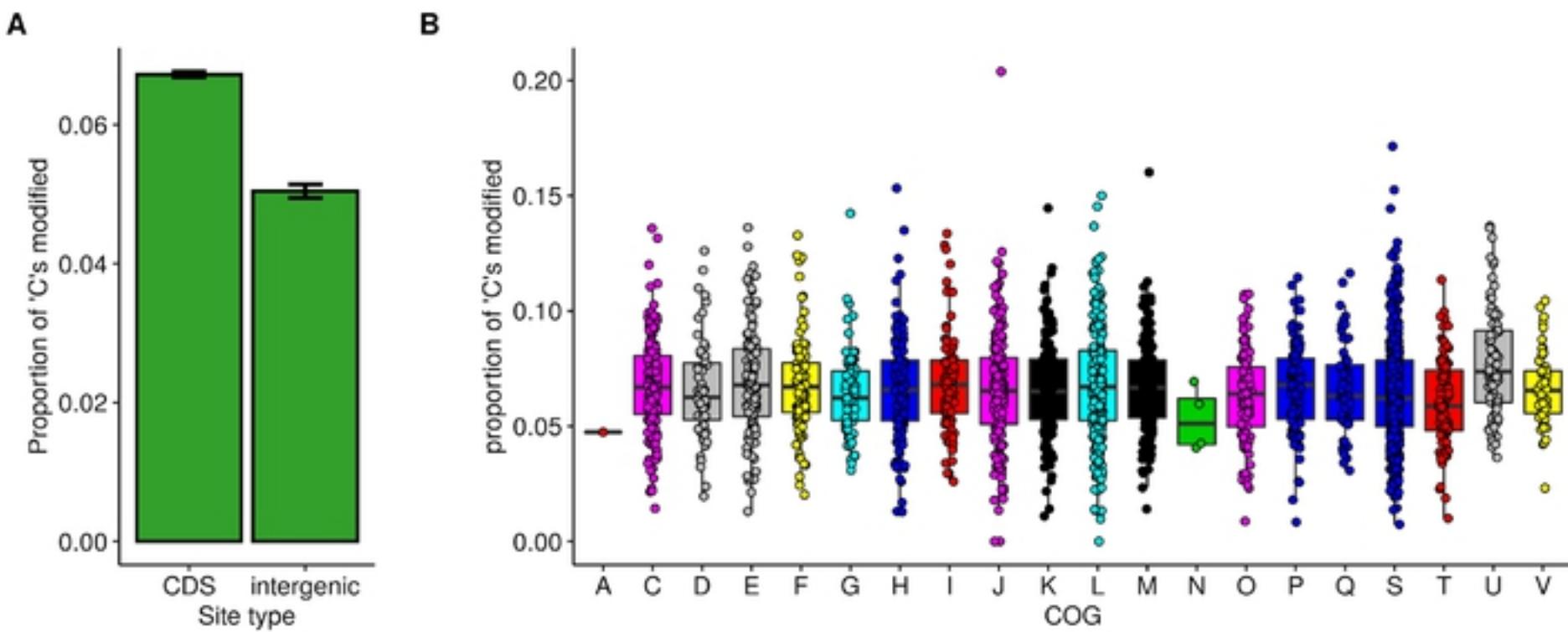
922 S4 File: Code used to perform statistical analyses and visualisation of the methylome data.

923

924 Figure Captions

925 Fig 1: Mauve alignment of the three complete *L. longbeachae* sg1 genomes, F1157CHC,
926 FDAARGOS and NSW150 from top to bottom. The 4 main collinear blocks are indicated by
927 colours (LCB1 is red, LCB2 is yellow, LCB3 is green and LCB4 is blue). The sizes of the blocks
928 for LCB1, LCB2, LCB3 and LCB4 are ~81kb, ~2265kb, ~1807kb and ~272kb respectively. Lines
929 between LCBs in the isolates are for the same LCB. In the visualisation the areas within the
930 LCBs without colour indicates underlying differences in the LCB, as explained by the fact that
931 the LCBs are different sizes in each isolate.

932 Fig 2: Circos plot of NZ *L. longbeachae* isolate F1157CHC. Tracks from the outside to the
933 inside are; chromosomal ideogram (blue), genes on the plus strand, genes on the minus
934 strand (both annotated via eggNOG), regions of recombination detected by Gubbins in the
935 full NZ dataset of 54 sg1 isolates, a histogram showing Snippy-detected SNPs in
936 recombination areas, a heatmap of all SNPs, a histogram showing Snippy-detected SNPs in
937 non-recombination areas, a histogram of non-synonymous SNPs, a histogram of
938 synonymous SNPs, a histogram of m4C densities consistent with gene strand, a heatmap of
939 all m4C densities, a histogram of m4C densities inconsistent with gene strand, a histogram
940 of m6A densities consistent with gene strand, a heatmap of all m6A densities, a histogram
941 of m6A densities inconsistent with gene strand, a line plot of the GC percentage and finally a
942 repeat of the regions of recombination detected by Gubbins in the full NZ dataset of 54 sg1
943 isolates. For the gene predictions, the genes are coloured by functional COG category and
944 the colours used are described in Supplementary Figure 1. All data for the SNPs, methylation
945 patterns and GC percentage are values calculated in non-overlapping 1kb bins. The data for
946 the SNPs and methylation patterns are shown in a log10 scale, and the histograms are also
947 coloured so that larger values are in darker colours. In the centre of the plot are the results
948 from the Reputer analysis, with palindromic repeats in red and forward repeats in blue. The
949 repeats are darker in colour with a smaller Hamming distance between the repeats.


950 Fig 3: Mauve alignment of five *L. longbeachae* reference plasmids

951 Fig 4: The type I-F CRISPR-Cas element found in some of the *L. longbeachae* isolates
952 sequenced in this study

953 Fig 5: Maximum clade credibility tree of 54 *L. longbeachae* clinical isolates. The scale bar
954 represents the length of 100 years. Isolates are coloured by date of collection (squares),
955 region (circles) and plasmid read coverage (heat map). The years in parentheses represent
956 the estimated timing of coalescent events (95% Highest Posterior Density interval).

957 Fig 6: Methyl-distribution. Both methylation marks are approximately evenly distributed
958 across the *L. longbeachae* genome. (A) The frequency with which m4C (above in green) and
959 m6A (below in blue) modifications were detected is plotting in 1kb windows, note the
960 difference in y-axes for each sub-plot. The black box represents the region of unusually high
961 m6A modifications highlighted in (B). (B) The locations of individual m6A modifications are
962 shown as blue circles for the region with an unusually high rate of this mark. The alternating
963 white and grey boxes represent genes in this region, and are labelled with their NCBI locus
964 ID. The gene responsible for the very high rate of m6A modification, B0B39_12100, is a
965 tetratricopeptide repeat protein.

966 Fig 7: m4C methylation is not strongly associated with any functional class. (A) The proportion
967 of 'C' nucleotides are with evidence for methylation in coding and intergenic sequences. Error
968 bars represent a 95% confidence interval, calculated using the normal approximation of a
969 binomial distribution. (B) Each point represents the proportion of 'C' nucleotides in a given
970 gene that show evidence for methylation. The genes are grouped and shaded by the COG
971 category (x-axis). The box plots summarise the distribution of this value across each COG
972 category

Figure 7: m4C methylation is not strongly associated with any functional class. (A) The proportion of 'C' nucleotides are with evidence for methylation in coding and intergenic sequences. Error bars represent a 95% confidence interval, calculated using the normal approximation of a binomial distribution. (B) Each point represents the proportion of 'C' nucleotides in a given gene that show evidence for methylation. The genes are grouped and shaded by the COG category (x-axis). The box plots summarise the distribution of this value across each COG category.

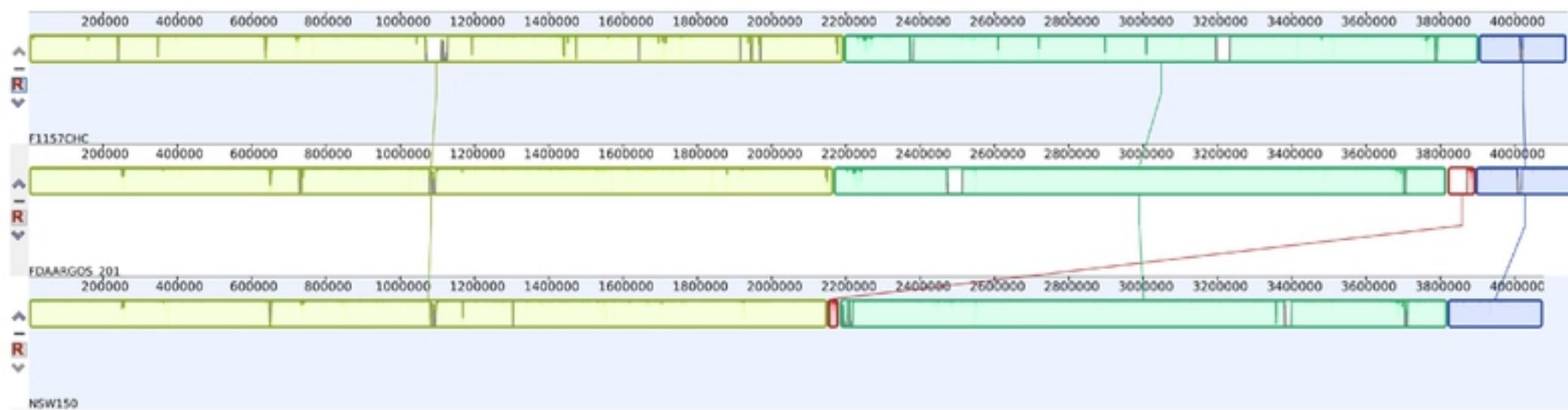


Fig1

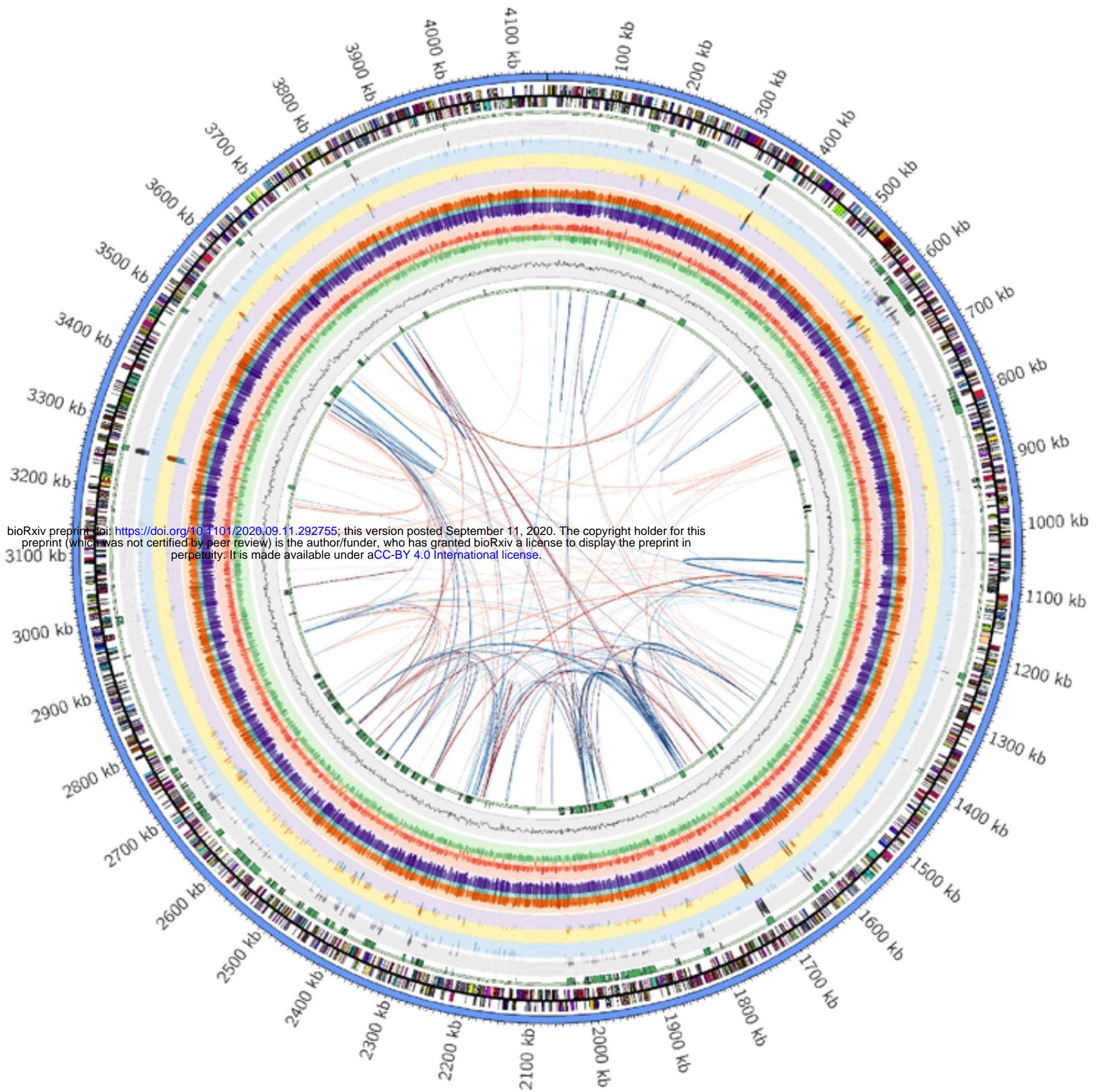


Fig2

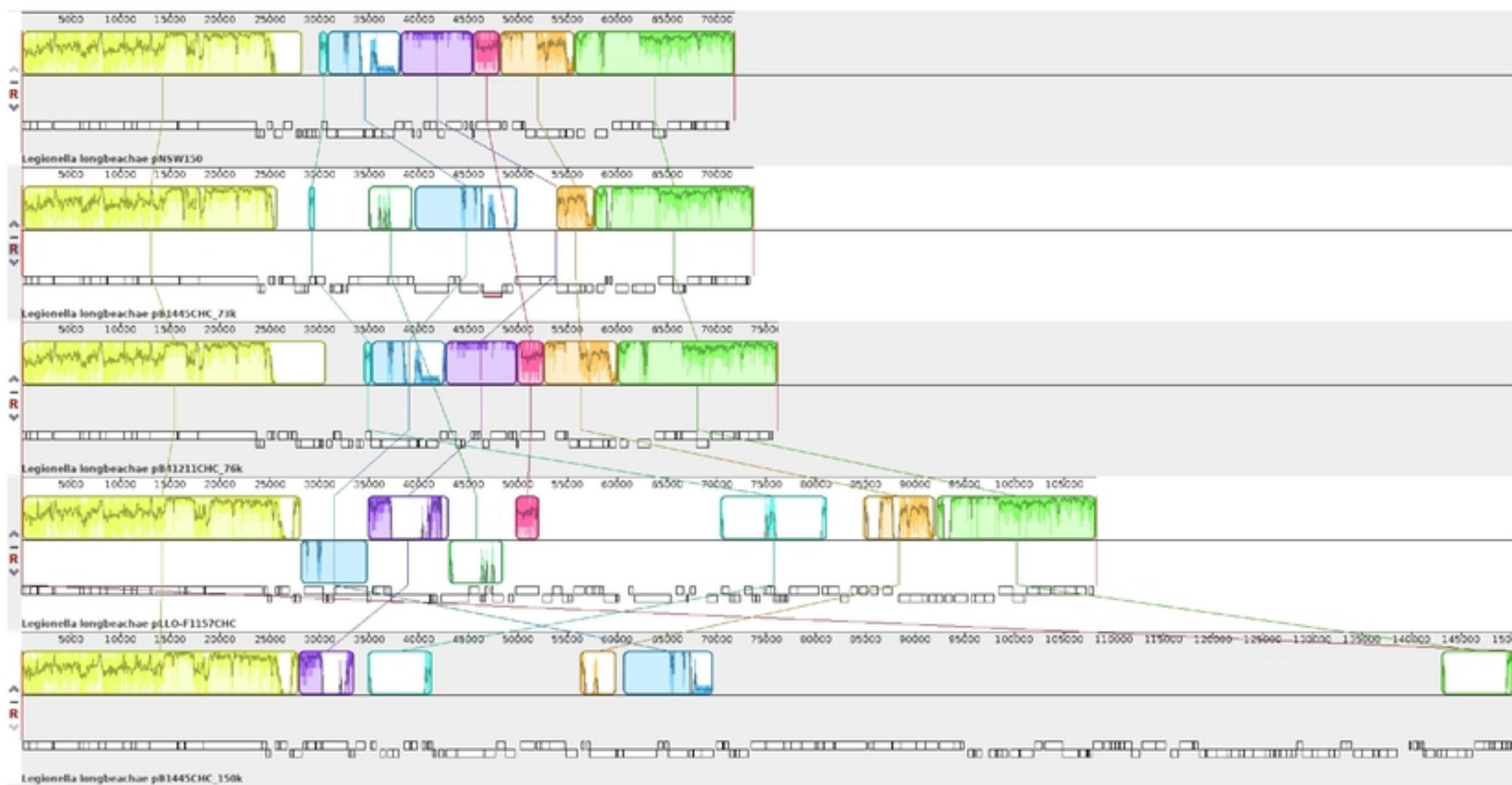


Fig3

Fig4

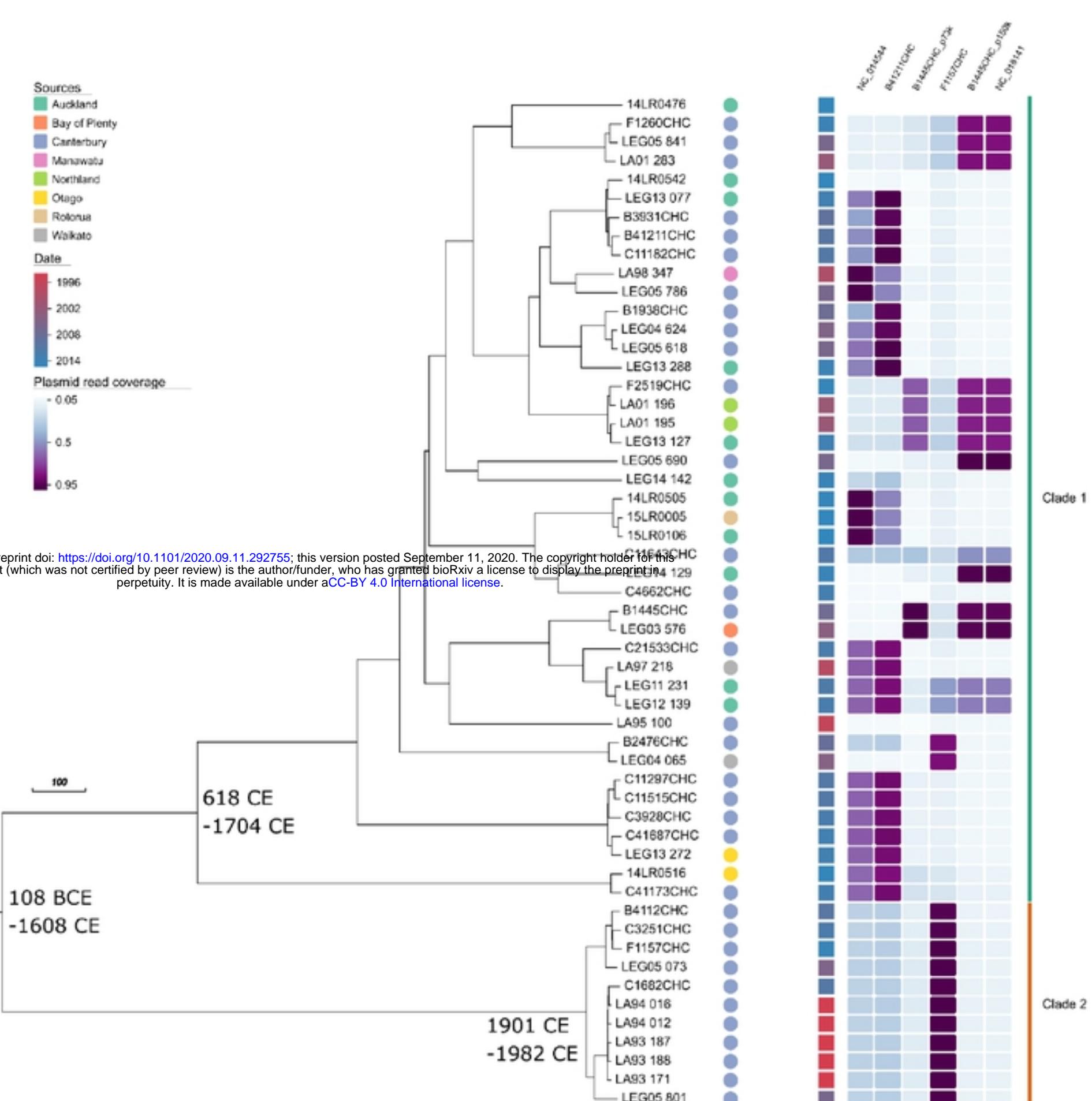


Fig5

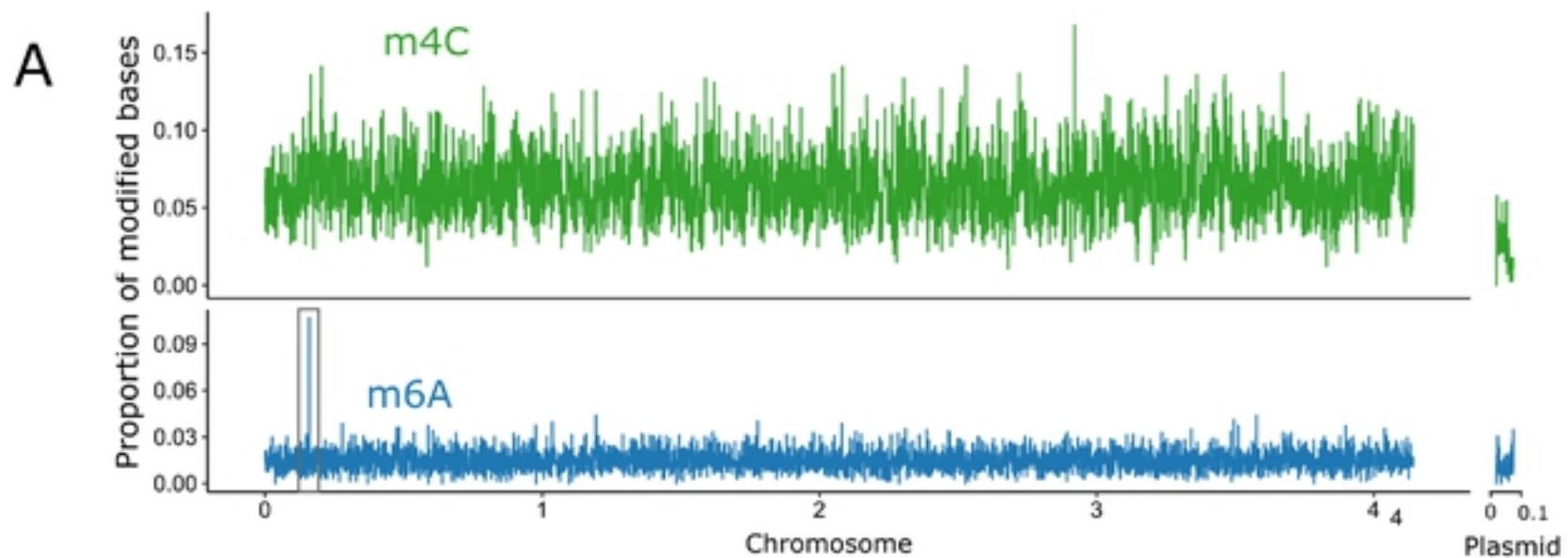



Fig6