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Summary

Integrating constraint-based community modelling with population statistics, we introduce new
theoretical concepts for interrogating the metabolic functions of the microbiome, applying them to a
public metagenomic dataset consisting of 365 colorectal cancer cases (CRC) and 251 healthy controls.
We found that 1) glutarate production capability was significantly enriched in CRC microbiomes and
mechanistically linked to lysine fermentation in Fusobacteria species, 2) acetate and butyrate production
potentials were lowered in CRC, 3) Fusobacteria presence had large negative ecological effects on
community butyrate production in CRC and healthy controls. Validating the model predictions against
faecal metabolomics, our in silico frameworks correctly predicted in vivo species metabolite correlations
with high accuracy. In conclusion, highlighting the value of combining statistical association studies
with in silico modelling, this study delivers insights on the metabolic role of Fusobacteria in the gut,
while providing a proof of concept for the validity of constraint-based community modelling.

Introduction

The gut microbiome with its trillions of bacteria contributes crucially to human metabolism in
health and disease (Clemente et al., 2012). It generates otherwise inaccessible nutrients
(Shafquat et al., 2014), inactivates and activates drugs (Wilson and Nicholson, 2017), and
produces potentially harmful metabolites (Yuan et al., 2019). Recent advances in sequencing
techniques have given rise to a wealth of insights into patterns of gut microbiome composition,
revealing that the gut microbiome is a correlate of many human diseases (Lynch and Pedersen,
2016). Besides results stemming from observational human cohort studies, an impressive
number of experimental studies on animal models have resulted in insight into the mechanisms
by which the gut microbiome interacts with the host organism (Douglas, 2019). Specifically,
bacterial fermentation pathways play a key role in mediating host-microbe metabolic
interactions. Short chain fatty acids (SFCAs), namely acetate, butyrate, and propionate, arise
from gut microbial fermentation of dietary fibre (Koh et al., 2016). Microbial fermentation of
protein also results in short chain fatty acid production but mostly result in branched-chain fatty
acids, such as isobutyrate, 2-methylbutyrate, and isovalerate (Smith and Macfarlane, 1997). SFCAs,
especially butyrate, directly modulate host physiology by serving as signalling molecules (Koh
et al., 2016). For instance, they act as histone deacetylase (HDAC) inhibitors and bind to G
protein-coupled receptors (GPCRs) (Johnstone, 2002).

Increasing evidence points towards the gut microbiome contributing to colorectal cancer (CRC)
through its metabolome, in particular through alterations in SFCA metabolism (Louis et al.,
2014; Tilg et al., 2018). Butyrate is protective against CRC since it is both a potent anti-tumour
and anti-inflammatory agent (Chang et al., 2014) mediated by its HDAC-inhibiting effects
(Flint et al., 2012). Moreover, butyrate serves as the main carbon source for healthy colonocytes
but not for tumour cells (Koh et al., 2016). Consistently, multiple studies have reported a
decrease in butyrate-producing bacteria in CRC patients (Koh et al., 2016). On the other hand,
the gut microbiome produces potentially genotoxic metabolites, such as hydrogen sulfide and
secondary bile acids (Niederreiter et al., 2018), contributing potentially to CRC pathogenesis.
A number of species have been implicated in the pathogenesis of CRC, such as Fusobacterium
nucleatum, Escherichia coli, Bacteroides fragilis, Gemella morbillorum, Parvimonas micra,
and Solobacterium moreii (Tilg et al., 2018). Moreover, a microbial signature encompassing 29
species was predictive for CRC (Wirbel et al., 2019). Hence, it has been suggested that the gut
microbiome could serve as a prognostic and diagnostic marker (Thomas et al., 2019; Wirbel et
al., 2019). Additionally, the microbiome changes in its composition during the progression of
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the disease (Yachida et al., 2019), while playing an important role in promoting resistance to
chemotherapy (Yu et al., 2017) or modifying them in a toxic way (Alexander et al., 2017).

The faecal metabolome is considered to be a readout of the functional capabilities of the gut
microbiome (Yachida et al., 2019; Zierer et al., 2018). Consequently, changes in faecal
metabolome profiles in CRC have also been linked to altered microbial abundance patterns via
statistical association studies (Kim et al., 2020; Koeth et al., 2013; Xu et al., 2020). Yet, it
remains challenging to identify the mechanisms by which the microbiome changes the
metabolome, as statistical associations may be caused by indirect effects and confounding
(Noecker et al., 2019; Shaffer et al., 2017). Moreover, as species share metabolic capabilities
and functions even across different phyla (Magnusdottir et al., 2017), it is by no means clear
that a change in composition will result in a change in metabolic functions. In consequence,
two gut microbial communities may look drastically different regarding their species
composition, while they may be largely equivalent in terms of metabolic functions,
complicating interpretations of metagenomics studies. As the gut microbiome acts as a complex
ecosystem where species have to be understood in their role within communities, systems
biology approaches seem to be best suited to tackle the problem of translating patterns of
species abundance into patterns of metabolic function (Noecker et al., 2019).

Herein, we applied constraint-based reconstruction and analysis (COBRA) to map species
abundance patterns onto patterns of metabolic functions (Heirendt et al., 2019). COBRA
represents a scalable systems biology computational modelling approach, widely applied in the
field of microbiome research (Chng et al., 2020; Garza et al., 2020; Henson et al., 2019; Thiele
et al., 2020). Its strengths of integrating genomic data with condition specific constraints are
specifically designed to deliver on the task of characterising metabolic functions of microbial
communities (Orth et al., 2010). Accordingly, we utilised metabolic reconstructions of
hundreds of gut microbes (Magnusdottir et al., 2017) in combination with community
modelling (Baldini et al., 2018) to predict metabolic outputs of microbial communities as
demonstrated previously (Heinken et al., 2019). Based on a recently published metagenomics
data set of a colon cancer case-control study (Yachida et al., 2019), we successfully validate
then our predictions via integrating them with faecal metabolomic measurements from the same
study. Crucially, we demonstrate that AGORA-based community modelling can correctly
predict the empirical species-metabolite association patterns for butyrate and glutarate.
Thereby, we demonstrate the validity of COBRA community modelling in a proof-of-principle
analysis, providing novel insights into the role of Fusobacteria in CRC.

Results

To translate microbiome abundance pattern into patterns of metabolic functions, we applied
community modelling to the colorectal cancer (CRC) case-control cohort (Yachida et al., 2019),
which included 616 individuals (365 CRC cases and 251 healthy controls), with metagenomic
data. For each individual, a personalised microbiome model was built, appropriately
contextualised with a simulated Average Japanese diet, and subsequently interrogated through
flux balance analysis simulations (Methods). The simulations resulted in one model producing
nothing, indicating an infeasible model specification. This case was excluded from analyses.
Table 1 shows the descriptive statistics for the included cases regarding the meta-data. Table 2
displays a summary of the important theoretical concepts applied in the following
analyses. The resulting personalised flux profiles were then analysed in the context of clinical
parameters and metabolomic findings through population statistics modelling. Thus, this study
utilizes three distinct levels of modelling (Fig. 1A): 1) The strain-specific AGORA genome-
scale metabolic reconstructions, 2) the personalised COBRA community models integrating
diet data and the individual’s metagenomic data resulting in individual flux profiles, and 3) the
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statistical modelling of populations of community models. Note that the first two steps are
deterministic, while the third step is stochastic.

Microbial communities are unique in their metabolic capabilities in healthy controls and
CRC cases

To gain insight into the distribution of gut microbial metabolic capabilities across samples, we
explored the distribution of secretion patterns in CRC cases and controls via the concept of
metabolic equivalence (see Methods). We call two communities equivalent regarding a certain
set of metabolites, if the subset of metabolites with net production capacity greater zero
conditional on a common diet is the same for both communities. In the AGORA resource
(Magnusdottir et al., 2017), the net production capacity calculation of all 413 metabolites that
are associated with exchange reactions (Noronha et al., 2019) is possible, resulting in the
theoretical number of 2413 different equivalence classes for the whole set of metabolites.
However, from these 413 metabolites, 224 metabolites were produced by no model and 90
metabolites by all models, meaning that secretion capability of 99 metabolites showed variance
across the microbiome community models with 43 metabolites being produced by at least 5%
of the models and maximally 95% of the models (Table S1). Despite this high level of
overlapping metabolic capabilities between microbiome models, we detected 607 different
equivalence classes in 615 simulated communities. Hence, microbial communities are mostly
metabolically unique in their profiles of metabolic capabilities, contributing thereby to the
individuality of human metabolism in health and disease.

Glutarate production capability is enriched in CRC cases and a metabolic function unique
to Fusobacteria sp.

Next, we fitted logistic regressions to investigate whether individual metabolite secretion
capabilities are enriched in CRC microbiomes controlling for age, sex, and body mass index
(BMI) (Table S1 for full results). After correction for multiple testing, only the glutarate
secretion capability remained significant, being clearly enriched in CRC cases (Odds ratio
(OR)=2.51, 95%-confidence interval (CI)=(1.80;3.51), p=6.45e-08, FDR<0.05) (Fig. 2A).
Importantly, the capability to secrete glutarate was associated with the stage of disease
(p=0.003, Fig. 2B), indicating that glutarate secretion potential may be an in silico biomarker
for CRC progression, although this result was not significant after correcting for multiple testing
(FDR=0.13). Testing the association to basic covariates, we found that glutarate production
capability was enriched in men (OR=1.64, 95%-CI:(1.17;2.29), p=0.004) (Fig. 2A), but not
associated with age and BMI. To link the change in metabolic functions back to patterns of
species abundance, we applied the concepts of necessity and sufficiency (see Methods). We
identified 59 species fulfilling the criteria of being sufficient, meaning that all communities
containing at least one of these species were able to secrete glutarate. From these 59 species,
only seven species were strictly sufficient. Strikingly, all strictly sufficient species belonged to
the genus Fusobacterium. Importantly, from the seven Fusobacterium sp., two were
significantly more often detected in CRC cases (Fig. 2C). Together, these seven species were
also necessary, meaning that at least one of the seven detected Fusobacterium species had to be
present in the community for net glutarate production capacity. Hence, a community had a
positive net production capacity for glutarate, if and only if Fusobacterium species were
present.

Next, we aimed at identifying specific network properties of Fusobacterium species allowing
for net glutarate production capabilities. Using the AGORA resource, we found that
Fusobacteria are the only species having the complete pathway from lysine to glutarate and an
exchange reaction for glutarate (Fig. 2D). Noteworthy, the pathway for glutarate production
from lysine co-occurs with the pathway for butyrate production from glutarate (Vital et al.,
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2014) (Fig. 2D). Consequently, CRC microbiomes were enriched for the lysine to butyrate
fermentation pathway through glutarate. In conclusion, while Fusobacteria sp., especially F.
nucleatum, have been repeatedly linked to CRC, we identified a metabolic capability unique to
Fusobacteria species.

CRC microbiomes show lowered short chain fatty acid production capacities mediated by
Fusobacteria presence

As glutarate is an upstream metabolite of acetate and butyrate (Buckel, 2001; Vital et al., 2014),
we calculated the net secretion potential for short chain fatty acids, including propionate, by the
community modelling and tested for differences in community secretion potentials between
CRC cases and healthy controls. Strikingly, acetate (regression coefficient b=2.88, 95%-
CI:(0.05;5.71), p=0.046) and butyrate (b=8.98, 95%-CI:(0.87;17.10), p=0.030) production
potential but not propionate production potential (b=-3.61, 95%-CI:(-13.16;5.94), p=0.458),
were higher in healthy controls (Fig. 3A). Noteworthy, microbiomes with Fusobacteria had
lower butyrate production potential (b=-23.71, 95%-CI:(-31.52;-15.89), p=4.43e-09) in cases
as well as in controls (Fig. 3B). No effect of Fusobacteria presence on acetate production
capacities could be identified, while proprionate production potentials were higher in
microbiomes with Fusobacteria (Fig. S1). Importantly, Fusobacteria presence statistically
mediated the effect of CRC on butyrate production potential (Sobel-Goodman Test: Indirect
effect b=5.29, 95%-CI:(2.77;7.81), p=3.79-05). Thus, our analyses provide evidence that the
presence of Fusobacteria may be deleterious for community butyrate production potential,
leading to CRC microbiomes, which are enriched for Fusobacteria sp., having reduced butyrate
production potentials.

Fusobacteria species have large negative ecological effect on butyrate production through
the butyryl-CoA:acetate CoA-transferase route

To elucidate the changes in the community associated with Fusobacteria causal to the lower
butyrate production potential, we calculated for each butyrate producing species found in at
least 5% and maximally 95% of all samples the direct butyrate production capacity and their
ecological effects on the community butyrate production (Methods). Three reactions
abundances showed a correlation r>0.99 with the community butyrate production capacity: The
conversion reaction of crotonoyl-CoA to butyryl-CoA by Bced-Etf complex (VMH identifier:
BTCOADH), the butyryl-CoA:acetate CoA-transferase (VMH identifier: BTCOAACCOAT),
and the ferredoxin:NAD oxidoreductase (VMH identifier: FDNADOX H). From those three,
which belong to the same pathway, the butyryl-CoA:acetate CoA-transferase directly produces
butyrate with variance in its abundance being responsible for over 98% of variance in net
community butyrate production capacity. Thus, abundance of this reaction directly translates
into net butyrate production capacity in a proportional manner (R-Squared=0.99 Fig. 3C),
representing thereby the main route for microbial butyrate production in the population of
interrogated community models. While all five Fusobacteria sp. detected in at least five percent
of the samples were predicted to produce small amounts of butyrate via the butyryl-CoA:acetate
CoA-transferase route, they had large negative ecological effects on community butyrate
production (Fig. 3D, Table S2). F. varium, F. mortiferum, and F. ulcerans had the highest
negative impact on community butyrate production across all modelled butyrate producing
species (Fig. 3D). Highlighting the negative impact of Fusobacteria presence, from seven
species that contributed at least 10% of variance to the net community butyrate production
capacity with positive effect sign (Table S3), five were negatively correlated with the presence
of Fusobacteria, although the effect regarding Coprococcus comes missed significance after
adjusting for the study group variable (OR=0.70; 95%-CI:(0.48;1.02), p=0.06, Table S4). The
effect was most drastic with the well-known fibre degrader Faecalibacterium prausnitzii
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(OR=0.49, 95%-CI:(0.42;0.58), p=8.41e-18, FDR<0.05 Fig. 3E, Table S4), which is known to
produce butyrate through the butyryl-CoA:acetate CoA-transferase route (Louis et al., 2014).

Faecal metabolomics validates community butyrate production predictions

All the results until now are based on in silico calculations. Now, we focus on the validation of
core results using faecal metabolome data from the same cohort where for 347 individuals,
faecal metabolome measurements were available including quantifications for butyrate and
glutarate (Yachida et al., 2019). The community models made distinct predictions 1) for the net
butyrate production capacity, ii) for the species contributing to community butyrate production,
and iii) the prediction that butyrate community production is lowered in communities with
prevalent fusobacterium species. First, predicted butyrate secretion capacities were
significantly correlated with measured log faecal butyrate concentrations (b=0.005, 95%-
CI:(0.003,0.006), p=9.87E-10) explaining overall 10.9% of faecal butyrate concentration
variance (see Fig. 4A). Second, we calculated the full species butyrate association pattern by
regressing the faecal log butyrate concentrations on the species presences in sequential
regressions while adjusting for case-control status, age, sex, and BMI. The corresponding in
silico species-metabolite association statistics were then derived from analogous regressions
using the net community butyrate production capacity as response variable. The summary
statistics for the species butyrate association patterns in vivo and in silico can be found in the
supplementary material (Table S5). From 47 nominally significant species faecal butyrate
associations, community modelling predicted the sign correctly for 43 (prediction accuracy:
91.49%, Fisher’s exact test: p=1.69¢-08). From 17 FDR corrected significant species faecal
butyrate associations, community modelling predicted in all but one case (Granuticatella
adiacens) the sign (prediction accuracy: 94.1%, Fisher’s exact test: p=0.006) (Fig. 4B). Beyond
the sign, community modelling predictions were additionally significantly correlated with the
size of the regression-based association statistics for the nominally significant species (r=0.75,
p=9.96e-10) and the FDR corrected significant species (r=0.86, p=7.65e-06) (Fig. 4D).
Moreover, as predicted by the modelling, individuals with prevalent Fusobacterium species sp.
had significantly lower faecal butyrate levels (b= -0.19, 95%-C:(-0.34, -0.05), p=0.011) (see
Fig. 4C) despite fusobacteria themselves being butyrate producers, reflecting the predicted
deleterious effects of Fusobacteria on other butyrate producing species, As the faecal
metabolome is considered to be partly a readout of the functional capabilities of the gut
microbiome (Yachida et al., 2019; Zierer et al., 2018), this data could provide a proof of
principle for the validity of AGORA-based community modelling. However, the variance in
the faecal metabolome is also determined by variance in nutrition habits and attributes of the
host; both of which were not modelled in this work, thereby limiting the extent to which the
variance in the faecal metabolome could be explained by community modelling. Note that the
utilised modelling algorithms utilised above were not “trained” in any way on the utilised
metabolome dataset. In conclusion, community modelling was able to predict measured species
butyrate correlations with high accuracy and, thus, to predict the species-level contribution to
the faecal butyrate pool.

Faecal glutarate levels indicate net glutarate consumption by microbial communities

Then, we turned our attention to the relation between in silico predicted net glutarate production
capacity and actual experimentally measured faecal glutarate concentrations. Surprisingly, we
discovered that communities with the capability of glutarate production were associated with
significantly lower glutarate levels in faeces (b= -0.44,95%-CI(-0.68, -0.20), p=3.24e-04) (see
Fig. 5A), explaining 4.06% of variation in faecal glutarate pools. In consequence, faecal
glutarate concentrations were significantly lower in the presence of Fusobacteria. Remember
that glutarate production capability is synonymous for Fusobacteria presence. The microbial
transport reaction for glutarate is bi-directional and the necessary reactions of glutarate
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production co-occur with the degradation reactions leading to butyrate production from
glutarate (Fig. 2D). Hence, it is possible that a positive net glutarate production capacity
indicates that glutarate can be taken up for ATP generation. In this scenario, communities would
be able to consume glutarate, explaining the inverse association of net metabolite production
capacity and faecal metabolite concentration. This interpretation is corroborated by testing the
ability of community modelling to predict species faecal glutarate associations (Table S6).
From 69 nominally significant species faecal glutarate associations, 62 were in line with the
community modelling prediction when interpreting the secretion potential as a measure of
consumption (prediction accuracy: 89.86%, Fisher’s exact test: p=2.28e-12) (Fig. 5B). For 50
out 56 FDR corrected significant associations, community prediction correctly predicted the
sign (prediction accuracy: 89.39%, Fisher’s exact test: p=1.27e-09) (Fig. 5B). As with butyrate,
community modelling was also able to predict size of regression coefficient of the species for
the faecal glutarate concentration (r=-0.76, p=2.89¢-14 for the nominally significant species;
=-(0.74, p=5.36e-11 for the FDR corrected species) (Fig. 5D).

Faecal glutarate consumption is driven by Fusobacteria sp. in silico

Above, we showed that community glutarate secretion in silico is likely an indicator for
glutarate consumption in vivo. Testing this interpretation, we designed additional simulations
to model the glutarate uptake by those species who are able consume glutarate. Note that while
only Fusobacteria were able to secrete glutarate, we identified 16 species present in at least one
microbiome being able to take up glutarate including the seven detected Fusobacteria sp. (Table
S7). However, Fusobacteria abundance was the primary determinant of glutarate uptake
potential (R-squared=0.97, see Fig. 5C). Consequently, uptake potential and community
secretion potential for glutarate correlated strongly with each other (r=0.98, p<le-30, Fig. 5C).
In conclusion, the interpretation of the community glutarate production capacity being an
indicator of the potential to consume glutarate was also supported by the species level uptake
modelling.

Discussion

A key challenge for a mechanistic understanding of the gut microbiome in health and disease
is to map changes in gut microbial abundances onto functional changes impacting the host’s
metabolism. Here, we present a functional metabolic modelling approach combining COBRA
modelling with population statistics that enables translating individual-specific microbial
abundances into personalised microbial metabolite profiles. Through this framework, we
demonstrated that each person’s gut microbiome is functionally unique, emphasising the need
for individualised modelling of microbiomes as possible with COBRA community modelling.
We highlighted the utility of our approach by generating insights on the functional alterations
associated with Fusobacteria sp. presence in the gut microbiome; insights of potential clinical
relevance especially in CRC where Fusobacteria sp. are enriched (Kostic et al., 2013; Mehta et
al., 2017; Zhou et al., 2018). Finally, we validated the prediction of the in silico modelling
against faecal metabolome data, revealing excellent agreement between in silico predictions
and empirical data.

Our analyses of net production capacities revealed alterations in the domain of fermentation
products in CRC, including short chain fatty acids. CRC microbial communities had lower net
production capacities in acetate and butyrate (Fig. 3). The lower production capacity of short
chain fatty acids is of potential clinical relevance due to the known anti-inflammatory, anti-
tumour-effects of butyrate (Koh et al., 2016). Moreover, butyrate is a main energy source for
colonocytes but not for cancer cells, which prefer glucose (Koh et al., 2016). Evidence exists
for butyrate having protective properties for colon-cells and low fibre intake has been
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considered as a risk factor for CRC (Chang et al., 2014). The finding that CRC microbiomes
have decreased capacities in producing butyrate fits with earlier observations of depletion of
butyrate producing species in CRC microbiomes (Wu et al., 2013; Zhu et al., 2014).

While well documented, the cause for the depletion of butyrate producing species in CRC is
less understood. In our study, we found that presence of Fusobacteria sp. is strongly associated
with this shift in the community composition, quantified by the high negative ecological effect
of Fusobactera sp. on community butyrate production (Fig. 3). Importantly, the negative effect
of Fusobactera sp. is not a CRC specific feature: In healthy individuals, the presence of
Fusobacteria was associated with lower butyrate production capacities as well (Fig. 3B). This
observation fits well with in vitro studies showing that F. nucleatum produces bactericidal
compounds hazardous to butyrate-producing species, in this case F. prausnitzii (Guo et al.,
2018). It should be noted that the highest negative effects on community butyrate production
were with F. varium, F. mortiferum, and F. ulcerans, indicating that not only F. nucleatum may
play a role in CRC (Fig 3D). Noteworthy, Fusobacteria sp. co-occur with each other (Zhou et
al., 2018), making inferences on single species complicated. For example, in the present study,
we also found F. mortiferum to be significantly enriched in CRC (Fig. 2C). In conclusion, the
evidence points overall towards Fusobactera sp. being deleterious for community butyrate
production.

F. nucleatum has been repeatedly implicated in CRC (Flanagan et al., 2014; Mima et al., 2016;
Ng et al., 2019). While it has been described that F. nucleatum plays a role in treatment
resistance in CRC and in the modulation of anti-tumour inflammation response (Mima et al.,
2015; Yu et al., 2017), the metabolic role of an enrichment in F. nucleatum and in other
Fusobacteria sp. in CRC is less clear. In this respect, we found a clear enrichment of the
capability to produce glutarate from lysine in CRC microbiomes, which is mechanistically
linked to Fusobacteria presence (Fig. 2D). Importantly, this feature is a metabolic trait of all
seven Fusobacteria that we detected in this study, and a general feature of all species in the
Fusobacteria genus captured in the VMH resource (Noronha et al., 2019). Fusobacteria sp. are
the only species in the AGORA collection having the full pathway from lysine to glutarate and
an exchange reaction for glutarate. In line with our study, Fusobacteria are known for their
asaccharolytic metabolism (Flynn et al., 2016). As glutarate is an intermediate on the pathways
from lysine and from glutarate to butyrate (Vital et al., 2014), this suggests that the increased
Fusobacterium abundance in CRC microbiomes would result in increased amino acid
fermentation, in particular lysine to butyrate. An enrichment in amino acid degradation
pathways accompanied by a corresponding decrease in carbohydrate degradation has been
reported for CRC microbiomes (Wirbel et al., 2019), fitting with our results. It is noteworthy
that we found Fusobacteria species to be enriched in men. Men have higher risks for developing
CRC (White et al., 2018), sparking the speculation whether Fusobacteria presence may mediate
a part of the sex-specific risk for CRC, although the discussion around sex-differences in CRC
are complicated by social and cultural effects (Kim et al., 2015).

Interestingly, integration with faecal metabolomics indicated that Fusobacteria are likely net
consumer of glutarate and the main determinant of community glutarate uptake. Glutarate,
however, is biochemically closely related to alpha-ketoglutarate and thereby to the Krebs cycle.
Aberrations in the Krebs cycle in return are a hallmark of cancer metabolism (Anderson et al.,
2018; Pavlova and Thompson, 2016). Thus, CRC metabolism may be interlinked with the
metabolism of Fusobacteria, allowing for the speculation that Fusobacteria may profit from
Krebs cycle alterations in CRC.
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Previously, we have demonstrated the use of personalised metabolic modelling for the
stratification of paediatric inflammatory bowel disease patients and controls in a purely in silico
approach (Heinken et al., 2019) and validated changes in the metabolome of Parkinson’s
Disease patients with personalised models built from an unrelated cohort (Hertel et al., 2019).
Here, by integrating the AGORA based COBRA community modelling predictions with faecal
metabolomics, we could validate our predictions regarding butyrate, glutarate, Fusobacteria
and other butyrate producing species. We were able to correctly predict, which species correlate
with faecal butyrate and glutarate levels, and even the effect sizes of these associations were
predicted correctly to a high degree (Fig. 4, 5). This functional metabolic modelling delivers a
new proof of principle for community modelling, opening new routes of applications. As
butyrate production is considered to be integral for gastrointestinal health (Chang et al., 2014),
probiotic, prebiotic, and synbiotic interventions have started targeting beneficial butyrate
producers, such as F. prausnitzii (Chang et al., 2019). AGORA-based community modelling
enables the prediction of the outcome of therapeutic and dietary interventions (Thiele et al.,
2017). Our study now reveals that these in silico biomarkers are indeed reflective of the gut
microbiome’s metabolic capacities and in good agreement with faecal butyrate concentrations.
Importantly, the models were not contextualised with the metabolome data from Yachida et al.
during their construction, meaning that the Yachida et al. dataset delivers an external validation
(Yachida et al., 2019). Thus, in silico modelling can deliver computational biomarkers for
phenotypes, which could be used, in principle, for diagnostic or prognostic purposes.
Additionally, our work highlights that community modelling can be utilised as a further layer
of validation for empirical species metabolome association studies where correlations are often
difficult to interpret due to uncontrolled confounding (Noecker et al., 2019). As community
modelling is based on deterministic calculations from microbiome measurements, certain types
of confounding have no effect on in silico species metabolite association. Thereby, community
modelling can help in diminishing false positives in microbiome metabolome association
studies; an important aspect as noted in earlier work (Noecker et al., 2019).

While the modelling was overall in good agreement with the empirical metabolome
measurement, several limitations should be noted. We applied one standardised diet, excluding
therefore variance caused by differential diet habits from the analyses. However, the general
methodology would allow the personalisation of the diet information used for modelling. Thus,
if the diet habits are sampled in a suitable way, the type of calculation performed here can be
individualised not only regarding microbial abundances, but also regarding the diet information
(Baldini et al., 2018). Furthermore, this study did not integrate the host’s metabolism into the
modelling. Further studies, based on whole body organ resolved COBRA modelling (Thiele et
al., 2020), could deliver more insight into the interplay between the host and the microbiome in
CRC and beyond. Knowledge about microbial functions and genomic annotations are
incomplete, and as such, the AGORA collection is subject to constant updates. Another known
limitation of COBRA is the lack of kinetic parameters and the simulation of fluxes rather than
concentrations due to the steady-state assumption. However, the good agreement between in
silico fluxes and experimentally measured concentrations in this study suggests that is it
possible to mechanistically translate increased or decreased fluxes into increased or decreased
concentrations. Importantly, this study is based on cross-sectional data and as such, causality
between clinical parameters and microbial functions cannot be established. However,
determinations of metabolic functions by community modelling are not confounded by factors
like age, sex, exercise or other factors, as they are deterministic calculations from abundance
patterns. Providing a major conceptual advantage regarding the functional analyses of species
metabolite associations via calculating abundance concentrations correlations, community
modelling allows for the dissection of direct contributions of species to and their ecological
effects on the community metabolite production capacities. Noteworthy, ecological effects, as

9


https://doi.org/10.1101/2020.09.09.290494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.290494; this version posted September 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

defined in this work, allow the mapping of the statistical effects of the presence of species on
the community structure in terms of metabolic function. It should, however, be remembered
that ecological effects note statistical associations and are not necessarily of causal nature.

In conclusion, AGORA-based community modelling provides a powerful toolset for the
characterisation of microbial metabolic functions in health and disease, delivering testable
hypotheses, in silico biomarkers, and potential endpoints for clinical studies. Importantly, the
AGORA reconstructions had been extensively curated based against comparative genomics and
experimental data two microbial textbooks and over 200 peer-reviewed papers (Magnusdottir
et al., 2017). Thus, underneath the conclusions presented in this paper lies accurate, manually
gathered knowledge on fermentation pathways in hundreds of organisms. Overall, this study
provides a proof of principle that the knowledge encoded in the AGORA models can be
translated into clinical insight via community modelling.
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Methods

Study sample

We utilised the Japanese colorectal cancer cohort data from (Yachida et al., 2019), which had publicly
available shotgun sequencing data for n=616 individuals (365 CRC cases and 251 healthy controls). The
reads had already been processed and taxonomic profiling utilizing MetaPhlAn2 (Truong et al., 2015).
Attached to this dataset several, meta-data on age, sex, BMI, smoking, alcohol, stages of the disease,
and tumour location were available. Additionally, linked to these data, faecal metabolome
quantifications were available for n=347 probands (CRC: 220, controls:127), allowing the validation of
attributes of the community models by linking them to empirical metabolome quantifications. For details
on metagenomic and metabolomic measurements, refer to (Yachida et al., 2019).

Definition of an average Japanese diet

An average Japanese diet was defined based on the mean daily food consumption in 106 Japanese
extracted from food frequency questionnaires and 28 days weighed diet records (Tokudome et al., 2001)
(Table S8a). Therefore, we used the Diet Designer of the VMH database (https://vmh.life), which lists
the composition of >8,000 food items (Noronha et al., 2019). In the absence of a perfect match, the most
related food item entries were retrieved. The Diet Designer calculates uptake flux values in
mmol/person/day for each nutrient component based on the specified diet, as described elsewhere
(Noronha et al., 2019). We integrated these uptake flux values as diet constraints with all community
microbiome models using the Microbiome Modelling Toolbox (Baldini et al., 2018) (see below). To
ensure that all AGORA pan-species models could grow under the defined diet, we adapted the calculated
uptake fluxes as necessary (Table S8b). The diet constraints were defined to be in mmol/person/day.
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Simulations

All simulations were performed in MATLAB (Mathworks, Inc.) version R2018b with IBM CPLEX
(IBM) as the linear and quadratic programming solver. The simulations relied on functions implemented
in the COBRA Toolbox (Heirendt et al., 2019), and the Microbiome Modelling Toolbox (Baldini et al.,
2018).

Construction of sample-specific gut microbiota models

Metagenomic datasets from 616 samples were used as published in (Yachida et al., 2019). We utilised
the sequencing data from the corresponding supplementary material (https:/static-
content.springer.com/esm/art%3A10.1038%2Fs41591-019-0458-
7/MediaObjects/41591 2019 458 MOESM3 ESM.xIsx). The data had been already preprocessed and
available in relative abundances on the species level. The relative abundances were then mapped onto
the reference set of 773 AGORA genomes (Magnusdottir et al., 2017) through the
translateMetagenomeToAGORA.m function in the Microbiome Modelling Toolbox (Baldini et al.,
2018). Via the mgPipe module of the Microbiome Modelling Toolbox, personalised microbiome models
were derived. In brief, the corresponding AGORA reconstructions of all strains found in at least one
microbiome were put together into one global constraint-based microbiome community reconstruction
as described before (Baldini et al., 2018; Thiele et al., 2013). Then, the biomass objective function was
coupled with the flux through each AGORA species panmodel (for details see (Heinken et al., 2013)),
parametrising the community biomass reaction via the relative abundances as stoichiometric values for
each microbe biomass reaction in the community biomass reaction. The models were appropriately
contextualised with the average Japanese Diet described above. The resulting diet exchange fluxes were
then applied to community models (Baldini et al., 2018). The flux through the community biomass
reaction was set to be between 0.4 and 1 mmol/person/day, as described before. The features of the
personalised community models are given in Fig. 1.

Definitions and theoretical frameworks

Utilised attributes of populations of community models
Letbe M = {M;, M,, ... M;} a set of I community models corresponding to / measured microbiomes. We
are interested here in three attributes of the model M;:

1) the vector of microbial abundances a; € [0,1]% belonging to the model M; where K denotes
the number of species included into the AGORA collection.

i) the vector of reaction abundances r; € [0,1]/ belonging to the model M; where J denotes
the number of reactions included into the AGORA collection in total.

iii) A vector of net metabolite production capacities n; € [0, ¢;]* with ¢; being the maximum

possible net metabolite production capacity under the set of applied constraints and L being
the number of metabolites with microbial exchange reactions in at least one AGORA
genome scale model. Net metabolite production capacities are defined by the difference of
maximal secretion and maximal uptake fluxes. We say that a model M; has a net production
capability for the metabolite lif n;; > 0.

Thus, our population statistics analyses of community models were performed on microbial abundances,
reaction abundances, net metabolite production capacities and net metabolite production capabilities.

Metabolic Equivalence
Now, we define the term metabolic equivalence, which allows us to cluster microbial communities
having the same set of metabolic functions.

Definition 1: Metabolic Equivalence
We call two community models M; and M; metabolic equivalent regarding the (sub)set E' of metabolites

with exchange reactions in at least one AGORA genome scale model if and only if that foralll €
E itholds thatn;; > 0 & ny; > 0. We then write M; ~g M.
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This defines an equivalence relation, as the relation ~j fulfills the attributes of being reflexive
(M; ~g M;), symmetric (Mj ~g My & M) ~g M;), and transitive (M; ~g My and My ~g M; =
M; ~g M,).

j TE ™I

Necessary and sufficient conditions for net metabolite production capacities

Now, we define sufficient and necessary attributes for net metabolite production capabilities given a set
of microbial community models M = {M;, M5, ... M;}. The concepts of “metabolically sufficient” and
“metabolically necessary” will be analogous for species and reactions. First, however, we will define
informative metabolites.

Definition 2: Informative metabolite

We call a metabolite [ informative, if and only if 3M; € M: n; > 0 and 3M; € M: n;; = 0. Informative
metabolites are therefore those metabolites with variance in the net production capabilities across the
set of models M.

Definition 3: Necessary and sufficient reactions

Let be [ an informative metabolite. Then, we call a reaction & necessary if and only if for all M; € M it
holds that r;;, = 0= n; = 0. We call a reaction k sufficient if and only if for all M; € M it holds that
Tik >0=> n; > 0.

Definition 4: Necessary and sufficient species

Let be [ an informative metabolite. Then, we call a species j necessary if and only if for all M; € M it
holds that a;; = 0= n; = 0. We call a species j sufficient if and only if for all M; € M it holds that
a;j >0=> ny > 0.

Thus, we call species and reactions necessary for a certain metabolic function, if their absence implies
missing the metabolic function under consideration in all observed community models. In contrast, we
call species and reactions sufficient for a metabolic function, if their presence implies showing the
metabolic function of interest in all models. It is important to note that the concepts of necessity and
sufficiency are defined for metabolites, which are neither produced by all models, nor by any of the
models. We can only learn necessary and sufficient conditions from variance in the occurrence, which
motivates the definition of informative metabolites. This is in parallel to statistics where variance in the
random variables is a prerequisite to identify patterns of stochastic dependency. As in statistics, the
dependency relations given by sufficiency and necessity should not be confused with causality, as
conditions could co-occur in the set communities observed. Therefore, we define the concepts of strictly
sufficient and strictly necessary, which introduces a type of conditional dependence notion.

Definition 5: Strictly necessary reactions

Let be | an informative metabolite. Let be Q; the set of all reactions, which are necessary for net
production capability for the metabolite / and k € Q; a specific necessary reaction. We call k strictly
necessary if and only if AM; € M with r;, = 0 and Vj € Q;\k: r;; # 0.

Definition 6: Strictly necessary species

Let be [ an informative metabolite. Let be Q; the set of all species, which are necessary for net production
capability for / and k € Q; a specific necessary species. We call £ strictly necessary if and only if 3M; €
M with a;, = 0 and Vj € Q;\k: a;; # 0.

Definition 7: Strictly sufficient reactions
Let be | an informative metabolite. Let be Q; the set of all reactions, which are sufficient for net

production capability for / and k € Q; a specific sufficient reaction. We call £ strictly sufficient if and
only if 3IM; € M with ry > 0 and Vj € Q;\k: ;; = 0.

Definition 8: Strictly sufficient species
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Let be [ an informative metabolite. Let be Q; the set of all species, which are necessary for net production
capability for / and k € Q; a specific necessary species. We call £ strictly necessary if and only if 3M; €
M with a;, > 0and Vj € Q;\k: a;; = 0.

It is important to realize that the definitions presented here are dependent on the variance in the
population of microbial communities. The larger the sample size, the more necessary and sufficient
conditions will be discovered. Sufficiency and necessity are technical attributes of populations of
community models in the first place. The identified conditions do not need to be necessary and sufficient
in a biological sense. However, they are valuable candidates for being indicators of causal processes and
thus targets for experimental validation.

Direct, ecological, and total effect of species on net community metabolite production capacities
Here, we define formally the effects of a presence of a species on the net community metabolite
production capacities observed in a population of community models M. The concepts of effects are
defined via populations statistics. Therefore, these concepts must be treated as statistical estimates and
should always be reported with confidence intervals.

Definition 9: Average direct species net production effect
Let I be a metabolite and M the population of community models. The average direct species production
effect d;j for a metabolite 1 and a species j is defined by

< 1
(D dlj =7 {=1 dilj
where d;;; stands for the net production (through secretion and uptake) of the metabolite 1 by the species

J in the community model M;. We call d;;; the species net production capacity.

A species, however, cannot only impact the net community production capacity by direct contributions.
A species can also impact the production of other microbes and can be associated with alteration in the
community structure, changing the abundance of other microbes relevant for the community production
of a metabolite. This motivates the definition of the ecological species effect, which gives a measure of
these indirect influences associated with the presence of a microbe.

Definition 10: Ecological species effect
Let [ be a metabolite and M the population of community models. Let M J = {M;: a; > 0} be the set of
community models with the abundance of the species j greater than zero, and M~/ := {M;: q; j = 0} the
set of community models missing the species j. The ecological species effect €;; is then given by
_ 1 1

(2) & = mZMier("iz —dyj) — WZML.EW Njp-
Thus, the ecological species effect is the difference between average net metabolite production
capacities of communities with a species and communities without a species after discounting the direct
species net production capacity. Note that the direct species net production is zero in all models
belonging to the set M7/,
Obviously, the ecological species effect is not necessarily causal, and it can be calculated conditional

on a set of covariates minimising confounding by basic covariates, such as age, sex, or BMI, via
multivariable regressions.

Definition 11: Total species effect
Let / be a metabolite and M the population of community models. Then, the total species effect £;; is

defined by the sum of average direct species net production effect and the ecological species effect:

(3) tl] = él] + dl] .
The total species effect is the difference in net production capacities between the community models
having a certain species and the community models missing this specific species.

Statistical analyses
We performed statistical analyses on the following attributes of community models: 1) net metabolite
production capabilities, 2) net metabolite production capacities, 3) reaction abundances, and 4) species
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abundances. Due to one infeasible model, the final sample size for analysing relations between metadata
and attributes of the community models was n=615 and the final sample size for analysing the
community models together with the faccal metabolome was n=346. For descriptive statistics, metric
variables were expressed in means and standard deviations, categorical variables were described by
proportions. All p-values are reported two-tailed. The statistical analyses were performed with STATA
14/MP (STATA Inc., College Station, Texas, USA).

Analyses of net metabolite production capabilities

To investigate the potential differences in net metabolite production capabilities between cases and
controls, we fitted logistic regressions with the net metabolite production capability as binary response
variable (can be produced vs. cannot be produced). The predictor of interest in these logistic regressions
was the group variable (binary: CRC cases vs. controls) and age, sex, and BMI were used as covariates
to minimize confounding. We analysed only metabolites for which at least 5% and maximally 95% of
all community models could produce those metabolites to avoid unstable statistical estimates due to low
case numbers. Forty-four metabolites fulfilled this criterion. Accordingly, we corrected for multiple
testing using the false discovery rate (FDR) (Benjamini, 2010), acknowledging 44 significant tests. An
FDR of 0.05 was chosen as significance threshold.

In a second series of logistic regressions, we checked for associations of net metabolite production
capabilities with the CRC stage. Thus, we performed logistic regressions as before exchanging the study
group variable for the stage variable (categorical: surgery, multiple polyps, stage 0, stage I/Il, stage
III/IV) excluding healthy controls from the analysis. The stage variable was then tested on significance
using a standard Wald test (Harrell, 2001). Once again, we corrected for multiple testing using the FDR,
adjusting the significance threshold for 44 tests. Summary statistics for both series of logistic regressions
can be found in supplementary Table S1.

Post hoc, glutarate production capability, being the main result of the screening described above, was
checked on associations with basic covariates. To check for association with age and sex, a logistic
regression with the net glutarate production capability as response variable was fitted using age and sex
as predictors of interest, while adjusting for the study group variable (binary: CRC cases vs. controls).
To check for association with BMI, a logistic regression with the net glutarate production capability as
response variable was fitted using the BMI as predictor of interest, while adjusting for, age, sex, and the
study group variable (binary: CRC cases vs. controls).

Analyses of net SFCA production capacities

Next, we tested the association of CRC with net production capacities of SFCAs, namely acetate,
butyrate, and propionate. To this end, we fitted linear regressions using the respective net SFCA
production capacity as response variable, the study group variable (binary: CRC cases vs. controls) as
predictor of interest, and age, sex, and BMI as covariates. Heteroscedastic standard errors were applied
in the main analyses. For sensitivity analysis, non-parametric bootstrap-derived confidence intervals
were calculated using 2000 replications, but the results remained virtually unchanged. Next, we tested
net SFCA production capacities on association with the presence of Fusobacteria species. Once again,
we used linear regressions as before using this time the presence of Fusobacteria (binary: Fusobacteria
present vs. Fusobacteria not present) as predictor of interest, correcting for age, sex, BMI and study
group by including them as covariates. Additionally, we ran mediation according to the Sobel-Goodman
test (PMID: 18697684) testing whether Fusobacteria presence mediated the effect of CRC on net
butyrate production capacities. Confidence intervals for the indirect and direct effects were calculated
by bootstrapping using 2000 replications.

Analyses of direct species production effects and ecological species production effects regarding
butyrate
To calculate direct and ecological species effects regarding butyrate, we first screened all reaction
abundances on correlation with the net community butyrate production capacities, finding the butyryl-
CoA:acetate CoA-transferase as one of the top hits. Then, we derived for 31 species (found in at least
5% and maximally 95% of all samples), the direct species production effect, the ecological species
effect, and the total species effect on net community butyrate production through the butyryl-
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CoA:acetate CoA-transferase. The direct species production effect was calculated by using the
regression equation of the butyryl-CoA:acetate CoA-transferase net community butyrate production
relation replacing the butyryl-CoA:acetate CoA-transferase abundance by the species abundance. This
is justified as butyryl-CoA:acetate CoA-transferase abundance is the sum of all species abundances
having the butyryl-CoA:acetate CoA-transferase reaction. Then, the ecological species and the total
species effects for the 31 species were calculated according to the equations (2) and (3). Finally, 95%-
CIs were calculated for all effects using standard procedures for estimating Cls for arithmetic means.
The results then were visualised by a forest plot.

To illustrate the effects of Fusobacteria sp., we explored the effect of Fusobacteria presence on those
species, which had the highest positive effect on community butyrate production, contributing at least
10% of variance with positive effect sign. Seven species (Copprococcus comes, Eubacterium rectale,
Eubacterium siraeum, Eubacterium ventriosum, Faecalibacterium prausnitzii, Roseburia intestinales,
and Roseburia inulinivorans) fulfilled these criteria. Then, we fitted a series of seven fractional logistic
regressions (Baldini et al., 2020) with the abundance of the seven species as response variables, the
presence of Fusobacteria sp. (binary: present vs. not present) as predictor of interest, while adjusting
for age, sex, BMI, and study group. We corrected the significance level for multiple testing using the
FDR, adjusting the significance levels for seven tests.

Full results and summary statistics can be found in the supplementary material (Tables S2-S4).

Statistical integration of community modelling with faecal metabolomics

To validate the simulation results regarding glutarate and butyrate, we integrated the simulation data
systematically with faeccal metabolome measurements in 347 individuals of the same cohort, including
quantifications of glutarate and butyrate concentrations (Yachida et al., 2019). Note that the faecal
metabolome is a representative of human metabolism, diet intake, and microbial metabolism such that
it cannot be expected that the microbiome can fully explain variegation in faecal metabolite profiles.
However, as the microbiome is one source of variance in faecal metabolite content and the simulations
predict systematic variance in metabolite output of the microbiome across individuals, we expect that
the association pattern between microbes and metabolite production capacities is reflective of the
association pattern between microbes and faecal metabolite concentrations. For statistical analyses,
faecal glutarate and butyrate concentrations were log-transformed, minimising the skewness of the
distributions.

First, we regressed the measured faecal butyrate and glutarate concentrations on the net community
production capacities via linear regressions, including age, sex, BMI, and the study group variable as
covariates. In the case of glutarate, we also included the net production capability (binary: can be
produced vs. cannot be produced) into the regression model, as only 52% of all models had a net
production capacity bigger zero. We evaluated then the predictive value of the net community
production capacity, respectively, capability by testing their regression coefficients on zero and
calculating the incremental R-squared values (increase in model fit by adding net production
capacity/capability variables).

Next, we calculated the full species faecal butyrate concentration association pattern by running linear
regressions with the measured faecal butyrate concentration as response variable, the species presence
(binary: species present vs. species not present) as predictor of interest, while including age, sex, BMI,
and the study group variable as covariates. Heteroscedastic standard errors were used. These regressions
were run for all species, which were detected in at least 5% and maximally 95% of all samples, resulting
in 181 regressions. We retrieved the regression coefficient of the species presence, the corresponding p-
value, and the FDR correcting for 181 tests. In a second step, we derived in the same way the full species
net community butyrate production capacity association pattern. Note that the in silico association
pattern was derived on the full sample n=615, assuming implicitly that faecal metabolome
measurements were missing completely at random. Then, we checked for all species faecal butyrate
concentration associations with p<0.05, respectively, FDR<0.05, whether the sign of the in silico
derived regression coefficient for the species butyrate association predicted the sign of the empirically
derived regression coefficient via Fisher’s exact test. Moreover, we correlated the two species-butyrate
association statistics with each other and tested the Pearson correlation via the standard test on
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significance. A significant prediction of sign and size of empirically derived regression coefficients was
interpreted as a validation of the community modelling. We repeated the same methodology for
glutarate.

Summary statistics for the full glutarate and butyrate association patterns, in silico as well as in vivo,
can be found in the supplementary material (Table S5, S6).
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Tables

Table 1: Sample characteristics of the study.

CRC Patients Healthy controls p-value
(n=364) (n=251)
Age, mean (SD) 62.4(9.91) 60.81(12.64) 0.095*
BMI, mean (SD) 22.95 (3.57) 22.67(3.04) 0.294*
Female, % 39.29% 45.82% 0.115°
Stage of the disease HS, 10.99% NA NA
MP, 18.41%
Stage 0, 19.78%
Stage /11, 30.49%
Stage 1II/1V, 20.33%

Species Richness, mean (SD) 69.74 (18.33) 63.91 (15.96) <0.001?
# Metabolites produced, mean (SD) 157.06 (6.67) 156.17(7.20) 0.123*
# Reactions in community models, 2896.80 (99.58) 2885.28 (105.29) 0.190*

mean (SD)

CRC=Colorectal cancer, SD=Standard Deviation, HS=Healthy after surgery, MP=Multiple polyps, *p-value from
Welch t-tests, *p-value from Fisher’s exact test
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Table 2: Theoretical concepts used in this study.

Theoretical Concept

Description®

Type of modelling

Net metabolite production capability

Net metabolite production capacity

Direct species production effect

Ecological species effect

Metabolic Equivalence

Metabolically Sufficient

Strictly metabolically sufficient

Metabolically necessary

Strictly metabolically necessary

The possibility to produce a
metabolite

The amount of a metabolite (mmol/d),
which can be maximally produced

The average contribution of a species
to the net metabolite production
capacity of a community

The difference between average net
metabolite production capacities of
communities with a species and
communities without a species after
discounting the direct species net
production capacity

Equivalence of two communities in
terms of net metabolite production
capabilities

A species/reaction is called sufficient
for a metabolite, if presence of the
species/reaction within a community
means that the metabolite can be
produced.

A species/reaction is called strictly
sufficient if it is sufficient given all
other sufficient species/reactions.

A species/reaction is called necessary
for a metabolite, if absence of the
species/reaction within a community
means that the metabolite cannot be
produced

A species/reaction is called strictly
necessary, if it is necessary given all
other necessary species/reactions.

Deterministic

Deterministic

Statistical

Statistical

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

® Formal definitions can be found in the Methods section. All definitions are conditional on the applied diet

constraints.
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Figure 1: Overview over the three levels of AGORA-based community modelling used in

this study.
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A Glutarate secretion capability for cases and C Overview over detected Fusobacterium sp.
controls stratified for sex ) i OR(95%-CI)
Detection Detection Rate G
for detection in p-value
Rate CRC healthy CRC
2] Healthy Controls | CRC Cases F. periodonticum | 12.09% 7.57% 1.62(0.91:2.87) 0.101
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F. ulcerans 21.98% 15.94% 1.50(0.99;2.29) 0.058
| F. varium 7.42% 6.37% 1.10(0.58:2.10) 0.769
F. nucleatum 25.82% 8.76% 3.53(2.14;5.83)  7.81e-07
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Figure 2: Glutarate secretion capability enrichment in CRC. A Bar plots with 95%-
confidence intervals for the share of microbiome models with the capability to produce glutarate
across the sexes and cases and controls. B Bar plots with 95%-confidence intervals for the share
of microbiome models with the capability to produce glutarate across different stages of
colorectal cancer. Late stage colorectal cancer had significantly higher shares of microbiomes
with the capability to produce glutarate. C Statistics for the detected Fusobacterium species. P-
values are from logistic regression adjusted for age, sex and BMI except for F. necrophorum
and F. gonidiaformans where p-values were calculated from Fisher’s exact tests due to small
case numbers. D Lysine to butyrate pathway through glutarate in Fusobacterium species. Note
that only Fusobacterium species had the complete pathway including the exchange reaction for
glutarate. CRC=colorectal cancer, MP=multiple polyps, HS=healthy after surgery,
GLUTARt2r=Glutarate transport via proton symport, reversible.

Share of communities producing glutarate
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Figure 3: Overview over simulation results regarding short chain fatty acid production.
A Box plots for acetate, butyrate, and propionate net production capacities for CRC cases and
controls. Net production capacities are significantly different across cases and controls for
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acetate (p=0.046) and butyrate (p=0.030). B Box plots for net butyrate production capacities
for cases and controls across microbiomes with and without Fusobacteria presence.
Communities with Fusobacteria had significantly lower net butyrate production potentials
(p=4.43e-09). C Scatter plot with regression line for net butyrate production capacities in
dependence on the butyryl-CoA:acetate CoA-transferase abundance (R-squared=0.99). D
Forest plots for direct, ecological and total effects of species presence on community butyrate
production through the butyryl-CoA:acetate CoA-transferase route. Caps represent 95%-
confidence intervals. Only species found in at least 5% of all samples were included. E Box
plots for species abundances positively associated with community butyrate production in
dependence of Fusobacteria presence. All species were significantly less abundance when
Fusobacteria were present in the microbiome (all p<0.001). SCFAs=short chain fatty acids,
FB=Fusobacteria. CRC=colorectal cancer.
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A Scatterplot of log fecal butyrate concentrations
in dependency on net butyrate production potential
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Figure 4: Validation of community modelling predictions regarding butyrate. A Scatter
plot with regression line of log faecal butyrate concentrations against community net butyrate
production capacities. The regression slope is significantly different from zero (b=0.00445,
95%-CI:(.00295,.00595), p=1.22E-08). B Accuracy of sign prediction for significant species
faecal butyrate concentration association through community modelling. C Box plots for log
faecal butyrate concentrations for microbiomes with and without Fusobacteria. Microbiomes
with Fusobacteria were associated with lower faecal butyrate levels (b= -0.18, 95%-C:(-0.33,
-0.03), p=0.020). D Scatter plot with regression line of empirical species faecal butyrate
association statistics (expressed as regression coefficients) against in silico species net
metabolite production association statistics (expressed as regression coefficients). In silico and
empirical association statistics were significantly correlated with each other (r=0.75, p=9.96e-
10). FB=Fusobacteria, c=concentration, j=net production capacity flux.
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A Box plots of log fecal glutarate concentrations
in dependency on net butyrate production capability

B Sign prediction accuracy forin vivo
species metabolite associations for glutarate
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Figure 5: Validation of community modelling predictions regarding glutarate. A Box plots
for log faecal glutarate concentrations for communities with and without glutarate secretion
capability. Communities with glutarate secretion capability are associated with significantly
lower faecal glutarate concentrations (b= -0.44,95%-CI(-0.68, -0.20), p=3.24e-04). B Accuracy
of sign prediction for significant species faecal glutarate concentration association through
community modelling. C Scatter plot of in silico community uptake of glutarate against
Fusobacteria abundance (r=0.98). D Scatter plot with regression line of empirical species faecal
glutarate association statistics (expressed as regression coefficients) against in silico species net
metabolite production association statistics (expressed as regression coefficients). In silico and
empirical association statistics were significantly correlated with each other (r=-0.76, p=2.8%-
14). c=concentration, j=net production capacity flux.
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Figure S1: Box plots for net acetate and propionate production capacities for cases and controls
across microbiomes with and without Fusobacteria presence. Communities with Fusobacteria
had significantly higher net propionate production capacities (p=4.87e-07), while acetate
production capacities were not significantly different (p=0.519). FB=Fusobacteria.
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