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Abstract

Humans often face sequential decision-making problems, in which information about the en-
vironmental reward structure is detached from rewards for a subset of actions. In the current
exploratory study, we introduce an information-selective symmetric reversal bandit task to model
such situations and obtained choice data on this task from 24 participants. To arbitrate between
different decision-making strategies that participants may use on this task, we developed a set
of probabilistic agent-based behavioral models, including exploitative and explorative Bayesian
agents, as well as heuristic control agents. Upon validating the model and parameter recovery
properties of our model set and summarizing the participants’ choice data in a descriptive way,
we used a maximum likelihood approach to evaluate the participants’ choice data from the per-
spective of our model set. In brief, we provide quantitative evidence that participants employ a
belief state-based hybrid explorative-exploitative strategy on the information-selective symmet-
ric reversal bandit task, lending further support to the finding that humans are guided by their
subjective uncertainty when solving exploration-exploitation dilemmas.

Keywords: bandit problem, agent-based behavioral modeling, exploration, exploitation

Introduction

Uncertainty is an inherent part of real-life sequential decision making. Humans often face new
and changing situations without being able to directly observe the statistical regularities of the
environmental reward structure. Consequently, in their quest to maximize their cumulative
rewards, humans have to alternate between exploration and exploitation. Exploration refers to
decisions that maximize information gain and thus reduce the uncertainty about the statistical
regularities of the environment. Exploitation refers to decisions that maximize reward gain by
harnessing the accumulated knowledge.

A standard behavioral test bed to study sequential decision making under uncertainty is the
bandit paradigm (e.g. Robbins, 1952; Brand et al., 1956; Brand & Woods, 1957; Berry & Fristedt,
1985; Cohen et al., 2007; Even-Dar et al., 2006; Dayan & Daw, 2008; Bubeck et al., 2009; Gabillon
et al., 2012). Two variants of the bandit paradigm have been widely adopted to model real-life
sequential decision making under uncertainty. We here refer to these variants as the classical
bandit paradigm (by some also referred to as partial-feedback paradigm (c.f. Hertwig, 2012; Wulff

(o))

et al., 2018)) and the pure exploration paradigm (by some also referred to as sampling paradigm,
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ibid.). In both variants, on each trial the deciding agent has to choose among a finite set of
actions with different expected reward values and subsequently observes a reward with probability
specific to the chosen action. While the actions’ expected rewards are not directly observable,
the agent can estimate them by integrating information over multiple reward observations. The
difference between the classical bandit paradigm and the pure exploration paradigm stems from
the respective challenges they pose for the deciding agent. In the classical bandit paradigm, the
agent’s task is to maximize the cumulative reward across all trials, while the reward observation
confers both information and reward on each trial. The classical bandit paradigm thus raises
the problem of how to strike a balance between exploration and exploitation on each trial. In
contrast, in the pure exploration paradigm, the aim is to maximize the reward obtained on a
single final trial. Here, reward observations on preceding trials only confer information, but not
reward. The number of trials preceding this final trial is self-determined by the agent. The pure
exploration paradigm thus raises the problem of how to strike a balance between the exploration
costs preceding the final trial and the potential final trial reward (Ostwald et al.; 2015).

While a large variety of real-life decision-making problems can be modelled with the clas-
sical bandit and the pure exploration paradigms, neither variant is suited to model a class of
decision-making problems, in which each available action yields positive or negative reward,
while only some actions also yield information about the problem’s reward structure. Consider
for example the situation of a patient who exhibits COVID-19 symptoms during the global pan-
demic. Assuming that reliable and medically administered COVID-19 tests are available, while
self-administered COVID-19 tests are not (as has been the case in many countries in the first
year of the pandemic), the patient faces the following decision dilemma: on the one hand, the
patient may home-quarantine, thereby minimizing the risk for virus transmission, but at the
price of not obtaining information about their own state of infection. Alternatively, the patient
may use public transport to undergo a medically administered COVID-19 test, thereby incur-
ring the risk of further transmitting the virus, but obtaining reliable information about their
personal infectious state. Situations of this type are similar to the ones modelled with the clas-
sical bandit paradigm as each action has a positively or negatively rewarded consequence (which
in the example is of societal nature). Importantly, however, in this situation reward-relevant
information is detached from reward for one of the actions (home-quarantining), akin to the
pure exploration paradigm. Consequently, such a decision situation poses a more pronounced
exploration-exploitation dilemma then both classical bandit paradigms and the pure exploration
paradigm, because the decision maker is forced to explicitly evaluate the benefit of information
gain against the benefit of reward gain. The aim of the current study is to computationally
characterize human sequential decision making in such problems.

To this end, we introduce an information-selective symmetric reversal bandit task, which
shares key characteristics with the classical symmetric two-armed reversal bandit task (e.g. Bar-
tolo & Averbeck, 2020; Costa et al., 2016; Glascher et al., 2009; Hauser et al., 2014), but in
which information is randomly withheld for either the action with the high or the low expected
reward value. To arbitrate between different sequential decision-making strategies that humans
may employ on this task, we formulate a set of agent-based behavioral models. We here follow
up on recent results showing that one way humans balance between exploration and exploitation
is to add an ’information bonus’ to the value estimate of an action, which reflects the associated
uncertainty (e.g. Gershman, 2018, 2019; Lee et al., 2011; Wilson et al., 2014; Wu et al., 2018).
More specifically, we formulate Bayesian agents that represent subjective uncertainty about the
structure of the environment in the form of a belief state. The Bayesian agents use the be-
lief state to make either exploitative (i.e., value estimate maximizing actions), explorative (i.e.,
information bonus maximizing actions), or hybrid explorative-exploitative (i.e., combined value
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estimate and information bonus maximizing) actions. Notably, we adopt a Bayesian treatment of
exploration and quantify the information bonus as the expected Bayesian surprise (Itti & Baldi,
2009; Sun et al., 2011; Ostwald et al.; 2012). In addition to the Bayesian agents, we also formu-
late belief state-free agents that implement simple strategies, such as a cognitive null model and
the win-stay-lose-switch heuristic (Robbins, 1952). Upon validating our modeling initiative, we
provide evidence for a belief state-based hybrid explorative-exploitative strategy based on choice
data from 24 participants. In summary, we show that in a scenario where every decision has
an economic consequence, but only some decisions are informative about the statistical reward
structure of the environment, humans are guided by their subjective uncertainty when resolving
the exploration-exploitation dilemma.

Experimental methods

Participants Young adults were recruited from the Nathan Kline Institute Rockland Sample
(NKI-RS), a community-ascertained and comprehensively characterized participant sample of
more than 1000 individuals between 6 and 85 years of age (Nooner et al., 2012). We initially
intended to enroll individuals from the lower and upper ends of the attention deficit hyperactiv-
ity disorder (ADHD) spectrum because we were interested in the relationship between ADHD
symptoms and behavioral strategies in our task. Yet, the final sample of 24 individuals (12
female, 23 right-handed, age range: 18-35 years, mean age: 24.5 years, standard deviation age:
5.5 years) represented the mid-range of the ADHD spectrum. Moreover, individuals were only
invited if they had no lifetime history of severe neurological or psychiatric disorder. We therefore
treated the group of participants as a healthy sample and did not conduct analyses to relate
ADHD symptoms to task behavior. For additional details about the recruitment and sample
characteristics, please refer to Section S.1: Sample characteristics.

Procedure The study consisted of a one-time visit of 3.5 hours to the Nathan Kline Insti-
tute for Psychiatric Research (Orangeburg, NY, US). After providing written informed consent,
participants were first requested to fill out a series of questionnaires measuring symptoms of
ADHD and other mental disorders. Next, participants received detailed written instructions
about the information-selective symmetric reversal bandit task and were encouraged to ask any
clarification questions. For the detailed instructions provided to the participants, please refer
to Section 5.2: Participant instructions. To familiarize participants with the task, they next
completed a test run of the task on a desktop computer. Finally, participants completed two
experimental task runs in a Magnetic Resonance Imaging (MRI) scanner, while behavioral, eye
tracking, and functional MRI data were acquired. Note that in the current work, we only report
results from the analysis of the behavioral data acquired during MR scanning. The visit ended
with the participants receiving a reimbursement of $100 (see below for details).

Experimental design We developed a symmetric two-armed reversal bandit task, in which
the available actions were not only associated with varying expected reward values but also
with varying information gains (information-selective symmetric reversal bandit task, Figure 1a).
More specifically, on each task trial participants could decide between the actions of choosing a
square on the right of the computer screen vs. choosing a triangle on the left of the screen, or
between the actions of choosing a square on the left vs. choosing a triangle on the right of the
screen. Depending on the shape chosen, the action was either lucrative and returned a reward
of +1 with a probability of 0.85 and a reward of -1 with a probability of 0.15, or detrimental
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Figure 1. Information-selective symmetric reversal bandit task. a Experimental design. Possible
actions differed in lucrativeness (lucrative (L) or detrimental (D)), as well as in informativeness (informative
(I) or non-informative (N)). The former experimental factor was associated with selectable shapes (square and
triangle), while the latter experimental factor was associated with black and grey screen sides. In addition,
and unbeknownst to the participants, the lucrativeness of the shapes reversed at random trials throughout the
experiment, corresponding to the unobservable task state: for some time, the square may represent the lucrative
action, indicated here by its yellow color (and the triangle, accordingly, represent the detrimental action, indicated
here by its blue color), but this could reverse. b On a given trial, participants faced a choice between either a
lucrative and informative vs. a detrimental and non-informative action (Trial Type I; L A I or D A N) or a
lucrative and non-informative vs. a detrimental and informative action (Trial Type II; L A N or D A I). ¢ Trial
design. Participants could indicate their choice within 2.5 seconds of the choice options onset. If they chose the
shape on the black side, the returned reward was revealed (top). If they chose the shape on the grey side, the
returned reward was not revealed (bottom). Note that the current lucrativeness of the shapes was not revealed
to the participants, hence the white shape color. d Run design. Every 17 to 23 trials the reward probabilities
associated with the shapes reversed. Here, the reversal times of the first run are shown. For trials 1 to 19 the
square was lucrative, indicated by its yellow color, and the triangle was detrimental, indicated by its blue color.
This reversed on trial 20 at which choosing the triangle became the lucrative action and choosing the square
became the detrimental action. For the generation of this figure, please see figure_1.m.


https://doi.org/10.1101/2020.08.31.276139
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.276139; this version posted May 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

and returned a reward of +1 with a probability of 0.15 and a reward of -1 with a probability
of 0.85. Depending on the side of the shape chosen, the action was also either informative and
the returned reward was revealed to the participant, or it was non-informative and the returned
reward was not revealed to the participant. Specifically, following an informative action either
an image of a moneybag was displayed to signal a positive reward of +1, or an image of a
crossed-out moneybag was displayed to signal the negative reward -1. In contrast, following
a non-informative action an image of a question mark moneybag was displayed for both the
rewards of +1 and -1. Importantly, while the actions’ lucrativeness was not directly observable
and could only be inferred from the revealed rewards, the actions’ informativeness was directly
observable throughout the experiment. In particular, for half of the participants the right screen
side was associated with the informative action and the left screen side was associated with
the non-informative action. For the other half of the participants the coupling between screen
side and action informativeness was reversed. As a visual reminder for the participants, the
informative and non-informative screen sides were also indicated by black and grey backgrounds,
respectively. Note that we use the terms informative side and non-informative side in accordance
with the action definitions. Similarly, we will also use the terms "lucrative shape’ and ’detrimental
shape’ instead of ’action of choosing the lucrative or detrimental shape’ for simplicity. Also note
that throughout the depiction of the experimental design and results, we visualize lucrative and
detrimental actions by yellow and blue colors, respectively, and informative and non-informative
actions by black and grey colors, respectively.

The experiment consisted of two runs of 80 trials each. On half of the trials, choosing
the square was lucrative and choosing the triangle was detrimental. On the other half of the
trials, choosing the square was detrimental and choosing the triangle was lucrative. We pseudo-
randomized the sequence of lucrative shapes, such that choosing a certain shape was lucrative
for 17-23 consecutive trials upon which the actions’ lucrativeness reversed. This yielded a total
of three shape lucrativeness reversals (or equivalently, four blocks of trials without a reversal)
per task run (Figure 1d). Furthermore, we also pseudo-randomized the trial-by-trial sequence
of choice options (e.g., a choice between the square on the informative side or the triangle
on the non-informative side) with two constraints. First, a certain choice option combination
occurred for a maximum of five consecutive trials. Second, on 50% of the trials in which the
square was lucrative, the square was presented on the informative side (and the triangle on the
non-informative side), while on the other 50% of the trials, the square was presented on the
non-informative side (and the triangle on the informative side). The same constraint applied to
those trials on which the triangle was lucrative. This way we did not only counterbalance the
shape-side combinations, but also ensured that participants faced a choice between a lucrative
and informative action (L A I) and a detrimental and non-informative (D A N) action on half
of the trials. We refer to the trials with action choices between L. A T and D A N actions as
Trial Type I (Figure 1b). Accordingly, on the other half of the trials, participants faced a choice
between a lucrative and non-informative action (L A N) and a detrimental and informative (D
A 1) action. We refer to the trials with action choices between L A N and D A I actions as Trial
Type II (Figure 1b). Importantly, for a consistent experiment history across participants, we
generated the sequence of lucrative shapes and choice options prior to the study and used the
identical trial sequence for all participants. The task was implemented as irb task.py in Python
2.7 using PsychoPy V1.82.01 (Peirce, 2007).

Participants were encouraged to maximize the cumulative sum of returned rewards across all
trials. As an incentive, participants were informed that in addition to a standard reimbursement
of $70 for partaking in the study, they would receive a bonus up to $30 depending on their final
balance at the end of the second run of the task. They were not further informed about the
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balance-bonus conversion rate. In effect, however, all participants were payed the full bonus of
$30 as requested by the Institutional Review Board.

Trial design FEach trial started with the presentation of the two available choice options and
participants were given a maximum of 2.5 seconds to indicate their choice (Figure 1c). If partici-
pants responded within this time window, the border of the chosen shape turned white to signal
the recording of their choice. The duration of this feedback signal depended on the response
time, such that the choice options and feedback together were presented for 3 seconds in total.
Then, a post-choice fixation cross was presented for 3-5 seconds. This fixation cross was followed
by the image representing the choice outcome, i.e., a moneybag, a crossed-out moneybag, or a
question mark moneybag image, which was presented for 3 seconds. Finally, before the start of
the next trial, an inter-trial fixation cross was displayed for 3-5 seconds. If participants did not
respond within the choice time window, the message 'too slow’ appeared for 0.5 seconds followed
by an inter-trial fixation cross, a reward of -1 was automatically registered to the participant’s
account, and the next trial commenced. Notably, while the sequences of lucrative shapes and
choice options were generated prior to the experiment, the fixation cross duration times and the
returned rewards were sampled online as participants interacted with the task. Specifically, the
fixation cross duration times were sampled uniformly from an interval of 3 to 5 seconds. The
reward values +1 and -1 were sampled from discrete categorical distributions with probabilities
0.85 and 0.15 for the lucrative action and with probabilities 0.15 and 0.85 for the detrimental
action, respectively.

Descriptive analyses

To assess the behavioral data set on a descriptive level, we evaluated nine summary choice rates
for every participant. In particular, we first evaluated overall and trial type-specific valid choice
rates. These choice rates were defined as the number of valid action choices on all trials, on Type
I trials, and on Type II trials divided by the number of all trials, of Type I trials, and of Type II
trials, respectively. For example, by design there were 80 trials of Type I. If a participant failed to
make a valid choice on one of these trials, the Trial Type I valid choice rate evaluated to 79/80.
The participant-specific choice rates were then averaged across participants and the standard
error of the mean (SEM) was evaluated. These analyses showed that participants completed the
vast majority of trials and achieved an overall valid choice rate of 97.86% =+ 0.62. There was
virtually no difference in the number of valid choices between trial types: The valid choice rate
on Trial Type T was 97.97% 4 0.62 and the valid choice rate on Trial Type IT was 97.76% + 0.68.

We then evaluated the choice rates for the lucrative and informative actions (L A I), lu-
crative and non-informative actions (L A N), detrimental and informative actions (D A I), and
detrimental and non-informative actions (D A N). These choice rates were computed by dividing
the number of respective actions by the number of valid choices of the corresponding trial type.
Consequently, the choice rates of a given trial type are symmetrical, i.e., they sum up to 100%.
For example, if a participant on Type I trials made 79 valid action choices of which 65 were L
A T actions and 14 were D A N actions, then the L A I choice rate was 65/79 and the D A N
choice rate was 14/79. In addition, we evaluated the choice rates of the lucrative actions and
the informative actions. These were computed by dividing the sum of the number of L A I and
L A N actions, as well as the sum of the number of L. A T and D A I actions, by the number of
valid choices on all trials. For example, if a participant made 159 valid choices in total, and of
these 65 choices were L A I actions, while 58 were L A N actions, the lucrative action choice rate
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evaluated to 123/159. The participant-specific choice rates were then averaged across partici-
pants and SEM was evaluated. As shown in Figure 2a, on Trial Type I, the majority of action
choices was lucrative and informative (L A I, 87.45% +1.53), while only a few action choices were
detrimental and non-informative (D A N, 12.55%+1.53). The difference between the choice rates
on Trial Type II was less pronounced: as shown in Figure 2a, 66.01% 4 2.28 of the action choices
on Trial Type II were lucrative and non-informative (L A N), while 33.99% + 2.28 were detri-
mental and informative (D A I). Summed over informative and non-informative action choices,
the lucrative action choice rate was 76.74% = 1.7, whereas summed over lucrative and detrimen-
tal action choices, the informative action choice rate was 60.74% 4 0.92. Notably, participants
made more lucrative choices if the lucrative action was also informative (L A I, 87.45% 4+ 1.53)
compared to lucrative choices if the lucrative action was non-informative (L A N, 66.01% +2.28).
To statistically corroborate this finding, we conducted a two-sided paired sample t-test across
participants. This yielded a test statistic of #(23) = 11.55 with an associated p-value smaller
than 0.001. Taken together, these summary statistics suggest that while participants’ choices
were primarily guided by action lucrativeness, participants also took the action’s informativeness
into account when deliberating which action to choose.

In addition to the summary choice rates, we also evaluated trial-by-trial choice rates. Specif-
ically, we computed group trial-by-trial L A I, L A N, D A I, and D A N action choice rates.
To this end, for every trial we divided the number of respective actions by the number of valid
choices on the trial over participants. As a given trial belonged to one of the two trial types, it
either had associated L A T and D A N action choice rates, or associated L A N and D A I action
choice rates. Consequently, in accordance with the summary action choice rates, the choice rates
of each trial were symmetrical. For example, by design the first trial of the first run was of Type
I for every participant. If on this trial 18 participants chose the L. A T action, 5 chose the D A N
action, and 1 participant missed to make a valid choice, the L A I action choice rate for this trial
evaluated to 18/23 and the D A N action choice rate evaluated to 5/23. Finally, for each trial
between two reversals, we computed the average reversal-locked group trial-by-trial L A I action
and L A N action choice rates. Note that because the trial sequence was pseudo-randomized,
the average reversal-locked group choice rate of a particular trial was computed based on dif-
ferent number of data points. For example, of the eight first trials, three were of Type I and
had an associated group trial-by-trial L. A I action choice rate, while five were of Type II and
had an associated group trial-by-trial L. A N action choice rate. Also note that as the number
of trials between two reversals varied, there were fewer than eight 18th to 23rd trials. As show
in Figure 2b, on the majority of trials, the two lucrative trial-by-trial action choice rates L A
I and L A N prevailed over the two detrimental trial-by-trial action choice rates D A T and D
A N. This effect was more pronounced for the trial-by-trial L. A I action choice rate. Notably,
as shown in Figure 2¢, both the average L A T action choice rate as well as the average L. A N
action choice rate exhibit an overall increase between two reward rate reversals, indicating that
participants were able to gradually resolve their uncertainty about the currently lucrative shape.
Moreover, as shown in Figure 2d, although the average L. A I action choice rate was larger than
the average L A N action choice rate on virtually all trials between two reversals, their difference
decreased slightly between the first trial after and the last trial before a reward rate reversal.
This suggests that with decreasing uncertainty about the currently lucrative shape participants
placed less valence on the actions’ informativeness.
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Figure 2. Participant choice rates. a Average choice rates across participants and task dynamics for Trial
Type I and Trial Type II. On Trial Type I, participants faced a choice between a lucrative and informative (L A
I) and a detrimental and non-informative (D A N) action. On average, participants preferred the L A I action.
On Trial Type II, participants faced a choice between a lucrative and non-informative (L A N) and a detrimental
and informative (D A I) action. On average, participants preferred the L A N action, but to a lesser degree than
the L A T action on Trial Type I. b Group trial-by-trial L AL, D A N, L A N, and D A T action choice rates. The
vertical lines represent the last trial before a reward rate reversal. The vertical lines at ¢ = 80 and ¢t = 160 mark
the end of the first and second run, respectively. Note that given the experimental design, the action choice rates
on Trial Type I (L AT vs. D A N) and on Trial Type II (L A N vs. D A I) are complementary and add up to
100%. On the majority of trials the lucrative action choice rates L A T and L A N prevail over the detrimental
action choice rates D A I and D A N. This effect is more pronounced for the L A I choice rate than for the L
A N choice rate. ¢ Average reversal-locked group trial-by-trial action choice rates for L A I and L A N actions.
Both action choice rates increase over post-reversal trials. The error bars depict the SEM over reversal blocks. d
Average group reversal-locked L A I and L A N choice rate difference. The difference decreased between the first
trials after and the last trials before a reversal. For implementational details, please see figure 2.m.
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Agent-based behavioral modeling

To arbitrate between different trial-by-trial decision-making strategies that participants may
have used on the experimental task and that gave rise to the descriptive results documented
above, we used an agent-based behavioral modeling approach. In our documentation of this
approach, we proceed as follows. In the Model formulation section, we first formulate the relevant
model components, comprising a task model, a set of agent models, and a set of data analysis
models. Here, the task model corresponds to a probabilistic model that captures key aspects of
the experiment and serves to explicate the agents’ knowledge about their choice environment.
The agent models specify the dynamic subjective representation of the task (e.g., trial-by-trial
belief state updates for some agent models) and several decision-making processes based on
these representations. Finally, the data analysis models specify the embedding of the agent
models in a statistical observation framework, allowing for the quantification of decision noise
and the estimation of the models’ parameters and evidence. Having formulated our modeling
approach, we then document the computational methods for model parameter estimation and
model evidence evaluation in the Model estimation and comparison section. Finally, we report
the results of a number of model validation analyses (Model and parameter recovery analyses) and
conclude with the evaluation of the agent-based behavioral models in the light of the experimental
data (Model comparison results).

Model formulation
Task model

To render the task amenable to agent-based behavioral modeling, we first formulated a model
of the task using concepts from the theory of partially observable Markov decision processes
(Bertsekas, 2000). Specifically, we represent an experimental run by the tuple

MTask = (Ta Sv Aa R707p8%’at (rt) 7f7 g) . (1)

Here,

e T denotes the number of trials, indexed by t =1, ...,7T.

e 5 :=Njs x Ny denotes the set of states s := (51, 52). The first state component s encodes the
lucrative shape. Specifically, on trial ¢, s} takes on the value 1 if the square is lucrative and
takes on the value 2 if the triangle is lucrative. From the perspective of the agent, s' is not
directly observable. The second state component s encodes the available actions. Specifically,
on trial ¢, s? takes on the value 1, if the agent can choose between the square on the informative
side or the triangle on the non-informative side. If on trial ¢ the agent can choose between
the square on the non-informative side or the triangle on the informative side, s? takes on the
value 2. From the perspective of the agent, s? is directly observable.

e A:={A;, Ay} denotes the set of state-dependent action sets. Specifically, depending on the
observable state component s7 on a given trial ¢ the available actions are either A; := {1,4}
or Ay := {2,3} for s? = 1 or s7 = 2, respectively. If the available action set is A;, then the
agent can choose between a = 1, which corresponds to choosing the square on the informative
side vs. a = 4, which corresponds to choosing the triangle on the non-informative side. If
the available action set is As, then the agent can choose between a = 2, which corresponds to
choosing the square on the non-informative side vs. a = 3, which corresponds to choosing the
triangle on the informative side.
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State- and action-dependent reward distribution

st 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
a 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
T -1 41 -1 +1 -1 +1 -1 41 -1 +1 -1 +1 -1 41 -1 +1

psi’“f (r¢) | 0.15 0.85 0.15 0.85 0.85 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.15 0.85 0.15 0.85

Observation function
at 1 1 2 2 3 3 4 4
Tt -1 41 -1 41 -1 +1 -1 +1
glat, ) 1 2 3 3 1 2 3 3

State-state transition distribution

st 1 1 2 2
Ste1 1 2 1 2
p(sipalst)| 0.9625 0.0375 0.0375 0.9625

Table 1. Model components. The upper table shows the state- and action-dependent reward distribution
1

p°t?t (r), the middle table shows the observation function g and the lower table shows the action-independent

state-state transition distribution p (stl+1|st1)

e R:={—1,41} denotes the set of rewards r.

e O := Nj denotes the set of observations o. o = 1 encodes the image of the crossed-out
moneybag, o = 2 encodes the image of the moneybag, and o = 3 encodes the image of the
question mark moneybag.

o psiiat (r¢) is the state- and action-dependent reward distribution. For each combination of
sl € ST and a € Ag, the state- and action-dependent reward distribution conforms to a
discrete categorical distribution over r; with probability parameters listed in the first panel
of Table 1. As an example, consider s! = 1 (square is lucrative) and @ = 1 (square on the
informative side chosen). In this case, a reward of -1 is returned with a probability of 0.15 and
a reward of +1 is returned with a probability of 0.85. On the other hand, if s' = 2 (triangle
is lucrative) and @ = 1 (square on the informative side chosen), the reward probabilities are
reversed.

e f is the state evolution function, which specifies the value the state s; takes on at trial ¢,
f:Np = St f(t) = st (2)

f is defined in a tabular form and corresponds to the sequence of lucrative shapes and choice
options presented to all participants (cf. Section 5.3: Experimental state sequence).

e g is the observation function
g:AxR— O,(a,r)— gla,r):=0 (3)

as defined in the second panel of Table 1. For the informative actions a = 1 and a = 3, ¢
is injective: The reward » = —1 is mapped onto the observation o = 1, corresponding to the
image of the crossed-out moneybag, while the reward r = +1 is mapped onto the observation
o = 2, corresponding to the image of the moneybag. For the non-informative actions a = 2 and
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a = 4, g is not injective: both rewards r = —1 and r = +1 are mapped onto the observation
o = 3, corresponding to the image of the question mark moneybag.

Agent models

We designed five agent models, denoted by C1, C2, A1, A2, and A3, to account for the putative
cognitive processes underlying participants’ choices (cf. Table 2). Before we introduce the
individual characteristics of these agents, we first represent the general structure of an agent
interacting with an experimental run. This general agent structure corresponds to the tuple

MAgent = (T7 Sa Aa R7O7p (S%) vy (Sz}+1|8%) ’pat (Tt|st1) 7pat (Ot|5%)) : (4)
Here,
e T S, A, R and O are defined as the corresponding sets of the task model Magk.

L) (3%) denotes the initial agent belief state, which specifies the agent’s subjective uncertainty
over the non-observable state component si at trial ¢ = 1. p(s{) is defined in terms of the
discrete categorical distribution

p(s] = 1) = 0.5 and p(s] = 2) = 0.5. (5)

Because p(si) is fully parameterized by specifying p

st = 1), we hereinafter occasionally
represent the initial belief state by the scalar by := p(s; =

1).

*p (stl +1|st1) is the state-state transition distribution, which specifies the agent’s subjective un-
certainty over the non-observable state component s} 1 at trial £+ 1 given the non-observable
state component s' at trial ¢. More specifically, for each s' € S, the state-state transition
distribution corresponds to a discrete categorical distribution over s% 1 with probability pa-
rameters listed in the third panel of Table 1. Note that the trial-by-trial state transitions
are probabilistic, because from the agent’s perspective a reversal in the shapes’ lucrativeness
could happen between any two trials. This is in contrast with the state evolution from the task
perspective, which - given the apriori defined sequence of lucrative shapes - is deterministic
(cf. eq. (2)). Crucially, participants were informed that a reversal would happen 1-4 times
in a run, but were not informed about the approximate number of trials without a reversal.
Therefore, we equipped the agent with a constant reversal probability of 0.0375, which reflects
the true reversal frequency in a run (there were 3 reversals across the 80 trials). For example,
if s} =1 (square is lucrative), the agent allocates a probability of 0.9625 to the event that on
the next trial s} 41 takes on the value 1 (square is lucrative), while it allocates a probability of
0.0375 to the event that stl+1 takes on the value 2 (triangle is lucrative).

(
1
1

o p¥t (rt|s%) is the action-dependent state-conditional reward distribution, which specifies the
agent’s subjective uncertainty over the reward r; given the non-observable state component s
and action a at trial t. More specifically, for each combination of s! € S! and a € A, the
action-dependent state-conditional reward distribution defines a discrete categorical distribu-
tion over r; with probability parameters corresponding to

P (= rlst = 5) = p T (e = ). (6)

Notice that the only difference between the agent’s action-dependent state-conditional reward
distribution and the task’s state- and action-dependent reward distribution is that for the
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former, the state is conceived as a random variable, while for the latter the state is conceived
as a parameter. We equipped the agent with the true reward emission probabilities to reflect
the task instructions. In particular, participants were truthfully informed that choosing the
lucrative shape would return a reward of +1 with a high probability and a reward of -1 with
a low probability, as well as that choosing the detrimental shape would return a reward of +1
with a low probability and a reward of -1 with a high probability.

o p™ (0t|s%) is the action-dependent state-conditional observation distribution, which specifies
the agent’s subjective uncertainty over the observation o; given the non-observable state com-
ponent s' and action a at trial t. In detail, for each combination of s' € S! and a € Az, the
action-dependent state-conditional observation distribution corresponds to a discrete categor-
ical distribution over o; with probability parameters resulting from transforming the distribu-
tion of r; by the observation function g. Formally,

P o =olsy =st) = Y p T (re=rlsi =s'). (7)
{rlg(a,r)=o}

For the informative actions a € {1,3}, it thus follows that
= (op = 1]sp = s') = p»=% (r, = —1|s{ = s') (8)

and
p =" (01 = 2|sf = s') = p™= (ri = +1]sf = 5') . (9)

For the non-informative actions a € {2,4}, on the other hand, it follows that
U= (o = 3|sp = s') = p™= (ry = —1|s} = s') + p*= (r, = 1|5} = s') = 1. (10)

As an example, consider the case s! = 1 (square is lucrative) and a = 1 (square on the
informative side chosen). The agent allocates the same probabilities to observing either the
image of the crossed-out moneybag or the image of the moneybag as to obtaining a reward of
-1 or +1, respectively. Alternatively, consider the case s' = 1 (square is lucrative) and a = 4
(triangle on the non-informative side chosen). In this case, the agent allocates a probability
of 1 to observing the image of the question mark moneybag.

Based on the general agent structure encoded in the tuple Magens, we next discuss our model
space of interest, which comprises two control agents, denoted by C1 and C2, and three Bayesian
agents, denoted by Al, A2, and A3.

Control agents C1 and C2 The control agents C1 and C2 rely on heuristic choice strategies.
Because C1 and C2 do not represent a belief state, their action valence function is a function of
action only,

v:A—=Ra—wv(a). (11)

To realize an action on trial ¢, both agents use a probabilistic decision rule. Specifically, C1 and
C2 directly translate the action valences into action and observation history-dependent choice
probabilities.

C1: A belief state-free random choice agent Agent Cl may be considered a cognitive
null model. It does not have an optimization aim based on which it could differentiate between
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actions, but merely allocates equal valences to all available actions a € A2,

1
v (a) == A = 0.5. (12)

C2: A belief state-free win-stay-lose-switch agent Agent C2 aims to maximize immediate
rewards without relying on a belief state. To this end, C2 adopts a heuristic win-stay-lose-switch
strategy (Robbins, 1952). Specifically, on each trial ¢, agent C2 determines its preferred choice
based on previous reward signaling observations, but does not take action informativeness (i.e.,
shape laterality) into account. Formally, on trial ¢ = 1, the action valence function of agent C2
is defined as

vy (@) := 0.5 for all a € Ag. (13)
Subsequently, on trials t = 2,3, ..., T agent C2 allocates action valences according to

0, ifop1=1landa€ A_1oro—1=2anda¢ A1,
vho (a) == {1, ifo_1=2anda€ A_1oro—1=1and a¢ A1, (14)
vt (a), if oo =3,

where A denotes the set of actions of choosing a given shape and thus A := {1, 2} for the actions
choose square and A := {3,4} for the actions choose triangle.

Informally, agent C2 allocates equal initial action valences to all actions, because on trial
t = 1 no previous observations are available and therefore the agent has no basis for differenti-
ating between actions. Subsequently, on trials ¢t = 2,3, ...,T, agent C2 allocates action valences
depending on the observation on trial t — 1. Specifically, if on trial £ — 1 the choice of a shape
resulted in the observation o = 1, i.e., the image of the crossed-out moneybag, then agent C2
allocates an action valence of 0 to choosing the same shape and an action valence of 1 to choos-
ing the other shape on trial ¢. In contrast, if on trial ¢ — 1 the choice of a shape resulted in the
observation o = 2, i.e., the image of the moneybag, then agent C2 allocates an action valence of
1 to choosing the same shape and an action valence of 0 to choosing the other shape on trial ¢.
Crucially, if on trial ¢ — 1 the choice of a shape resulted in the observation o = 3, i.e., the image
of the question mark moneybag, the value of the returned reward is not signaled to the agent.
In this case, agent C2 relies on its action valence allocation scheme from trial ¢ — 1: The action
valences that agent C2 allocates to choosing a given shape on trial ¢ correspond to the valences
the agent allocated to choosing that shape on trial ¢ — 1.

Bayesian agents (Al, A2 and A3) The Bayesian agents maintain a belief state which
subserves their action choice. Specifically, the distributions p (s%), P (3% +1|5%) and p% (0t|s,}) of
M pgent induce a trial-by-trial action-dependent joint probability distribution p®:t-1 (s%:t, 01:t—1)-
This allows for the recursive evaluation of the belief state p®tt-1 (s%|01:t,1) on trial ¢ given the
history of observations 01.;—1 and actions a;.;—1 by means of

1141 - 1 -2 (gl
Pt (sblonet) — D1 P (silsi—1) Pt (or—1lsi_y) p™=2 (si_y[on:e—2) L as)
Dot 2s P (stlst_q) P21 (0r—1]st_y) pt=2 (si_y]01:4-2)

for t = 1,...,T, and where the prior belief state is given by p (s%) for ¢ = 1. For the derivation
of eq. (15), please see Section S.4: Belief state, posterior predictive distribution, and KL-
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divergence. Intuitively, the Bayesian agents update their belief state in a trial-by-trial fashion
based on the observation made after choosing a shape on either side and by accounting for a
reversal in the shapes’ lucrativeness. Note that on an implementational level, we represent the
distributions p (s%), D (S%H\s%) and p% (ot]s%) by stochastic matrices and evaluate the belief
state using matrix multiplication as detailed in Section S.5: Belief state and posterior predictive
distribution implementation.

Based on their belief state representation, the Bayesian agents then decide for an action based
on a combination of an action valence function, which evaluates the desirability of a given action
in the light of the agent’s current belief state, and a decision function, which selects the maximal
desirable action as the action to issue. Specifically, the scalar representation of the belief state

by = p*it-t (8% = 1!01;t—1) (16)
constitutes the basis for action evaluation by means of an action valence function
v:AxI[0,1 = R, (a,b) — v (a,b). (17)

As detailed below, the exact forms of the valence function differ between agents Al, A2, and
A3. However, to realize an action, all Bayesian agents pass the evaluated action valences on to
a maximizing decision rule of the form

d:Rx[0,1] = Ag,v(-,b) = d(v(-,b)) := argmaxv(a,b). (18)

acA o

On every trial, the Bayesian agents thus choose the action with the highest valence.

A1l: A belief state-based exploitative agent Agent Al uses its belief state to maximize
the immediate reward gain. To this end, agent A1 uses an action valence function that allocates
to action a; = a an action valence based on the action-dependent expected reward under the
current belief state by = b according to

va1 (a,b) = b]Epa(rds%:l) (r¢) + (1 —b) Epa(mst1=2) (re) . (19)

The upper and lower panels of Figure 3a visualize the A1l valences for actions a € Ay (choose
square on the informative side or triangle on the non-informative side) and a € Ay (choose square
on the non-informative side or triangle on the informative side), respectively, as functions of the
belief state b. Note that the expected reward is

Ep“(nlSt) (ry) =085-—-140.15-1=-0.7 (20)
for choosing the detrimental shape and

Epa(ryfs) (1) = 0.85 -1 +0.15- —1 = 0.7 (21)

for choosing the lucrative shape. Consequently, the more certain A1 becomes that a given shape
is lucrative (as b gets closer to 0 or 1 from 0.5) the higher the belief state-weighted expected
reward for choosing that shape and, accordingly, the lower the belief state-weighted expected
reward for choosing the other shape. As the belief state-weighted expected reward is irrespective
of the side of the shape, in the case of both sets of available actions, agent A1 allocates valences
without taking the actions’ informativeness into account.
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A2: A belief state-based explorative agent Agent A2 explores its belief state to maximize
the immediate information gain. To this end, on trial ¢ agent A2 allocates a valence to each
available action a; = a based on its expected Bayesian surprise

va2 (a,b) := Zpalit_l’at:a (ot|or:4—1) KL (p™*=1*=% (51,1 |o1:4—1, 0r) [ (stlore—1)) . (22)

O¢

The first term in eq. (22),
pit=1.0 (Ot‘olzt—l) = bp® (Ot‘S% = 1) + (1 — b)pa (Ot‘S% = 2) (23)

denotes the agent’s belief state-dependent posterior predictive distribution, which specifies the
agent’s subjective uncertainty over the observation o; given action a on trial ¢ and its history
of observations o01.4—1 and actions aj4—1. For a derivation of the right-hand side of eq. (23),
please see Section S.4: Belief state, posterior predictive distribution, and KL-divergence and
for implementational details regarding its evaluation, please see Section S.5: Belief state and
posterior predictive distribution implementation. The second term in eq. (22),

1—bp%e pa:©
KL (pa”*“at:a (S%H\ol;t_l,ot)Hpa“*l (s%|01:t_1)) =(1-0"")In ( - ) +6*°1n ( 5 ) (24)

denotes the Kullback-Leibler (KL) divergence between the agent’s belief state on trial ¢ and its
virtual belief state on trial ¢+ 1 given observation o; and action a; = a on trial ¢. Intuitively, this
KL divergence quantifies the information gain afforded by choosing action a; = a and making
observation o; on trial ¢. On the right-hand side of eq. (24), b denotes the agent’s belief state
on trial ¢ (cf. eq. (19)) and b*° denotes the agent’s belief state b, resulting from action
a; = a and observation o, = o. For a derivation of the right-hand side of eq. (24), please
see Section S.4: Belief state, posterior predictive distribution, and KL-divergence. In summary,
va2 (a,b) quantifies the agent’s weighted expected information gain afforded by choosing a; = a
given its current belief state by = b, where the expectation is formed with regards to the possible
observations o; on trial ¢t and the weighting is determined by the agent’s current estimate of
observing a specific observation o; = o.

The upper and lower panels of Figure 3b visualize the A2 valences for actions a € A; (choose
square on the informative side or triangle on the non-informative side) and a € As (choose
square on the non-informative side or triangle on the informative side), respectively, as functions
of the belief state b. Choosing the shape on the non-informative side does not deliver reward
information. Therefore, the expected Bayesian surprise-based A2 valence is always higher for
the informative action, irrespective of the agent’s belief state. Yet, the difference between the
informative and non-informative action valences depends on the belief state. Specifically, in
contrast to agent A1, the more uncertain agent A2 becomes about the lucrative shape (as b gets
closer to 0.5 from 1 or 0), the larger the difference between the valences and thus the stronger
the agent’s preference for the informative action.

A3: A belief state-based explorative-exploitative hybrid agent Agent A3 combines the
choice strategies of agents A1l and A2 and uses its belief state to maximize the combination of
immediate reward gain and information gain. Formally, on each trial ¢ and for each available
action a; = a € A,2, agent A3 evaluates its action valences based on the convex combination of
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Agent | Choice strategy

C1 Belief state-free random choice

C2 Belief state-free win-stay-lose-switch

Al Belief state-based exploitation

A2 Belief state-based exploration

A3 Belief state-based exploration-exploitation hybrid

Table 2. Agent model space. Agent model denominations (left column) and keywords highlighting central
aspects of the respective agent’s choice strategy (right column).

the action valences of agents A1l and A2,
vas(a,b) := Avai(a, b) + (1 — A vas(a,b), (25)

where A € [0, 1] is the weighting parameter. The upper and lower panels of Figures Figure 3¢ and
Figure 3d visualize valences of agent A3 for actions a € A; (choose square on the informative
side or triangle on the non-informative side) and a € Ay (choose square on the non-informative
side or triangle on the informative side), respectively, as functions of the belief state b for weight
parameter values of A = 0.5 and A = 0.25, respectively. For A = 1, the action valences of agent
A3 correspond to the action valences of Al, while for A = 0 the action valences of agent A3
correspond to the action valences of agent A2. For weighting parameter values A €]0, 1], the
decision strategy of agent A3 results from a mixture of the strategies of agents Al and A2: For
non-extreme belief state values, i.e., b values close to 0.5, agent A3 allocates a higher valence
to choosing the shape on the informative side, even if the agent allocates a lower probability
to that shape being lucrative. This shows the contribution of agent A2’s choice strategy. For
more extreme belief state values, i.e., b values close to 0 or 1, agent A3 allocates a higher valence
to choosing the shape with the higher probability to be lucrative, even if the action is non-
informative. This shows the contribution of agent A1l’s choice strategy. Note, however, that a
A value of 0.5 should not be understood as the agent A3’s choice strategy resembling respective
strategies of agents Al of A2 to equal degree. The reason for this is that agent A3 applies a
convex combination of the A1 and A2 action valences, which take values in different ranges (-0.7
to 0.7 for A1, 0 to 0.23 for A2). Therefore, while for A\ = 0.5 the action valences of agent A3
primarily reflect the contribution of agent Al (cf. Figure 3c), the contribution of the action
valences of agent A2 becomes evident for A = 0.25 (cf. Figure 3d).

Data analysis models

To evaluate the agent models in light of the participants’ data, we embedded the agent models
in a statistical inference framework. In particular, for agent models C2, Al, A2, and A3 we
formulated behavioral data analysis models by nesting the agent-specific action valence functions
in a softmax operation (Reverdy & Leonard, 2015). To this end, we defined the probability of
action a given the history of actions ai.+—1 and observations 01.;_1 as

exp (7_7111((17 ))

p(at - a‘alit—laollt—l) = Z~ A eXp (7'*11}(& ))’ (26)
acA 2 ’
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Figure 3. Bayesian agents’ action valence functions. a Action valence functions of agent Al for the
available action set A; := {1,4} (upper panel) and the available action set Ay := {2,3} (lower panel). Agent Al
allocates action valences based on the belief state-weighted expected reward. As the expected rewards for choosing
the lucrative or detrimental shape are constant, the more extreme the agent’s belief that a given shape is lucrative
the higher the valence it allocates to choosing the corresponding shape and the lower the valence it allocates
to choosing the other shape. The valences of A1 do not depend on the actions’ informativeness, which reverses
between available action sets A; and As and therefore the two panels are identical. b Action valence functions
of agent A2 for the available action set A; := {1,4} (upper panel) and the available action set A; := {2,3}
(lower panel). Agent A2 allocates action valences based on the expected Bayesian surprise, which is higher for
the informative action than for the non-informative action, thus the graphs on the upper and lower panels flip.
The higher the agent’s uncertainty about the lucrative shape, the larger the benefit of the informative action. c,
d Action valence functions of agent A3 for the available action set A; := {1,4} (upper panel) and the available
action set Az := {2,3} (lower panel) for A = 0.5 (c) and A = 0.25. Agent A3 allocates action valences based
on the convex combination Al and A2 action valences. The higher the value of A the more the valences of A3
resemble the valences of Al and correspondingly, the lower the value of A the more the valences of A3 resemble
the valences of A2. Note that the colors used for the graphical depiction of the agents’ action valence functions
correspond to the agent model color scheme used for model recovery and model comparison in all Figures below.
For implementational details, please see figure_3.m.

where for each agent, v(a, ) corresponds to the agent-specific action valence function. Here, the
parameter 7 € Ry encodes the level of post-decision noise: The lower the value of 7, the higher
the probability that the action with the higher action valence is realized and thus the lower the
post-decision noise. Notably, as agent C1 allocates equal action valences throughout, for any 7
value the softmax operation returns a uniform probability distribution. Therefore, for this agent
a softmax operation is not required, and we defined the respective data analysis model as

p (Cbt = G|G1:t717 01:t71) = P(at = a|al:t71) = Uc1 (a) . (27)
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Model estimation and comparison

To estimate the parameters of the data analysis models for agents C2, A1, A2, and A3, we used
a maximum likelihood (ML) approach. Specifically, we assumed conditionally independently
distributed actions and for each participant’s data defined the conditional log likelihood function
as

N N
0:0 >R 0~ L0):=In H 2% (anlarm—1,01m-1) = Z Inp? (anlatin—1,01:n-1)- (28)
n=1 n=1

For agents C2, Al, and A2, the conditional log likelihood function is a function of the softmax
operation parameter 7 only. Thus, for these data analysis models 6 := 7. For agent A3, the
conditional log likelihood function is a function of 7 and the action valence weighting parameter
A €[0,1] (cf. eq. (25)). Thus, for this data analysis model 0 := (7, A). Note that in eq. (28) we
index trials by n = 1, ..., N rather than by ¢ = 1, ..., 2T to account for the fact that participant’s
occasionally failed to respond, resulting in invalid choice trials. n hence indexes a participant’s
nth valid choice trial and NV denotes a participant’s total number of valid choice trials.

For every data analysis model, we estimated 6 based on single participant data sets by min-
imizing the respective negative conditional log likelihood function using Matlab’s constrained
nonlinear optimization function fmincon.m (Byrd et al.; 1999, 2000; Waltz et al.; 2006). The pa-
rameter constraints were set to 7 € [0.01,2.5] and to A € [0,1]. To mitigate the risk of identifying
local maximizers rather than global maximizers of the conditional log likelihood function, the
initial parameter estimate values were sampled from a continuous uniform distribution covering
the constrained parameter space, the parameter estimation procedure was repeated ten times,
and only the parameter estimates achieving the highest conditional log likelihood function value
were regarded as ML estimates (Wilson & Collins, 2019). Note that the conditional log likelihood
function of agent model C1 does not require any parameter optimization and can be evaluated
directly.

To compare the models’ relative plausibilities given the participant’s data, we first evaluated
all agent model- and participant-specific Bayesian Information Criterion scores according to
(Schwarz et al., 1978)

BIC := £() — g In N. (29)

Here, 0 denotes the ML parameter estimate, k denotes the respective model’s number of to be
estimated parameters, and IV denotes the respective participant’s total number of valid choices.
The BIC scores of all agents and participants were then subjected to a random-effects Bayesian
model selection procedure as implemented in spm_ BMS.m and distributed with the SPM toolbox
for neuroimaging data analysis (www.fil.ion.ucl.ac.uk/spm/, Stephan et al. (2009); Rigoux
et al. (2014)). For each model, spm_ BMS.m returns a protected exceedance probability (PEP)
which corresponds to the group-level probability that the particular model is more likely than
the other models of the model space.

Model and parameter recovery analyses

Model recovery analyses To validate our agent-based behavioral modeling approach, we
performed a number of model recovery simulations with the aim of assessing to which degree our
analysis approach allows for reliably arbitrating between the models in our model space. To this
end, we first generated synthetic behavioral data using each of our agent-based data analysis
models C1, C2, A1, A2, and A3. The synthetic behavioral data sets comprised agent-specific
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actions on 160 trials under the experimentally employed state sequence (cf. Section 5.3) and for
agent action-dependent observations o1.o07 and rewards ri.07. For agent C1, the synthetic data
were generated without further specifications. For agents C2, Al, A2, and A3, the synthetic
data were generated using softmax operation parameter values between 7 = 0.05 and 7 = 2.5 in
steps of AT = 0.05. In addition, for agent A3, the synthetic data were generated with parameter
values A € {0.1,0.25,0.3,0.5,0.7,0.9}. For each data generating model and for each parameter
value, we generated 24 data sets (corresponding to the experimental sample size), evaluated these
data sets using all models in our model space by means of the ML estimation and BIC model
comparison approach discussed above, and repeated this procedure 10 times. Finally, as our
primary outcome measure, we evaluated the average protected exceedance probabilities across
the 10 data generation and data analysis repeats.

Figure 4 summarizes the results of the model recovery analyses. For each data generating
model, the corresponding panel depicts the protected exceedance probabilities (PEPs) of each
data evaluation model in the model space. As shown in the leftmost panel of Figure 4a, for data
generated based on the cognitive null agent C1, the PEP is maximal for the data analysis model
based on agent C1, thus indicating that agent model C1 can be reliably recovered. For the data
generating models based on agents C2; A1, A2, and A3, the PEPs are shown as functions of the
post-decision noise parameter 7 used for data generation. For data generated based on agents C2
and Al, the PEP is maximal for data analysis models based on agents C2 and Al, respectively,
for all values of 7. This indicates that agent models C2 and Al can reliably be recovered for
both low and high levels of post-decision noise. For data generated based on agent A2, the PEP
is maximal for the data analysis model based on agent A2 for 7 values up to 0.35, while the
PEP is maximal for the data analysis model based on C1, if 7 > 0.35. This indicates that agent
model A2 can be reliably recovered for low, but not for high, levels of post-decision noise. For
data generated based on agent A3 and with action valence weighting parameter set to A = 0.25,
the PEP is maximal for the data analysis model based on A3 up to a value of 7 = 0.25. For
larger values of 7, the PEP of the data analysis model based on agent Al and eventually of the
PEP of the data analysis model based on agent C1 exceed that of agent A3. This indicates that
for A = 0.25, the data analysis model based on agent A3 can be recovered reliably only for low
levels of post-decision noise. With increasing noise, the data is better accounted for by the less
complex model based on agent Al and eventually by the cognitive null model C1.

For data generated based on agent model A3, model recovery performance depends not only
on the post-decision noise parameter 7, but also on the action choice weighting parameter .
As shown in Figure 4b, for A = 0.1, A = 0.3, and A = 0.5 and for small values of 7, the PEP
is maximal for the data analysis model based on agent A3. For A = 0.1 and increasing post-
decision noise, first the data analysis based on agent A2 and next the cognitive null model C1
prevail (left-most panel). For X values of A = 0.7 and A\ = 0.9, the PEP profiles shift towards a
prevailment of the model based on agent Al, in line with the increasing similarity between the
action valences of agents A3 and agent Al for increasing values of A (cf. Figure 3c¢c-d). More
precisely, for A = 0.7 and A = 0.9 the PEP is maximal for model Al up to values of 7 = 1.9
and 7 = 2.4, respectively. For even larger values of 7, the PEP of the cognitive null model C1
prevails. Together, in line with the meaning of the action valence weighting parameter of agent
A3, these results indicate that agent model A3 is reliably recoverable for low to medium values
of A in the presence of low levels of post-decision noise. For very low values of A and low levels
of 7, model A3 cannot be distinguished from model A2, while for high levels of A, it cannot be
distinguished from model Al. Finally, for high levels of post-decision noise, the cognitive null
model C1 provides the most parsimonious data explanation for data generated by agent model
A3.
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Figure 4. Model recovery results. a Model recovery results. Each subplot pertains to a specific data
generating model (C1, C2, A1, A2, and A3) and shows the protected exceedance probabilities (PEPs) of all data
analysis models in the model space evaluated in light of data sets sampled from the respective data generating
model. For data generated based on the cognitive null model C1, the PEP was maximal for C1. For data generated
based on agents C2, Al, A2, and A3, the PEPs depend on the value of the post-decision noise parameter 7.
Agents C2 and Al are recoverable up to high levels of post-decision noise. Agents A2 and A3 (for A = 0.25) are
recoverable only for low levels of post-decision noise. b Model recovery results for agent A3 for different values of
the action valence weighting parameter . Agent A3 is recoverable up to medium values of A and for low levels
of post-decision noise. For implementational details, please see figure_4.m.

Parameter recovery analyses Additionally, to assess to which degree we can reliably esti-
mate the data analysis model parameters, we performed a number of parameter recovery analyses.
Specifically, for a given data generating model and model parameter setting, we evaluated the
average ML parameter estimates and their associated standard errors of the data generating
model across the 24 synthetic data sets and the 10 data generation and data analysis repeats.

Figure 5 summarizes the parameter recovery analyses results. Each panel of Figure 5 depicts
model-specific ML parameter estimates as functions of the post-decision noise parameter 7.
Specifically, Figure ba depicts the parameter estimate 7 as a function of the respective data
generating parameter values 7 under the data generating and data analysis models C2, A1, A2,
and A3 with A = 0.25. In general, the parameter estimates are consistent with their respective
data generating parameters for small values of 7. For larger values of 7, the true parameter
values are first over- and then underestimated. As shown in Figure Figure 5a, this bias is subtle
for agents C2 and Al and only appears for relatively large 7 values above 7 = 1.5. For agents
A2 and A3 the bias is more pronounced and affects medium to large values above 7 = 0.5.
These results are consistent with the model recovery results: For large post-decision noise, data
generated by any model starts to resemble data generated by a purely random choice strategy
and thus the parameter estimate for 7 reaches an asymptote.

The panels of Figure 5b show the parameter estimates 7 and A of agent model A3 as a
function of 7 for A = 0.1, A = 0.5, A = 0.7, and A = 0.9, respectively. As above, the parameter
estimates 7 show a pattern of consistent estimation for values up to 7 = 1, upon which they
exhibit a downward bias. The parameter X is reliably recovered for small values of 7, except for
a slight downward bias for A = 0.9. However, for medium to large 7 values, A is more strongly
downward biased. These findings are consistent with the model recovery analyses results: First,
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Figure 5. Parameter recovery results. a Parameter recovery results for all agents with free parameters. For
every agent, the corresponding panel shows the ML parameter estimates as functions of the post-decision noise
parameter 7 used for data generation. The post-decision noise parameter of agents C2 and Al is recoverable from
small to medium values. The post-decision noise parameter of agents A2 and A3 with A = 0.25 is recoverable for
small values. b Parameter recovery results for agent A3 with different A values. The parameter 7 is recoverable
for 7 values up to 7 = 1, upon which it exhibits a downward bias. The parameter A is recoverable for small
7 values, except for a slight downward bias for A = 0.9. For medium to large values of the post-decision noise
parameter, A is downward biased. For implementational details, please see figure_ 5.m.

the deflation effect for A = 0.9 and small values of 7 shows that for large values of A, data
generated by agent A3 is virtually indistinguishable from data generated by agent Al and thus A
reaches an asymptote. Second, the bias of A for medium to large values of 7 reiterates that with
increasing post-decision noise, data generated by agent A3 increasingly resembles data generated
by a random choice strategy, such that A cannot be reliably identified.

Model comparison results

Upon validating our modeling initiative, we evaluated and compared our agent-based model
set in light of the participants’ data. For 18 of the 24 participant data sets, the BIC score
was maximal for the model based on agent A3. Accordingly, as shown in Figure 6a, the group
cumulative BIC score was maximal for model A3 and the group-level PEP of model A3 was
larger than 0.99. The ML parameter estimates 7 and A for model A3 varied moderately across
participants. Specifically, 7 ranged from 0.035 to 0.377 with an average of 0.124 + 0.014 and
A ranged from 0.044 to 0.622 with an average of 0.274 4 0.027. Notably, these are parameter
ranges, in which A3 is well recoverable and identifiable. Taken together, these findings indicate
that agent model A3 provides the most plausible explanation of the participant’s choices among
the set of behavioral models assessed and that the most frequently applied choice strategy among
the group of participants resembled that of agent A3 most.
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Post-hoc model validation Upon identifying agent A3 as the most plausible model to ex-
plain our observed experimental data based on the formal criteria discussed above, we further
investigated the behavioral face validity and the participant parameter estimate-based identifi-
ability of this model. To this end, we first generated 24 synthetic data sets based on agent A3
using the 24 participant-specific ML, parameter estimates. As in the model recovery analysis,
the synthetic data conformed to the agent’s actions on 160 trials, with trial sequence identical
to the participants’ trial sequence and with agent action-dependent observations. To assess the
model’s behavioral face validity, we then subjected these 24 data sets to the descriptive analyses
described above and computed the same action choice rates as for the participants’ data. To
minimize random variation, we repeated this process 100 times and for each action choice rate
evaluated the average over the 100 simulations. Similarly, we subjected the simulated data sets
to our model estimation and comparison procedures and evaluated the average model and param-
eter recoverability performance as discussed above. We next evaluated the same summary and
trial-by-trial choice rates as for the participants’ data. Consistent with the empirically observed
results, most synthetic action choices were lucrative and informative (L A T, 84.98% =+ 1.29), fol-
lowed by significantly fewer lucrative and non-informative synthetic actions (L A N66.35% =+ 1.96,
two-sided paired sample t-test, ¢(23) = 11.59,p < 0.001). Furthermore, as shown in Figure 6b
the reward reversal-locked trial-by-trial dynamics of the synthetic actions exhibited a very similar
pattern to that of the participants (cf. Figure 2¢,d). Specifically, while both the average L A T as
well as the average L A N action choice rates increased between two reversals (left panel), their
difference decreased moderately between the first trial after and the last trial before a reward
rate reversal (right panel). Taken together, these results support the behavioral validity of the
A3 model. At last, we conducted model and parameter recovery analyses for model A3 based
on the parameter estimates for the 24 participant data sets. As already implied by the results
of the full parameter space recovery analyses reported above, these analyses confirmed that also
for the range of empirically estimated parameter values, both the model and its parameters are
reliably recoverable (Figure 6¢ and Figure 6d).
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Figure 6. Computational modeling results. a Model comparison results. Both the group cumulative
Bayesian information criterion scores (cumulative BIC, left panel) and the protected exceedance probabilities
(right panel) were maximal for the agent model A3, indicating that this model explained participants’ choice
data the best. b Model A3 behavioral validation. Average reversal-locked group trial-by-trial L A I action and
L A N action choice rates (left panel) and their difference (right panel) based on synthetic data sets generated
using agent A3 and the participants’ parameter estimates. The patterns closely resemble those observed in the
participants’ data (cf. Figures 3c, 3d), re-visualized here for convenience. ¢ Model A3 recovery based on the
participants’ data parameter estimates. The protected exceedance probability based on re-analysis of simulated
data from agent model A3 with parameters set to the participants’ parameter estimates is maximal for agent
model A3. d Parameter recovery results based on data generated with agent model A3 and the participants’ data-
based parameter estimates. The panels depict the simulation-averaged participant-specific recovered parameter
estimates 7 and A, and their associated SEMs over simulations as a function of the participant-specific parameter
estimates 7 and \. Both the participants’ post-decision noise parameter estimates 7 as well as the participants’
weighting parameter estimates X\ are recoverable. For implementational details, please see figure 6.m.
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Discussion

In this work, we addressed the question of how humans make sequential decisions if all avail-
able actions bear economic consequences, but only some also deliver choice-relevant information.
By collecting human choice data on an information-selective symmetric reversal bandit task, we
demonstrated that in such situations, humans strive for a balance of exploratory and exploitative
choice strategies. To arrive at this conclusion, we applied a set of descriptive and agent-based
computational modeling analyses, including model evaluation based on formal as well as infor-
mal criteria. Given our model set, the behaviorally most plausible strategy was captured by a
Bayesian agent that assessed the desirability of an action by applying a convex combination of
its expected Bayesian surprise and its expected reward. A series of recovery analyses validated
our modeling initiative and supports the robustness and reliability of our results. In sum, the key
contributions of this work are threefold: We designed an information-selective symmetric reversal
bandit task, we formulated, implemented, and validated a set of agent-based behavioral models
that interact with this task, and we provide empirical evidence for human uncertainty-guided
exploration-exploitation choice strategies. In the following, we discuss each of these contributions
in turn.

As the first of our contributions, we introduced an information-selective symmetric reversal
bandit task suitable to model a class of sequential decision-making problems, in which information
about the conferred reward is not available for every action. In the following, we briefly discuss
the key aspects of our task with respect to other tasks in the literature. As alluded to in the
Introduction, previous research primarily employed either classical bandit paradigms or pure-
exploration paradigms to study sequential decision making under uncertainty (Bubeck et al.,
2009; Hertwig & Erev, 2009; Ostwald et al., 2015; Sutton & Barto, 2018; Wulff et al., 2018). We
consider these paradigms in turn.

In the classical bandit paradigm, the deciding agent chooses between a set of arms’ (Berry &
Fristedt, 1985). Similar to our task, each arm confers reward according to its associated reward
distribution, and, in contrast to our task, each arm confers also information about its expected
reward value. A drawback of this design is that the co-occurrence of reward and information
evokes a confound between an action’s value estimate and the associated uncertainty: as people
tend to favor the action with the higher value estimate, for that action the associated uncertainty
becomes smaller - simply because for that action more reward observations are made. This
makes it difficult to uncover uncertainty-guided exploration in the classical bandit paradigm
(Dezza et al., 2017; Gershman, 2018; Wilson et al., 2014). The task employed in the current
study circumvents this problem by adopting a symmetrical reward structure of the actions: the
probability of the positive reward for the lucrative action is identical to the probability of the
negative reward for the detrimental action. Likewise, the probability of the negative reward
for the lucrative action is identical to the probability of the positive reward for the detrimental
action. In this manner, each reward observation following the informative action confers the same
amount of information about the expected reward value of both the lucrative and detrimental
action. Furthermore, as in each trial information is randomly coupled with either the lucrative or
the detrimental action, our task arguably evokes a more explicit exploration-exploitation dilemma
than the classical bandit paradigm, in particular on trials on which participants face decisions
between potentially lucrative, but non-informative and detrimental, but informative actions.

The pure-exploration paradigm models sequential decision-making problems in which an
action either confers information or reward. In the classical variant of this paradigm, an action
that confers reward automatically terminates the task. In an extended variant, referred to as the
‘observe-or-bet task’ (Blanchard & Gershman, 2018; Navarro et al., 2016; Tversky & Edwards,
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1966), the deciding agent can freely switch between an 'observe action’ that confers information
and ’bet actions’ that confer reward. Specifically, ’observe actions’ return information about
the expected reward of the bet actions, but do not return reward. ’Bet actions’, on the other
hand, return rewards according to their associated reward distributions, but no information.
Similar to the bet actions, in our task one of the available actions confers only reward, but no
information. However, in our task, the other available action does not only confer information, as
the ’observe action’ does, but it also confers reward. Therefore, while exploration and exploitation
are temporally separated in the observer-or-bet task, they have to be balanced simultaneously
in our task.

In summary, the task proposed in the current study complements the experimental arsenal
for studying human exploration-exploitation behavior in the following sense: In contrast to the
classical bandit paradigm, the exploration-exploitation dilemma on each trial is explicit, i.e.,
participants need to actively decide whether to gather reward and/or information, and do not
obtain information as a by-product of reward-maximizing decisions as in the classical bandit
task. Further, in contrast to the pure-exploration and observe-or-bet task, exploration and
exploitation phases occur simultaneously and not separated in time. Finally, by introducing
a constant probability for the reward rate reversal of the choice options, the task does not
only evoke an explicit and simultaneous exploration-exploitation dilemma, but also one that is
ongoing. This aspect is in line with recent studies using classical bandit or observe-or-bet tasks
that also adopted non-stationary reward structures (Bartolo & Averbeck, 2020; Blanchard &
Gershman, 2018; Chakroun et al., 2020; Navarro et al., 2016; Hampton et al., 2006; Speekenbrink
& Konstantinidis, 2015) and emulates the ever-changing reward structure of real environments.

Our second contribution is the formulation and validation of a set of agent-based behavioral
models that can interact with the information-selective symmetric reversal bandit task. Specifi-
cally, our model space comprises belief state-based agents that formalize subjective uncertainty-
based exploitative, explorative and hybrid explorative-exploitative strategies, as well as belief
state-free agents that formalize random choice and heuristic win-stay-lose-switch strategies. The
belief state-based agents implement recursive belief-state updates to infer the not directly ob-
servable structure of the task environment, i.e., the most likely currently lucrative action. While
this form of optimal Bayesian learning may seem to be a strong assumption, it has been shown
to approximate human learning reasonably well in comparable switching state tasks, such as
the two-armed reversal bandit task, non-stationary versions of the observe-or-bet task, and the
multi-armed bandit task (Hampton et al., 2006; Blanchard & Gershman, 2018; Navarro et al.,
2016; Daw et al., 2006; Speekenbrink & Konstantinidis, 2015). Moreover, by also including belief
state-free agents in our model space, we also accounted for simple strategies that do not require
Bayesian update. Of these, the win-stay-lose-switch agent adopts a well established effective
strategy to approach similar bandit problems (Robbins, 1952).

The three belief state-based agents implement their respective choice strategies by following
different optimization aims. In particular, the belief state-based exploitative agent Al seeks to
maximize the belief state-weighted expected reward. The belief state-based explorative agent
A2 seeks to maximize the expected Bayesian surprise. The belief state-based hybrid explorative-
exploitative agent A3 seeks to maximize the convex combination of these two quantities. Belief
state-weighted expected reward is a natural quantity to formally capture immediate reward gain
and thus myopic exploitation (Sutton & Barto, 2018). Expected Bayesian surprise is one of
many quantities that have been proposed to formally capture immediate information gain and
thus myopic exploration (Schwartenbeck et al., 2019). As alluded to in the Introduction, we
here opted for Bayesian surprise due to its putative representation in the human neurocognitive
system (Itti & Baldi, 2009; Ostwald et al., 2012; Gijsen et al., 2020).
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Importantly, we would like to note that our definition of exploration here pertains to a form of
exploration that is generally referred to as 'directed exploration’ (Gershman, 2018, 2019; Wilson
et al.,, 2014). This term is used to distinguish information gain maximizing exploration from 'ran-
dom exploration’. Random exploration is a form of exploration that achieves information gain by
implementing a stochastic strategy, i.e. making stochastic choices based on the actions’ reward
value estimate. While there are more principled ways such as Thompson sampling (Thompson,
1933), random exploration is commonly accounted for by the softmax operation (Reverdy &
Leonard, 2015). Notably, we here do not interpret the softmax operation as random exploration.
Instead, we employ the softmax operation to embed the agents in a statistical framework that
accounts for post-decision noise. This way, we clearly separate the (deterministic) choice strate-
gies implemented by the agents and the statistical agent-based behavioral data analysis models.
In future work, we aim to broaden our model space by considering agents that adopt random
exploration. Crucially, this necessitates a probabilistic filtering framework that allows to parti-
tion the variability of choice data into components relating to an agent’s stochastic exploration
strategy and to post-decision noise (c.f. Ostwald et al., 2014).

As a third contribution, we provided evidence for human uncertainty-guided exploration-
exploitation in the information-selective symmetric reversal bandit task: As uncertainty de-
creased, participants’ choices were less influenced by the prospect of information gain and more
influenced by the prospect of reward gain. This finding is consistent with the behavior in the
observer-or-bet task. In the first empirical study using the observer-or-bet task, (Tversky &
Edwards, 1966) found that participants explored more, i.e., chose the observe action more fre-
quently, if they (falsely) believed that the underlying environment was dynamic, i.e., the lucrative
and detrimental bet actions reversed over time. While (Tversky & Edwards, 1966) did not relate
this result to the notion that dynamic environments promote uncertainty, which, in turn, pro-
motes exploration, in a recent study, (Navarro et al.; 2016) formally tested this hypothesis. By
modeling participants’ choices in both static and dynamic versions of the observer-or-bet task,
they demonstrated that switches between the exploratory observe action and the exploitative bet
actions were mediated by uncertainty. Our result is also in line with recent findings from studies
employing multi-armed bandit tasks. Work by several authors showed that when controlling for
the value estimate-uncertainty confound, behavior in static two-armed bandit tasks reflects an
uncertainty-dependent combination of exploration and exploitation (Dezza et al., 2017; Gersh-
man, 2018, 2019; Wilson et al., 2014). Notably, however, consistent with the notion that the value
estimate-uncertainty confound has the potential to mask directed exploration, findings from ear-
lier studies not accounting for this confounding effect are less conclusive. For example, (Zhang
& Angela, 2013) also found evidence for a belief state-based explorative-exploitative strategy in
static four-armed bandit tasks. In contrast, (Daw et al., 2006) did not find evidence for such a
strategy in analyzing choices in a dynamic four-armed bandit task with changing action values.
While the finding from (Daw et al., 2006) is contrary to our finding, acknowledging that value
estimate and uncertainty are not confounded in our task, these two findings can be reconciled.

At last, some limitations of our study along with some suggestions for future research must
be acknowledged. First, as for any scientific study, inferences can only be made with respect to
the model space, which per se is incomplete. Thus, although we provide evidence for a strategy
resembling a belief state-based agent seeking to maximize the convex combination of its expected
Bayesian surprise and its expected reward, it is very well possible that an agent not included
in our model space can better account for the behavioral data. Based on our experimental
documentation and the open availability of the data, future research may broaden the model
space and could also consider, for example, probabilistic variants of the win-stay-lose-switch
agents (Worthy et al.; 2012) or agents with non-adaptive learning rates (Wiering & Otterlo,
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2012; Rescorla & Wagner, 1972), besides the already mentioned random exploration agents in a
probabilistic filtering framework (Ostwald et al., 2014). Second, on a related note, we here do
not derive an optimal agent in the sense of partially observable Markov decision process theory
(Bertsekas, 2000; Puterman, 2005; Bauerle & Rieder, 2011). A model space that comprises an
agent implementing an optimal choice strategy would afford the analysis of the participants’
behavior from a normative perspective and is thus an interesting endeavor for future research.
To facilitate such an undertaking, we have provided a detailed documentation of the task and
agents developed thus far. Third, given the modest sample size of our study, the behavioral data
reported here are best capitalized on in an exploratory fashion. Together with the implemented
open research measures (Ritchie, 2020), we believe to have laid the foundations for reproducing
our study and build upon our work.

Conclusion

In conclusion, we here introduced a new behavioral task that models a subset of real-life se-
quential decision-making problems that has thus far received relatively little attention in the
computational modeling literature: problems, in which information about the conferred reward
is not available for every action. Importantly, this task allows to investigate a pronounced form
of simultaneous exploration and exploitation processes without introducing a value estimation-
uncertainty confound. By analyzing participants’ choices on this task using descriptive methods
and agent-based behavioral models, we provide evidence for an uncertainty-guided balance be-
tween exploration and exploitation in human sequential decision making under uncertainty.
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Supplementary material

S.1. Sample characteristics

To characterize the group of participants, we measured symptoms of attention deficit hyperactiv-
ity disorder (ADHD), anxiety, depression and impulsivity. To this end, we used the questionnaires
Conners Adult ADHD Rating Scale — Self Report, Short Version (CAARS-S:S; Conners et al.
(1999)), State and Trait Anxiety Inventory (STAI; Spielberger et al. (1983)), Beck Depression
Inventory II (BDI-II; Beck et al. (1996)) and UPPS-P Impulsive behavior Scale (Lynam et al.,
2006), respectively. As shown in Table S.1, the sample varied only moderately with respect to
these symptoms. For example, on CAARS-S:S, our main questionnaire of interest, participants
scored within +2 standard deviations of the mean of their age- and gender-matched norm groups
of the general population. We therefore concluded that the sample represents the healthy pop-
ulation and did not relate individual variability in terms of ADHD or other clinical symptoms
to behavioral strategies. We also report the IQ score, which was obtained by administering the
Wechsler Abbreviated Scale of Intelligence (WASI-II; Wechsler (1999)) at the time of the Nathan
Kline Institute Rockland Sample study (Nooner et al., 2012).

Measurement Range Median Mean + SD
Age (years) 18 - 35 23.5 24.5 + 5.53
WASI-II (total score) 84 - 122 101.5 102.38 £ 9.14
CAARS-S:S (total T-score) 32-65 48 47.63 £ 9.16
BDI-II (total) 0-20 4 6.67 £ 6.3
STAI STATE (total T-score) 34 - 63 43 45.6 £+ 8.52
STAI TRAIT (total T-score) 34 - 71 49.5 49.92 £+ 10.29
UPPS-P (total) 73 - 190 118.5 124.04 £ 25.66

Table S.1. Sample characteristics.
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S.2. Participant instructions

Participants were provided with the following task instructions:

Welcome to the main part of today’s experiment! In the following we will introduce to you the
decision making task that you will complete in the scanner. Please read the instructions carefully.
If you have any questions, feel free to ask at any time. Once you read the instructions, you will
complete a test run with the task to make sure you feel comfortable with it before going in the
scanner. On every trial we will present to you two objects, an orange square and a blue triangle
on either side of a black and grey screen and ask you to choose between them. One of these
objects is profitable, meaning that it is going to give you a win most of the time, while the other
object in not profitable meaning that it is going to give you a loss most of the time. Once you
choose one of the objects, the outcome (win: +1 or loss: —1) will be registered to your account.
You will have 2.5 seconds to indicate your choice. If you do not respond within this time window,
the message ‘Too slow’ will appear on the screen and you automatically lose 1 point. Here you
see an example for a trial (Supplementary Figure S.1).

First, you will see Then you make a After that you will Finally, you will Before the new trial
the two objects to decision have a  short see the outcome you will have a short
choose from waiting period waiting period again

>

Figure S.1. Participant instructions 1. The figure shows the sequence of events within a trial as presented
to the participants in the instructions.

You will start the experiment with a balance of 0 points and any wins or losses will be registered
to your account. After the experiment, in addition to your standard payment for participation,
you will receive up to $30 depending on your final account. Note that your balance cannot get
below 0 and if you do not earn additional money on the task, you will not be penalized and you
will still receive the standard payment for your participation. We would however encourage you
to try to earn as much as possible on the task. After each run we will show you your balance. A
run consists of 80 trials, which takes about 20 minutes to complete. You will have two runs in
the scanner.

As mentioned above, one of the objects is profitable and it will bring you a win most of the
times and every now and then it will bring you loss. At the same time, the other object is not
profitable and it will bring you a loss most of the time and a win every now and then. You
won’t explicitly know which object is the profitable one and which is the non-profitable and you
will need to conclude it from the outcomes. But be aware! These roles can switch, which means
that the previously profitable object becomes non-profitable and the previously non-profitable object
becomes profitable. Such a switch will happen only 1-4 times in the entire run and you will have
enough trials without a switch to conclude which object is the profitable one.

Keep in mind that even the currently profitable object can from time to time deliver a loss and
a couple of negative outcomes does not necessarily mean that a switch occurred. Similarly, even
the non-profitable object can from time to time deliver a win and a couple of positive outcomes
does not necessarily mean that a switch occurred. You can however assume that a switch has
happened if you feel the previously rewarding object started to give you more losses than wins and
the previously non-rewarding object started to bring you more wins than losses.
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Before you do the test run, there is one more important aspect to the task: On each trial,
one of the objects will be presented to you in front of a black background while the other object
will be in front of a grey background. If you choose the object on the black-side, you will see the
outcome of your choice. However, if you choose the grey-side object, the outcome will remain
hidden from you but it will be registered to your account (Supplementary Figure S.2

If you choose the triangle on the black side you
will see the outcome, which is either win or loss

OO

If you choose the square on the grey side, the
outcome will be hidden from you

Figure S.2. Participant instructions 2. The figure depicts the lucrativeness and informativeness associated
with the actions as presented to the participants in the instructions.

You will now complete a test run, which will be just like the ones you will complete in the scanner.
We will discuss all your questions to make sure you feel comfortable with the task before going in
the scanner.

Note that from the perspective of the participants the specification of the available actions was
doubly over-specified: on the one hand, the square and the triangle were also colored orange and
blue, and on the other hand, one side of the screen was also indicated by a black background,
while the other side was indicated by a gray background. For efficiency, in the main text, we
only retain the the notions of squares and triangles for available rewarded actions, black and
grey backgrounds for informative and non-informative actions, and we use colors to indicate the
currently lucrative (yellow) and detrimental (blue) actions.
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S.3. Experimental state sequence

Table S.2 displays the definition of the state evolution function f. The upper table displays the
state sequence of the first experimental run, the lower table displays the state sequence of the
second run. t indexes the trial number and s; is the trial state.

t 1 2 3 4 5 6 7 8 9 10
se (L,1) (1,1 (1,2) (1,1) (1,2) (1,1) (1,1) (1,2) (1,1) (1,1)

t 11 12 13 14 15 16 17 18 19 20
se (1,1) (1,1) (1,2) (1,2) (1,2) (1,1) (1,2) (1,2) (1,2) (2,1)

st (2,1)  (2,2) (2,1) (2,2) (2,1) (2,2) (2,2) (2,1) (2,2) (2,2)

t 31 32 33 34 35 36 37 38 39 40
st (2,1) (2,1) (2,20 (2,1) (2,20 (2,1) (2,20 (2,1) (2,2) (2,1

t 41 42 43 44 45 46 4T 48 49 50
e (22) (22) (L,2) (L2) (L1 (L1 (L2) (L2) (1,2) (1,2)

t 51 52 53 54 55 56 57 58 59 60
se (1,1) (1,2 (1,1) (1,2) (1,2) (1,1) (1,1) (1,2) (1,1) (1,1)

s (1,1) (1,1) (1,2 (2,1) (2,1) (2,2) (2,1) (2,2) (2,1) (2,1)

t 71 72 73 74 75 76 7 78 79 80
st (2,2) (2,1) (2,1) (2,1 (2,2) (2,2) (2,2) (2,2) (2,2) (2,1)

st (2,1)  (2,1) (2,1) (2,2) (2,1) (2,1) (2,1) (2,1) (2,2) (2,2)

st (2,1)  (2,1) (2,2) (2,2) (2,1) (2,2) (2,2) (2,2) (2,2) (2,1)

se (21 (21 (22 (L1 (L2 (1L,2) (1L2) L1 (1,2) 1,1

se (1,2) (1,2) (1,2) (1,2) (1,2) (1,1) (1,1) (1,2) (1,2) (1,2)

st (1,2) (L,1) (2,2) (2,2) (2,2) (2,1) (2,2) (2,2) (2,2) (2,1)

se (2,2) (2,1) (2,2) (2,1) (2,1) (2,2) (2,1) (2,2) (2,1) (1,2)

se (1,1) (1,1) (1,2) (1,1) (1,1) (1,2) (1,1) (1,1) (1,1) (1,1)

se (1,2 (1,1) (1,1) (1,2) (1,1) (1,2) (1,1) (1,1) (1,1) (1,2)

Table S.2. Experimental state sequence.
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S.4. Belief state, posterior predictive distribution, and KL-divergence
Belief state

Based on the probability distributions p (s%), D (s%+1|s%) and p* (0t|s%), the agent’s belief state
on trials t = 2, ..., T can be recursively evaluated according to eq. (15). To show the validity of
this equation, we first express the belief state as

pUt (51, 010-1)

al:t—1 1 g — Sl
p (St‘olt 1) pal:t—l (Olt_l) ( )
The numerator of eq. (5.1) can then be rewritten as
prtt (S%’Olzt—l) = ZPGM*I (S%astl—hOl:t—l)
i1
=) P (sflsi_1,010-1) P (811, 01:0-2,001)
i1
— 1.1 at—2:t—1 1 ar:t—2 (1
= Z p (St |5t—1) p (Ot—l‘st_p 01:t—2) b (St_p 01:t—2> (S.Q)
i1
= ZP silsi_1) P (0r—1]si_1) P2 (sp_1]01:—2) P™2 (01:4—2)
Si_1
= P2 (014-9) Y P (stlsi_1) P (0r-1lsi—y) P*2 (si_ilori-a) ,

1
St—1

where we used the conditional independence of s% of 01.4—1 given s%_l in the third equality and the

conditional independence of o;_1 of all other random variables given s} ; in the fourth equality.

Similarly, we can rewrite the denominator of eq. (5.1) as

ai. a
p™tt (01:4-1) E E P sy, 841, 01:—1)

St Sio1 (S.3)

= p™*? (o1:4—2 ZZP tlsion) P (0i-1lsi—1) P2 (si_qlo1-2)

st sty

where in the last equality we used the numerator’s form derived in eq. (5.2). Finally, by
substitution of (5.2) and (5.3) in (S.1), we obtain the belief state update formula of eq. (15) as
follows:

pU2 (o1a-2) 3o P (stlsiy) Pt (oe-1lsiy) P2 (si_y01:4—2)
T PR SS SY I P RS P ey
>, L (st\st_l)p‘”*l (0r-1lsi_1) p™*=2 (s{_;]01:4—2)
Zst Z P (silsi_1) Pt (o1lsi_y) pee=2 (s{_y[o14—2)

P (st]o1i-1) =

5t1
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Posterior predictive distribution

Given the agent’s belief state p®t:t—1 (stl|01;t_1) and the action-dependent state-conditional ob-
servation distribution p® (ot]s%), the posterior predictive distribution can be evaluated according
to eq. (23). A proof of this equation is as follows:

p™t (0, 01:4-1)
pt (01:4-1)
> P (o, 01:4-1, 5¢)
B Pt (01:4-1)
Do P (stlot, 01:4—-1) P™** (04, 01:¢—1)
pUt (01:4-1)
Zstl pUt=1 (si|or:—1) Zs} Pt (o, 01:0-1, 5 )
Pt (01:¢4-1)

> P (stlor:i—1) Pt (0f|or:4—1, st) p™* (01:4—1, St )

ot (on-1,5)

= p™ (stlora—1) p™ (orls;)
st

= byp™ (ot]si = 1) + (1 = by) p™ (ot]s% = 2) , (S.5)

Pt (of]o1:4—1) =

where in the last equality we substituted the belief state with its scalar representation.

KL-divergence

Recall that the KL-divergence for two distributions p and ¢ of a discrete random variable x is
defined as (Kullback & Leibler, 1951)

KL (p(x)[lg(z)) = 3" p(z) In (17()) (5.6)

reX Q(x)
With

b— pa1;t—1(8% — 1‘01:7&—1) (87)

and thus
pal:t—1<3% — 2’01t—1) g 1 — b, (8.8)

as well as
p®o . — pa1:t—1,at:a(sg+1 = 1’01:15_1, 0oy = 0) (89)

and thus
pal;tfl,at:a(sg_‘rl — 2|01:t7170t = O) =1—-p*° (Slo)
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we have
KL (p*:=2%=%(s}, 1 [o14—1, 00 = 0)|[p™*~* (s{|01:4-1))
— al:t—1,at=a 31 01 1.01 — O
— Z palztflyaz—a(sl}_i_l|01:t_17Ot — O) ln (p ( t+1| 1:t—1,0¢t )>

slegt prit=1 (S%‘Olitfl)
3 pal:t—lyat:a(sg~ 1= 1’01”&717015 - O)
_ a1:t—1,at=a 81 = 1lo1+_1,0; = 0)1n _s

p ( t+1 | 1:¢-1, 0t ) < pa1;t—1(s% = 1|01:t—1)

pr L= (s = 2Jo1-1, 00 = 0))

patit—1 (S% — 2|01:t—1)

(S.11)

+ MU (5 = 2|01y 1,0 = 0) In (

1 — p@o p®0
_ 14,0 a,0
=(1-0 )ln<1_b>+b ln(b>
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S.5. Belief state and posterior predictive distribution implementation

For a concise implementation of the belief state update and the posterior predictive distribution

formulas, we represent the agent’s probability distributions by stochastic vectors and stochas-

tic matrices. Specifically, in the implementation of the agent model components as defined in

wrb_modcomp.m,

® i € R! 0‘ represents the initial belief state p (31) The ith entry of p; corresponds to the
agent’s subjective uncertainty that the non-observable state component takes on value si =i

at trial £ = 1. Formally,
_(p (s% 1) (0.5

® ;€ R! 0‘ represents the belief state p®t:t-1 (st |01:4— 1) at trial . The ith entry of u; corresponds
to the agent’s subjective uncertainty that the non-observable state component takes on value

s% = ¢ at trial ¢ given the history of observations 01.;—1 and actions aj.;—1. Formally,

a1:it—1 (ol —
Ly = (p ' (St - 1|01:t1)> . (813)

Pt (s = 2|o1:-1)

1
o & c RIS XI5 represents the state-state transition distribution p (s%+1|s%). The jth entry of

the ith row of ® corresponds to the agent’s subjective uncertainty that the non-observable
state component takes on the value S%+1 = j in trial £+ 1 given that s} = i in trial . Formally,

p(sir=1st =1) p(sjq =2[s; = 1) 0.9625 0.0375
p (st =1st =2) p(sty =2lsf =2 0.0375 0.9625

1
o QM ¢ R|>SO|X‘O| represents the action-dependent state-conditional observation distribution

p*t (ot|st1) for action a € A. The kth entry of the ith row of Q*=% corresponds to the
agent’s subjective uncertainty that the observation takes on the value o, = k given that the
non-observable state component takes on the value s; = i and the action value is a; = a.
Formally, for the informative actions

—— pt(or=1ls;y =1) p'(or=2|sf =1) p' (o, =3[s; =1)\ (015 0.85 0 (S.15)
T\t (e =1lst =2) p'(or=2[st =2) p'(or=3lst=2)) \0.85 015 0/

and

Qai=3 ._ pP(or=1ls;y =1) p*(or=2|sf =1) p*(0,=3|s; =1)\ (085 0.15 0 (S.16)
T \PP (o =1lst =2) pPor=2[st =2) pP(or=3lst=2)) \015 085 0’

and for the non-informative actions

Qarel2.4} . <p‘” EOt =1lsf = 1; Pt §Ot =2|sf =1) p™ Eot =3|s} = 1)) _ (0

p
P (op =1|sf =2) p™ (0p =2|sf =2) p™ (op = 3|s{ =2) 0

o

D . (S.17)

o

o U ¢ Rls IR represents the action-dependent state-conditional reward distribution p® (r4|s;)

for actlon a € A. The lth entry of the ith row of U*=% corresponds to the agent’s subjective
uncertainty that the reward takes on the value r4 = [ —m given that the non-observable state
component takes on the value s} = i and action the value a; = a. Note that m is introduced
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to convert the linear indices to reward values and takes on the value 2 if [ = 1 and the value
1if I = 2. Formally,

we(r2y ,_ (P (ro=—1ls; =1) p™ (ro=+1|s; = 1)) _ (0.15 0.85
T (pat (re=—1]s; =2) p* (re=+1s{ =2))  \0.85 0.15 (8.18)

represents the action-dependent state-conditional reward distribution for the actions of choos-
ing the square, and

pae(34} . <pat (rt
p

—1lst =1) p* (ry =+1[sf =1)\ _ (0.85 0.15 (5.19)
at (rt = —1lsf = 2) prt (rt = +1]sf = 2) T '

0.15 0.85

represents the action-dependent state-conditional reward distribution for the actions of choos-
ing the triangle. Accordingly, Z‘R| \Ifat m = -1

Based on the definitions above and using the standard matrix product - as well as the element-
wise (Hadamard) matrix product o, the agent’s belief state at trial ¢ (eq. (15))can be written as

51| -1

Z i, | (S.20)

where
by =@ (QF o pg—1) (S.21)
is the unnormalized belief state following action a;—; = a and observation o;—1 = k and

1 —1
(Z'ZS 1' fit; ) is the normalization constant. Here, Qf denotes the kth column of Q% and p;_1

denotes the prior belief state on trial ¢ — 1, which corresponds to eq. (5.13),if t —1 > 1, and to
eq. (5.12), if t —1 = 1. Similarly, the posterior predictive distribution of agent model A2 (cf.
eq. (23)) for action a; = a can be written as

wi = (T . (S.22)
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Otto-von-Guericke-Universitat Magdeburg

Prof. Dr. Scott Brown
Editor in Chief

Computational Brain & Behavior

Revised manuscript COBB-D-20-00031 “Human belief state-based exploration and exploitation in
an information-selective symmetric reversal bandit task”

Dear Prof. Dr. Scott Brown,

as encouraged by your letter of May 3rd 2021, please find attached our revised manuscript. We were
delighted by your positive assessment of our initial revision and are thankful for your remaining suggestions
to further enhance the clarity and potential impact of our work.

In line with your comments, we have (1) streamlined the manuscript’s outline to reflect the logical flow
of the work, (2) added an explanatory overview of our agent-based behavioral modeling approach, and
(8) documented the agent model codes in glossary form. Please find our detailed responses to your
comments in our Response to Review letter below.

We believe that these changes have further improved the manuscript’s limpidity and we hope that you will
find our revised manuscript to be suitable for publication in Computational Brain & Behavior.

Sincerely,

Prof. Dr. Dirk Ostwald
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Horvath et al. Response to Review

Reviewer #1

1. The manuscript is quite heavy on notation and formalism. This was something noted in the review
reports on the earlier version. | appreciate the need for the notation, to provide clarity. However, it
will also limit the impact that your manuscript can have, by confusing some sections of the audience.
Your response letter makes good arguments for keeping the notation and layout largely the same, but
I would like to suggest a relatively minor change. At the moment, after the empirical section ends the
theory section begins very abruptly (line 227, section "Model Formulation”). For readers who are less
familiar with formal math, the several pages of definition that follow will obscure the high-level (and
interesting!) theoretical contributions. | suggest adding a small section under the "Model Formulation”
heading, before the formalism, which provides a plain-English overview of the theoretical work to follow.
This overview could explain the objectives of the modelling, and provide intuition about how the models
explain the key aspects of the data. With an overview like this (or more, if you think so) readers will find
the formalisms easier to understand and contextualise.

We thank you for this comment and have included the following paragraph at the beginning of the Agent-
based behavioral modeling section:

To arbitrate between different trial-by-trial decision-making strategies that participants may have used on the exper-
imental task and that gave rise to the descriptive results documented above, we used an agent-based behavioral
modeling approach. In our documentation of this approach, we proceed as follows. In the Model formulation sec-
tion, we first formulate the relevant model components, comprising a task model, a set of agent models, and a set
of data analysis models. Here, the task model corresponds to a probabilistic model that captures key aspects of the
experiment and serves to explicate the agents’ knowledge about their choice environment. The agent models spec-
ify the dynamic subjective representation of the task (e.g., trial-by-trial belief state updates for some agent models)
and several decision-making processes based on these representations. Finally, the data analysis models specify
the embedding of the agent models in a statistical observation framework, allowing for the quantification of decision
noise and the estimation of the models’ parameters and evidence. Having formulated our modeling approach, we
then document the computational methods for model parameter estimation and model evidence evaluation in the
Model estimation and comparison section. Finally, we report the results of a number of model validation analyses
(Model and parameter recovery analyses) and conclude with the evaluation of the agent-based behavioral models
in the light of the experimental data (Model comparison results).

2. The model names are not informative, and add cognitive burden for the reader. Instead of making the
reader remember what C1, A3, etc. mean, is it possible to replace the codes with more psychologically
meaningful names? Or, at least, have a table somewhere which reminds the reader of the key aspects
of each model, like a glossary.

We thank you for this comment. We have added the table shown below to the revised Model Formulation
section to document the key characteristics of each agent in glossary form.

Agent | Choice strategy

C1 Belief state-free random choice

c2 Belief state-free win-stay-lose-switch

Al Belief state-based exploitation

A2 Belief state-based exploration

A3 Belief state-based exploration-exploitation hybrid

Table 1: Agent model space. Agent model denominations (left column) and keywords highlighting central aspects of the respec-
tive agent’s choice strategy (right column).

We would prefer not to replace the agent denomination in general, because in our experience this comes
at the risk of over-stating the generality of models developed. For example, if we were to rename agent
model “A1” as “Belief state-based exploitative agent” this denomination would imply a scope that is not
warranted by our formulation and implementation: there are many different probabilistic models that
can implement belief states and there are many different ways in which belief states can be used for
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Horvath et al. Response to Review

exploitative choices. The generic denomination as “A1” thus emphasizes the (necessary) idiosyncrasy
of the current model space.

3. I realise you have already tried several re-orderings of the sections. However, | agree with some
earlier sentiments that the behavioural results would be more sensibly set out earlier. This journal does
not require APA format, and does not mandate any particular names or order of sections. If you think
a different order would be better, please use that. One that comes to mind for me is: Introduction;
Methods; Behavioural Results; Model Formulation; Model Results; Discussion.

We thank you for this comment and are happy to deviate from APA format in favor of an outline that
better suits the content of our work. In line with your suggestion, the principle outline of the manuscript
is now as follows: Introduction; Experimental methods; Descriptive analyses; Agent-based behavioral
modeling; Discussion. Notably, the section Descriptive analyses now includes both the descriptive data-
analytical methods and the results of these analyses, strongly enhancing the readability of this section.
Similarly, the section Agent-based behavioral modeling includes the formal model development, the
methods used for assessing the models in light of the experimental data, the results of our model and
parameter recovery analyses, as well as the final model comparison and post-hoc model validation
results. As for Descriptive analyses, the logical flow of this section is now much enhanced.
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