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Summary 

 
Integrating constraint-based community modelling with population statistics, we introduce new 

theoretical concepts for interrogating the metabolic functions of the microbiome, applying them to a 

public metagenomic dataset consisting of 365 colorectal cancer cases (CRC) and 251 healthy controls. 

We found that 1) glutarate production capability was significantly enriched in CRC microbiomes and 

mechanistically linked to lysine fermentation in Fusobacteria species, 2) acetate and butyrate production 

potentials were lowered in CRC, 3) Fusobacteria presence had large negative ecological effects on 

community butyrate production in CRC and healthy controls. Validating the model predictions against 

faecal metabolomics, our in silico frameworks correctly predicted in vivo species metabolite correlations 

with high accuracy. In conclusion, highlighting the value of combining statistical association studies 

with in silico modelling, this study delivers insights on the metabolic role of Fusobacteria in the gut, 

while providing a proof of concept for the validity of constraint-based community modelling. 

 

Introduction  
 

The gut microbiome with its trillions of bacteria contributes crucially to human metabolism in 

health and disease (Clemente et al., 2012). It generates otherwise inaccessible nutrients 

(Shafquat et al., 2014), inactivates and activates drugs (Wilson and Nicholson, 2017), and 

produces potentially harmful metabolites (Yuan et al., 2019). Recent advances in sequencing 

techniques have given rise to a wealth of insights into patterns of gut microbiome composition, 

revealing that the gut microbiome is a correlate of many human diseases (Lynch and Pedersen, 

2016). Besides results stemming from observational human cohort studies, an impressive 

number of experimental studies on animal models have resulted in insight into the mechanisms 

by which the gut microbiome interacts with the host organism (Douglas, 2019). Specifically, 

bacterial fermentation pathways play a key role in mediating host-microbe metabolic 

interactions. Short chain fatty acids (SFCAs), namely acetate, butyrate, and propionate, arise 

from gut microbial fermentation of dietary fibre (Koh et al., 2016). Microbial fermentation of 

protein also results in short chain fatty acid production but mostly result in branched-chain fatty 

acids, such as isobutyrate, 2-methylbutyrate, and isovalerate (Smith and Macfarlane, 1997). SFCAs, 

especially butyrate, directly modulate host physiology by serving as signalling molecules (Koh 

et al., 2016). For instance, they act as histone deacetylase (HDAC) inhibitors and bind to G 

protein-coupled receptors (GPCRs) (Johnstone, 2002).  

 

Increasing evidence points towards the gut microbiome contributing to colorectal cancer (CRC) 

through its metabolome, in particular through alterations in SFCA metabolism (Louis et al., 

2014; Tilg et al., 2018). Butyrate is protective against CRC since it is both a potent anti-tumour 

and anti-inflammatory agent (Chang et al., 2014) mediated by its HDAC-inhibiting effects 

(Flint et al., 2012). Moreover, butyrate serves as the main carbon source for healthy colonocytes 

but not for tumour cells (Koh et al., 2016). Consistently, multiple studies have reported a 

decrease in butyrate-producing bacteria in CRC patients (Koh et al., 2016). On the other hand, 

the gut microbiome produces potentially genotoxic metabolites, such as hydrogen sulfide and 

secondary bile acids (Niederreiter et al., 2018), contributing potentially to CRC pathogenesis. 

A number of species have been implicated in the pathogenesis of CRC, such as Fusobacterium 

nucleatum, Escherichia coli, Bacteroides fragilis, Gemella morbillorum, Parvimonas micra, 

and Solobacterium moreii (Tilg et al., 2018). Moreover, a microbial signature encompassing 29 

species was predictive for CRC (Wirbel et al., 2019). Hence, it has been suggested that the gut 

microbiome could serve as a prognostic and diagnostic marker (Thomas et al., 2019; Wirbel et 

al., 2019). Additionally, the microbiome changes in its composition during the progression of 
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the disease (Yachida et al., 2019), while playing an important role in promoting resistance to 

chemotherapy (Yu et al., 2017) or modifying them in a toxic way (Alexander et al., 2017).  

 

The faecal metabolome is considered to be a readout of the functional capabilities of the gut 

microbiome (Yachida et al., 2019; Zierer et al., 2018). Consequently, changes in faecal 

metabolome profiles in CRC have also been linked to altered microbial abundance patterns via 

statistical association studies (Kim et al., 2020; Koeth et al., 2013; Xu et al., 2020). Yet, it 

remains challenging to identify the mechanisms by which the microbiome changes the 

metabolome, as statistical associations may be caused by indirect effects and confounding 

(Noecker et al., 2019; Shaffer et al., 2017). Moreover, as species share metabolic capabilities 

and functions even across different phyla (Magnusdottir et al., 2017), it is by no means clear 

that a change in composition will result in a change in metabolic functions. In consequence, 

two gut microbial communities may look drastically different regarding their species 

composition, while they may be largely equivalent in terms of metabolic functions, 

complicating interpretations of metagenomics studies. As the gut microbiome acts as a complex 

ecosystem where species have to be understood in their role within communities, systems 

biology approaches seem to be best suited to tackle the problem of translating patterns of 

species abundance into patterns of metabolic function (Noecker et al., 2019).  

 

Herein, we applied constraint-based reconstruction and analysis (COBRA) to map species 

abundance patterns onto patterns of metabolic functions (Heirendt et al., 2019). COBRA 

represents a scalable systems biology computational modelling approach, widely applied in the 

field of microbiome research (Chng et al., 2020; Garza et al., 2020; Henson et al., 2019; Thiele 

et al., 2020). Its strengths of integrating genomic data with condition specific constraints are 

specifically designed to deliver on the task of characterising metabolic functions of microbial 

communities (Orth et al., 2010). Accordingly, we utilised metabolic reconstructions of 

hundreds of gut microbes (Magnusdottir et al., 2017) in combination with community 

modelling (Baldini et al., 2018) to predict metabolic outputs of microbial communities as 

demonstrated previously (Heinken et al., 2019). Based on a recently published metagenomics 

data set of a colon cancer case-control study (Yachida et al., 2019), we successfully validate 

then our predictions via integrating them with faecal metabolomic measurements from the same 

study.  Crucially, we demonstrate that AGORA-based community modelling can correctly 

predict the empirical species-metabolite association patterns for butyrate and glutarate. 

Thereby, we demonstrate the validity of COBRA community modelling in a proof-of-principle 

analysis, providing novel insights into the role of Fusobacteria in CRC.  

 

Results  
To translate microbiome abundance pattern into patterns of metabolic functions, we applied 

community modelling to the colorectal cancer (CRC) case-control cohort (Yachida et al., 2019), 

which included 616 individuals (365 CRC cases and 251 healthy controls), with metagenomic 

data. For each individual, a personalised microbiome model was built, appropriately 

contextualised with a simulated Average Japanese diet, and subsequently interrogated through 

flux balance analysis simulations (Methods). The simulations resulted in one model producing 

nothing, indicating an infeasible model specification. This case was excluded from analyses. 

Table 1 shows the descriptive statistics for the included cases regarding the meta-data. Table 2 

displays a summary of the important theoretical concepts applied in the following 

analyses.  The resulting personalised flux profiles were then analysed in the context of clinical 

parameters and metabolomic findings through population statistics modelling. Thus, this study 

utilizes three distinct levels of modelling (Fig. 1A): 1) The strain-specific AGORA genome-

scale metabolic reconstructions, 2) the personalised COBRA community models integrating 

diet data and the individual9s metagenomic data resulting in individual flux profiles, and 3) the 
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statistical modelling of populations of community models. Note that the first two steps are 

deterministic, while the third step is stochastic.   

 

Microbial communities are unique in their metabolic capabilities in healthy controls and 

CRC cases  

To gain insight into the distribution of gut microbial metabolic capabilities across samples, we 

explored the distribution of secretion patterns in CRC cases and controls via the concept of 

metabolic equivalence (see Methods). We call two communities equivalent regarding a certain 

set of metabolites, if the subset of metabolites with net production capacity greater zero 

conditional on a common diet is the same for both communities. In the AGORA resource 

(Magnusdottir et al., 2017), the net production capacity calculation of all 413 metabolites that 

are associated with exchange reactions (Noronha et al., 2019) is possible, resulting in the 

theoretical number of 2413 different equivalence classes for the whole set of metabolites. 

However, from these 413 metabolites, 224 metabolites were produced by no model and 90 

metabolites by all models, meaning that secretion capability of 99 metabolites showed variance 

across the microbiome community models with 43 metabolites being produced by at least 5% 

of the models and maximally 95% of the models (Table S1). Despite this high level of 

overlapping metabolic capabilities between microbiome models, we detected 607 different 

equivalence classes in 615 simulated communities. Hence, microbial communities are mostly 

metabolically unique in their profiles of metabolic capabilities, contributing thereby to the 

individuality of human metabolism in health and disease.  

 

Glutarate production capability is enriched in CRC cases and a metabolic function unique 

to Fusobacteria sp.  

Next, we fitted logistic regressions to investigate whether individual metabolite secretion 

capabilities are enriched in CRC microbiomes controlling for age, sex, and body mass index 

(BMI) (Table S1 for full results). After correction for multiple testing, only the glutarate 

secretion capability remained significant, being clearly enriched in CRC cases (Odds ratio 

(OR)=2.51, 95%-confidence interval (CI)=(1.80;3.51), p=6.45e-08, FDR<0.05) (Fig. 2A). 

Importantly, the capability to secrete glutarate was associated with the stage of disease 

(p=0.003, Fig. 2B), indicating that glutarate secretion potential may be an in silico biomarker 

for CRC progression, although this result was not significant after correcting for multiple testing 

(FDR=0.13). Testing the association to basic covariates, we found that glutarate production 

capability was enriched in men (OR=1.64, 95%-CI:(1.17;2.29), p=0.004) (Fig. 2A), but not 

associated with age and BMI. To link the change in metabolic functions back to patterns of 

species abundance, we applied the concepts of necessity and sufficiency (see Methods). We 

identified 59 species fulfilling the criteria of being sufficient, meaning that all communities 

containing at least one of these species were able to secrete glutarate. From these 59 species, 

only seven species were strictly sufficient. Strikingly, all strictly sufficient species belonged to 

the genus Fusobacterium. Importantly, from the seven Fusobacterium sp., two were 

significantly more often detected in CRC cases (Fig. 2C). Together, these seven species were 

also necessary, meaning that at least one of the seven detected Fusobacterium species had to be 

present in the community for net glutarate production capacity. Hence, a community had a 

positive net production capacity for glutarate, if and only if Fusobacterium species were 

present.  

 

Next, we aimed at identifying specific network properties of Fusobacterium species allowing 

for net glutarate production capabilities. Using the AGORA resource, we found that 

Fusobacteria are the only species having the complete pathway from lysine to glutarate and an 

exchange reaction for glutarate (Fig. 2D).  Noteworthy, the pathway for glutarate production 

from lysine co-occurs with the pathway for butyrate production from glutarate (Vital et al., 
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2014) (Fig. 2D). Consequently, CRC microbiomes were enriched for the lysine to butyrate 

fermentation pathway through glutarate. In conclusion, while Fusobacteria sp., especially F. 

nucleatum, have been repeatedly linked to CRC, we identified a metabolic capability unique to 

Fusobacteria species.  

 

CRC microbiomes show lowered short chain fatty acid production capacities mediated by 

Fusobacteria presence 

As glutarate is an upstream metabolite of acetate and butyrate (Buckel, 2001; Vital et al., 2014), 

we calculated the net secretion potential for short chain fatty acids, including propionate, by the 

community modelling and tested for differences in community secretion potentials between 

CRC cases and healthy controls. Strikingly, acetate (regression coefficient b=2.88, 95%-

CI:(0.05;5.71), p=0.046) and butyrate (b=8.98, 95%-CI:(0.87;17.10), p=0.030) production 

potential but not propionate production potential (b=-3.61, 95%-CI:(-13.16;5.94), p=0.458), 

were higher in healthy controls (Fig. 3A). Noteworthy, microbiomes with Fusobacteria had 

lower butyrate production potential (b=-23.71, 95%-CI:(-31.52;-15.89), p=4.43e-09) in cases 

as well as in controls (Fig. 3B). No effect of Fusobacteria presence on acetate production 

capacities could be identified, while proprionate production potentials were higher in 

microbiomes with Fusobacteria (Fig. S1). Importantly, Fusobacteria presence statistically 

mediated the effect of CRC on butyrate production potential (Sobel-Goodman Test: Indirect 

effect b=5.29, 95%-CI:(2.77;7.81), p=3.79-05). Thus, our analyses provide evidence that the 

presence of Fusobacteria may be deleterious for community butyrate production potential, 

leading to CRC microbiomes, which are enriched for Fusobacteria sp., having reduced butyrate 

production potentials. 

 

Fusobacteria species have large negative ecological effect on butyrate production through 

the butyryl-CoA:acetate CoA-transferase route 

To elucidate the changes in the community associated with Fusobacteria causal to the lower 

butyrate production potential, we calculated for each butyrate producing species found in at 

least 5% and maximally 95% of all samples the direct butyrate production capacity and their 

ecological effects on the community butyrate production (Methods). Three reactions 

abundances showed a correlation r>0.99 with the community butyrate production capacity: The 

conversion reaction of crotonoyl-CoA to butyryl-CoA by Bcd-Etf complex (VMH identifier: 

BTCOADH), the butyryl-CoA:acetate CoA-transferase (VMH identifier: BTCOAACCOAT), 

and the ferredoxin:NAD oxidoreductase (VMH identifier: FDNADOX_H). From those three, 

which belong to the same pathway, the butyryl-CoA:acetate CoA-transferase directly produces 

butyrate with variance in its abundance being responsible for over 98% of variance in net 

community butyrate production capacity. Thus, abundance of this reaction directly translates 

into net butyrate production capacity in a proportional manner (R-Squared=0.99 Fig. 3C), 

representing thereby the main route for microbial butyrate production in the population of 

interrogated community models. While all five Fusobacteria sp. detected in at least five percent 

of the samples were predicted to produce small amounts of butyrate via the butyryl-CoA:acetate 

CoA-transferase route, they had large negative ecological effects on community butyrate 

production (Fig. 3D, Table S2). F. varium, F. mortiferum, and F. ulcerans had the highest 

negative impact on community butyrate production across all modelled butyrate producing 

species (Fig. 3D). Highlighting the negative impact of Fusobacteria presence, from seven 

species that contributed at least 10% of variance to the net community butyrate production 

capacity with positive effect sign (Table S3), five were negatively correlated with the presence 

of Fusobacteria, although the effect regarding Coprococcus comes missed significance after 

adjusting for the study group variable (OR=0.70; 95%-CI:(0.48;1.02), p=0.06, Table S4). The 

effect was most drastic with the well-known fibre degrader Faecalibacterium prausnitzii 
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(OR=0.49, 95%-CI:(0.42;0.58), p=8.41e-18, FDR<0.05 Fig. 3E, Table S4), which is known to 

produce butyrate through the butyryl-CoA:acetate CoA-transferase route (Louis et al., 2014).  

 

Faecal metabolomics validates community butyrate production predictions     

All the results until now are based on in silico calculations. Now, we focus on the validation of 

core results using faecal metabolome data from the same cohort where for 347 individuals, 

faecal metabolome measurements were available including quantifications for butyrate and 

glutarate (Yachida et al., 2019). The community models made distinct predictions i) for the net 

butyrate production capacity, ii) for the species contributing to community butyrate production, 

and iii) the prediction that butyrate community production is lowered in communities with 

prevalent fusobacterium species. First, predicted butyrate secretion capacities were 

significantly correlated with measured log faecal butyrate concentrations (b=0.005, 95%-

CI:(0.003,0.006), p=9.87E-10) explaining overall 10.9% of faecal butyrate concentration 

variance (see Fig. 4A). Second, we calculated the full species butyrate association pattern by 

regressing the faecal log butyrate concentrations on the species presences in sequential 

regressions while adjusting for case-control status, age, sex, and BMI. The corresponding in 

silico species-metabolite association statistics were then derived from analogous regressions 

using the net community butyrate production capacity as response variable. The summary 

statistics for the species butyrate association patterns in vivo and in silico can be found in the 

supplementary material (Table S5). From 47 nominally significant species faecal butyrate 

associations, community modelling predicted the sign correctly for 43 (prediction accuracy: 

91.49%, Fisher9s exact test: p=1.69e-08). From 17 FDR corrected significant species faecal 

butyrate associations, community modelling predicted in all but one case (Granuticatella 

adiacens) the sign (prediction accuracy: 94.1%, Fisher9s exact test: p=0.006) (Fig. 4B). Beyond 

the sign, community modelling predictions were additionally significantly correlated with the 

size of the regression-based association statistics for the nominally significant species (r=0.75, 

p=9.96e-10) and the FDR corrected significant species (r=0.86, p=7.65e-06) (Fig. 4D). 

Moreover, as predicted by the modelling, individuals with prevalent Fusobacterium species sp. 

had significantly lower faecal butyrate levels (b= -0.19, 95%-C:(-0.34, -0.05), p=0.011) (see 

Fig. 4C) despite fusobacteria themselves being butyrate producers, reflecting the predicted 

deleterious effects of Fusobacteria on other butyrate producing species, As the faecal 

metabolome is considered to be partly a readout of the functional capabilities of the gut 

microbiome (Yachida et al., 2019; Zierer et al., 2018), this data could provide a proof of 

principle for the validity of AGORA-based community modelling. However, the variance in 

the faecal metabolome is also determined by variance in nutrition habits and attributes of the 

host; both of which were not modelled in this work, thereby limiting the extent to which the 

variance in the faecal metabolome could be explained by community modelling. Note that the 

utilised modelling algorithms utilised above were not <trained= in any way on the utilised 

metabolome dataset. In conclusion, community modelling was able to predict measured species 

butyrate correlations with high accuracy and, thus, to predict the species-level contribution to 

the faecal butyrate pool.  

 

Faecal glutarate levels indicate net glutarate consumption by microbial communities  

Then, we turned our attention to the relation between in silico predicted net glutarate production 

capacity and actual experimentally measured faecal glutarate concentrations. Surprisingly, we 

discovered that communities with the capability of glutarate production were associated with 

significantly lower glutarate levels in faeces (b= -0.44,95%-CI(-0.68, -0.20), p=3.24e-04) (see 

Fig. 5A), explaining 4.06% of variation in faecal glutarate pools. In consequence, faecal 

glutarate concentrations were significantly lower in the presence of Fusobacteria. Remember 

that glutarate production capability is synonymous for Fusobacteria presence. The microbial 

transport reaction for glutarate is bi-directional and the necessary reactions of glutarate 
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production co-occur with the degradation reactions leading to butyrate production from 

glutarate (Fig. 2D). Hence, it is possible that a positive net glutarate production capacity 

indicates that glutarate can be taken up for ATP generation. In this scenario, communities would 

be able to consume glutarate, explaining the inverse association of net metabolite production 

capacity and faecal metabolite concentration. This interpretation is corroborated by testing the 

ability of community modelling to predict species faecal glutarate associations (Table S6). 

From 69 nominally significant species faecal glutarate associations, 62 were in line with the 

community modelling prediction when interpreting the secretion potential as a measure of 

consumption (prediction accuracy: 89.86%, Fisher9s exact test: p=2.28e-12) (Fig. 5B). For 50 

out 56 FDR corrected significant associations, community prediction correctly predicted the 

sign (prediction accuracy: 89.39%, Fisher9s exact test: p=1.27e-09) (Fig. 5B). As with butyrate, 

community modelling was also able to predict size of regression coefficient of the species for 

the faecal glutarate concentration (r=-0.76, p=2.89e-14 for the nominally significant species; 

r=-0.74, p=5.36e-11 for the FDR corrected species) (Fig. 5D).  

 

Faecal glutarate consumption is driven by Fusobacteria sp. in silico 

Above, we showed that community glutarate secretion in silico is likely an indicator for 

glutarate consumption in vivo. Testing this interpretation, we designed additional simulations 

to model the glutarate uptake by those species who are able consume glutarate. Note that while 

only Fusobacteria were able to secrete glutarate, we identified 16 species present in at least one 

microbiome being able to take up glutarate including the seven detected Fusobacteria sp. (Table 

S7). However, Fusobacteria abundance was the primary determinant of glutarate uptake 

potential (R-squared=0.97, see Fig. 5C). Consequently, uptake potential and community 

secretion potential for glutarate correlated strongly with each other (r=0.98, p<1e-30, Fig. 5C). 

In conclusion, the interpretation of the community glutarate production capacity being an 

indicator of the potential to consume glutarate was also supported by the species level uptake 

modelling.  

 

Discussion 

 
A key challenge for a mechanistic understanding of the gut microbiome in health and disease 

is to map changes in gut microbial abundances onto functional changes impacting the host9s 

metabolism. Here, we present a functional metabolic modelling approach combining COBRA 

modelling with population statistics that enables translating individual-specific microbial 

abundances into personalised microbial metabolite profiles. Through this framework, we 

demonstrated that each person9s gut microbiome is functionally unique, emphasising the need 

for individualised modelling of microbiomes as possible with COBRA community modelling. 

We highlighted the utility of our approach by generating insights on the functional alterations 

associated with Fusobacteria sp. presence in the gut microbiome; insights of potential clinical 

relevance especially in CRC where Fusobacteria sp. are enriched (Kostic et al., 2013; Mehta et 

al., 2017; Zhou et al., 2018). Finally, we validated the prediction of the in silico modelling 

against faecal metabolome data, revealing excellent agreement between in silico predictions 

and empirical data.  

 

Our analyses of net production capacities revealed alterations in the domain of fermentation 

products in CRC, including short chain fatty acids. CRC microbial communities had lower net 

production capacities in acetate and butyrate (Fig. 3). The lower production capacity of short 

chain fatty acids is of potential clinical relevance due to the known anti-inflammatory, anti-

tumour-effects of butyrate (Koh et al., 2016). Moreover, butyrate is a main energy source for 

colonocytes but not for cancer cells, which prefer glucose (Koh et al., 2016). Evidence exists 

for butyrate having protective properties for colon-cells and low fibre intake has been 
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considered as a risk factor for CRC (Chang et al., 2014). The finding that CRC microbiomes 

have decreased capacities in producing butyrate fits with earlier observations of depletion of 

butyrate producing species in CRC microbiomes (Wu et al., 2013; Zhu et al., 2014).  

 

While well documented, the cause for the depletion of butyrate producing species in CRC is 

less understood. In our study, we found that presence of Fusobacteria sp. is strongly associated 

with this shift in the community composition, quantified by the high negative ecological effect 

of Fusobactera sp. on community butyrate production (Fig. 3). Importantly, the negative effect 

of Fusobactera sp. is not a CRC specific feature: In healthy individuals, the presence of 

Fusobacteria was associated with lower butyrate production capacities as well (Fig. 3B). This 

observation fits well with in vitro studies showing that F. nucleatum produces bactericidal 

compounds hazardous to butyrate-producing species, in this case F. prausnitzii (Guo et al., 

2018). It should be noted that the highest negative effects on community butyrate production 

were with F. varium, F. mortiferum, and F. ulcerans, indicating that not only F. nucleatum may 

play a role in CRC (Fig 3D). Noteworthy, Fusobacteria sp. co-occur with each other (Zhou et 

al., 2018), making inferences on single species complicated. For example, in the present study, 

we also found F. mortiferum to be significantly enriched in CRC (Fig. 2C). In conclusion, the 

evidence points overall towards Fusobactera sp. being deleterious for community butyrate 

production. 

 

F. nucleatum has been repeatedly implicated in CRC (Flanagan et al., 2014; Mima et al., 2016; 

Ng et al., 2019). While it has been described that F. nucleatum plays a role in treatment 

resistance in CRC and in the modulation of anti-tumour inflammation response (Mima et al., 

2015; Yu et al., 2017), the metabolic role of an enrichment in F. nucleatum and in other 

Fusobacteria sp. in CRC is less clear. In this respect, we found a clear enrichment of the 

capability to produce glutarate from lysine in CRC microbiomes, which is mechanistically 

linked to Fusobacteria presence (Fig. 2D). Importantly, this feature is a metabolic trait of all 

seven Fusobacteria that we detected in this study, and a general feature of all species in the 

Fusobacteria genus captured in the VMH resource (Noronha et al., 2019). Fusobacteria sp. are 

the only species in the AGORA collection having the full pathway from lysine to glutarate and 

an exchange reaction for glutarate. In line with our study, Fusobacteria are known for their 

asaccharolytic metabolism (Flynn et al., 2016). As glutarate is an intermediate on the pathways 

from lysine and from glutarate to butyrate (Vital et al., 2014), this suggests that the increased 

Fusobacterium abundance in CRC microbiomes would result in increased amino acid 

fermentation, in particular lysine to butyrate. An enrichment in amino acid degradation 

pathways accompanied by a corresponding decrease in carbohydrate degradation has been 

reported for CRC microbiomes (Wirbel et al., 2019), fitting with our results. It is noteworthy 

that we found Fusobacteria species to be enriched in men. Men have higher risks for developing 

CRC (White et al., 2018), sparking the speculation whether Fusobacteria presence may mediate 

a part of the sex-specific risk for CRC, although the discussion around sex-differences in CRC 

are complicated by social and cultural effects (Kim et al., 2015). 

 

Interestingly, integration with faecal metabolomics indicated that Fusobacteria are likely net 

consumer of glutarate and the main determinant of community glutarate uptake. Glutarate, 

however, is biochemically closely related to alpha-ketoglutarate and thereby to the Krebs cycle. 

Aberrations in the Krebs cycle in return are a hallmark of cancer metabolism (Anderson et al., 

2018; Pavlova and Thompson, 2016). Thus, CRC metabolism may be interlinked with the 

metabolism of Fusobacteria, allowing for the speculation that Fusobacteria may profit from 

Krebs cycle alterations in CRC. 
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Previously, we have demonstrated the use of personalised metabolic modelling for the 

stratification of paediatric inflammatory bowel disease patients and controls in a purely in silico 

approach (Heinken et al., 2019) and validated changes in the metabolome of Parkinson9s 

Disease patients with personalised models built from an unrelated cohort (Hertel et al., 2019). 

Here, by integrating the AGORA based COBRA community modelling predictions with faecal 

metabolomics, we could validate our predictions regarding butyrate, glutarate, Fusobacteria 

and other butyrate producing species. We were able to correctly predict, which species correlate 

with faecal butyrate and glutarate levels, and even the effect sizes of these associations were 

predicted correctly to a high degree (Fig. 4, 5). This functional metabolic modelling delivers a 

new proof of principle for community modelling, opening new routes of applications. As 

butyrate production is considered to be integral for gastrointestinal health (Chang et al., 2014), 

probiotic, prebiotic, and synbiotic interventions have started targeting beneficial butyrate 

producers, such as F. prausnitzii (Chang et al., 2019). AGORA-based community modelling 

enables the prediction of the outcome of therapeutic and dietary interventions (Thiele et al., 

2017). Our study now reveals that these in silico biomarkers are indeed reflective of the gut 

microbiome9s metabolic capacities and in good agreement with faecal butyrate concentrations. 

Importantly, the models were not contextualised with the metabolome data from Yachida et al. 

during their construction, meaning that the Yachida et al. dataset delivers an external validation 

(Yachida et al., 2019). Thus, in silico modelling can deliver computational biomarkers for 

phenotypes, which could be used, in principle, for diagnostic or prognostic purposes. 

Additionally, our work highlights that community modelling can be utilised as a further layer 

of validation for empirical species metabolome association studies where correlations are often 

difficult to interpret due to uncontrolled confounding (Noecker et al., 2019). As community 

modelling is based on deterministic calculations from microbiome measurements, certain types 

of confounding have no effect on in silico species metabolite association. Thereby, community 

modelling can help in diminishing false positives in microbiome metabolome association 

studies; an important aspect as noted in earlier work (Noecker et al., 2019). 

 

While the modelling was overall in good agreement with the empirical metabolome 

measurement, several limitations should be noted. We applied one standardised diet, excluding 

therefore variance caused by differential diet habits from the analyses. However, the general 

methodology would allow the personalisation of the diet information used for modelling. Thus, 

if the diet habits are sampled in a suitable way, the type of calculation performed here can be 

individualised not only regarding microbial abundances, but also regarding the diet information 

(Baldini et al., 2018). Furthermore, this study did not integrate the host9s metabolism into the 

modelling. Further studies, based on whole body organ resolved COBRA modelling (Thiele et 

al., 2020), could deliver more insight into the interplay between the host and the microbiome in 

CRC and beyond. Knowledge about microbial functions and genomic annotations are 

incomplete, and as such, the AGORA collection is subject to constant updates. Another known 

limitation of COBRA is the lack of kinetic parameters and the simulation of fluxes rather than 

concentrations due to the steady-state assumption. However, the good agreement between in 

silico fluxes and experimentally measured concentrations in this study suggests that is it 

possible to mechanistically translate increased or decreased fluxes into increased or decreased 

concentrations. Importantly, this study is based on cross-sectional data and as such, causality 

between clinical parameters and microbial functions cannot be established. However, 

determinations of metabolic functions by community modelling are not confounded by factors 

like age, sex, exercise or other factors, as they are deterministic calculations from abundance 

patterns. Providing a major conceptual advantage regarding the functional analyses of species 

metabolite associations via calculating abundance concentrations correlations, community 

modelling allows for the dissection of direct contributions of species to and their ecological 

effects on the community metabolite production capacities. Noteworthy, ecological effects, as 
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defined in this work, allow the mapping of the statistical effects of the presence of species on 

the community structure in terms of metabolic function. It should, however, be remembered 

that ecological effects note statistical associations and are not necessarily of causal nature. 

 

In conclusion, AGORA-based community modelling provides a powerful toolset for the 

characterisation of microbial metabolic functions in health and disease, delivering testable 

hypotheses, in silico biomarkers, and potential endpoints for clinical studies. Importantly, the 

AGORA reconstructions had been extensively curated based against comparative genomics and 

experimental data two microbial textbooks and over 200 peer-reviewed papers (Magnusdottir 

et al., 2017). Thus, underneath the conclusions presented in this paper lies accurate, manually 

gathered knowledge on fermentation pathways in hundreds of organisms. Overall, this study 

provides a proof of principle that the knowledge encoded in the AGORA models can be 

translated into clinical insight via community modelling.   
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Methods 
 

Study sample 
We utilised the Japanese colorectal cancer cohort data from (Yachida et al., 2019), which had publicly 

available shotgun sequencing data for n=616 individuals (365 CRC cases and 251 healthy controls). The 

reads had already been processed and taxonomic profiling utilizing MetaPhlAn2 (Truong et al., 2015). 

Attached to this dataset several, meta-data on age, sex, BMI, smoking, alcohol, stages of the disease, 
and tumour location were available. Additionally, linked to these data, faecal metabolome 

quantifications were available for n=347 probands (CRC: 220, controls:127), allowing the validation of 

attributes of the community models by linking them to empirical metabolome quantifications. For details 
on metagenomic and metabolomic measurements, refer to (Yachida et al., 2019). 

 

Definition of an average Japanese diet 
An average Japanese diet was defined based on the mean daily food consumption in 106 Japanese 

extracted from food frequency questionnaires and 28 days weighed diet records (Tokudome et al., 2001) 
(Table S8a). Therefore, we used the Diet Designer of the VMH database (https://vmh.life), which lists 

the composition of >8,000 food items (Noronha et al., 2019). In the absence of a perfect match, the most 

related food item entries were retrieved. The Diet Designer calculates uptake flux values in 
mmol/person/day for each nutrient component based on the specified diet, as described elsewhere 

(Noronha et al., 2019). We integrated these uptake flux values as diet constraints with all community 

microbiome models using the Microbiome Modelling Toolbox (Baldini et al., 2018) (see below). To 
ensure that all AGORA pan-species models could grow under the defined diet, we adapted the calculated 

uptake fluxes as necessary (Table S8b). The diet constraints were defined to be in mmol/person/day. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290494doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290494
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

11 

Simulations 
All simulations were performed in MATLAB (Mathworks, Inc.) version R2018b with IBM CPLEX 

(IBM) as the linear and quadratic programming solver. The simulations relied on functions implemented 
in the COBRA Toolbox (Heirendt et al., 2019), and the Microbiome Modelling Toolbox (Baldini et al., 

2018). 

 

Construction of sample-specific gut microbiota models 
Metagenomic datasets from 616 samples were used as published in (Yachida et al., 2019). We utilised 
the sequencing data from the corresponding supplementary material (https://static-

content.springer.com/esm/art%3A10.1038%2Fs41591-019-0458-

7/MediaObjects/41591_2019_458_MOESM3_ESM.xlsx). The data had been already preprocessed and 
available in relative abundances on the species level. The relative abundances were then mapped onto 

the reference set of 773 AGORA genomes (Magnusdottir et al., 2017) through the 

translateMetagenomeToAGORA.m function in the Microbiome Modelling Toolbox (Baldini et al., 

2018). Via the mgPipe module of the Microbiome Modelling Toolbox, personalised microbiome models 
were derived. In brief, the corresponding AGORA reconstructions of all strains found in at least one 

microbiome were put together into one global constraint-based microbiome community reconstruction 

as described before (Baldini et al., 2018; Thiele et al., 2013). Then, the biomass objective function was 
coupled with the flux through each AGORA species panmodel (for details see (Heinken et al., 2013)), 

parametrising the community biomass reaction via the relative abundances as stoichiometric values for 

each microbe biomass reaction in the community biomass reaction. The models were appropriately 
contextualised with the average Japanese Diet described above. The resulting diet exchange fluxes were 

then applied to community models (Baldini et al., 2018). The flux through the community biomass 

reaction was set to be between 0.4 and 1 mmol/person/day, as described before. The features of the 

personalised community models are given in Fig. 1. 
 

Definitions and theoretical frameworks 

 
Utilised attributes of populations of community models 

Let be � = {�!, �", &�#} a set of I community models corresponding to I measured microbiomes. We 

are interested here in three attributes of the model  �$: 
 

i) the vector of microbial abundances �� * [0,1]& belonging to the model �$ where K denotes 

the number of species included into the AGORA collection.  

ii) the vector of reaction abundances �� * [0,1]'	belonging to the model �$ where J denotes 
the number of reactions included into the AGORA collection in total.  

iii) A vector of net metabolite production capacities �� * [0, �(]
) with �( being the maximum 

possible net metabolite production capacity under the set of applied constraints and L being 
the number of metabolites with microbial exchange reactions in at least one AGORA 

genome scale model. Net metabolite production capacities are defined by the difference of 

maximal secretion and maximal uptake fluxes. We say that a model �$ has a net production 

capability for the metabolite �	if �$( > 0. 
 

Thus, our population statistics analyses of community models were performed on microbial abundances, 

reaction abundances, net metabolite production capacities and net metabolite production capabilities. 
 

Metabolic Equivalence 

Now, we define the term metabolic equivalence, which allows us to cluster microbial communities 

having the same set of metabolic functions. 
 

Definition 1: Metabolic Equivalence 

We call two community models �+ and �, metabolic equivalent regarding the (sub)set � of metabolites 

with exchange reactions in at least one AGORA genome scale model if and only if that for	all	� *
�	it	holds	that	�+( > 0 õ	�,( > 0. We then write �+ >- �,.  
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This defines an equivalence relation, as the relation >- fulfills the attributes of being reflexive 

(�+ >- �+), symmetric (�+ >- �, õ �, >- �+), and transitive (�+ >- �, 	��� �, >- �( ó

�+ >- �(). 

 

Necessary and sufficient conditions for net metabolite production capacities  

Now, we define sufficient and necessary attributes for net metabolite production capabilities given a set 

of microbial community models � = {�!, �", &�#}. The concepts of <metabolically sufficient= and 
<metabolically necessary= will be analogous for species and reactions. First, however, we will define 

informative metabolites. 

 
Definition 2: Informative metabolite 

We call a metabolite � informative, if and only if  #�$ * �:	�$( > 0	���	#�+ * �:	�+( = 0. Informative 

metabolites are therefore those metabolites with variance in the net production capabilities across the 
set of models M. 

 

Definition 3: Necessary and sufficient reactions    

Let be �	an informative metabolite. Then, we call a reaction k necessary if and only if for all �$ * �	it 

holds that  �$, = 0
	
ó	�$( = 0. We call a reaction k sufficient if and only if for all �$ * �	it holds that  

�$, > 0
	
ó	�$( > 0. 

 
Definition 4: Necessary and sufficient species   

Let be �	an informative metabolite. Then, we call a species j necessary if and only if for all �$ * �	it 
holds that  �$+ = 0

	
ó	�$( = 0. We call a species j sufficient if and only if for all �$ * �	it holds that  

�$+ > 0
	
ó	�$( > 0. 

 

Thus, we call species and reactions necessary for a certain metabolic function, if their absence implies 

missing the metabolic function under consideration in all observed community models. In contrast, we 

call species and reactions sufficient for a metabolic function, if their presence implies showing the 
metabolic function of interest in all models. It is important to note that the concepts of necessity and 

sufficiency are defined for metabolites, which are neither produced by all models, nor by any of the 

models. We can only learn necessary and sufficient conditions from variance in the occurrence, which 
motivates the definition of informative metabolites. This is in parallel to statistics where variance in the 

random variables is a prerequisite to identify patterns of stochastic dependency. As in statistics, the 

dependency relations given by sufficiency and necessity should not be confused with causality, as 
conditions could co-occur in the set communities observed. Therefore, we define the concepts of strictly 

sufficient and strictly necessary, which introduces a type of conditional dependence notion. 

 

Definition 5: Strictly necessary reactions 

Let be � an informative metabolite. Let be �( the set of all reactions, which are necessary for net 

production capability for the metabolite l and � * �( a specific necessary reaction. We call k strictly 

necessary if and only if #�$ * �	with	�$, = 0	and	"j * �(\�:	�$+ b 0. 

 

Definition 6: Strictly necessary species 

Let be � an informative metabolite. Let be �( the set of all species, which are necessary for net production 

capability for l and � * �( a specific necessary species. We call k strictly necessary if and only if #�$ *
�	with	�$, = 0	and	"j * �(\�:	�$+ b 0. 

 

Definition 7: Strictly sufficient reactions 

Let be � an informative metabolite. Let be �( the set of all reactions, which are sufficient for net 

production capability for l and � * �( a specific sufficient reaction. We call k strictly sufficient if and 

only if #�$ * �	with	�$, > 0	and	"j * �(\�:	�$+ = 0. 

 
Definition 8: Strictly sufficient species 
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Let be � an informative metabolite. Let be �( the set of all species, which are necessary for net production 

capability for l and � * �( a specific necessary species. We call k strictly necessary if and only if #�$ *
�	with	�$, > 0	and	"j * �(\�:	�$+ = 0. 

 
It is important to realize that the definitions presented here are dependent on the variance in the 

population of microbial communities. The larger the sample size, the more necessary and sufficient 

conditions will be discovered. Sufficiency and necessity are technical attributes of populations of 

community models in the first place. The identified conditions do not need to be necessary and sufficient 
in a biological sense. However, they are valuable candidates for being indicators of causal processes and 

thus targets for experimental validation.  

 
Direct, ecological, and total effect of species on net community metabolite production capacities 

Here, we define formally the effects of a presence of a species on the net community metabolite 

production capacities observed in a population of community models M. The concepts of effects are 

defined via populations statistics. Therefore, these concepts must be treated as statistical estimates and 
should always be reported with confidence intervals.  

 

Definition 9: Average direct species net production effect 

Let l be a metabolite and M the population of community models. The average direct species production 

effect ��(+	for a metabolite l and a species j is defined by   

(1) ��!"	: =
$

%
3 �&!"

%
&'$   

where �$(+ stands for the net production (through secretion and uptake) of the metabolite l by the species 

j in the community model �$. We call �$(+ the species net production capacity. 

A species, however, cannot only impact the net community production capacity by direct contributions. 
A species can also impact the production of other microbes and can be associated with alteration in the 

community structure, changing the abundance of other microbes relevant for the community production 

of a metabolite. This motivates the definition of the ecological species effect, which gives a measure of 

these indirect influences associated with the presence of a microbe. 
 

Definition 10: Ecological species effect 

Let l be a metabolite and M the population of community models. Let �+ v {�$: �$+ > 0} be the set of 

community models with the abundance of the species j greater than zero, and �¬+ v {�$: �$+ = 0} the 

set of community models missing the species j. The ecological species effect ��(+ is then given by  

(2) ��!" v
$

()!(
3 (�&! 2 �&!")	)"*)! 2

$

()¬!(
3 �&!)"*)¬! . 

Thus, the ecological species effect is the difference between average net metabolite production 

capacities of communities with a species and communities without a species after discounting the direct 

species net production capacity. Note that the direct species net production is zero in all models 

belonging to the set �¬+. 

Obviously, the ecological species effect is not necessarily causal, and it can be calculated conditional 

on a set of covariates minimising confounding by basic covariates, such as age, sex, or BMI, via 
multivariable regressions. 

 

Definition 11: Total species effect 

Let l be a metabolite and M the population of community models. Then, the total species effect ��(+ is 

defined by the sum of average direct species net production effect and the ecological species effect: 

(3) ��!" v ��!" + ��!"	. 

The total species effect is the difference in net production capacities between the community models 

having a certain species and the community models missing this specific species.  

 

Statistical analyses 
We performed statistical analyses on the following attributes of community models: 1) net metabolite 

production capabilities, 2) net metabolite production capacities, 3) reaction abundances, and 4) species 
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abundances. Due to one infeasible model, the final sample size for analysing relations between metadata 

and attributes of the community models was n=615 and the final sample size for analysing the 
community models together with the faecal metabolome was n=346. For descriptive statistics, metric 

variables were expressed in means and standard deviations, categorical variables were described by 

proportions. All p-values are reported two-tailed. The statistical analyses were performed with STATA 
14/MP (STATA Inc., College Station, Texas, USA). 

 

Analyses of net metabolite production capabilities 

To investigate the potential differences in net metabolite production capabilities between cases and 
controls, we fitted logistic regressions with the net metabolite production capability as binary response 

variable (can be produced vs. cannot be produced). The predictor of interest in these logistic regressions 

was the group variable (binary: CRC cases vs. controls) and age, sex, and BMI were used as covariates 
to minimize confounding. We analysed only metabolites for which at least 5% and maximally 95% of 

all community models could produce those metabolites to avoid unstable statistical estimates due to low 

case numbers. Forty-four metabolites fulfilled this criterion. Accordingly, we corrected for multiple 
testing using the false discovery rate (FDR) (Benjamini, 2010), acknowledging 44 significant tests. An 

FDR of 0.05 was chosen as significance threshold.  

 

In a second series of logistic regressions, we checked for associations of net metabolite production 
capabilities with the CRC stage. Thus, we performed logistic regressions as before exchanging the study 

group variable for the stage variable (categorical: surgery, multiple polyps, stage 0, stage I/II, stage 

III/IV) excluding healthy controls from the analysis. The stage variable was then tested on significance 
using a standard Wald test (Harrell, 2001). Once again, we corrected for multiple testing using the FDR, 

adjusting the significance threshold for 44 tests. Summary statistics for both series of logistic regressions 

can be found in supplementary Table S1. 

 
Post hoc, glutarate production capability, being the main result of the screening described above, was 

checked on associations with basic covariates. To check for association with age and sex, a logistic 

regression with the net glutarate production capability as response variable was fitted using age and sex 
as predictors of interest, while adjusting for the study group variable (binary: CRC cases vs. controls). 

To check for association with BMI, a logistic regression with the net glutarate production capability as 

response variable was fitted using the BMI as predictor of interest, while adjusting for, age, sex, and the 
study group variable (binary: CRC cases vs. controls).   

 

Analyses of net SFCA production capacities 

Next, we tested the association of CRC with net production capacities of SFCAs, namely acetate, 
butyrate, and propionate. To this end, we fitted linear regressions using the respective net SFCA 

production capacity as response variable, the study group variable (binary: CRC cases vs. controls) as 

predictor of interest, and age, sex, and BMI as covariates. Heteroscedastic standard errors were applied 
in the main analyses. For sensitivity analysis, non-parametric bootstrap-derived confidence intervals 

were calculated using 2000 replications, but the results remained virtually unchanged. Next, we tested 

net SFCA production capacities on association with the presence of Fusobacteria species. Once again, 
we used linear regressions as before using this time the presence of Fusobacteria (binary: Fusobacteria 

present vs. Fusobacteria not present) as predictor of interest, correcting for age, sex, BMI and study 

group by including them as covariates. Additionally, we ran mediation according to the Sobel-Goodman 

test (PMID: 18697684) testing whether Fusobacteria presence mediated the effect of CRC on net 
butyrate production capacities. Confidence intervals for the indirect and direct effects were calculated 

by bootstrapping using 2000 replications.  

 
Analyses of direct species production effects and ecological species production effects regarding 

butyrate 

To calculate direct and ecological species effects regarding butyrate, we first screened all reaction 

abundances on correlation with the net community butyrate production capacities, finding the butyryl-
CoA:acetate CoA-transferase as one of the top hits. Then, we derived for 31 species (found in at least 

5% and maximally 95% of all samples), the direct species production effect, the ecological species 

effect, and the total species effect on net community butyrate production through the butyryl-
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CoA:acetate CoA-transferase. The direct species production effect was calculated by using the 

regression equation of the butyryl-CoA:acetate CoA-transferase net community butyrate production 
relation replacing the butyryl-CoA:acetate CoA-transferase abundance by the species abundance. This 

is justified as butyryl-CoA:acetate CoA-transferase abundance is the sum of all species abundances 

having the butyryl-CoA:acetate CoA-transferase reaction. Then, the ecological species and the total 
species effects for the 31 species were calculated according to the equations (2) and (3). Finally, 95%-

CIs were calculated for all effects using standard procedures for estimating CIs for arithmetic means. 

The results then were visualised by a forest plot. 

 
To illustrate the effects of Fusobacteria sp., we explored the effect of Fusobacteria presence on those 

species, which had the highest positive effect on community butyrate production, contributing at least 

10% of variance with positive effect sign. Seven species (Copprococcus comes, Eubacterium rectale, 
Eubacterium siraeum, Eubacterium ventriosum, Faecalibacterium prausnitzii, Roseburia intestinales, 

and Roseburia inulinivorans) fulfilled these criteria. Then, we fitted a series of seven fractional logistic 

regressions (Baldini et al., 2020) with the abundance of the seven species as response variables, the 
presence of Fusobacteria sp. (binary: present vs. not present) as predictor of interest, while adjusting 

for age, sex, BMI, and study group. We corrected the significance level for multiple testing using the 

FDR, adjusting the significance levels for seven tests. 

Full results and summary statistics can be found in the supplementary material (Tables S2-S4). 
 

Statistical integration of community modelling with faecal metabolomics 

To validate the simulation results regarding glutarate and butyrate, we integrated the simulation data 
systematically with faecal metabolome measurements in 347 individuals of the same cohort, including 

quantifications of glutarate and butyrate concentrations (Yachida et al., 2019). Note that the faecal 

metabolome is a representative of human metabolism, diet intake, and microbial metabolism such that 

it cannot be expected that the microbiome can fully explain variegation in faecal metabolite profiles. 
However, as the microbiome is one source of variance in faecal metabolite content and the simulations 

predict systematic variance in metabolite output of the microbiome across individuals, we expect that 

the association pattern between microbes and metabolite production capacities is reflective of the 
association pattern between microbes and faecal metabolite concentrations. For statistical analyses, 

faecal glutarate and butyrate concentrations were log-transformed, minimising the skewness of the 

distributions. 
 

First, we regressed the measured faecal butyrate and glutarate concentrations on the net community 

production capacities via linear regressions, including age, sex, BMI, and the study group variable as 

covariates. In the case of glutarate, we also included the net production capability (binary: can be 
produced vs. cannot be produced) into the regression model, as only 52% of all models had a net 

production capacity bigger zero. We evaluated then the predictive value of the net community 

production capacity, respectively, capability by testing their regression coefficients on zero and 
calculating the incremental R-squared values (increase in model fit by adding net production 

capacity/capability variables).  

 
Next, we calculated the full species faecal butyrate concentration association pattern by running linear 

regressions with the measured faecal butyrate concentration as response variable, the species presence 

(binary: species present vs. species not present) as predictor of interest, while including age, sex, BMI, 

and the study group variable as covariates. Heteroscedastic standard errors were used. These regressions 
were run for all species, which were detected in at least 5% and maximally 95% of all samples, resulting 

in 181 regressions. We retrieved the regression coefficient of the species presence, the corresponding p-

value, and the FDR correcting for 181 tests. In a second step, we derived in the same way the full species 
net community butyrate production capacity association pattern. Note that the in silico association 

pattern was derived on the full sample n=615, assuming implicitly that faecal metabolome 

measurements were missing completely at random. Then, we checked for all species faecal butyrate 

concentration associations with p<0.05, respectively, FDR<0.05, whether the sign of the in silico 
derived regression coefficient for the species butyrate association predicted the sign of the empirically 

derived regression coefficient via Fisher9s exact test. Moreover, we correlated the two species-butyrate 

association statistics with each other and tested the Pearson correlation via the standard test on 
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significance. A significant prediction of sign and size of empirically derived regression coefficients was 

interpreted as a validation of the community modelling. We repeated the same methodology for 
glutarate. 

Summary statistics for the full glutarate and butyrate association patterns, in silico as well as in vivo, 

can be found in the supplementary material (Table S5, S6). 
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Tables 

Table 1: Sample characteristics of the study. 

 
 CRC Patients 

(n=364) 

Healthy controls 

(n=251) 

p-value 

Age, mean (SD) 62.4(9.91) 60.81(12.64) 0.095a 
BMI, mean (SD) 22.95 (3.57) 22.67(3.04) 0.294a 

Female, % 39.29% 45.82% 0.115b 

Stage of the disease HS, 10.99% 

MP, 18.41% 

Stage 0, 19.78% 

Stage I/II, 30.49% 

Stage III/IV, 20.33% 

NA NA 

Species Richness, mean (SD) 69.74 (18.33) 63.91 (15.96) <0.001a 

# Metabolites produced, mean (SD) 157.06 (6.67) 156.17(7.20) 0.123a 

# Reactions in community models, 

mean (SD) 

2896.80 (99.58) 2885.28 (105.29) 0.190a 

CRC=Colorectal cancer, SD=Standard Deviation, HS=Healthy after surgery, MP=Multiple polyps, ap-value from 
Welch t-tests, bp-value from Fisher9s exact test 
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Table 2: Theoretical concepts used in this study. 

 

Theoretical Concept Descriptiona Type of modelling 

Net metabolite production capability 
The possibility to produce a 

metabolite 
Deterministic 

Net metabolite production capacity 
The amount of a metabolite (mmol/d), 

which can be maximally produced 
Deterministic 

Direct species production effect 

The average contribution of a species 

to the net metabolite production 

capacity of a community 

Statistical 

Ecological species effect 

The difference between average net 

metabolite production capacities of 

communities with a species and 

communities without a species after 

discounting the direct species net 

production capacity 

Statistical 

Metabolic Equivalence 
Equivalence of two communities in 
terms of net metabolite production 

capabilities 

Deterministic 

Metabolically Sufficient 

A species/reaction is called sufficient 

for a metabolite, if presence of the 

species/reaction within a community 

means that the metabolite can be 

produced. 

Deterministic 

Strictly metabolically sufficient 

A species/reaction is called strictly 

sufficient if it is sufficient given all 

other sufficient species/reactions. 

Deterministic 

Metabolically necessary 

A species/reaction is called necessary 

for a metabolite, if absence of the 
species/reaction within a community 

means that the metabolite cannot be 

produced 

Deterministic 

Strictly metabolically necessary 

A species/reaction is called strictly 

necessary, if it is necessary given all 

other necessary species/reactions. 

Deterministic 

a Formal definitions can be found in the Methods section. All definitions are conditional on the applied diet 

constraints. 
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Figures 

 
Figure 1: Overview over the three levels of AGORA-based community modelling used in 

this study. 
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Figure 2: Glutarate secretion capability enrichment in CRC. A Bar plots with 95%-

confidence intervals for the share of microbiome models with the capability to produce glutarate 

across the sexes and cases and controls. B Bar plots with 95%-confidence intervals for the share 

of microbiome models with the capability to produce glutarate across different stages of 

colorectal cancer. Late stage colorectal cancer had significantly higher shares of microbiomes 

with the capability to produce glutarate. C Statistics for the detected Fusobacterium species. P-

values are from logistic regression adjusted for age, sex and BMI except for F. necrophorum 

and F. gonidiaformans where p-values were calculated from Fisher9s exact tests due to small 

case numbers. D Lysine to butyrate pathway through glutarate in Fusobacterium species. Note 

that only Fusobacterium species had the complete pathway including the exchange reaction for 

glutarate. CRC=colorectal cancer, MP=multiple polyps, HS=healthy after surgery, 

GLUTARt2r=Glutarate transport via proton symport, reversible. 
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Figure 3: Overview over simulation results regarding short chain fatty acid production. 

A Box plots for acetate, butyrate, and propionate net production capacities for CRC cases and 

controls. Net production capacities are significantly different across cases and controls for 
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acetate (p=0.046) and butyrate (p=0.030). B Box plots for net butyrate production capacities 

for cases and controls across microbiomes with and without Fusobacteria presence. 

Communities with Fusobacteria had significantly lower net butyrate production potentials 

(p=4.43e-09). C Scatter plot with regression line for net butyrate production capacities in 

dependence on the butyryl-CoA:acetate CoA-transferase abundance (R-squared=0.99). D 

Forest plots for direct, ecological and total effects of species presence on community butyrate 

production through the butyryl-CoA:acetate CoA-transferase route. Caps represent 95%-

confidence intervals. Only species found in at least 5% of all samples were included. E Box 

plots for species abundances positively associated with community butyrate production in 

dependence of Fusobacteria presence. All species were significantly less abundance when 

Fusobacteria were present in the microbiome (all p<0.001). SCFAs=short chain fatty acids, 

FB=Fusobacteria. CRC=colorectal cancer.  
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Figure 4: Validation of community modelling predictions regarding butyrate. A Scatter 

plot with regression line of log faecal butyrate concentrations against community net butyrate 

production capacities. The regression slope is significantly different from zero (b=0.00445, 

95%-CI:(.00295,.00595), p=1.22E-08). B Accuracy of sign prediction for significant species 

faecal butyrate concentration association through community modelling. C Box plots for log 

faecal butyrate concentrations for microbiomes with and without Fusobacteria. Microbiomes 

with Fusobacteria were associated with lower faecal butyrate levels (b= -0.18, 95%-C:(-0.33, 

-0.03), p=0.020). D Scatter plot with regression line of empirical species faecal butyrate 

association statistics (expressed as regression coefficients) against in silico species net 

metabolite production association statistics (expressed as regression coefficients). In silico and 

empirical association statistics were significantly correlated with each other (r=0.75, p=9.96e-

10). FB=Fusobacteria, c=concentration, j=net production capacity flux. 
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Figure 5: Validation of community modelling predictions regarding glutarate. A Box plots 

for log faecal glutarate concentrations for communities with and without glutarate secretion 

capability. Communities with glutarate secretion capability are associated with significantly 

lower faecal glutarate concentrations (b= -0.44,95%-CI(-0.68, -0.20), p=3.24e-04). B Accuracy 

of sign prediction for significant species faecal glutarate concentration association through 

community modelling. C Scatter plot of in silico community uptake of glutarate against 

Fusobacteria abundance (r=0.98). D Scatter plot with regression line of empirical species faecal 

glutarate association statistics (expressed as regression coefficients) against in silico species net 

metabolite production association statistics (expressed as regression coefficients). In silico and 

empirical association statistics were significantly correlated with each other (r=-0.76, p=2.89e-

14). c=concentration, j=net production capacity flux. 
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Figure S1: Box plots for net acetate and propionate production capacities for cases and controls 

across microbiomes with and without Fusobacteria presence. Communities with Fusobacteria 

had significantly higher net propionate production capacities (p=4.87e-07), while acetate 

production capacities were not significantly different (p=0.519). FB=Fusobacteria. 
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