

Resetting of the 24-nt siRNA landscape in rice zygotes

2 Chenxin Li,^{1,5} Jonathan I. Gent,^{2,5,6} Hengping Xu,^{3,5} Hong Fu,³ Scott D. Russell,^{3,6} and
3 Venkatesan Sundaresan^{1,4,6}

4

⁵ ¹Department of Plant Biology, University of California, Davis, California 95616, USA

6 ² Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA

7 ³ Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma
8 73019, USA

⁹ ⁴ Department of Plant Sciences, University of California, Davis, California 95616, USA

10 ⁵ These authors contributed equally.

11 ⁶Co-corresponding authors: sundar@ucdavis.edu, srussell@ou.edu, gent@uga.edu

12

13 ABSTRACT

14 **Background:** The zygote, a totipotent stem cell, constitutes a critical stage of the life cycle of
15 sexually reproducing organisms. It is produced by the fusion of two differentiated cells — the
16 egg and sperm, which in plants have radically different siRNA transcriptomes from each other
17 and from multicellular embryos. Due to technical challenges, the epigenetic changes that
18 accompany the zygotic transition are poorly understood.

19 **Results:** Here, we characterized the small RNA transcriptome of rice zygotes. We found
20 widespread redistribution of 24-nt siRNAs relative to gametes, including absence of sperm
21 signature siRNAs, reduction at egg signature siRNA loci, and upregulation at seedling signature
22 siRNA loci. Loci with reduced siRNAs in zygote relative to egg were gene-distal and
23 heterochromatic, while loci with increased siRNAs relative to egg had a similar genomic
24 distribution to canonical siRNA loci. Although both egg and zygote siRNA loci had higher
25 mCHH level in wildtype than in *drm2* embryo, zygote but not egg siRNA loci were associated
26 with hypermethylation in mature embryo. A small fraction of siRNA loci (~1%) called siren loci
27 accounted for 60% of all siRNAs within zygote siRNA loci, that likely arose from maternal
28 carryover as they had similarly abundant siRNAs in egg; these siren loci were not associated
29 with embryo hypermethylation.

30 **Conclusions:** Taken together, our results indicate re-distribution of siRNAs in rice zygotes
31 towards the canonical vegetative profile, that are consistent with the initiation of resetting of the
32 gametic epigenome before the first embryonic division.

33 **Keywords:** Small RNAs, DNA methylation, Epigenome, Plant Reproduction, Zygotic genome
34 activation

35

36 **Background**

37 Gametes and zygotes constitute critical developmental stages in the life cycle of all
38 sexually reproducing organisms. During fertilization, the egg cell fuses with a sperm cell to form
39 the zygote, which is an undifferentiated and totipotent stem cell that initiates embryogenesis.

40 Flowering plants undergo double fertilization, in which a second sperm cell fuses with the
41 central cell and gives rise to the endosperm, a nutritive tissue that nurtures the developing
42 embryo or germinating seedling [reviewed in (Lord and Russell, 2002)]. In animals, early
43 embryogenesis is controlled by maternal gene products pre-deposited in the egg cell. Depending
44 on the organism, the zygotic genome does not become transcriptionally active until a number of
45 cell divisions have occurred (Tadros and Lipshitz, 2009). Recent studies show that material-to-
46 zygote-transition in flowering plants differs markedly from most animals [reviewed in
47 (Armenta-Medina and Gillmor, 2019)]. In rice zygotes, thousands of genes are upregulated in
48 zygotes, many of which are undetected in the egg cell, consistent with similar observations in
49 zygotes of maize and *Arabidopsis* (Chen et al., 2017; Zhao et al., 2019). Furthermore, zygotic
50 transcription was shown to be required for early embryogenesis (Kao and Nodine, 2019; Zhao et
51 al., 2019). These observations suggest that in angiosperms, unlike most animals, zygotes are
52 transcriptionally active, and zygotic genome activation (ZGA) occurs in the zygote. However,
53 similar to animals, ZGA in plants is gradual. The initial transcriptome of flowering plant zygotes
54 is thus dominated by egg cell RNA carryover, and although newly expressed genes in the zygote
55 are widespread and represent a significant fraction of the zygote transcriptome, their expression
56 levels are relatively low (Anderson et al., 2017; Chen et al., 2017; Zhao et al., 2019).

57 Along with dynamic changes in gene expression, epigenomic reprogramming has been
58 observed during flowering plant reproduction. In rice and maize, the egg cell is ~10 times larger
59 than sperm in diameter, and thus ~1000 times larger than the sperm cell in volume (Anderson et
60 al., 2013; Kranz et al., 1991), and its chromatin is diffused (Scholten et al., 2002). In contrast, the

61 sperm cell chromatin undergoes global condensation, paralleling animal sperm chromatin in
62 which protamines replace histones (Kimmings and Sassone-Corsi, 2005). A male-germline
63 specific histone H3 variant MGH3 (also termed H3.10) is present in the sperm cell (Borg and
64 Berger, 2015; Okada et al., 2005), following the removal of H3.1 (Borg et al., 2020). H3.10 is
65 resistant to trimethylation at H3K27 (H3K27me3), thus priming the activation of key genes for
66 sperm differentiation and embryogenesis (Borg et al., 2020). Upon karyogamy, H3.10 is
67 removed from the paternal chromatin via a replication independent process (Ingouff et al., 2007).
68 Other histone H3 variants, such as H3.3, are also removed from egg cell chromatin upon
69 karyogamy, followed by loading of newly-synthesized histones, again via a replication
70 independent mechanism (Ingouff et al., 2010). In addition, other cells of both male and female
71 gametophytes in *Arabidopsis* experience global chromatin changes as well. Heterochromatin is
72 decondensed in the central cell, the cell which gives rise to endosperm (Pillot et al., 2010). A
73 similar phenomenon occurs in the pollen vegetative cell, the cell which encapsulates the sperm
74 cells and enables their migration through the style to the ovule (Schoft et al., 2009; Mérai et al.,
75 2014; Hsieh et al., 2016). Relaxation of heterochromatin in the pollen vegetative cell has been
76 reported to produce short interfering RNA (siRNA) that traffic into the sperm cells, and reinforce
77 transposon silencing in the gametes (Slotkin et al., 2009; Calarco et al., 2011; Martínez et al.,
78 2016; Park et al., 2016; Kim et al., 2019). Similarly, it has been proposed that siRNAs traffic
79 from the central cell to the egg cell, as well as from the endosperm into the developing embryo
80 (Hsieh et al., 2009; Ibarra et al., 2012; Martínez and Köhler 2017).

81 Concomitant with chromatin reprogramming, there is also evidence for changes in DNA
82 methylation during plant reproduction, especially in the context of RNA-directed DNA
83 methylation (RdDM) [reviewed in (Gehring, 2019)]. In plants, RdDM can function in both *de*
84 *novo* and maintenance DNA methylation [reviewed in Cuerda-Gil, and Slotkin (2016)]. Briefly,
85 24-nt siRNAs are loaded onto an argonaute protein (AGO), which recruits the DNA
86 methyltransferase Domains Rearranged Methyltransferase2 (DRM2). DRM2 leads to
87 methylation in all sequence contexts, but methylation in the CHH context (mCHH), where H is
88 A, C or T, is a strong indicator of RdDM in both rice and maize (Tan et al., 2016, 2018; Gent et
89 al., 2013), but not in all plants (Zemach et al., 2013). Multiple studies reported that disruption of
90 RdDM leads to a variety of reproductive phenotypes, including aborted embryos (Autran et al.,
91 2011; Grover et al., 2018), arrested pollen (Wang et al., 2020), defective triploid block when the

92 seeds were produced from a 2n maternal \times 4n paternal cross (Borges et al., 2018; Erdmann et al.,
93 2017; Martínez et al., 2018; Satyaki and Gehring, 2019) and defective floral development
94 (Dorweiler et al., 2000; Moritoh et al., 2012). These observations suggest siRNAs and RdDM are
95 important for normal plant reproduction.

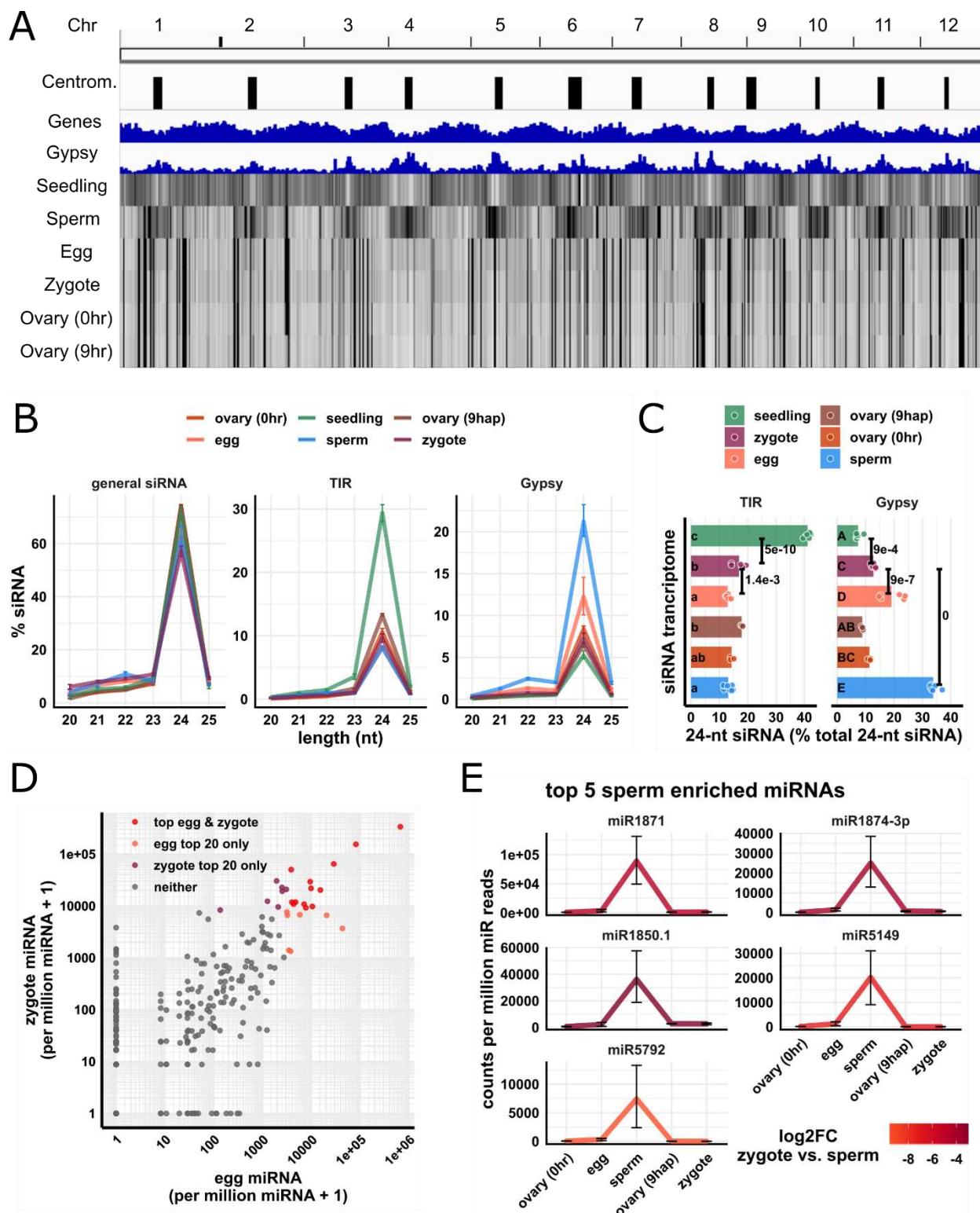
96 In mammals, it has long been proposed that fusion of two epigenetically distinct gametes
97 presents a challenge in reproduction, and resetting of the epigenome is required for the
98 pluripotent state of the early embryo [reviewed in (Messerschmidt et al., 2014)]. Epigenome
99 reprogramming in mammals includes large-scale erasure of somatic chromatin signatures in
100 germ cell precursors, establishment of sex-specific signatures in the germline, and post-
101 fertilization resetting towards pluripotency [reviewed in (Messerschmidt et al., 2014; Saitou et
102 al., 2012; Tang et al., 2016)]. The functional consequences of epigenomic changes in gametic
103 fate acquisition and subsequent zygotic totipotency in plants are unclear. It is clear, however, that
104 in plants, the majority of DNA methylation is stably transmitted both maternally and paternally
105 [reviewed in (Gehring, 2019)]. In *C. elegans*, siRNAs can serve as carriers of transgenerational
106 epigenetic information, in which siRNAs can be inherited across a few generations [reviewed in
107 (Houri-Zeevi and Rechavi, 2017)]. While multiple changes in siRNA profiles have been
108 observed during plant reproduction (Calarco et al., 2012; Grover et al., 2020; Ibarra et al., 2012;
109 Li et al., 2020; Papareddy et al., 2020; Schoft et al., 2009; Slotkin et al., 2009), transgenerational
110 inheritance of siRNAs, or the lack thereof, has yet to be rigorously demonstrated in plants.

111 In vegetative tissues such as seedlings, 24-nt siRNAs coincide with mCHH islands - short
112 regions with high CHH methylation - that are enriched around genes and mark the ends of TEs
113 and euchromatin-heterochromatin boundaries (Gent et al., 2013; Li et al., 2015). Hereafter, we
114 refer to such a 24-nt siRNA profile as the canonical siRNA profile, since 24-nt siRNAs are the
115 most abundant length class in most plants [reviewed in Cuerda-Gil, and Slotkin (2016)],
116 including rice gametes (Li et al., 2020, **Fig 1B**). We have previously shown that the siRNA
117 transcriptome is reprogrammed in rice gametes (Li et al., 2020) where siRNA transcriptomes of
118 egg and sperm were distinct from each other in genome-wide distribution, as well as distinct
119 from that of the seedling (**Fig. 1**). The relative magnitude of the egg-borne and sperm-borne
120 contribution of siRNAs to the zygote is unknown. A recent study in *Arabidopsis* revealed that
121 siRNAs from heterochromatic TEs are transiently upregulated during embryogenesis, while
122 siRNAs from euchromatic TEs peak at mature green embryos (Papareddy et al., 2020). However,

123 due to technical challenges due to the limiting amounts of material, currently there are no data
124 available for siRNA transcriptomes before the preglobular embryo stage, and consequently very
125 little is known about the siRNA landscape in plant zygotes. Since siRNA production is
126 influenced by histone modifications and DNA methylation, and siRNAs in turn can direct
127 histone modifications and DNA methylation (Law and Jacobsen, 2010; Matzke and Mosher,
128 2014; Parent et al., 2021), the siRNA transcriptome is an output and indicator of the epigenome.
129 Given the likely importance of epigenetic reprogramming during plant reproduction and the lack
130 of detailed studies on zygotes, we decided to characterize the small RNA transcriptome of rice
131 zygotes to investigate changes in the small RNA transcriptome that occur soon after fertilization.
132 The differences in genome-wide distribution of siRNAs between gametes and zygote revealed
133 changes that indicate that the siRNA transcriptome initiates a resetting towards the canonical
134 profile before the first cell division, concurrently with zygotic genome activation.

135

136 **Results**


137 We collected rice zygotes ~9 hours after pollination (hap), which corresponds to the
138 completion of S-phase, just prior to the first zygotic division (Anderson et al., 2017; Ding et al.,
139 2009). We generated small RNA transcriptomes from 6 replicates, with ~50 zygotes in each
140 replicate. As a maternal sporophytic control, we also collected post-fertilization ovary of the
141 same developmental stage as zygote (9 hap) and prepared small RNA transcriptomes from 3
142 replicates, with 10 ovaries in each replicate. For our analyses, we also included small RNA
143 transcriptome data from rice gametes, pre-anthesis ovary (0 hr ovary) and seedlings (Li et al.,
144 2020). Except where indicated otherwise, siRNAs used for analyses were small RNA reads (20-
145 nt – 25-nt) not overlapping 90% or more of their lengths with known miRNAs [miRBase v22,
146 (Kozomara et al., 2019)], 5S rRNA, tRNA, NOR, or phasiRNA loci [as detected in Li et al.,
147 2020], and multi-mapped reads were included in all analyses unless indicated otherwise (**Fig**
148 **S1A**).

149

150 The global siRNA pattern in zygote is determined by siRNA transcript carryover from the egg
151 cell, with no detectable signature of sperm cell small RNAs

152 As we previously reported, the sperm cell has an siRNA pattern complementary to the
153 canonical pattern of vegetative tissues, in which its 24-nt siRNAs are spread out across wide

154 heterochromatic regions, including centromeric tandem repeats. The egg cell and ovary have a
155 pattern different from both sperm and vegetative tissues, in which 24-nt siRNAs are concentrated
156 at discrete loci (**Fig 1A**). We found that in a whole-genome view, the zygote had a similar
157 pattern to the egg cell (**Fig 1A**, zygote vs. egg track). To confirm that the similarity between
158 zygote and egg cell was not due to large numbers of residual unfertilized egg cells in the zygote
159 samples, we performed a control pollination experiment under similar conditions, and we
160 determined that 98 out of 101 pollinated rice florets produced mature seeds, implying that 3% or
161 less of the rice florets were unfertilized (**Supplemental Table 2**, see **Methods** for additional
162 details). Thus, in our zygote samples, unfertilized egg cells might represent at most 3% of the
163 total. We also performed differential expression analyses for miRNAs and detected 14 miRNAs
164 that were lowly expressed in all six replicates of zygote but highly expressed in ovaries of the
165 corresponding developmental stage, i.e., 9 hap (**Fig S1B**). Thus, the similarity between zygote
166 and ovary (**Fig 1A**) is unlikely to be due to small RNA contamination from ovary. A similar
167 analysis was previously used to show that the egg cell samples were also free of pre-fertilization
168 ovary contamination (Li et al., 2020).

169

170 **Fig 1: Overall pattern of zygote 24-nt siRNAs is similar to but not identical to egg cell.**

171 (A) Heat map showing abundance of 24-nt siRNA across genome at 50-kb resolution. The
172 first three tracks are centromeres [as defined by (Mizuno et al., 2018)], genes, and *Gypsy*
173 retrotransposons.

174 (B) Length profiles of siRNAs. y-axis values are relative to total siRNA reads (20 – 25-nt
175 siRNAs). TIR: terminal inverted repeat transposons, CACTA superfamily excluded.
176 *Gypsy*: *Gypsy* retrotransposons. Error bars are 95% confidence intervals for each cell
177 type. miRNA and phasiRNA are not included in this analysis (**Fig S1A**).

178 (C) Quantification of TIR and *Gypsy* panels in (B). Each data point is an siRNA
179 transcriptome. Bar heights are averages. x-axis values are relative to total 24-nt siRNAs.
180 Letter grouping ($\alpha = 0.05$) and P values are based on Tukey tests.

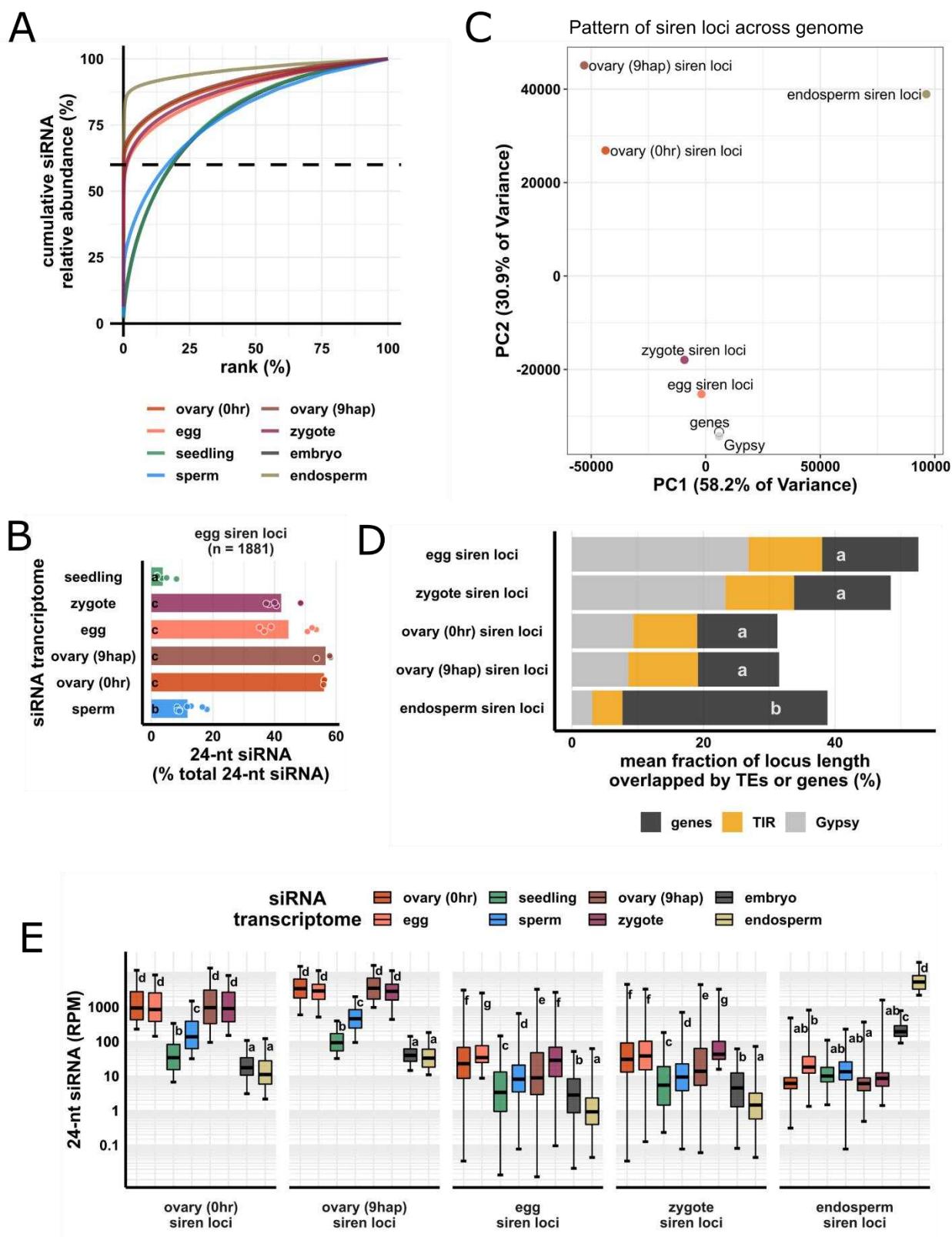
181 (D) Scatter plot showing miRNA relative abundances in egg and zygote. Each data point is a
182 miRNA. Axes are relative to per million miRNA reads and log10 transformed. ‘top egg
183 & zygote’ refers to intersection of the 20 highest abundant miRNAs in both egg and
184 zygote.

185 (E) Top five sperm enriched miRNAs. Sperm enriched is classified as > 1000 reads per
186 million miRNA reads in sperm and < 500 reads per million miRNA reads in egg. y-axis
187 values are relative to per million miRNA reads. Color code reflects log2FC values for
188 zygote vs. sperm, and negative values indicate higher in sperm. Error bars are 95%
189 confidence intervals for each cell type. See **Fig S1D** for additional examples.

190 Zygote and 9 hap ovary data are from this study, all other data from Li et al., (2020).

191
192 We next looked at the length profile of siRNAs in zygotes and compared that with
193 published data from other cell and tissue types (Li et al., 2020). We found that in zygotes, as in
194 all other tissues, 24-nt siRNAs predominated (**Fig 1B**). Since the abundance of siRNAs of other
195 length classes were all relatively low, we focused on 24-nt siRNAs for further analysis. Based on
196 relative abundance patterns, the zygote siRNAs appeared to resemble egg cell siRNAs. Like the
197 egg cell and unlike seedling tissues, the zygote had a lower abundance of siRNAs overlapping
198 terminal inverted repeat (TIR) transposons (PIF/Harbinger, Tc1/Mariner, Mutator, or hAT
199 superfamilies) than seedling (**Fig 1B-C**, seedling vs. zygote $P = 5e-10$, Tukey tests). Like the egg
200 cell and unlike the sperm cell, the zygote had a low abundance of siRNAs overlapping *Gypsy*
201 retrotransposons (**Fig 1B-C**, sperm vs. zygote $P = 0$, Tukey tests). However, we noted that while

202 the zygote and egg cell were similar, there were some clear differences. Zygote had significantly
203 more siRNAs overlapping TIR elements, and significantly less siRNA overlapping *Gypsy*
204 retrotransposons than the egg cell (**Fig 1C**, $P = 1.4e-3$ and $P = 9e-7$ respectively, Tukey tests).


205 The similarity between egg and zygote siRNA profiles can be explained by carryover
206 from the egg cell, since the egg cell is ~1000-fold larger than the sperm cell by volume (Kranz,
207 Bautor, and Lörz 1991; Anderson et al., 2013; Li et al., 2019). Although 24-nt siRNAs function
208 in the nucleus, 24-nt siRNAs were found primarily in the cytoplasm of whole-plant homogenates
209 (Ye et al., 2012). Thus, we predict that small RNAs already present in the egg cell before
210 fertilization would contribute to much of the siRNAs present in the zygote. This is consistent
211 with previous observations that the 50 most highly expressed genes in egg cell remained as most
212 highly expressed in zygote, whereas the 50 most highly expressed genes in the sperm cell were
213 low expressed in the zygote (Anderson et al., 2017, 2013). Indeed, 13 out of the 20 most
214 abundant miRNAs in egg cells remained among the 20 most abundant miRNAs in zygote ($P =$
215 $3e-14$, Exact test, **Fig 1D**). However, the miRNA accumulation patterns were not identical
216 between zygote and egg. 32 miRNAs were detected in the zygote but not in the egg cell (> 50
217 reads per million miRNA reads in zygote and undetected in egg cell), and 7 miRNAs were
218 detected in the egg cell but not in the zygote (> 50 reads per million miRNA reads in egg cell and
219 undetected in zygote). The presence of 32 miRNAs detected in zygote but not egg cell suggests
220 that ZGA is initiated at miRNA loci at this stage, which would be consistent with the known
221 ZGA of other RNA polymerase II transcripts. Meanwhile, top sperm-enriched miRNAs were
222 very much downregulated in the zygote, consistent with dilution after fertilization (**Fig 1E** and
223 **Fig S1C**). Note that the expression values in the zygote were not used to define these sperm-
224 enriched miRNAs, as we classified sperm-enriched miRNAs relative to egg alone. Specifically,
225 we required >1000 reads per million miRNA reads in sperm, and < 500 reads per million
226 miRNA reads in the egg cell for this classification. The expression values of the full set of
227 expressed miRNA genes [miRBase v22, (Kozomara et al., 2019)] are provided as a
228 complementary transcriptomics resource (**Supplemental Dataset 1**). Taken together, these
229 results imply that sperm small RNAs were diluted by the egg cell cytoplasm, and that much of
230 the siRNAs detected in the zygote were due to carryover from the egg cell.

231

232 Unusual features of siRNA loci with abundant siRNAs in egg, ovary, zygote, and endosperm

233 Zygote, like egg cell and ovary, had a very uneven siRNA distribution across the
234 genome, where siRNAs appeared to be concentrated at discrete sites, without a clear relationship
235 to gene density (**Fig 1A**). It has been previously reported that rice developing endosperm (7-8
236 days after fertilization) has a unique siRNA profile in which a small number of loci accounted
237 for the majority of siRNAs (Rodrigues et al., 2013). These siRNA loci were termed siren loci
238 (siRNA in the endosperm). A similar phenomenon was recently reported in *Brassica rapa* and
239 *Arabidopsis* ovules and endosperm (Grover et al., 2020). The term ‘siren loci’ was also used by
240 Grover et al to describe these loci. To further investigate this phenomenon in zygote as well as
241 egg, ovary, and endosperm, we ranked siRNA loci according to siRNA abundance in each cell
242 type (**Fig 2A**). In endosperm and ovaries (pre- and post-fertilization), ~0.1% ($n = 73, 213$ and
243 102, respectively) of the siRNA loci accounted for 60% of the total siRNA accumulation in all
244 siRNA loci for each tissue type (**Fig 2A**). Similarly, in egg cell and zygote, ~1% ($n = 1881$ and
245 1429, respectively) of the siRNA loci accounted for 60% of the total siRNA accumulation in all
246 siRNA loci for each cell type (**Fig 2A**). We call these highly expressing loci siren loci,
247 independently of siRNAs in endosperm. In fact, the siren loci in rice ovaries, egg, and zygote
248 showed little correlation with the siren loci reported in rice endosperm, at least for the specific
249 endosperm stage described , i.e., 7-8 days after fertilization (Li et al., 2020; Rodrigues et al.,
250 2013). Importantly, egg siren loci were stably expressed between egg and zygote, without a
251 significant decrease after fertilization (**Fig 2B**), which likely explains the overall similarity
252 between egg and zygote (**Fig 1A** and **Fig 3E**, see below).

253

256 **Fig 2: Zygote siren loci are similar to siren loci detected in ovary and egg cell and stably
257 expressed between egg and zygote but dissimilar to siren loci detected in endosperm.**

258 (A) x-axis is the rank order of siRNA loci. siRNA loci with highest siRNA abundances are
259 ranked first. y-axis is cumulative relative abundance of siRNA in all siRNA loci. Axis
260 values are scaled between 0 and 100%. 0.1% of siRNA loci accounted for 60% of siRNA
261 reads in all siRNA loci in endosperm and ovary. 1% of siRNA loci accounted for 60% of
262 siRNA reads in all siRNA loci in egg and zygote.

263 (B) Bar plot showing relative abundances of 24-nt siRNA at egg siren loci. Each data point
264 is an siRNA transcriptome. Bar heights are averages. x-axis values are relative to total
265 24-nt siRNAs.

266 (C) Principal component plot for siren loci distribution across the genome. Distributions are
267 evaluated at 50-kb resolution across the genome. Each data point is the distribution of a
268 siren loci category.

269 (D) Stacked bar plots showing mean fraction of locus length overlapped by TEs or genes.
270 TIR: terminal inverted repeat transposons, CACTA superfamily excluded. *Gypsy*: *Gypsy*
271 retrotransposons.

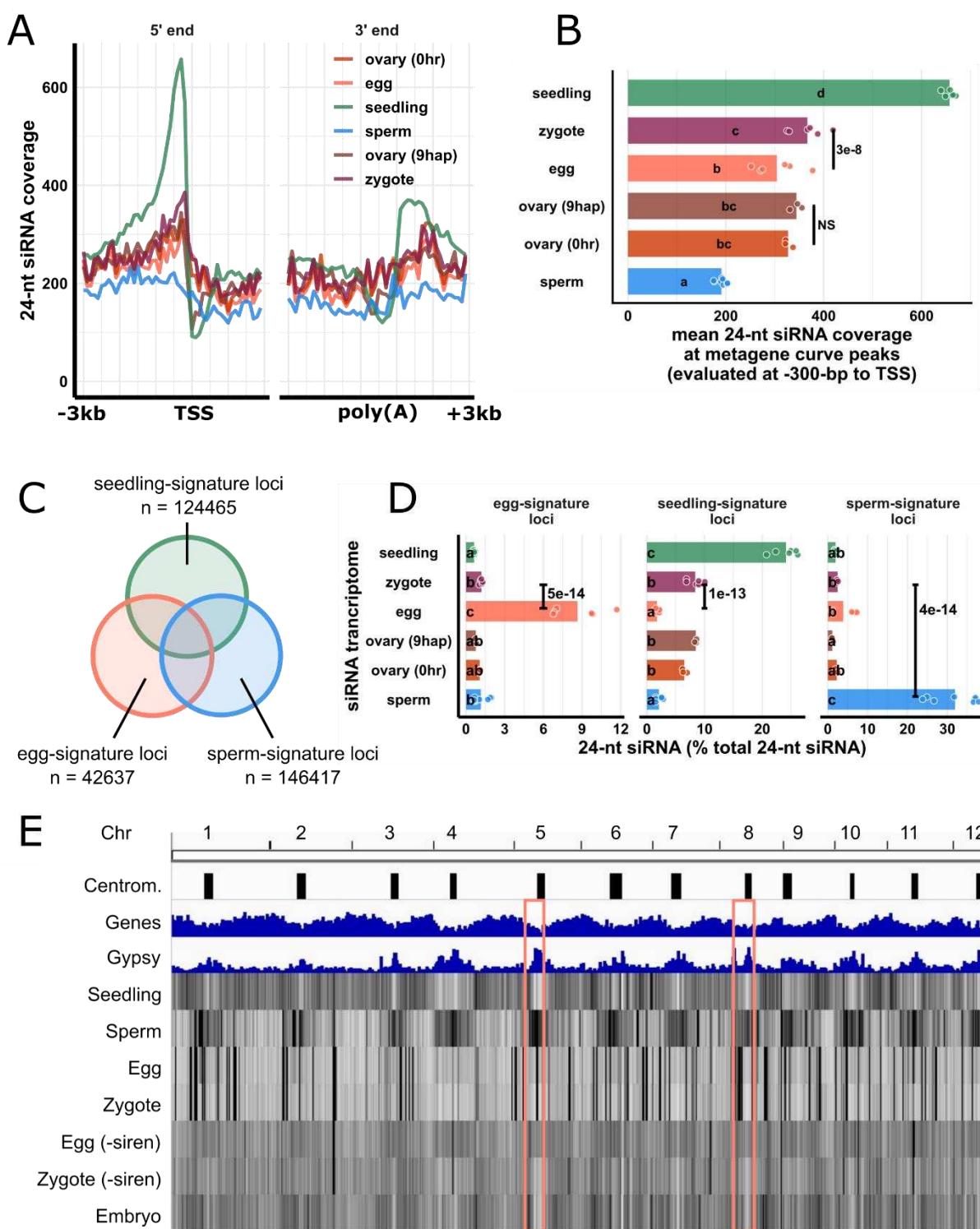
272 (E) Boxplots showing 24-nt siRNA relative abundances across siren classes across cell
273 types. Middle lines are median. Boxes span interquartile range. y-axis values are relative
274 to per million total 24-nt siRNAs in each siRNA transcriptome. Whiskers span 2.5th and
275 97.5th percentiles.

276 Letter grouping ($\alpha = 0.05$) and P values are based on Tukey tests. Embryo and endosperm data
277 from Rodrigues et al., (2013). Seedling, gametes, and pre-fertilization ovary data from Li et al.,
278 (2020).

279

280 Next, we compared the similarity among different siren loci categories based on their
281 genomic distributions. We used principal component analysis (PCA) to cluster the genomic
282 distributions of the loci categories based on their abundances in 50-kb windows genome-wide
283 (**Fig 2C**). As reference points, the genomic distributions of genes and *Gypsy* retrotransposons
284 were included. On the PC plot, endosperm siren loci were well separated from all the others
285 along PC1, which accounts for 58% of the variance in their genomic distributions. The rest of the
286 siren loci categories were separated along PC2, which accounts for 31% of the variance, much

287 less than what was explained by PC1. Ovary siren loci categories (pre- and post-fertilization) had
288 similar genomic distributions, clustering closely together (**Fig 2C**). Egg and zygote siren loci
289 also had nearly the same genomic distribution, clustering closely together (**Fig 2C**). All siren
290 categories have distinct genomic distributions from distributions of genes or Gypsy elements
291 (**Fig 2C**). Consistent with its unique genomic distribution, endosperm siren loci were more likely
292 to overlap a gene (**Fig 2D**). On average, ~30% of the locus length of an endosperm siren locus
293 was covered by a gene, whereas all the other siren categories display a similar fraction of locus
294 length covered by genes (~13%, $P < 1.4\text{e-}4$, Tukey tests). Lastly, we compared the relative
295 abundances of 24-nt siRNAs at different siren categories across different cell types. At
296 endosperm siren loci, endosperm had the highest 24-nt siRNA expression, ~10-fold higher than
297 the level in embryo and more than 100-fold higher than the levels in all other cell types we
298 examined (**Fig 2E**). In contrast, the other siren classes shared a siRNA accumulation pattern
299 across cell types (**Fig 2E**). Ovaries (pre- and post-fertilization), egg cell and zygote all had high
300 abundances of 24-nt siRNAs at ovary/egg/zygote siren loci, consistent with the stable expression
301 of egg siren siRNAs in zygote (**Fig 2B**), while seedling, sperm, embryo, and endosperm all had
302 low abundances of 24-nt siRNAs at these siren loci. Taken together, these distinct siRNA
303 accumulation patterns reveal that zygote siRNAs were concentrated at discrete sites similar to
304 egg and ovary, and that the stable expression of egg siren siRNAs explains the overall similarity
305 between zygote and egg (**Fig 1A**).


306

307 Zygote gained siRNAs at canonical siRNA loci while losing siRNAs at egg-signature loci

308 Although the siRNA profile in the zygote was similar to the egg cell in terms of overall
309 patterns of abundance, a deeper analysis revealed significant differences from the egg cell. We
310 produced metagene siRNA coverage plots for seedling, gametes, and zygote, as well as pre- and
311 post-fertilization ovaries (**Fig 3A**). Seedling had a strong peak upstream of the transcription start
312 site (TSS), corresponding to where TIR transposons are enriched in the genome, with the
313 exception of the CACTA superfamily (Han et al., 2013), and such a peak was absent in gametes
314 and ovaries. Zygote had a significant increase in 24-nt siRNA coverage at the peak of the
315 metagene curve relative to egg cells (**Fig 3A-B**, $P = 3\text{e-}8$, Tukey tests). In contrast, there was no
316 significant changes between pre- and post-fertilization ovaries (**Fig 3A-B**, $P = 0.98$, Tukey tests).
317 Thus, the differences between zygote and egg could not be due to trafficking of the newly-

318 transcribed siRNAs from ovary. To analyze the abundance of siRNAs at individual genomic
319 locus level, we defined siRNA loci from egg, sperm, and seedling using Shortstack (Axtell,
320 2013). We then classified seedling-signature loci as seedling siRNA loci that did not overlap any
321 egg siRNA loci or sperm siRNA loci (seedling loci \notin egg loci \notin sperm loci, **Fig 3C**).
322 Overlapping siRNA loci were defined as at least 1-bp overlap in genomic coordinates (see also
323 **Methods**). Likewise, we classified sperm-signature loci as sperm siRNA loci that did not overlap
324 any egg or seedling siRNA loci (sperm loci \notin egg loci \notin seedling loci, **Fig 3C**), and lastly, egg-
325 signature loci as egg siRNA loci that did not overlap any seedling or sperm siRNA loci (egg loci
326 \notin seedling loci \notin sperm loci, **Fig 3C**). At egg-signature loci, zygote experienced a 10-fold
327 reduction of 24-nt siRNAs (**Fig 3D**, $P = 5e-14$, Tukey tests). At seedling-signature loci, zygote
328 had 4.7-fold more 24-nt siRNAs than egg cell (**Fig 3D**, $P = 1e-13$, Tukey tests). Gaining siRNAs
329 at gene-proximal regions and seedling-signature loci is consistent with an increase of TIR
330 siRNAs in zygote (**Fig 1C**). Since these seedling-signature loci did not overlap any egg siRNA
331 loci or sperm siRNA loci, the increase of 24-nt siRNAs at seedling-signature loci in zygote was
332 unlikely due to carryover from either gamete. At sperm-signature loci, zygote had very few 24-nt
333 siRNAs (**Fig 3D**, zygote vs. sperm $P = 4e-14$, Tukey tests), much like the results for miRNAs
334 (**Fig 1E**), confirming small RNA contribution from sperm cell is very limited relative to egg.
335 There was little difference in the ovaries before and after fertilization for any of these locus
336 categories (**Fig 3D**, $P = 0.76$, $P = 0.84$ and $P = 0.84$ at egg-, seedling- and sperm-signature loci,
337 respectively). It is important to note that the zygote siRNA transcriptome was not used to define
338 these locus categories. Lastly, we bioinformatically removed siren siRNAs from egg and zygote
339 libraries (**Fig 3E**) and re-analyzed their genome-wide 24-nt siRNA distributions. This analysis
340 revealed that outside of the siren loci (which as defined previously constitute ~1% of all 24-nt
341 siRNA loci), zygote and egg were indeed distinct from each other in genome-wide 24-nt siRNA
342 distribution (**Fig 3E** and **Fig S2F**, $P = 0$, Tukey Tests). Egg cell has a slight enrichment of 24-nt
343 siRNAs at centromeric regions, while zygote showed a relative depletion of siRNAs at
344 centromeric regions (**Fig S2G**, egg vs. zygote $P = 0$, Tukey tests), much like embryo (zygote vs
345 embryo $P = 0.5$, Tukey tests; **Fig 3E**, pink boxes indicate two examples, see also **Fig S2G**).
346 Taken together, these results indicate that the zygote has an siRNA transcriptome that is distinct
347 from that of the egg cell, and further, that the changes from egg cell to zygote were independent
348 of post-fertilization changes in the ovary.

349

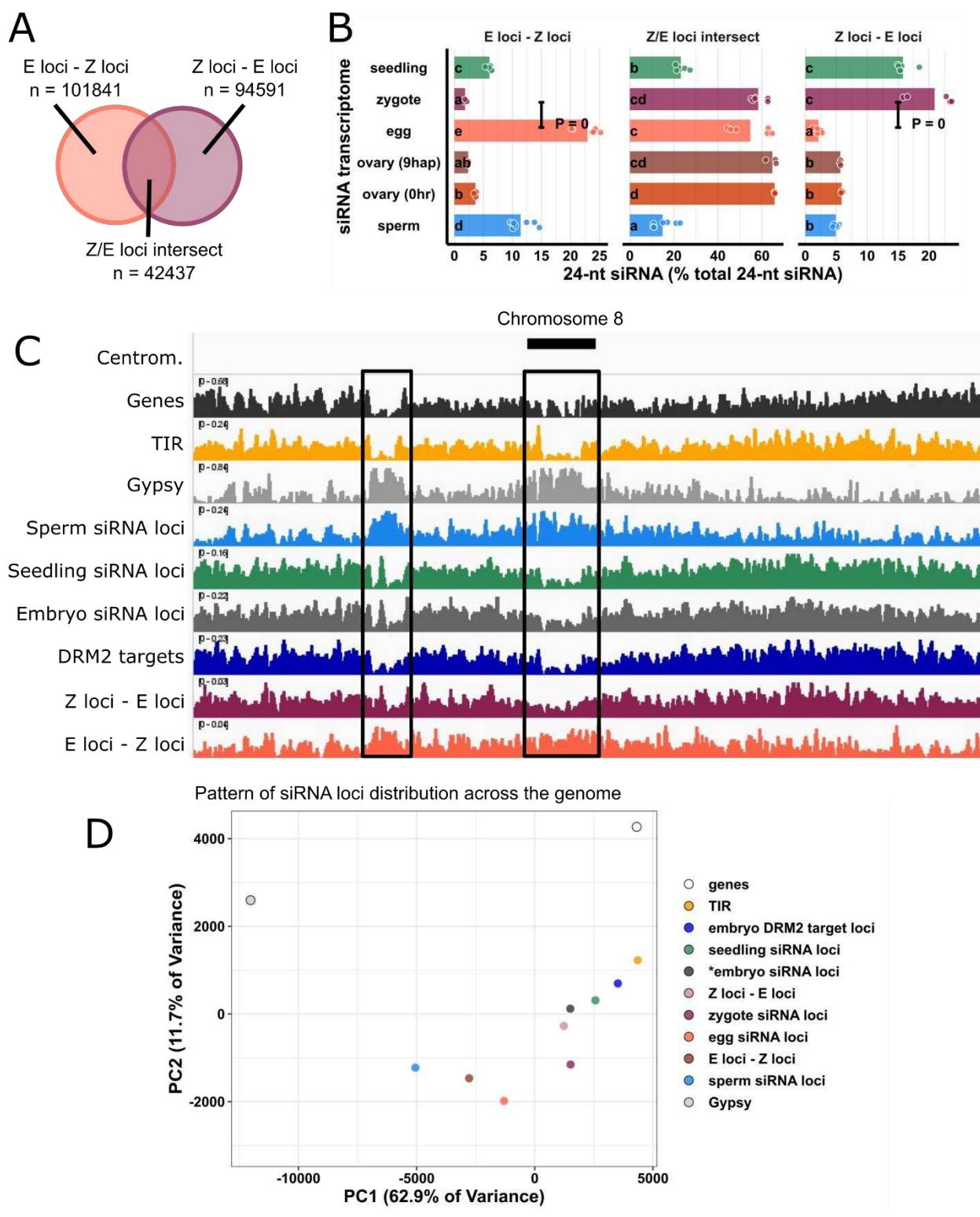
350

351

352 **Fig 3: Changes in the zygote siRNA transcriptome are independent from the ovary after**
 353 **fertilization.**

354 (A) Metagene coverage plot for 24-nt siRNAs. Coverage is measured over 100-bp intervals
355 and normalized per 1000 24-nt siRNAs. Vertical grid lines are 500-bp intervals. TSS
356 transcription start site, poly(A) polyadenylation site.
357 (B) Quantification of (A) at the interval from 300 to 200-bp upstream of TSS, corresponding
358 to the peaks of metagene curves. Each data point is an siRNA transcriptome and bar
359 heights are averages. x-axis values are normalized per 1000 24-nt siRNAs.
360 (C) Venn diagram illustrating egg-signature loci (egg siRNA loci that do not overlap any
361 seedling or sperm siRNA loci), seedling-signature loci (seedling siRNA loci that do not
362 overlap any egg or sperm siRNA loci), and sperm-signature loci (sperm siRNA loci that
363 do not overlap any egg or seedling siRNA loci). Sizes of overlap in Venn diagrams are
364 not to scale.
365 (D) Bar plot showing relative abundances of 24-nt siRNA across siRNA loci categories
366 defined in (C). The zygote siRNA transcriptome was not used to define these locus
367 categories. Each data point is an siRNA transcriptome. Bar heights are averages. x-axis
368 values are normalized to total 24-nt siRNAs.
369 (E) Heat map showing abundance of 24-nt siRNA across genome at 50-kb resolution. The
370 first three tracks are centromeres [as defined by (Mizuno et al., 2018)], genes, and *Gypsy*
371 retrotransposons. ‘-siren’ refers to siren siRNAs removed. Pink boxes highlight examples
372 where egg and zygote are distinct.
373 Letter grouping ($\alpha = 0.05$), and P values are based on Tukey tests. Zygote and 9 hap ovary data
374 are from this study, embryo (7-8 DAF) from Rodrigues et al. (2013), all other data from Li et al.,
375 (2020).

376
377 To further characterize the differences between the zygote siRNA transcriptome and that
378 of the egg cell, we next defined zygote siRNA loci using Shortstack with zygote siRNAs. We
379 then classified Z-E loci as zygote siRNA loci that did not overlap any egg cell siRNA loci (Z loci
380 \notin E loci in set operation), E-Z loci as egg siRNA loci that did not overlap any zygote siRNA loci
381 (E loci \notin Z loci), and Z/E loci intersect as zygote siRNA loci that overlapped egg siRNA loci (Z
382 loci \cap E loci, **Fig 4A**). Despite the similarities between egg and zygote at the high abundance
383 siRNA loci (**Fig 1A**, **Fig 2B**), widespread distinct siRNA loci were detected in one cell type but


384 not the other. There were 101,841 E-Z loci (newly diminished siRNA loci in zygote), 94,591 Z-E
385 loci (newly detected siRNA loci in zygote), but only 42,437 Z/E loci intersect.

386 When 24-nt siRNA reads at individual loci were tallied and normalized to total 24-nt
387 siRNAs, as expected, we found that at E-Z loci, egg had ~10-fold more 24-nt siRNAs than the
388 zygote (**Fig 4B**, $P = 0$, Tukey tests); at Z-E loci, zygote had ~10-fold more 24-nt siRNAs than
389 egg (**Fig 4B**, $P = 0$, Tukey tests); and no difference at Z/E loci intersect. There were siRNAs not
390 captured by siRNA loci. These siRNAs resided at genomic regions with insufficient siRNAs and
391 did not meet the 0.5 RPM threshold for assignment as loci on Shortstack (see also **Methods**),
392 which explains the small number of egg siRNAs at Z-E loci and the small number of zygote
393 siRNAs at E-Z loci. There were no differences between ovaries before and after fertilization in
394 any of the three locus categories (**Fig 4B**), again suggesting changes in the zygote siRNA
395 transcriptome were not coupled with the ovary (**Fig 3**). In addition, the abundance of seedling
396 siRNAs in Z-E loci and scarcity in E-Z loci revealed the emergence of a seedling-like siRNA
397 pattern in zygote (**Fig 4B**). Since the seedling siRNA transcriptome was not used to classify Z-E
398 loci, this observation suggests that the zygote has initiated a return to the canonical siRNA
399 profile, consistent with the increase in 24-nt siRNAs from TIR transposons (**Fig 1C**) as well as at
400 gene-proximal regions (**Fig 3A-B**) and seedling-signature loci in zygote (**Fig 3D**).

401 During ZGA of mRNA transcriptomes, genes expressed in zygote but not in egg cell all
402 had initially low expression relative to a background of abundant maternal transcript carryover
403 (Anderson et al., 2017; Chen et al., 2017; Zhao et al., 2019). Thus, if the siRNA transcriptome
404 transitions similarly in the zygote, one would expect to see an initial widespread detection of low
405 abundance 24-nt siRNAs at new loci, relative to a background of more abundant maternal
406 carryover siRNAs corresponding to egg siren loci. Indeed, in contrast to the high abundance
407 siRNAs of intersect loci, Z-E loci and E-Z loci overall had lower siRNA abundances than
408 zygote/egg intersect loci (**Fig 4B**). Nevertheless, on average, one in every five zygote 24-nt
409 siRNAs (~20%) resided at Z-E loci in the zygote. Together with the numerical abundance of Z-E
410 loci (70% of all zygote loci) these results suggest that newly detected siRNA loci in zygote are
411 widespread and explain a substantial fraction of 24-nt siRNAs in zygote.

412 The highly expressed siren loci in egg and zygote raise the concern of whether the
413 apparent upregulation of Z-E loci could be explained by downregulation of egg siren loci.
414 Consistent with the stable expression of egg siren loci in zygote, including or excluding siren

415 siRNAs did not change the results of analyses (**Fig S2**, **Fig 3A-D**, **Fig 4A-B**), supporting the
416 distinct distributions of non-egg-siren 24-nt siRNAs in egg and zygote (**Fig 3E**). Taken together,
417 changes in the zygote siRNA transcriptome are not explained by downregulation of abundance
418 egg siren siRNAs, but due to up- and downregulation of other siRNA loci that are widespread
419 across genome.

420

421 **Fig 4: Widespread newly detected siRNA loci in zygote.**

422 (A) Venn diagram illustrating E-Z loci (egg siRNA loci that do not overlap any zygote

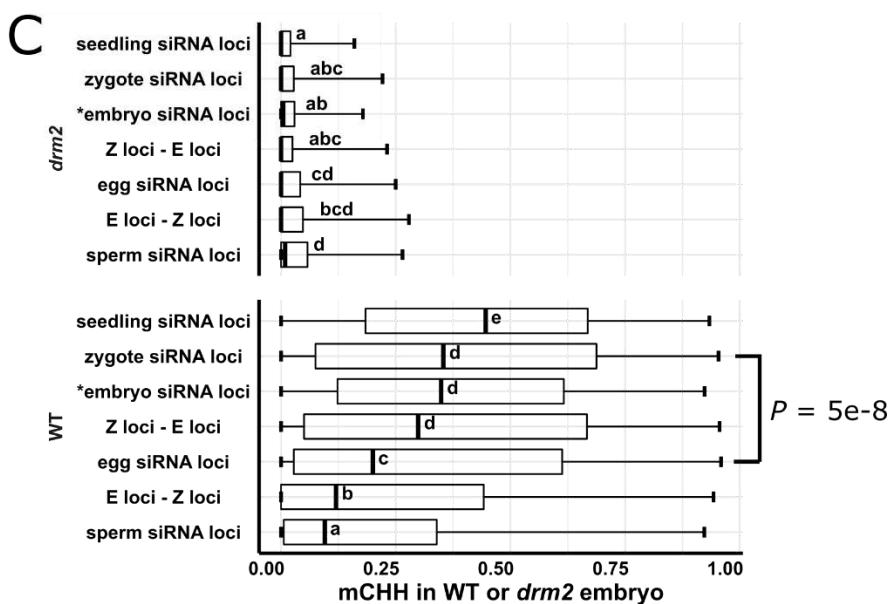
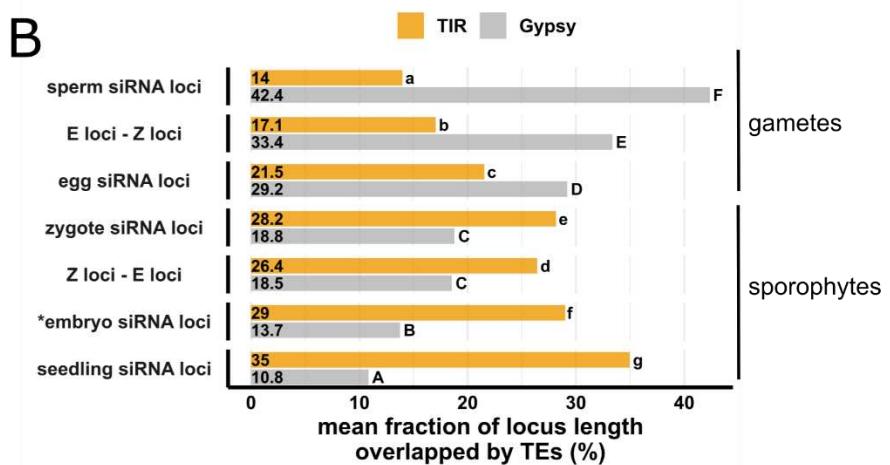
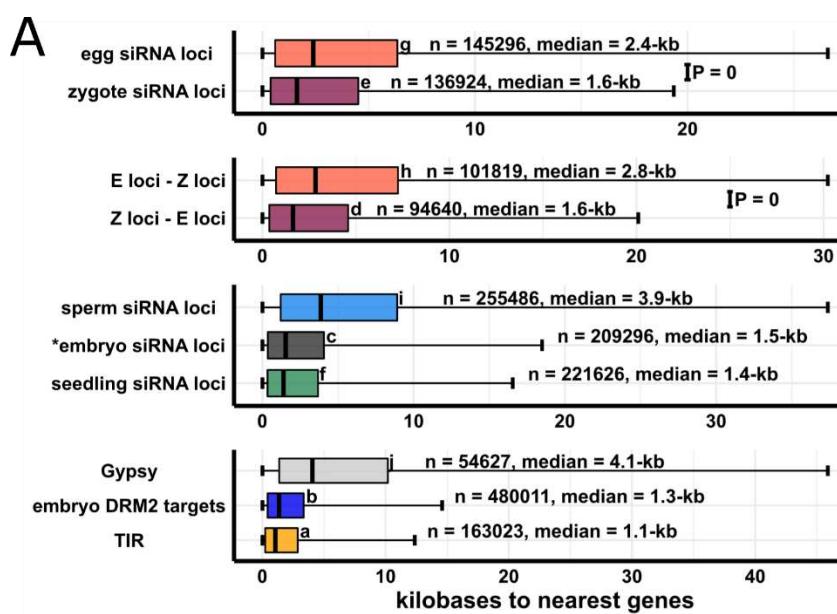
423 siRNA loci, E loci \notin Z loci), Z-E loci (zygote siRNA loci that do not overlap any egg

424 siRNA loci Z loci \notin E loci), and Z/E loci intersect (zygote siRNA loci that overlap egg
425 siRNA loci, Z loci \cap E loci). Sizes of overlap in Venn diagrams are not to scale.
426 (B) Quantification of 24-nt siRNA relative abundances for (A). Each data point is a siRNA
427 transcriptome. Bar heights are averages. x-axis-values are relative to total 24-nt siRNA
428 reads. Letter grouping ($\alpha = 0.05$), and P values are based on Tukey tests.
429 (C) Distribution of siRNA loci along a chromosome. Chromosome 8 is chosen because it is
430 one of the chromosomes with a completed sequenced centromeric region (Mizuno et al.,
431 2018). Centrom. Centromeric regions; TIR: terminal inverted repeat transposons,
432 CACTA superfamily excluded. *Gypsy*: *Gypsy* retrotransposons. Black boxes highlight
433 regions with abundant *Gypsy* retrotransposons and relative depletion of TIR, seedling
434 siRNA loci, embryo siRNA loci, DRM2 targets, and Z-E loci.
435 (D) Principal component plot showing siRNA loci distribution across the genome.
436 Distributions are evaluated at 50-kb resolution across the genome. Each data point is the
437 distribution of a loci category.

438 Zygote and 9 hap ovary data are from this study, all other data from Li et al., (2020).

439

440 Newly-detected siRNA loci in zygote resemble canonical siRNA loci in terms of genomic
441 location and DNA methylation




442 To investigate the patterns and characteristics of zygote siRNA loci, we compared the
443 genomic distribution of zygote siRNA loci and Z-E loci against a set of different siRNA loci
444 categories, including E-Z loci, egg siRNA loci, embryo siRNA loci (Rodrigues et al., 2013),
445 seedling siRNA loci, and sperm siRNA loci. Our efforts to generate robust DNA methylome
446 profiles for zygotes were not successful, possibly because zygotes are fragile as compared to egg
447 cells, and the output of random-primed based methylome sequencing methods are highly
448 sensitive to library preparation conditions (Li et al., 2019). However, we had previously
449 generated a rice *drm2* mutant using CRISPR-Cas9 genome editing. By comparing mCHH
450 between mature wildtype and *drm2* embryos, we had previously identified a set of DRM2 targets
451 (Li et al., 2020), which define canonical sites of RdDM. As reference points, we also included
452 genes, TIR transposons and *Gypsy* retrotransposons (Kawahara et al., 2013). Z-E loci resembles
453 the distribution of TIR, seedling and embryo siRNA loci, as well as embryo DRM2 targets. In
454 contrast, the E-Z loci representing the newly diminished loci in zygote had a distinct pattern,

455 more similar to sperm siRNA loci, which is more heterochromatic (**Fig 4C**). There was a relative
456 depletion of siRNA loci from centromeric regions for zygote siRNA loci, much like canonical
457 siRNA loci, and unlike egg siRNA loci (**Fig S3A**, $P = 4e-10$, Tukey tests). Consistent with a
458 more similar distribution to canonical siRNA loci, zygote siRNA loci and Z-E loci had higher
459 degrees of overlap with seedling siRNA loci and embryo DRM2 targets, while egg siRNA and
460 E-Z loci had low degrees of overlap, as did sperm siRNA loci (**Fig S3B**). Zygote siRNA loci and
461 Z-E loci overlapped larger numbers of DRM2 targets per Mb genome space, much like seedling
462 siRNA loci, and unlike egg siRNA loci, E-Z loci or sperm siRNA loci (**Fig S3C**).

463 To gain more information on the factors underlying the variation in siRNA loci
464 distributions, we used principal component analysis (PCA) to cluster the genomic distributions
465 of the above locus categories based on their abundance in 50-kb windows genome-wide (**Fig**
466 **4D**). The separation of locus categories along PC1 had a near-perfect rank order correlation with
467 median distance to nearest genes (**Fig S3D**, $\rho = -0.98$, $P = 0$), and PC2 was correlated with
468 median length of locus categories (**Fig S3E**, $\rho = 0.88$, $P = 7e-4$). PC1, which explained 63% of
469 variance in genomic distributions across loci categories, was strongly correlated with various
470 aspects of rice genome organization. PC1 was strongly correlated with TIR transposon overlap as
471 well as mCHH level in wildtype embryo (**Fig S4A and C**). PC1 was also strongly anti-correlated
472 with *Gypsy* retrotransposon overlap and mCG, and to a lesser extent mCHG in wildtype embryo
473 (**Fig S4B, D and E**). These genomic features are mutually correlated (**Fig S4F**), consistent with
474 the prior understanding of cereal genome organization (Gent et al., 2013; Han et al., 2013).

475 Strong correlations between PC1 (gene proximity), TE overlap, and DNA methylation
476 led us to statistically assess the differences of these attributes among siRNA loci categories. TIR
477 transposons, where RdDM is known to take place in cereal genomes, was gene proximal,
478 consistent with the gene proximal distribution of embryo DRM2 targets (**Fig 5A**). Canonical
479 siRNA loci, such as seedling siRNA loci and embryo siRNA loci, were closer to genes than non-
480 canonical siRNA loci, such as sperm siRNA loci (**Fig 5A**). E-Z loci, the newly diminished
481 siRNA loci in zygote, were on average much farther away from genes than Z-E loci were (**Fig**
482 **5A**, 2.8-kb vs. 1.6-kb, $P = 0$ Tukey tests), consistent with their heterochromatic genomic
483 distributions (**Fig 4C-D, Fig S3A**). Total zygote siRNA loci were closer to genes than total egg
484 siRNA loci ($P = 0$). From egg cell to zygote, there was a 30% decrease in median distance (2.4-
485 kb vs. 1.6-kb). In contrast, from zygote to embryo (7 days after fertilization, data from Rodrigues

486 et al., 2013), there was an 6% decrease (1.6-kb vs. 1.5-kb). In gametes, siRNA loci were more
487 likely to overlap a *Gypsy* retrotransposon than a TIR transposon (**Fig 5B**). However, in
488 sporophytes, including zygote itself, siRNA loci are more likely to overlap a TIR transposon than
489 a *Gypsy* retrotransposon (**Fig 5B**). These observations are consistent with the results where
490 zygote had more TIR siRNAs and less *Gypsy* siRNAs (**Fig 1C**), more gene-proximal 24-nt
491 siRNAs than egg cell (**Fig 3A-B**), zygote had increased siRNAs in seedling-signature loci (**Fig**
492 **3C**), and seedling had comparable siRNA level with zygote in Z-E loci (**Fig 4B**).

494 **Fig 5: Newly detected siRNA loci in zygote reset to the canonical siRNA profile and predict**
495 **CHH methylation in embryo in an RdDM-dependent manner.**

496 (A) Boxplots showing distance of siRNA loci to nearest genes. Middle lines are median.
497 Boxes span interquartile range. Whiskers span 2.5th and 97.5th percentiles.
498 (B) Bar plots showing mean locus length overlapped by TIR or *Gypsy* transposons across
499 siRNA loci categories. Statistical comparisons are made across siRNA loci categories
500 within a TE superfamily.
501 (C) Boxplots showing CHH methylation level in mature wildtype and *drm2* mutant embryos.
502 Middle lines are median. Boxes span interquartile range. Whiskers span 2.5th and 97.5th
503 percentiles. E-Z loci: $n = 101,841$, Z-E loci: $n = 94,591$ (69% of all zygote siRNA loci).
504 Letter groupings ($\alpha = 0.05$) and P values are based on Tukey tests. *Embryo siRNA data from
505 Rodrigues et al., (2013), which was based on a single replicate. Seedling, gametes, and pre-
506 fertilization ovary data from Li et al., (2020).

507

508 Resetting to the canonical siRNA pattern might suggest that the newly detected siRNA
509 loci in the zygote are targeted for CHH methylation during embryogenesis in an RdDM-
510 dependent manner. We compared DNA methylation levels across different siRNA loci categories
511 in mature wildtype and *drm2* embryos (Fig 5C, see also Fig S5). Although all siRNA loci
512 categories were associated with RdDM during embryogenesis, as median mCHH levels were all
513 higher in wildtype embryo than *drm2* embryo, zygote siRNA loci had much higher level of
514 mCHH than egg siRNA loci did in wildtype embryo (Fig 5C, $P = 5e-8$), much like embryo and
515 seedling siRNA loci. Importantly, newly detected siRNA loci (as represented by Z-E loci) had
516 high mCHH levels in wildtype embryo ($P = 0$), whereas newly diminished siRNA loci (E-Z loci)
517 had low mCHH levels in wildtype embryo. In addition, while there were smaller differences in
518 mCHG and especially in mCG across locus categories in wildtype embryo when compared to
519 mCHH, the full extent of methylation across siRNA loci categories also depended on DRM2 for
520 all three contexts (Fig S5). It is important to note that zygote siRNA loci had high degrees of
521 overlap with canonical RdDM loci (seedling siRNA loci and embryo DRM2 targets, Fig S3B),
522 and that zygote siRNA loci overlapped large number of DRM2 targets per Mb genome space
523 (Fig S3C). Together with elevated mCHH level in embryo, these results suggest that newly
524 detected zygote siRNA loci mark canonical siRNA loci that will undergo hypermethylation

525 during embryogenesis, rather than defining hypermethylated regions that are distinct from
526 canonical siRNA loci.

527 Lastly, the fact that siren loci were defined by abundant 24-nt siRNAs (**Fig 2A**) led us to
528 speculate that they would have high mCHH. In fact, we found the opposite, i.e., they had lower
529 mCHH levels relative to other siRNA loci in each tissue (**Fig S6**). In ovary, siren loci had lower
530 mCHH level than canonical siRNA loci (seedling siRNA loci), and ovary siRNA loci that were
531 not siren loci had comparable mCHH level to siren loci, if not higher (**Fig S6A**). Similar results
532 were found for egg cell and embryo as well (**Fig S6B-C**). At siren loci as well as siRNA loci that
533 were not siren loci, DMR2 was required for mCHH in embryo. Lastly, both wildtype and *drm2*
534 endosperm had overall low mCHH methylation, and endosperm siren loci did not correspond to
535 high mCHH level in the endosperm (**Fig S6D**). Unlike mCHH, mCG and mCHG did not produce
536 any notable pattern across cell types (**Fig S6**). Taken together, these results suggest that although
537 the highly abundant siRNAs produced by siren loci may also target DNA methylation in a
538 DRM2-dependent manner, they do so inefficiently as compared to siRNAs from canonical
539 RdDM loci.

540

541 **Discussion**

542 The parental gametes have unequal contributions to the zygote siRNA transcriptome in rice

543 The zygote is a critical stage in the transition from gametophyte to sporophyte, but
544 despite long standing evidence for overall chromatin reorganization after fertilization (Ingouff et
545 al. 2010) there is little information available on the epigenetic changes in the zygotic genome
546 that accompany this transition. We report here the first small RNA transcriptome
547 characterization of plant zygotes. Overall, the small RNA transcriptome of the zygote is similar
548 to that of the egg cell (**Fig 1A-D**), which we explain by transcript carryover from the egg cell,
549 and the dilution of sperm cell small RNAs. This is supported by our finding that the most
550 abundant miRNAs in egg continued to be the most abundant in zygote (**Fig 1D**). In contrast, top
551 sperm-enriched miRNAs became orders of magnitudes less abundant in zygote (**Fig 1E** and **Fig**
552 **S1C**), and zygote had very few 24-nt siRNAs at sperm-signature siRNA loci (**Fig 3D**). These
553 observations have ensuing implications for the current models of post-fertilization silencing
554 through the male germline. It has been proposed that sperm-transmitted siRNAs regulate TEs
555 and balance parental contribution in the endosperm, as RdDM-mutants affect endosperms from

556 2n maternal \times 4n paternal crosses (Borges et al., 2018; Erdmann et al., 2017; Martinez et al.,
557 2018; Satyaki and Gehring, 2019) in *Arabidopsis*. Our data indicate that at least in rice
558 embryogenesis, any effects of sperm-transmitted siRNAs on embryos are likely to be indirect.
559 Assuming sperm-derived siRNAs are also diluted by the larger central cell, we speculate that the
560 effect of the sperm-transmitted siRNAs may act through sperm chromatin modifications and not
561 siRNAs themselves. In the newly formed endosperm, there is lack of an active replacement of
562 histone variants, and sperm-derived histone variants are passively diluted through nuclear
563 divisions (Ingouff et al., 2007, 2010). In contrast, in the zygote, histone variants are actively
564 replaced in a replication-independent manner before the first embryonic division (Ingouff et al.,
565 2007, 2010).

566

567 A special class of highly abundant maternal siRNAs persists in the zygote

568 We found that a small number of loci accounted for most of the siRNAs in egg cells and
569 zygotes (**Fig 2A**). We refer to these loci as siren loci, using the term applied to similar loci in rice
570 endosperm (Rodrigues et al., 2013), and more recently in *Brassica rapa* and *Arabidopsis* ovules
571 (Grover et al., 2020). Importantly, egg siren siRNAs remained similarly highly expressed in the
572 zygote (**Fig 2B**). Thus, upregulation of siRNAs at newly detected zygote siRNA loci cannot be
573 explained by large downregulation of egg siren loci, which was further demonstrated by similar
574 results for these newly detected loci obtained after excluding the siren siRNAs from the analysis
575 (**Fig S2**). Siren loci were first discovered in rice endosperm (Rodrigues et al., 2013). In
576 *Arabidopsis* and *Brassica rapa* (Grover et al., 2020), siren loci detected in ovules are also highly
577 expressed in the endosperm; however, siren loci in rice ovary are distinct from those detected in
578 rice endosperm (**Fig 2B-E**). Siren loci in the zygote were distinct from endosperm siren loci in
579 endosperm collected 7-8 days after fertilization, instead coinciding with siren loci detected in
580 ovary and egg cell (**Fig 2B-E**). However, it remains possible that the central cell and earlier
581 stages of endosperm have an siRNA transcriptome more like that of the zygote. It has been
582 proposed that the embryo receives siRNAs from the endosperm (Hsieh et al., 2009; Martínez and
583 Köhler, 2017). This does not appear to be the case in 7-8 day rice seeds, since rice embryos had
584 low siRNA abundance at endosperm siren loci at this stage (Rodrigues et al., 2013). A recent
585 publication demonstrated that trans-acting siRNAs from ARFs (tasiR-ARF) traffic across ovule
586 cell layers to regulate megasporocyte mother cell (MMC) identity in *Arabidopsis* (Su et al., 2020). It

587 has also been proposed that siRNAs may traffic from the seed coat into the embryo during seed
588 development (Grover et al., 2020, 2018). Likewise, it is possible that siren siRNAs in the egg
589 cell and zygotes are produced in the ovary tissue instead. Although siRNAs at siren loci may
590 direct some CHH methylation in ovary or during embryogenesis, they appeared to have lower
591 mCHH level than their non-siren siRNA loci counterparts (**Fig S6**). Therefore, it is unlikely that
592 siren siRNAs play a role in embryogenesis through directing DNA methylation. However, we
593 cannot exclude the possibility that the 24-nt siRNAs of siren loci function in chromatin
594 modification or post transcriptional silencing independently of DNA methylation in the zygote or
595 egg, regardless of their cell type of origin.

596

597 The siRNA transcriptome landscape of rice zygotes indicates resetting towards a canonical
598 siRNA pattern

599 We detected widespread new zygote siRNA loci relative to the egg cell, representing
600 ~69% of all zygote siRNA loci. There were 94,591 zygote siRNA loci that did not overlap any
601 egg siRNA loci ($Z \text{ loci} \notin E \text{ loci}$ or $Z-E \text{ loci}$, **Fig 4A**), as compared to 42,437 siRNA loci that
602 overlapped egg siRNA loci ($Z \text{ loci} \cap E \text{ loci}$ or $Z/E \text{ loci intersect}$, **Fig 4A**). In addition, 101,841
603 egg siRNA loci were diminished in zygote ($E \text{ loci} \notin Z \text{ loci}$ or $E-Z \text{ loci}$, **Fig 4A**). In relative
604 abundance, most of the siRNA reads were accounted for by egg siRNA carryover and stably-
605 expressed egg siren siRNAs (**Fig 2B**), and thus siRNA abundance was lower at $Z-E$ loci than at
606 Z/E loci intersect which contains the siren siRNAs (**Fig 4B**). This low relative abundance can be
607 understood in the context of the zygotic transition, which involves a new genomic program
608 initiated within that one cell, so that production of new siRNAs, either by RNA polymerase IV or
609 RNA polymerase II, will be occurring against the backdrop of egg cell RNA carryover. Similar
610 observations have been made for zygote mRNA transcriptomes from multiple independent
611 laboratories from different plant species (Anderson et al., 2017; Chen et al., 2017; Zhao et al.,
612 2019), where zygote *de novo* expressed genes, including those with key functions in
613 embryogenesis, were lowly expressed in the zygote. In fact, the relative abundance of the zygote
614 siRNAs at $Z-E$ loci (~20%) is similar to that of egg cell siRNAs at $E-Z$ loci (~22.5%; **Fig 4B**),
615 but they differ significantly in their genome-wide distribution as discussed below.

616 Several lines of evidence indicate the zygote has initiated a resetting towards the
617 canonical siRNA pattern, and that such resetting is independent from the ovary. First, the zygote

618 had increased 24-nt siRNA from TIR transposons, and decreased siRNAs from *Gypsy*
619 retrotransposons, as compared to the egg cell (**Fig 1C**). Second, zygote had increased 24-nt
620 siRNAs at seedling-signature loci (**Fig 3D**), as compared to the egg cell. In contrast, there were
621 no significant changes to the 24-nt siRNAs at seedling-signature loci in ovaries pre- and post-
622 fertilization (**Fig 3D**). Moreover, seedling had comparable 24-nt siRNAs to zygote at Z-E loci
623 (**Fig 4B**). As the zygote siRNA transcriptome was not used to define seedling-signature loci, and
624 the seedling siRNA transcriptome was not used to define Z-E loci, these results serve as an
625 objective indication that the zygote shifted towards a more seedling-like siRNA transcriptome.
626 Third, zygote had increases relative to the egg cell in 24-nt siRNAs at the TSS region upstream
627 of genes, while there was lack of a corresponding change in the ovary after fertilization (**Fig 3A-**
628 **B**). High 24-nt siRNA coverage upstream of genes around the TSS is a feature of a canonical
629 siRNA transcriptome, as exemplified by seedling (**Fig 3A**). Fourth, the genomic distribution of
630 Z-E loci is more similar to TIR transposons, embryo siRNA loci, embryo DRM2 targets and
631 seedling siRNA loci, while that of E-Z loci is not (**Fig 4C-D**). Consistent with the major
632 contribution of Z-E loci to the zygote siRNA distribution, the total set of zygote siRNA loci also
633 displayed a closer relationship to the canonical siRNA distribution than did the total egg siRNA
634 loci (**Fig 4C**). Fifth, similarities in genomic distribution were confirmed by distances to the
635 nearest genes and TE overlaps (**Fig 5A-B**). Notably, there was a 30% decrease in median
636 distance to genes from egg to zygote, which took place over the course of less than one cell
637 cycle. Only an 6% decrease occurred during the transition from zygote to embryo (7 days after
638 fertilization), occurred over the course of numerous cell cycles. Consistent with distance to
639 nearest genes, gamete siRNA loci were more likely to overlap a *Gypsy* element than a TIR
640 element; while zygote siRNA were more likely to overlap a TIR element instead, like the rest of
641 sporophyte siRNA loci categories.

642

643 Newly detected zygote siRNAs mark future CHH hypermethylation sites in mature embryos

644 Hypermethylation of embryo has been reported in a number of angiosperm species,
645 including *Arabidopsis*, soybean, chickpea, *Brassica rapa*, and rice (Bouyer et al., 2017;
646 Chakraborty et al., 2020; Kawakatsu et al., 2017; Li et al., 2020b; Lin et al., 2017; Rajkumar et
647 al., 2020; Zhou et al., 2021). We found that newly detected siRNA loci have abundant CHH
648 methylation in embryos that is dependent on the RdDM methyltransferase DRM2 (**Fig 5C**).

649 Although all siRNA loci categories had higher mCHH levels in wildtype embryo than in *drm2*
650 embryo, zygote siRNA loci had higher mCHH levels than egg siRNA loci in mature wildtype
651 embryo, resembling embryo and seedling siRNA loci. These results indicate that newly detected
652 siRNA loci in zygote not only reset to canonical siRNA pattern, but also that the corresponding
653 24-nt siRNAs are capable of targeting high CHH methylation during embryogenesis. Since
654 zygote siRNA loci have a similar distribution to canonical siRNA loci (**Fig 4D**) and had
655 substantial degrees of overlap with seedling siRNA loci and embryo DRM2 targets (**Fig S3B-C**),
656 zygote siRNAs are associated with high CHH methylation at regions similar to seedling siRNA
657 loci and embryo DRM2 targets, instead of regions independent from canonical siRNA loci. Thus,
658 resetting of the gametic 24nt siRNA loci to a distribution that results in embryo
659 hypermethylation appears to be initiated in the zygote before the first embryonic division.
660 Reminiscent of the increased heterochromatic siRNAs in rice gametes, a recent paper in
661 *Arabidopsis* revealed that heterochromatin is decondensed during embryogenesis and promotes a
662 transient production of siRNAs from heterochromatic TEs at least as early as the preglobular
663 stage (Papareddy et al., 2020). The *Arabidopsis* embryo siRNAs from euchromatic TE and
664 canonical siRNA loci peaked towards the end of embryo morphogenesis. However, as neither
665 egg nor zygote siRNAs have been sequenced yet in *Arabidopsis*, the relationship of the
666 heterochromatic siRNAs in *Arabidopsis* embryos to the siRNA reprogramming in egg cells and
667 zygotes that is described here for rice remains to be determined.

668

669 **Conclusions**

670 Plant gametes are highly dimorphic in terms of size, chromatin (Wang and Köhler 2017;
671 Borg and Berger 2015; Ingouff et al. 2010), and gene expression (Anderson et al., 2013),
672 consistent with a differential reprogramming of gamete epigenomes prior to fertilization inferred
673 from their siRNA profiles (Li et al., 2020). In mammals, studies have found a progressive change
674 in epigenomes after the two-cell embryo stage and concluded by the blastocyst stage (Xu and
675 Xie, 2018). Due to the extreme difficulties associated with plant zygote isolation and
676 corresponding low-input sequencing, epigenome profiles of zygotes have remained poorly
677 characterized in plants. The results from this study in rice suggest that while the zygote inherits
678 maternal (but not paternal) siRNAs, the resetting to the canonical siRNA transcriptome is
679 initiated, setting the stage for the methylation pattern in the embryo. This conclusion is consistent

680 with previous observations in *Arabidopsis* that replacement of H3 variants occurs in the zygote
681 before the first cell division (Ingouff et al., 2007; 2010). Lastly, as siRNA expression is
682 influenced by histone modifications, and siRNAs can either reinforce or initiate DNA
683 methylation and histone modifications, the siRNA transcriptome is an indicator and output of the
684 epigenome. Thus, it appears likely that resetting of the other features of the epigenome, such as
685 histone modifications and chromatin conformation, may also be initiated in plant zygotes after
686 fertilization.

687

688 **Methods**

689 Plant growth condition and zygote collection

690 Rice (*Oryza sativa*) variety *Kitaake* was grown in soil in greenhouse under natural light
691 condition. Zygote isolation was performed as described (Anderson et al., 2017; Li et al., 2019).
692 Briefly, rice flowers were hand pollinated. At eight to nine hours post pollination, ovaries were
693 dissected. A transverse cut was made at the middle region of the ovary in a droplet of 0.3 M
694 mannitol. The lower part of the cut ovary was gently pushed using an acupuncture needle to
695 separate selected cells under a phase contrast inverted microscope. Once the zygote was
696 separated and floated out of the ovary incision, it was captured by a fine glass capillary and
697 immediately frozen in liquid nitrogen. We routinely culled any unfertilized egg cells that did not
698 conform to zygotic cell morphology during our collections (Anderson et al., 2017). 50 zygotes
699 were collected for each replicate, and six replicates were collected. Intact ovaries at 8-9 hours
700 after pollination were collected separately for the ovary small RNA analysis. 10 ovaries were
701 collected for each replicate, and three replicates were collected (**Supplemental Table 1**).

702

703 RNA extraction and small RNA library construction

704 RNA extractions were performed using Ambion RNAqueous Total RNA kit (AM1931),
705 including an on-column DNase I treatment using Qiagen DNase I (79254). Total RNA was
706 analyzed using a Bioanalyzer (Agilent) to check for RNA integrity, with the eukaryotic total
707 RNA-pico program. RNA input for library construction was ~30 ng. Small RNA libraries were
708 made using the NEXTflex small RNA-seq kit v3 (PerkinElmer NOVA-5132-05), with the
709 following modifications. 1/4 dilution of adapters was used. The 3' adapter ligation step was done
710 at 20°C overnight. Zygote libraries were amplified at 24 cycles. Post-fertilization ovary libraries

711 were amplified at 20 cycles, as pre-fertilization ovaries (Li et al., 2020). The library product was
712 size selected using PippinHT (Sage Science) 3% agarose gel cassettes.

713

714 Small RNA sequencing analysis

715 Analyses were based on the Os-Nipponbare-Reference-IRGSP-1.0 reference genome
716 (Kawahara et al., 2013). Genome annotations for transposable elements, genes, miRNAs, 5S
717 rRNA, tRNA, NOR, CentO repeats and phasiRNA loci were performed as described (Li et al.
718 2020). Quality filtering, adapter trimming, PCR duplicate removal and alignment were
719 performed as described (Li et al. 2020). Small RNA-seq reads were quality filtered and trimmed
720 of adapters using cutadapt (Martin, 2011), parameters “-q 20 -a
721 TGGATTCTCGGGTGCCAAGG -e .05 -O 5 --discard-untrimmed -m 28 -M 33”. PCR
722 duplicates were then removed using PRINSEQ, parameters “prinseq-lite.pl -fastq out_format 3 -
723 out_good -derep 1” (Schmieder and Edwards, 2011). The four random nucleotides at each end
724 were then removed using cutadapt “-u4” followed by cutadapt “-u -4”. Reads were aligned to the
725 genome with BWA-backtrack (version 0.7.15) (Li and Durbin 2009), parameters “aln -t 8 -l 10.”
726 Except where indicated otherwise, multi-mapping reads were included in all analyses. The
727 uniquely mapping subset of siRNAs was defined by having MAPQ values of at least 20 using
728 SAMtools (Li et al. 2009). Except where indicated otherwise, siRNAs used for analyses were
729 small RNA reads (20 – 25-nt) not overlapping 90% or more of their lengths with miRNA, 5S
730 rRNA, tRNA, NOR and phasiRNA loci as determined by the BEDTools coverage tool (Quinlan
731 and Hall, 2010). For analysis of overlaps of siRNAs at *Gypsy* retrotransposons, the CentO
732 centromeric tandem repeat, Terminal Inverted Repeat (TIR) DNA transposons, and 24-nt siRNA
733 loci, only siRNAs that overlapped by at least 50% of their lengths were counted. CACTA
734 elements were excluded from the TIR DNA transposons. Distances to closest genes were
735 obtained using the BEDTools closest tool. Whole-genome small RNA heat maps were made on
736 50-kb intervals using IGVtools (Thorvaldsdottir et al., 2013). For better visualization of
737 midrange values, heatmap intensity was maxed out at 1.25× coverage per 10 million 24-nt
738 siRNAs.

739

740 miRNA analysis

741 To measure miRNA accumulation, the BEDTools coverage tool was used to count the
742 number of 20 – 25-nt reads that overlapped at least 90% of their length with annotated miRNA
743 positions (**Supplemental Dataset 1**). R package EdgeR was used to analyze miRNA
744 accumulation (McCarthy et al., 2012). Individual miRNA counts were normalized by total
745 mapped small RNAs and filtered for >1 counts per million reads (CPM) in at least three libraries.
746 Differential expression analyses were performed under $|\log_{2}FC| > 1$ and $FDR < 0.05$ cutoffs.
747 Differential expressing miRNA genes were visualized under counts per million miRNAs.

748

749 Definition of siRNA loci

750 Small RNA loci were identified from the initial 20 – 25-nt total small RNA alignment
751 BAM files using Shortstack (Axtell, 2013) after merging replicates using default parameters.
752 Each cell type was downsampled to 3.5 million small RNAs first. For each tissue type (pre- and
753 post-fertilization ovary, egg cell, sperm cell, zygote, seedling, embryo and endosperm), siRNA
754 loci were defined as $RPM > 0.5$, 24-nt-dominant and not detected as a miRNA locus
755 ('DicerCall=24; MIRNA=N'). Endosperm siren loci were defined as the highest expressing loci
756 that accounted for 60% of the cumulative RPM in the endosperm. Similarly, pre- and post-
757 fertilization ovary siren loci as well as egg and zygote siren loci were defined as the highest
758 expressing loci that accounted for 60% of the cumulative RPM in the ovary. The 60% cutoff was
759 selected based on the turning point of cumulative expression vs. percentage rank plot of ovary
760 (**Fig 2A**). Seedling-signature loci were identified as seedling siRNA loci that did not overlap any
761 sperm siRNA loci or egg siRNA loci (seedling loci \notin egg loci \notin sperm loci, **Fig 3C**) using the
762 BEDTools intersect tool (Quinlan and Hall, 2010). Overlaps were defined as at least 1-bp
763 overlapping genomic coordinates. Similarly, sperm-signature loci were identified as sperm
764 siRNA loci that did not overlap any egg siRNA loci or sperm siRNA loci (sperm loci \notin egg loci
765 \notin seedling loci, **Fig 3C**). Egg-signature loci were identified as egg siRNA loci that did not
766 overlap any seedling siRNA loci or sperm siRNA loci (egg loci \notin seedling siRNA loci \notin sperm
767 siRNA loci, **Fig 3C**). Z-E loci were zygote siRNA loci that did not overlap egg siRNA loci (Z
768 loci \notin E loci). E-Z loci were egg siRNA loci that did not overlap zygote siRNA loci (E loci \notin Z
769 loci). Z/E loci intersect were zygote siRNA loci that overlapped egg siRNA loci (Z loci \cap E loci,
770 **Fig 4A**).

771

772 **DNA methylation analyses**

773 Methylation values were calculated for each locus using the mtr function of CGmapTools
774 v0.1.2 (Guo et al., 2018) using the CGmap files generated in our previous study as input (Li et
775 al., 2020). Only loci with more than 3 (mC + C) calls were included in the analyses.

776

777 **Statistical analyses**

778 Tukey tests were performed using the R package emmeans (Searle et al., 1980) with
779 multiple comparison correction using Tukey's method. Letter groupings were done at $\alpha = 0.05$,
780 where the differences between means sharing the same letter were not statistically significant.
781 For multifactorial analyses, multiple comparisons were applied to families of tests at each
782 interacting factor level: at the level of each TE/locus category for **Fig 1C, Fig 2E, Fig 3D, Fig**
783 **4B, Fig 5B, Fig S1A, Fig S2D, Fig S2F, and Fig S3B**, and at the level of genotype and context
784 for **Fig 5C, Fig S5 and Fig S6**. For analyses of siRNA relative abundances or siRNA coverage
785 across siRNA locus category across siRNA transcriptomes, a linear model was fitted using logit
786 transformation to correct for heteroscedasticity (**Fig 1C, Fig 2B, Fig 3A, Fig 3B, Fig 3D, Fig**
787 **4B, Fig S1A, Fig S2B, Fig S2D, and Fig S2F**). For analyses of siRNA counts or locus counts, a
788 linear model was fitted using $\log(\text{RPM} + 1)$ transformation to correct for heteroscedasticity (**Fig**
789 **2E, Fig S2G, Fig S3A**). For analyses of distances to nearest genes, a generalized linear model
790 was fitted using log link function to correct for heteroscedasticity (**Fig 5A**). For analyses of
791 fraction of locus length covered by genes, a generalized linear model of quasibinomial family
792 with logit link function was fitted to accommodate the mean-error relationship of fractional data
793 (**Fig 2D, Fig S3B, Fig 5B**). For analyses of DNA methylation levels across different locus
794 categories, a generalized linear model of quasibinomial family with logit link function was fitted
795 to accommodate the mean-error relationship of proportion data (**Fig 5C, Fig S5, Fig S6**). For
796 analysis of correlations between PC1 (**Fig 4D**), distance to nearest genes, TE overlaps and DNA
797 methylation, Spearman's rank order correlation was used (**Fig S3D-E, Fig S4**). P values $< 2.2e-16$,
798 which is the smallest positive floating point number R can display (R Core Team 2020), were
799 treated as 0 by R, and reported as such in this study.

800

801 **Supplemental information**

802 **Additional file 1: Table S1.** General mapping statistics

803 **Additional file 2: Table S2.** Pollination success rates

804 **Additional file 3: Supplemental figures.** Fig S1-S6

805 **Additional file 4: Supplemental Dataset1.** miRNA read counts

806

807 **Declarations**

808 **Acknowledgements**

809 We thank Zachary Liechty and Christian Santos for assistance in R programming; and Alina
810 Yalda, Jake Anichowski, and Michelle Binyu Cui for greenhouse maintenance and technical
811 assistance. The UC Davis Genome Center provided Illumina sequencing, library quality control
812 and size selection services. CL also acknowledges partial support by Elsie Taylor Stocking
813 Memorial Fellowship from the Department of Plant Biology at University of California, Davis.
814 This study was supported in part by resources and technical expertise from the Georgia
815 Advanced Computing Resource Center, a partnership between the University of Georgia's Office
816 of the Vice President for Research and Office of the Vice President for Information Technology.

817

818 **Availability of data and materials**

819 All small RNA data have been deposited in the Sequence Read Archive, BioProject
820 PRJNA533115. All R codes regarding data visualization and statistical analyses were deposited
821 in https://github.com/cxli233/zygote_smRNA/

822

823 **Author contributions**

824 CL, JIG, SDR and VS designed the study. HX and HF collected zygotes. SDR supervised zygote
825 collections. CL produced small RNA sequencing libraries. CL and JIG analyzed data. VS
826 supervised data collection and analyses. CL wrote the manuscript with input from all authors.

827

828 **Funding**

829 This research was funded by the National Science Foundation (IOS-1547760) and the U.S.
830 Department of Agriculture (USDA) Agricultural Experiment Station (CA-D-XXX-6973-H).

831

832 **Ethics approval and consent to participate**

833 Not applicable

834

835 **Consent for publication**

836 Not application

837

838 **Competing interests**

839 The authors declare that they have no conflicts of interests.

840

841 **References**

842 Anderson, S.N., Johnson, C.S., Chesnut, J., Jones, D.S., Khanday, I., Woodhouse, M., Li, C., Conrad, L.J.,
843 Russell, S.D., Sundaresan, V., 2017. The Zygotic Transition Is Initiated in Unicellular Plant Zygotes
844 with Asymmetric Activation of Parental Genomes. *Dev. Cell* 43, 349-358.e4.
845 <https://doi.org/10.1016/j.devcel.2017.10.005>

846 Anderson, S.N., Johnson, C.S., Jones, D.S., Conrad, L.J., Gou, X., Russell, S.D., Sundaresan, V., 2013.
847 Transcriptomes of isolated *Oryza sativa* gametes characterized by deep sequencing: evidence for
848 distinct sex-dependent chromatin and epigenetic states before fertilization. *Plant J.* 76, 729–
849 741. <https://doi.org/10.1111/tpj.12336>

850 Armenta-Medina, A., Gillmor, C.S., 2019. Genetic, molecular and parent-of-origin regulation of early
851 embryogenesis in flowering plants, in: *Current Topics in Developmental Biology*. Elsevier, pp.
852 497–543. <https://doi.org/10.1016/bs.ctdb.2018.11.008>

853 Autran, D., Baroux, C., Raissig, M.T., Lenormand, T., Wittig, M., Grob, S., Steimer, A., Barann, M.,
854 Klostermeier, U.C., Leblanc, O., Vielle-Calzada, J.-P., Rosenstiel, P., Grimanelli, D., Grossniklaus, U., 2011. Maternal Epigenetic Pathways Control Parental Contributions to *Arabidopsis* Early
856 Embryogenesis. *Cell* 145, 707–719. <https://doi.org/10.1016/j.cell.2011.04.014>

857 Axtell, M.J., 2013a. ShortStack: Comprehensive annotation and quantification of small RNA genes. *RNA*
858 19, 740–751. <https://doi.org/10.1261/rna.035279.112>

859 Axtell, M.J., 2013b. ShortStack: Comprehensive annotation and quantification of small RNA genes. *RNA*
860 19, 740–751. <https://doi.org/10.1261/rna.035279.112>

861 Borg, M., Berger, F., 2015. Chromatin remodelling during male gametophyte development. *Plant J.* 83,
862 177–188. <https://doi.org/10.1111/tpj.12856>

863 Borg, M., Jacob, Y., Susaki, D., LeBlanc, C., Buendía, D., Axelsson, E., Kawashima, T., Voigt, P., Boavida, L.,
864 Becker, J., Higashiyama, T., Martienssen, R., Berger, F., 2020. Targeted reprogramming of
865 H3K27me3 resets epigenetic memory in plant paternal chromatin. *Nat. Cell Biol.* 22, 621–629.
866 <https://doi.org/10.1038/s41556-020-0515-y>

867 Borges, F., Parent, J., Ex, F. Van, Wolff, P., Martínez, G., Köhler, C., Martienssen, R.A., 2018. Transposon-
868 derived small RNAs triggered by miR845 mediate genome dosage response in *Arabidopsis*. *Nat.*
869 *Genet.* 50. <https://doi.org/10.1038/s41588-017-0032-5>

870 Bouyer, D., Kramdi, A., Kassam, M., Heese, M., Schnittger, A., Roudier, F., Colot, V., 2017. DNA
871 methylation dynamics during early plant life. *Genome Biol.* 18, 179.
872 <https://doi.org/10.1186/s13059-017-1313-0>

873 Calarco, J.P., Borges, F., Donoghue, M.T.A., Ex, F. Van, Jullien, P.E., Lopes, T., Gardner, R., Berger, F.,
874 Feijo, A., Becker, D., Martienssen, R.A., 2011. Reprogramming of DNA Methylation in Pollen
875 Guides Epigenetic Inheritance via Small RNA. *Cell*. <https://doi.org/10.1016/j.cell.2012.09.001>

876 Calarco, J.P., Borges, F., Donoghue, M.T.A., Van Ex, F., Jullien, P.E., Lopes, T., Gardner, R., Berger, F.,
877 Feijó, J.A., Becker, J.D., Martienssen, R.A., 2012. Reprogramming of DNA Methylation in Pollen
878 Guides Epigenetic Inheritance via Small RNA. *Cell* 151, 194–205.
879 <https://doi.org/10.1016/j.cell.2012.09.001>

880 Chakraborty, T., Kendall, T., Grover, J.W., Mosher, R.A., 2020. Embryo CHH hypermethylation is
881 mediated by RdDM and is autonomously directed in *Brassica rapa* (preprint). *Plant Biology*.
882 <https://doi.org/10.1101/2020.08.26.268573>

883 Chen, J., Strieder, N., Krohn, N.G., Cyprys, P., Sprunck, S., Engelmann, J.C., Dresselhaus, T., 2017. Zygotic
884 Genome Activation Occurs Shortly after Fertilization in Maize. *Plant Cell* 29, 2106–2125.
885 <https://doi.org/10.1105/tpc.17.00099>

886 Ding, J., Shen, J., Li, W., Yang, H., 2009. Cytological Observation of Double Fertilization and Its Duration
887 in *Oryza sativa*. *Chi N Bull Bot* 473–483.

888 Dna, N.R., Cuerda-gil, D., Slotkin, R.K., 2016. Non-canonical RNA-directed DNA methylation.
889 <https://doi.org/10.1038/NPLANTS.2016.163>

890 Dorweiler, J.E., Carey, C.C., Kubo, K.M., Hollick, J.B., Kermicle, J.L., Chandler, V.L., 2000. mediator of
891 paramutation1 Is Required for Establishment and Maintenance of Paramutation at Multiple
892 Maize Loci 19.

893 Erdmann, R.M., Satyaki, P.R. V, Klosinska, M., Gehring, M., Erdmann, R.M., Satyaki, P.R. V, Klosinska, M.,
894 Gehring, M., 2017. A Small RNA Pathway Mediates Allelic Dosage in A Small RNA Pathway
895 Mediates Allelic Dosage in Endosperm. *CellReports* 21, 3364–3372.
896 <https://doi.org/10.1016/j.celrep.2017.11.078>

897 Gehring, M., 2019. Epigenetic dynamics during flowering plant reproduction: evidence for
898 reprogramming? *New Phytol.* 224, 91–96. <https://doi.org/10.1111/nph.15856>

899 Gent, Jonathan I, Ellis, N.A., Guo, L., Harkess, A.E., Yao, Y., Zhang, X., Dawe, R.K., 2013. CHH islands : de
900 novo DNA methylation in near-gene chromatin regulation in maize 628–637.
901 <https://doi.org/10.1101/gr.146985.112.as>

902 Gent, J. I., Ellis, N.A., Guo, L., Harkess, A.E., Yao, Y., Zhang, X., Dawe, R.K., 2013. CHH islands: de novo
903 DNA methylation in near-gene chromatin regulation in maize. *Genome Res.* 23, 628–637.
904 <https://doi.org/10.1101/gr.146985.112>

905 Grover, J.W., Burgess, D., Kendall, T., Baten, A., Pokhrel, S., King, G.J., Meyers, B.C., Freeling, M., Mosher,
906 R.A., 2020. Abundant expression of maternal siRNAs is a conserved feature of seed
907 development. *Proc. Natl. Acad. Sci.* 202001332. <https://doi.org/10.1073/pnas.2001332117>

908 Grover, J.W., Kendall, T., Baten, A., Burgess, D., Freeling, M., King, G.J., Mosher, R.A., 2018. Maternal
909 components of RNA -directed DNA methylation are required for seed development in *Brassica*
910 *rapa*. *Plant J.* 94, 575–582. <https://doi.org/10.1111/tpj.13910>

911 Guo, W., Zhu, P., Pellegrini, M., Zhang, M.Q., Wang, X., Ni, Z., 2018. CGmapTools improves the precision
912 of heterozygous SNV calls and supports allele-specific methylation detection and visualization in
913 bisulfite-sequencing data. *Bioinformatics* 34, 381–387.
914 <https://doi.org/10.1093/bioinformatics/btx595>

915 Han, Y., Qin, S., Wessler, S.R., 2013. Comparison of class 2 transposable elements at superfamily
916 resolution reveals conserved and distinct features in cereal grass genomes. *BMC Genomics* 14,
917 71. <https://doi.org/10.1186/1471-2164-14-71>

918 Houri-Zeevi, L., Rechavi, O., 2017. A Matter of Time: Small RNAs Regulate the Duration of Epigenetic
919 Inheritance. *Trends Genet.* 33, 46–57. <https://doi.org/10.1016/j.tig.2016.11.001>

920 Hsieh, P., He, S., Buttress, T., Gao, H., Couchman, M., Fischer, R.L., 2016. *Arabidopsis* male sexual lineage
921 exhibits more robust maintenance of CG methylation than somatic tissues. *PNAS* 113.
922 <https://doi.org/10.1073/pnas.1619074114>

923 Hsieh, T.-F., Ibarra, C.A., Silva, P., Zemach, A., Eshed-Williams, L., Fischer, R.L., Zilberman, D., 2009.
924 Genome-Wide Demethylation of *Arabidopsis* Endosperm. *Science* 324, 1451–1454.
925 <https://doi.org/10.1126/science.1172417>

926 Ibarra, C.A., Feng, X., Schoft, V.K., Hsieh, T.-F., Uzawa, R., Rodrigues, J.A., Zemach, A., Chumak, N.,
927 Machlicova, A., Nishimura, T., Rojas, D., Fischer, R.L., Tamaru, H., Zilberman, D., 2012. Active
928 DNA Demethylation in Plant Companion Cells Reinforces Transposon Methylation in Gametes.
929 *Science* 337, 1360–1364. <https://doi.org/10.1126/science.1224839>

930 Ingouff, M., Hamamura, Y., Gourgues, M., Higashiyama, T., 2007. Distinct Dynamics of HISTONE3
931 Variants between the Two Fertilization Products in Plants. *Curr. Biol.* 1032–1037.
932 <https://doi.org/10.1016/j.cub.2007.05.019>

933 Ingouff, M., Rademacher, S., Holec, S., Xin, N., Readshaw, A., Foo, S.H., 2010. Report Zygotic Resetting of
934 the HISTONE 3 Variant Repertoire Participates in Epigenetic Reprogramming in *Arabidopsis*.
935 *Curr. Biol.* 2137–2143. <https://doi.org/10.1016/j.cub.2010.11.012>

936 Kao, P., Nodine, M.D., 2019. Transcriptional Activation of *Arabidopsis* Zygotes Is Required for Initial Cell
937 Divisions. *Sci. Rep.* 9, 17159. <https://doi.org/10.1038/s41598-019-53704-2>

938 Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz,
939 D.C., Tanaka, T., Wu, J., Zhou, S., Childs, K.L., Davidson, R.M., Lin, H., Quesada-Ocampo, L.,
940 Vaillancourt, B., Sakai, H., Lee, S.S., Kim, J., Numa, H., Itoh, T., Buell, C.R., Matsumoto, T., 2013a.
941 Improvement of the *Oryza sativa* Nipponbare reference genome using next generation
942 sequence and optical map data. *Rice* 6, 4. <https://doi.org/10.1186/1939-8433-6-4>

943 Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz,
944 D.C., Tanaka, T., Wu, J., Zhou, S., Childs, K.L., Davidson, R.M., Lin, H., Quesada-Ocampo, L.,
945 Vaillancourt, B., Sakai, H., Lee, S.S., Kim, J., Numa, H., Itoh, T., Buell, C.R., Matsumoto, T., 2013b.
946 Improvement of the *Oryza sativa* Nipponbare reference genome using next generation
947 sequence and optical map data. *Rice* 6, 4. <https://doi.org/10.1186/1939-8433-6-4>

948 Kawakatsu, T., Nery, J.R., Castanon, R., Ecker, J.R., 2017. Dynamic DNA methylation reconfiguration
949 during seed development and germination. *Genome Biol.* 18, 171.
950 <https://doi.org/10.1186/s13059-017-1251-x>

951 Kim, M.Y., Ono, A., Scholten, S., Kinoshita, T., Zilberman, D., Okamoto, T., Fischer, R.L., 2019. DNA
952 demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. *Proc. Natl.*
953 *Acad. Sci.* 116, 9652–9657. <https://doi.org/10.1073/pnas.1821435116>

954 Kimmins, S., Sassone-corsi, P., 2005. Chromatin remodelling and epigenetic features of germ cells.
955 *Nature* 583–589.

956 Kozomara, A., Birgaoanu, M., Griffiths-Jones, S., 2019a. miRBase: from microRNA sequences to function.
957 *Nucleic Acids Res.* 47, D155–D162. <https://doi.org/10.1093/nar/gky1141>

958 Kozomara, A., Birgaoanu, M., Griffiths-Jones, S., 2019b. miRBase: from microRNA sequences to function.
959 *Nucleic Acids Res.* 47, D155–D162. <https://doi.org/10.1093/nar/gky1141>

960 Kranz, E., Bautor, J., Lörz, H., 1991. In vitro fertilization of single, isolated gametes of maize mediated by
961 electrofusion. *Sex. Plant Reprod.* 4. <https://doi.org/10.1007/BF00194565>

962 Law, J.A., Jacobsen, S.E., 2010. Establishing, maintaining and modifying DNA methylation patterns in
963 plants and animals. *Nat. Rev. Genet.* 11, 204–220. <https://doi.org/10.1038/nrg2719>

964 Li, C., Xu, H., Fu, F.-F., Russell, S.D., Sundaresan, V., Gent, J.I., 2020a. Genome-wide redistribution of 24-
965 nt siRNAs in rice gametes. *Genome Res.* 30, 173–184. <https://doi.org/10.1101/gr.253674.119>

966 Li, C., Xu, H., Fu, F.-F., Russell, S.D., Sundaresan, V., Gent, J.I., 2020b. Genome-wide redistribution of 24-
967 nt siRNAs in rice gametes. *Genome Res.* 30, 173–184. <https://doi.org/10.1101/gr.253674.119>

968 Li, C., Xu, H., Russell, S.D., Sundaresan, V., 2019. Step-by-step protocols for rice gamete isolation. *Plant*
969 *Reprod.* 32, 5–13. <https://doi.org/10.1007/s00497-019-00363-y>

970 Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
971 Bioinformatics 25, 1754–1760. <https://doi.org/10.1093/bioinformatics/btp324>

972 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,
973 1000 Genome Project Data Processing Subgroup, 2009. The Sequence Alignment/Map format
974 and SAMtools. Bioinformatics 25, 2078–2079. <https://doi.org/10.1093/bioinformatics/btp352>

975 Li, Q., Gent, J.I., Zynda, G., Song, J., Makarevitch, I., Hirsch, C.D., Hirsch, C.N., Dawe, R.K., Madzima, T.F.,
976 McGinnis, K.M., Lisch, D., Schmitz, R.J., Vaughn, M.W., Springer, N.M., 2015. RNA-directed DNA
977 methylation enforces boundaries between heterochromatin and euchromatin in the maize
978 genome. Proc. Natl. Acad. Sci. 112, 14728–14733. <https://doi.org/10.1073/pnas.1514680112>

979 Li, X., Chen, L., Zhang, Q., Sun, Y., Li, Q., Yan, J., 2019. BRIF-Seq: Bisulfite-Converted Randomly Integrated
980 Fragments Sequencing at the Single-Cell Level. Mol. Plant 12, 438–446.
981 <https://doi.org/10.1016/j.molp.2019.01.004>

982 Lin, J.-Y., Le, B.H., Chen, M., Henry, K.F., Hur, J., Hsieh, T.-F., Chen, P.-Y., Pelletier, J.M., Pellegrini, M.,
983 Fischer, R.L., Harada, J.J., Goldberg, R.B., 2017. Similarity between soybean and *Arabidopsis* seed
984 methylomes and loss of non-CG methylation does not affect seed development. Proc. Natl.
985 Acad. Sci. 114, E9730–E9739. <https://doi.org/10.1073/pnas.1716758114>

986 Lord, E.M., Russell, S.D., 2002. The Mechanisms of Pollination and Fertilization in Plants. Annu. Rev. Cell
987 Dev. Biol. 18, 81–105. <https://doi.org/10.1146/annurev.cellbio.18.012502.083438>

988 Martin, M., 2011. Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads.
989 EMBnetjournal 17, 3.

990 Martinez, G., Köhler, C., 2017. Role of small RNAs in epigenetic reprogramming during plant sexual
991 reproduction. Curr. Opin. Plant Biol. 36, 22–28. <https://doi.org/10.1016/j.pbi.2016.12.006>

992 Martínez, G., Panda, K., Köhler, C., Slotkin, R.K., 2016. Silencing in sperm cells is directed by RNA
993 movement from the surrounding nurse cell. Nat. Plants 2, 1–8.
994 <https://doi.org/10.1038/nplants.2016.30>

995 Martinez, G., Wolff, P., Wang, Z., Moreno-romero, J., Santos-gonzález, J., Conze, L.L., Defraia, C., Slotkin,
996 R.K., Köhler, C., 2018. Paternal easiRNAs regulate parental genome dosage in *Arabidopsis*. Nat.
997 Genet. 50. <https://doi.org/10.1038/s41588-017-0033-4>

998 Matzke, M.A., Mosher, R.A., 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing
999 complexity. Nat. Rev. Genet. 15, 394–408. <https://doi.org/10.1038/nrg3683>

1000 McCarthy, D.J., Chen, Y., Smyth, G.K., 2012. Differential expression analysis of multifactor RNA-Seq
1001 experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297.
1002 <https://doi.org/10.1093/nar/gks042>

1003 Mériai, Z., Chumak, N., García-Aguilar, M., Hsieh, T.-F., Nishimura, T., Schoft, V.K., Bindics, J., Ślusarz, L.,
1004 Arnoux, S., Opravil, S., Mechtler, K., Zilberman, D., Fischer, R.L., Tamaru, H., 2014. The AAA-
1005 ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses
1006 heterochromatin, and activates ribosomal RNA genes. Proc. Natl. Acad. Sci. 111, 16166–16171.
1007 <https://doi.org/10.1073/pnas.1418564111>

1008 Messerschmidt, D.M., Knowles, B.B., Solter, D., 2014. DNA methylation dynamics during epigenetic
1009 reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812–828.
1010 <https://doi.org/10.1101/gad.234294.113>

1011 Mizuno, H., Matsumoto, T., Wu, J., 2018. Composition and Structure of Rice Centromeres and
1012 Telomeres, in: Sasaki, T., Ashikari, M. (Eds.), Rice Genomics, Genetics and Breeding. Springer
1013 Singapore, Singapore, pp. 37–52. https://doi.org/10.1007/978-981-10-7461-5_3

1014 Moritoh, S., Eun, C.-H., Ono, A., Asao, H., Okano, Y., Yamaguchi, K., Shimatani, Z., Koizumi, A., Terada, R.,
1015 2012. Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2,
1016 impairs the growth of rice plants by abnormal DNA methylation: osdrm2 affects DNA

1017 methylation and development. *Plant J.* 71, 85–98. <https://doi.org/10.1111/j.1365-313X.2012.04974.x>

1018 Okada, T., Endo, M., Singh, M.B., Bhalla, P.L., 2005. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3: Histone H3 gene family in Arabidopsis. *Plant J.* 44, 557–568. <https://doi.org/10.1111/j.1365-313X.2005.02554.x>

1019 Papareddy, R.K., Páldi, K., Paulraj, S., Kao, P., Lutzmayer, S., Nodine, M.D., 2020. Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. *Genome Biol.* 21, 251. <https://doi.org/10.1186/s13059-020-02163-4>

1020 Parent, J.-S., Cahn, J., Herridge, R.P., Grimanelli, D., Martienssen, R.A., 2021. Small RNAs guide histone methylation in *Arabidopsis* embryos. *Genes Dev.* 35, 841–846. <https://doi.org/10.1101/gad.343871.120>

1021 Park, K., Kim, M.Y., Vickers, M., Park, J.-S., Hyun, Y., Okamoto, T., Zilberman, D., Fischer, R.L., Feng, X., Choi, Y., Scholten, S., 2016. DNA demethylation is initiated in the central cells of *Arabidopsis* and rice. *Proc. Natl. Acad. Sci.* 113, 15138–15143. <https://doi.org/10.1073/pnas.1619047114>

1022 Pillot, M., Baroux, C., Arteaga Vazquez, M., Autran, D., Leblanc, O., Vielle-calzada, J.P., Grossniklaus, U., Grimanelli, D., 2010. Embryo and Endosperm Inherit Distinct Chromatin and Transcriptional States from the Female Gametes in Arabidopsis. *Plant Cell* 22, 307–320. <https://doi.org/10.1105/tpc.109.071647>

1023 Quinlan, A.R., Hall, I.M., 2010. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* 26, 841–842. <https://doi.org/10.1093/bioinformatics/btq033>

1024 Rajkumar, M.S., Gupta, K., Khemka, N.K., Garg, R., Jain, M., 2020. DNA methylation reprogramming during seed development and its functional relevance in seed size/weight determination in chickpea. *Commun. Biol.* 3, 340. <https://doi.org/10.1038/s42003-020-1059-1>

1025 Rodrigues, J.A., Ruan, R., Nishimura, T., Sharma, M.K., Sharma, R., Ronald, P.C., Fischer, R.L., Zilberman, D., 2013a. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. *Proc. Natl. Acad. Sci.* 110, 7934–7939. <https://doi.org/10.1073/pnas.1306164110>

1026 Rodrigues, J.A., Ruan, R., Nishimura, T., Sharma, M.K., Sharma, R., Ronald, P.C., Fischer, R.L., Zilberman, D., 2013b. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. *Proc. Natl. Acad. Sci.* 110, 7934–7939. <https://doi.org/10.1073/pnas.1306164110>

1027 Saitou, M., Kagiwada, S., Kurimoto, K., 2012. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. *Development* 139, 15–31. <https://doi.org/10.1242/dev.050849>

1028 Satyaki, P.R. V., Gehring, M., 2019. Paternally Acting Canonical RNA-Directed DNA Methylation Pathway Genes Sensitize Arabidopsis Endosperm to Paternal. *Plant Cell* 31, 1563–1578. <https://doi.org/10.1105/tpc.19.00047>

1029 Schmieder, R., Edwards, R., 2011. Quality control and preprocessing of metagenomic datasets. *Bioinformatics* 27, 863–864. <https://doi.org/10.1093/bioinformatics/btr026>

1030 Schoft, V.K., Chumak, N., Mosiolek, M., Slusarz, L., Komnenovic, V., Brownfield, L., Twell, D., Kakutani, T., Tamaru, H., 2009. Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. *Sci. Rep.* 10, 1015–1021. <https://doi.org/10.1038/embor.2009.152>

1031 Scholten, S., Lörz, H., Kranz, E., 2002. Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. *Plant J.* 32, 221–231. <https://doi.org/10.1046/j.1365-313X.2002.01418.x>

1063 Searle, S.R., Speed, F.M., Milliken, G.A., 1980. Population Marginal Means in the Linear Model: An
1064 Alternative to Least Squares Means. *Am. Stat.* 34, 216–221.
1065 <https://doi.org/10.1080/00031305.1980.10483031>

1066 Slotkin, R Keith, Vaughn, M., Borges, F., Feijo, A., Becker, D., Martienssen, R.A., 2009. Epigenetic
1067 Reprogramming and Small RNA Silencing of Transposable Elements in Pollen. *Cell* 461–472.
1068 <https://doi.org/10.1016/j.cell.2008.12.038>

1069 Slotkin, R. Keith, Vaughn, M., Borges, F., Tanurdžić, M., Becker, J.D., Feijó, J.A., Martienssen, R.A., 2009.
1070 Epigenetic Reprogramming and Small RNA Silencing of Transposable Elements in Pollen. *Cell*
1071 136, 461–472. <https://doi.org/10.1016/j.cell.2008.12.038>

1072 Su, Z., Wang, N., Hou, Z., Li, B., Li, D., Liu, Y., Cai, H., Qin, Y., Chen, X., 2020. Regulation of Female
1073 Germline Specification via Small RNA Mobility in *Arabidopsis*. *Plant Cell* tpc.00126.2020.
1074 <https://doi.org/10.1105/tpc.20.00126>

1075 Tadros, W., Lipshitz, H.D., 2009. The maternal-to-zygotic transition: a play in two acts. *Development* 136,
1076 3033–3042. <https://doi.org/10.1242/dev.033183>

1077 Tan, F., Lu, Y., Jiang, W., Zhang, R., Zhao, Y., Zhou, D., 2018. DDM1 Represses Noncoding RNA Expression
1078 and RNA-Directed DNA Methylation in Heterochromatin 177, 1187–1197.
1079 <https://doi.org/10.1104/pp.18.00352>

1080 Tan, F., Zhou, C., Zhou, Q., Zhou, S., Yang, W., Zhao, Y., Li, G., 2016. Analysis of Chromatin Regulators
1081 Reveals Specific Features of Rice DNA Methylation Pathways. *Plant Physiol.* 171, 2041–2054.
1082 <https://doi.org/10.1104/pp.16.00393>

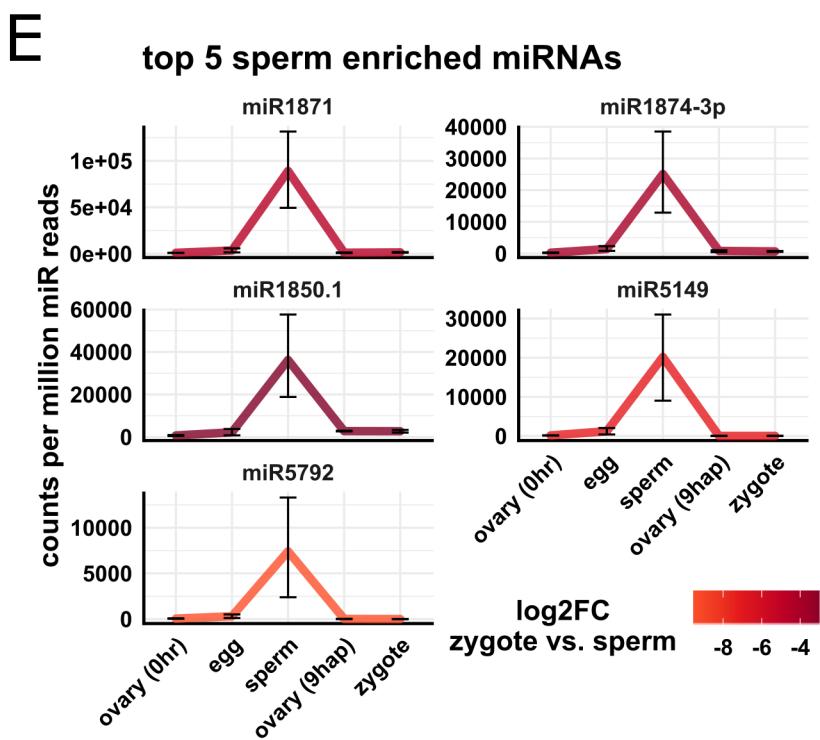
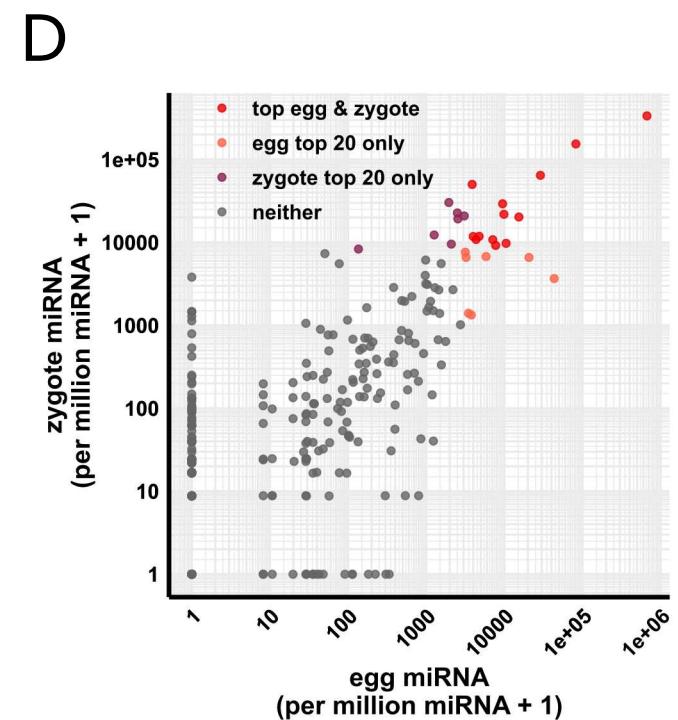
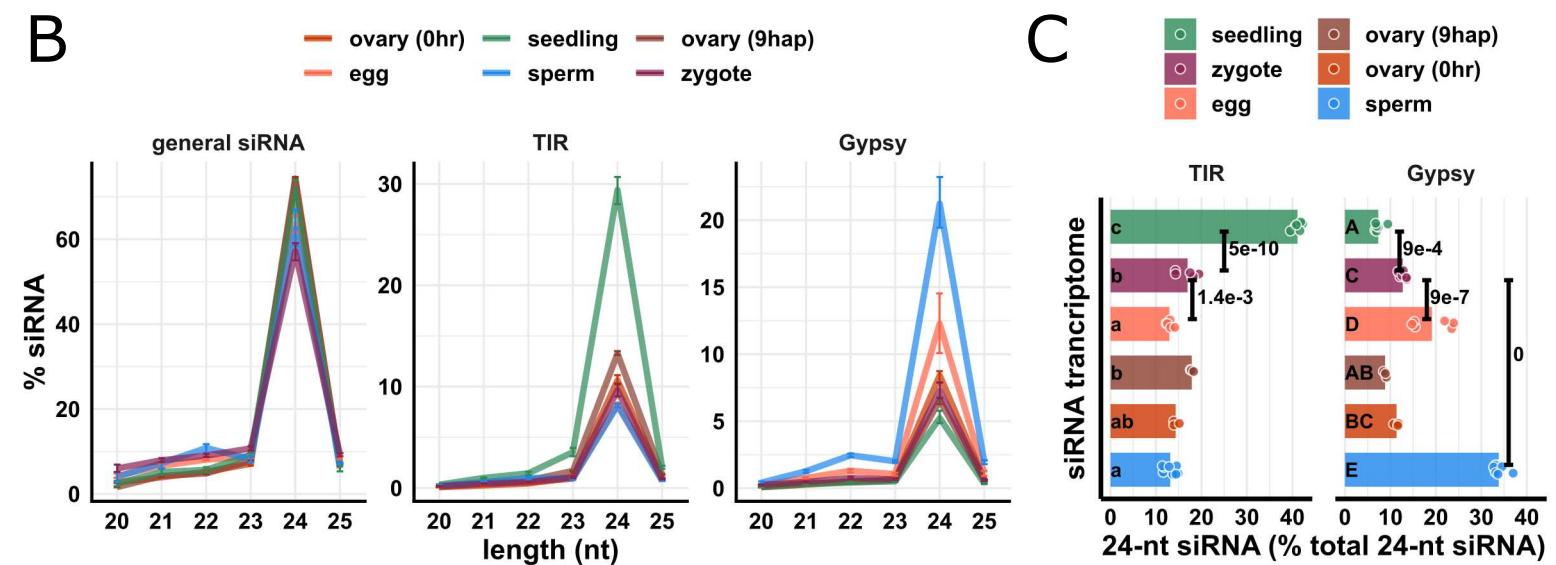
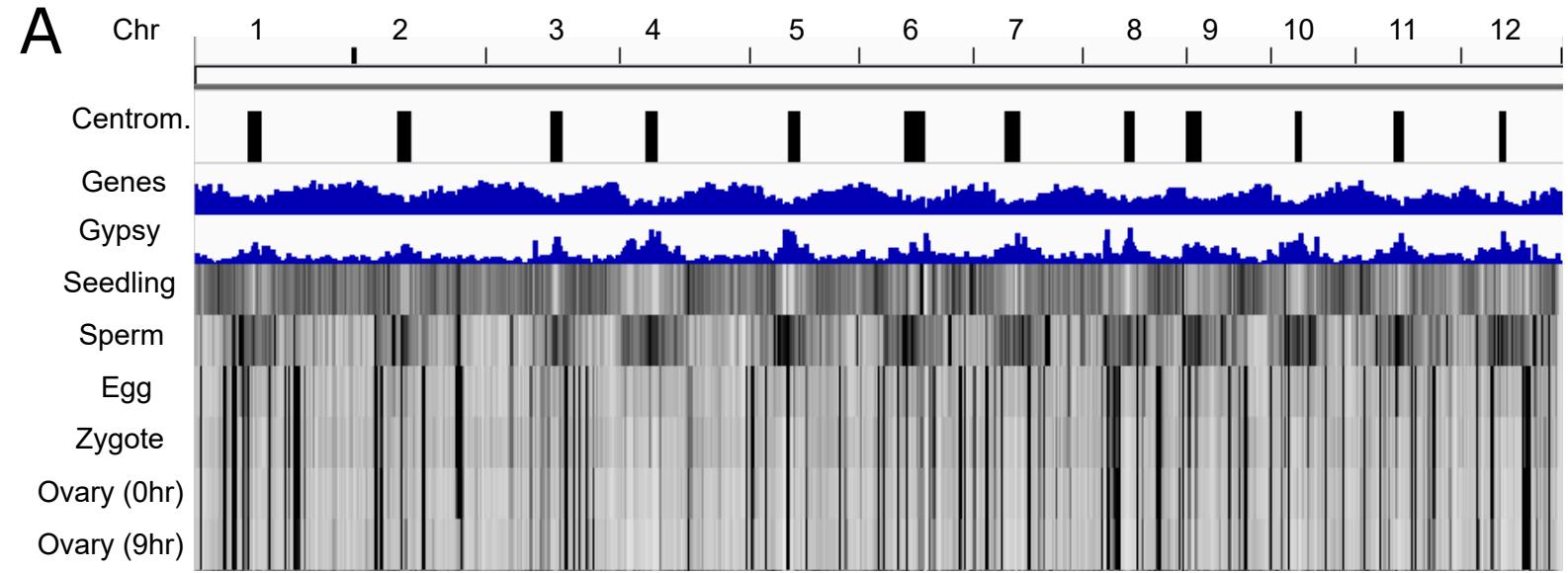
1083 Tang, W.W.C., Kobayashi, T., Irie, N., Dietmann, S., Surani, M.A., 2016. Specification and epigenetic
1084 programming of the human germ line. *Nat. Rev. Genet.* 17, 585–600.
1085 <https://doi.org/10.1038/nrg.2016.88>

1086 Thorvaldsdóttir, H., Robinson, J.T., Mesirov, J.P., 2013. Integrative Genomics Viewer (IGV): high-
1087 performance genomics data visualization and exploration. *Brief. Bioinform.* 14, 178–192.
1088 <https://doi.org/10.1093/bib/bbs017>

1089 Wang, G., Köhler, C., 2017. Epigenetic processes in flowering plant reproduction. *J. Exp. Bot.* erw486.
1090 <https://doi.org/10.1093/jxb/erw486>

1091 Wang, Z., Butel, N., Santos-González, J., Borges, F., Yi, J., Martienssen, R.A., Martinez, G., Köhler, C.,
1092 2020. Polymerase IV Plays a Crucial Role in Pollen Development in *Capsella*. *Plant Cell* 32, 950–
1093 966. <https://doi.org/10.1105/tpc.19.00938>

1094 Xu, Q., Xie, W., 2018. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and
1095 Establishment. *Trends Cell Biol.* 28, 237–253. <https://doi.org/10.1016/j.tcb.2017.10.008>





1096 Ye, R., Wang, W., Iki, T., Liu, C., Wu, Y., Ishikawa, M., Zhou, X., Qi, Y., 2012. Cytoplasmic Assembly and
1097 Selective Nuclear Import of *Arabidopsis* ARGONAUTE4/siRNA Complexes. *Mol. Cell* 46, 859–870.
1098 <https://doi.org/10.1016/j.molcel.2012.04.013>

1099 Zemach, A., Kim, M.Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S.L.,
1100 Zilberman, D., 2013. The *Arabidopsis* Nucleosome Remodeler DDM1 Allows DNA
1101 Methyltransferases to Access H1-Containing Heterochromatin. *Cell* 153, 193–205.
1102 <https://doi.org/10.1016/j.cell.2013.02.033>

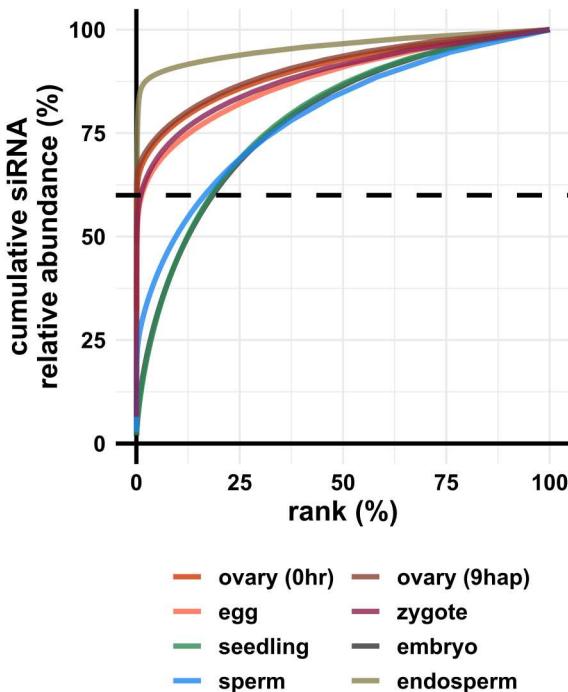
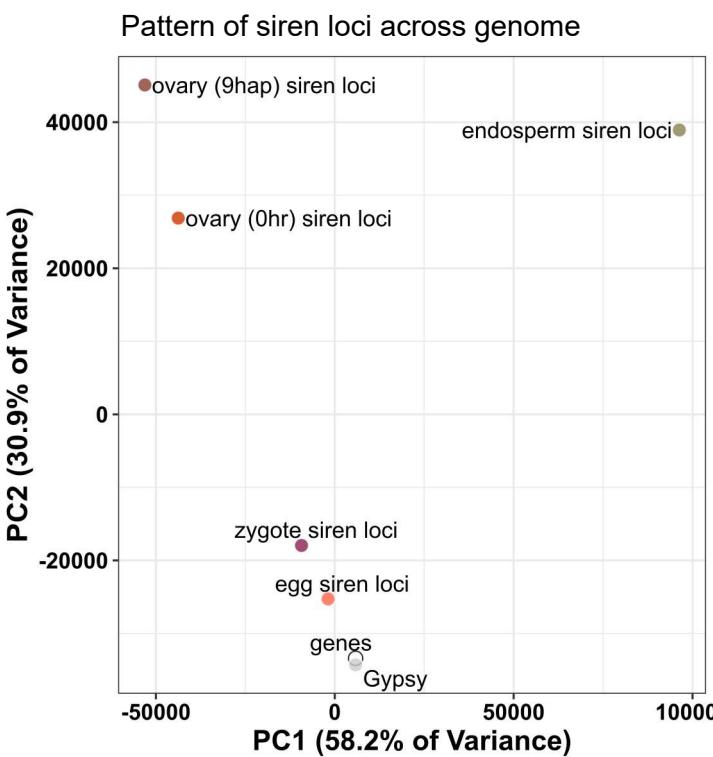
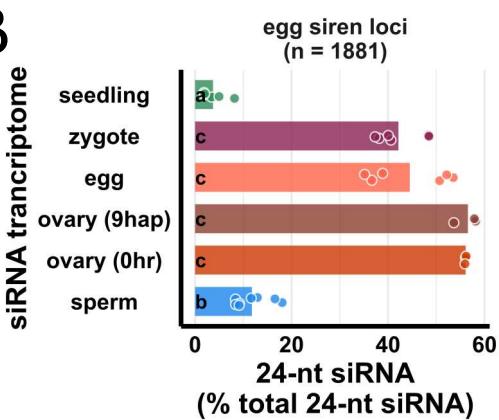
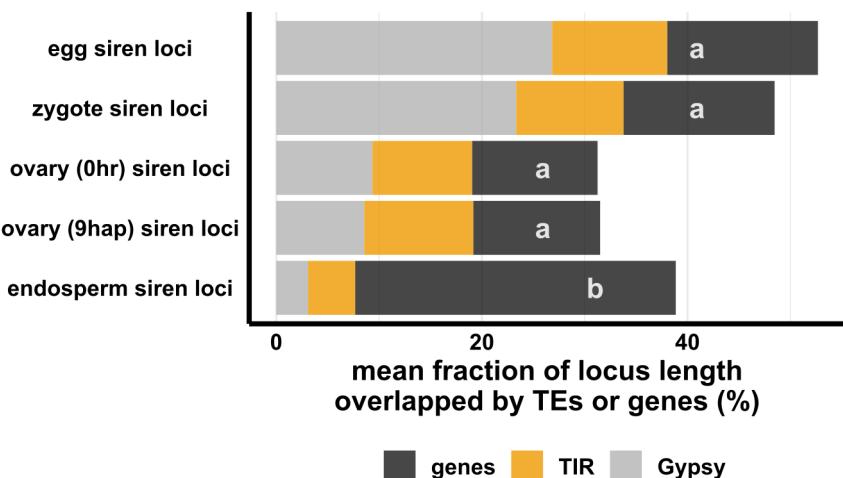
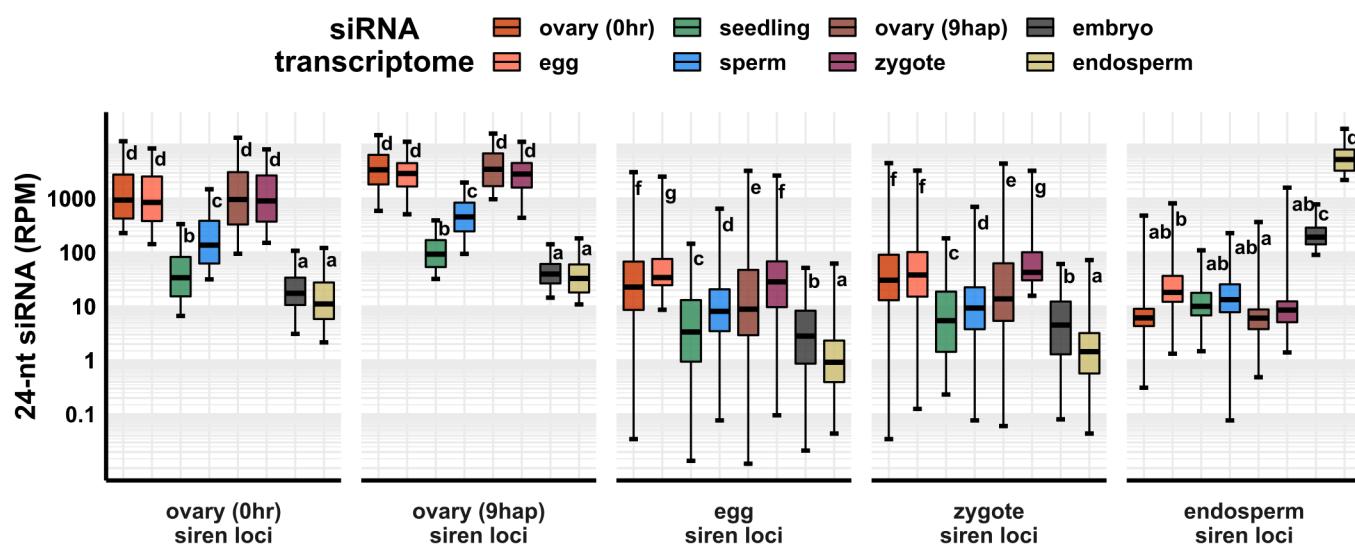
1103 Zhao, P., Zhou, X., Shen, K., Liu, Z., Cheng, T., Liu, D., Cheng, Y., Peng, X., Sun, M., 2019. Two-Step
1104 Maternal-to-Zygotic Transition with Two-Phase Parental Genome Contributions. *Dev. Cell* 49,
1105 882–893.e5. <https://doi.org/10.1016/j.devcel.2019.04.016>

1106 Zhou, S., Li, X., Liu, Q., Zhao, Y., Jiang, W., Wu, A., Zhou, D.-X., 2021. DNA demethylases remodel DNA
1107 methylation in rice gametes and zygote and are required for reproduction. *Mol. Plant*
1108 S1674205221002185. <https://doi.org/10.1016/j.molp.2021.06.006>

1109

Fig 1: Overall pattern of zygote 24-nt siRNAs is similar to but not identical to egg cell.

(A) Heat map showing abundance of 24-nt siRNA across genome at 50-kb resolution. The first three tracks are centromeres [as defined by (Mizuno et al., 2018)], genes, and *Gypsy* retrotransposons.






(B) Length profiles of siRNAs. y-axis values are relative to total siRNA reads (20 – 25-nt siRNAs). TIR: terminal inverted repeat transposons, CACTA superfamily excluded. *Gypsy*: *Gypsy* retrotransposons. Error bars are 95% confidence intervals for each cell type. miRNA and phasiRNA are not included in this analysis (**Fig S1A**).

(C) Quantification of TIR and *Gypsy* panels in (B). Each data point is an siRNA transcriptome. Bar heights are averages. x-axis values are relative to total 24-nt siRNAs. Letter grouping ($\alpha = 0.05$) and P values are based on Tukey tests.

(D) Scatter plot showing miRNA relative abundances in egg and zygote. Each data point is a miRNA. Axes are relative to per million miRNA reads and log10 transformed. ‘top egg & zygote’ refers to intersection of the 20 highest abundant miRNAs in both egg and zygote.

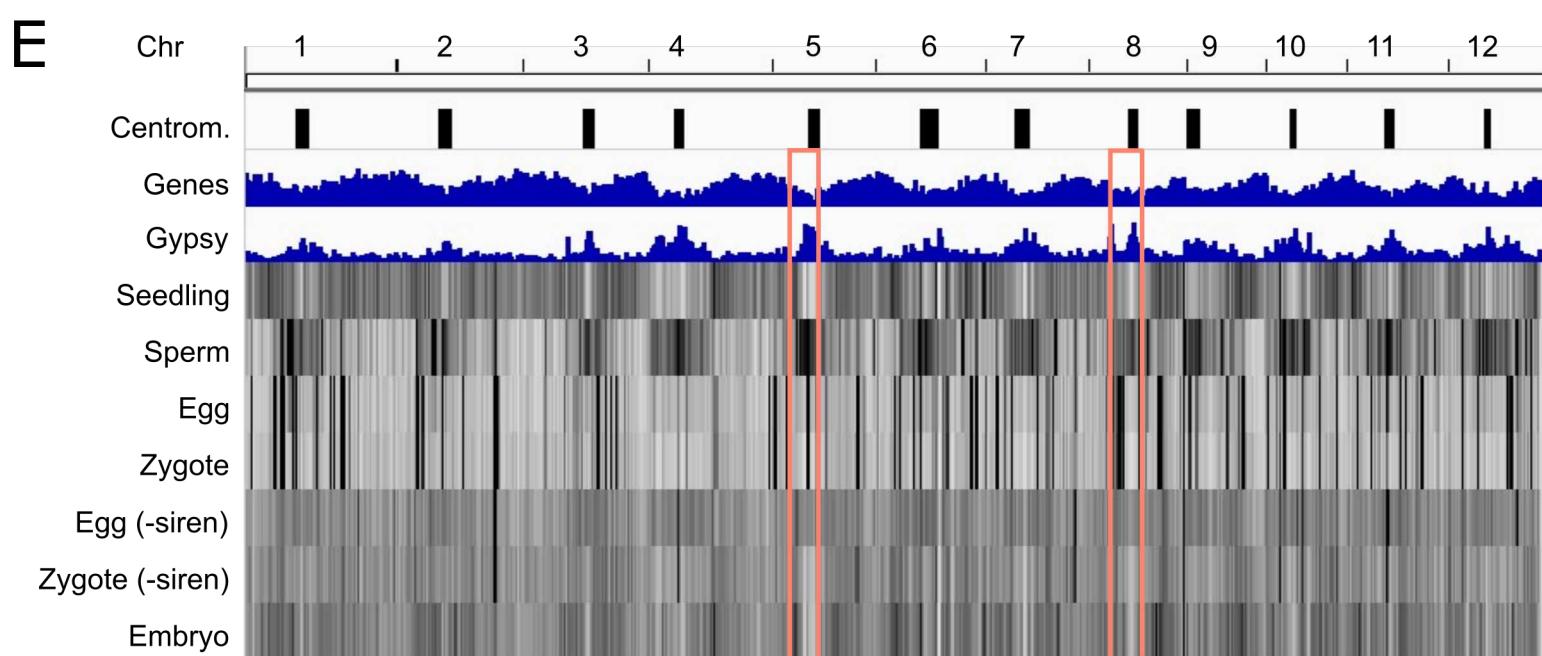
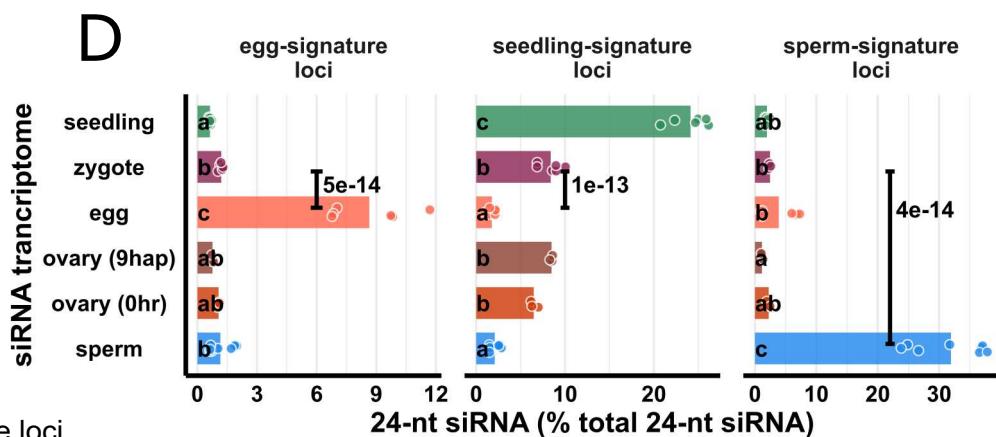
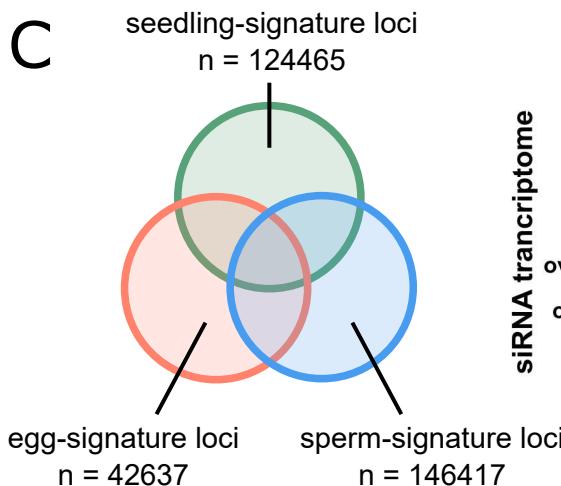
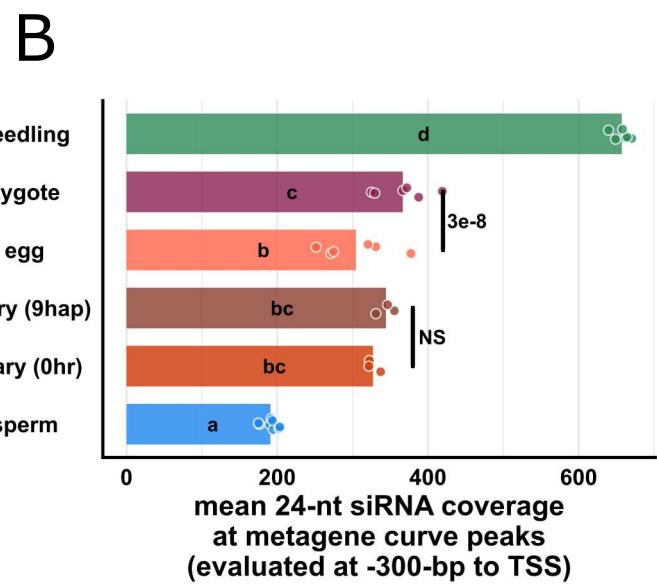
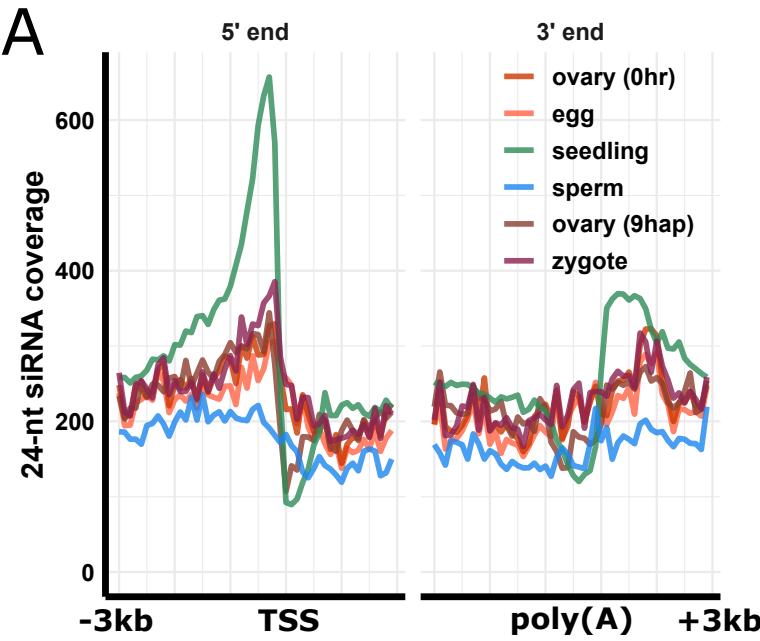
(E) Top five sperm enriched miRNAs. Sperm enriched is classified as > 1000 reads per million miRNA reads in sperm and < 500 reads per million miRNA reads in egg. y-axis values are relative to per million miRNA reads. Color code reflects log2FC values for zygote vs. sperm, and negative values indicate higher in sperm. Error bars are 95% confidence intervals for each cell type. See **Fig S1D** for additional examples.

Zygote and 9 hap ovary data are from this study, all other data from Li et al., (2020).

A**C****B****D****E**

Fig 2: Zygote siren loci are similar to siren loci detected in ovary and egg cell and stably expressed between egg and zygote but dissimilar to siren loci detected in endosperm.

(A) x-axis is the rank order of siRNA loci. siRNA loci with highest siRNA abundances are ranked first. y-axis is cumulative relative abundance of siRNA in all siRNA loci. Axis values are scaled between 0 and 100%. 0.1% of siRNA loci accounted for 60% of siRNA reads in all siRNA loci in endosperm and ovary. 1% of siRNA loci accounted for 60% of siRNA reads in all siRNA loci in egg and zygote.






(B) Bar plot showing relative abundances of 24-nt siRNA at egg siren loci. Each data point is an siRNA transcriptome. Bar heights are averages. x-axis values are relative to total 24-nt siRNAs.

(C) Principal component plot for siren loci distribution across the genome. Distributions are evaluated at 50-kb resolution across the genome. Each data point is the distribution of a siren loci category.

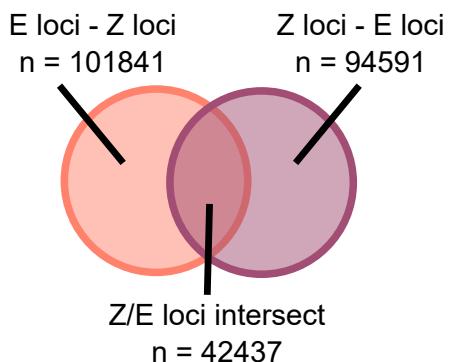
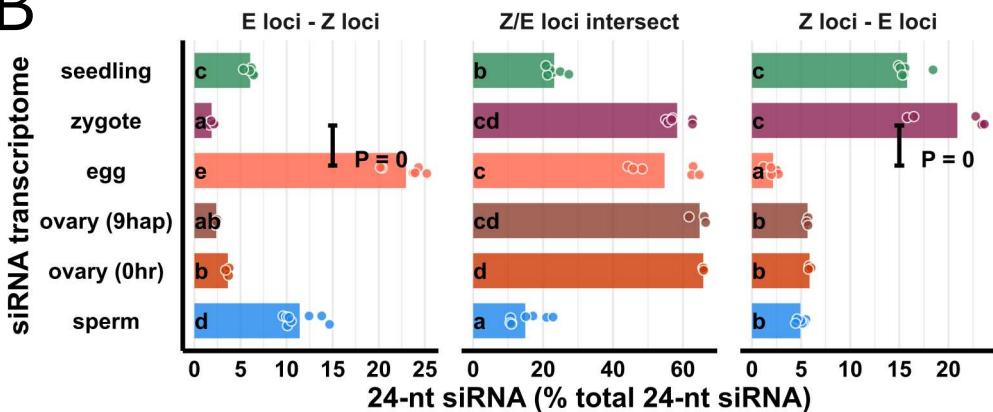
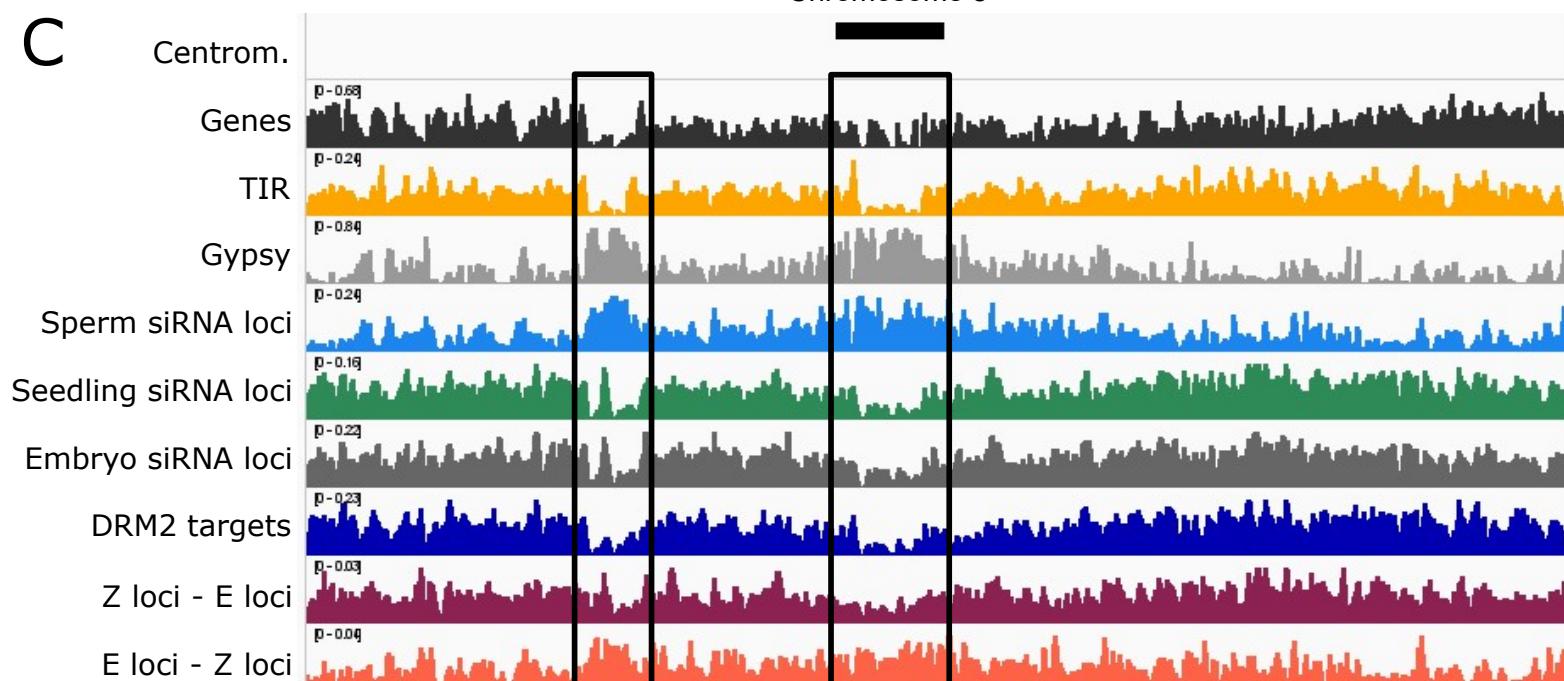
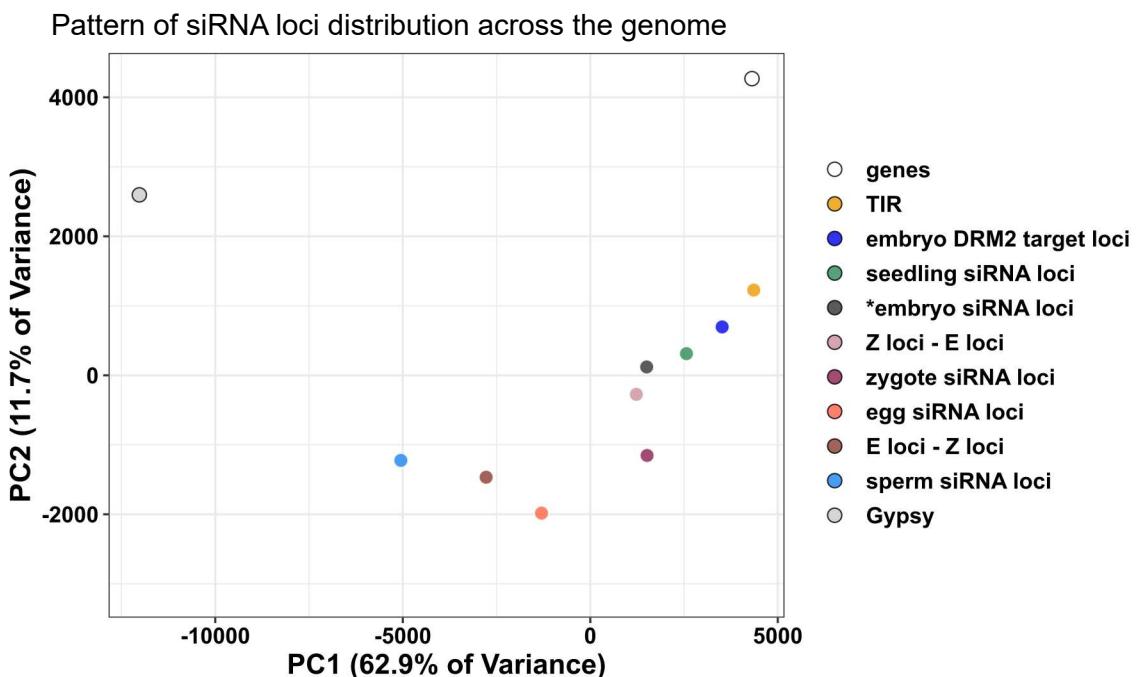
(D) Stacked bar plots showing mean fraction of locus length overlapped by TEs or genes. TIR: terminal inverted repeat transposons, CACTA superfamily excluded. *Gypsy*: *Gypsy* retrotransposons.

(E) Boxplots showing 24-nt siRNA relative abundances across siren classes across cell types. Middle lines are median. Boxes span interquartile range. y-axis values are relative to per million total 24-nt siRNAs in each siRNA transcriptome. Whiskers span 2.5th and 97.5th percentiles.

Letter grouping ($\alpha = 0.05$) and P values are based on Tukey tests. Embryo and endosperm data from Rodrigues et al., (2013). Seedling, gametes, and pre-fertilization ovary data from Li et al., (2020).

Fig 3: Changes in the zygote siRNA transcriptome are independent from the ovary after fertilization.

(A) Metagene coverage plot for 24-nt siRNAs. Coverage is measured over 100-bp intervals and normalized per 1000 24-nt siRNAs. Vertical grid lines are 500-bp intervals. TSS transcription start site, poly(A) polyadenylation site.





(B) Quantification of (A) at the interval from 300 to 200-bp upstream of TSS, corresponding to the peaks of metagene curves. Each data point is an siRNA transcriptome and bar heights are averages. x-axis values are normalized per 1000 24-nt siRNAs.

(C) Venn diagram illustrating egg-signature loci (egg siRNA loci that do not overlap any seedling or sperm siRNA loci), seedling-signature loci (seedling siRNA loci that do not overlap any egg or sperm siRNA loci), and sperm-signature loci (sperm siRNA loci that do not overlap any egg or seedling siRNA loci). Sizes of overlap in Venn diagrams are not to scale.

(D) Bar plot showing relative abundances of 24-nt siRNA across siRNA loci categories defined in (C). The zygote siRNA transcriptome was not used to define these locus categories. Each data point is an siRNA transcriptome. Bar heights are averages. x-axis values are normalized to total 24-nt siRNAs.

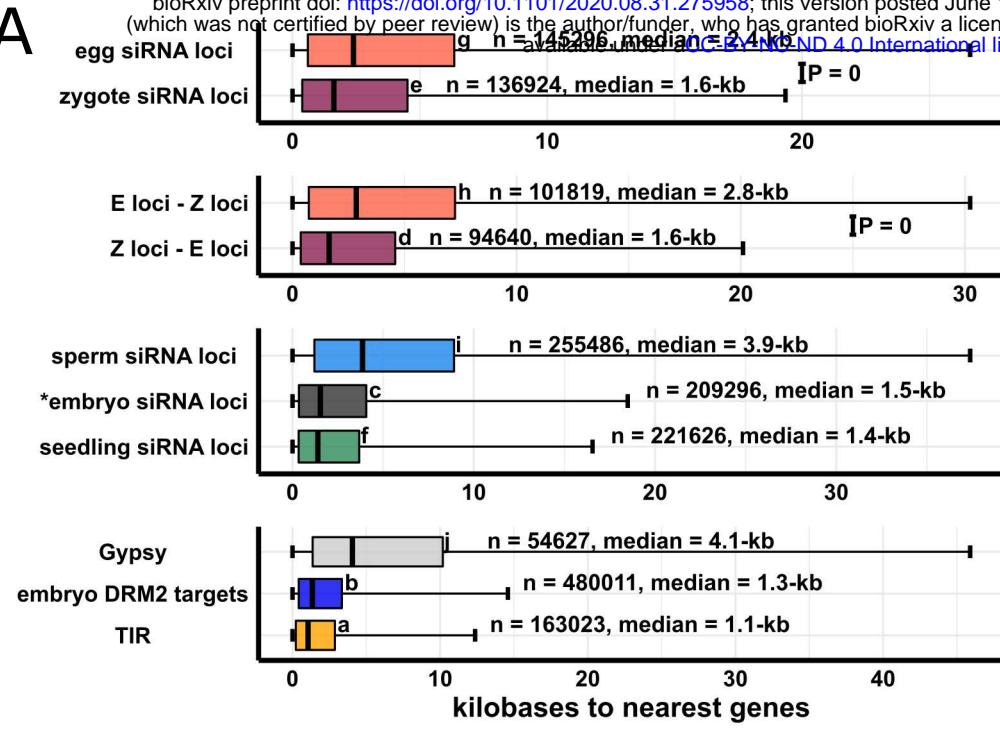
(E) Heat map showing abundance of 24-nt siRNA across genome at 50-kb resolution. The first three tracks are centromeres [as defined by (Mizuno et al., 2018)], genes, and Gypsy retrotransposons. ‘-siren’ refers to siren siRNAs removed. Pink boxes highlight examples where egg and zygote are distinct.

Letter grouping ($\alpha = 0.05$), and P values are based on Tukey tests. Zygote and 9 hap ovary data are from this study, embryo (7-8 DAF) from Rodrigues et al. (2013), all other data from Li et al., (2020).

A**B****C****D**

Fig 4: Widespread newly detected siRNA loci in zygote.

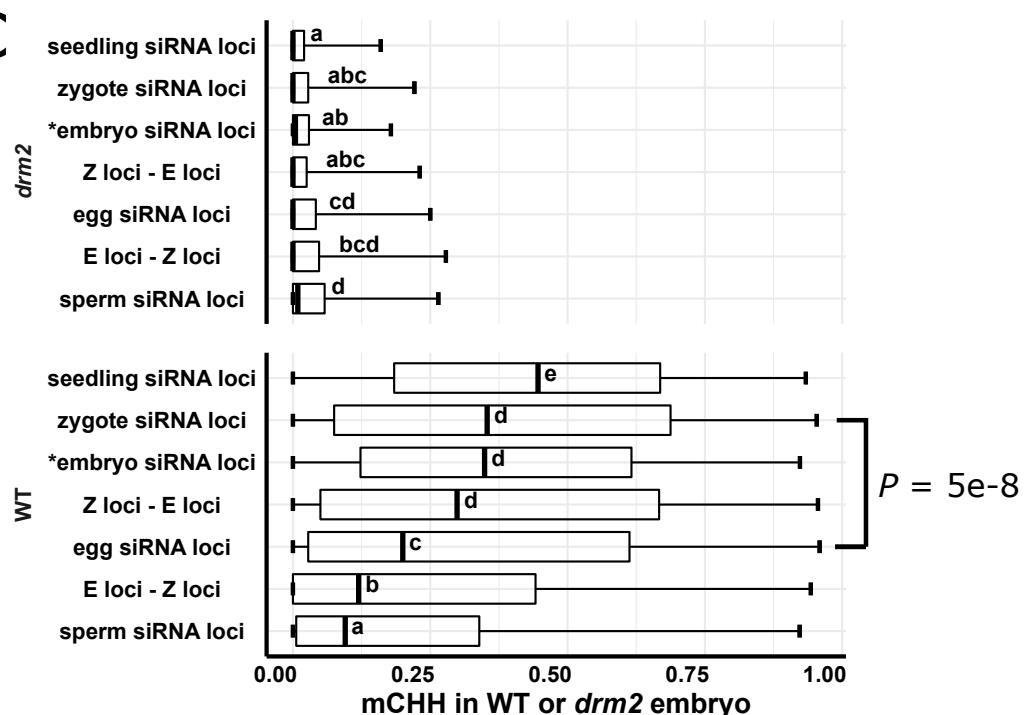
(A) Venn diagram illustrating E-Z loci (egg siRNA loci that do not overlap any zygote siRNA loci, E loci \notin Z loci), Z-E loci (zygote siRNA loci that do not overlap any egg siRNA loci Z loci \notin E loci), and Z/E loci intersect (zygote siRNA loci that overlap egg siRNA loci, Z loci \cap E loci). Sizes of overlap in Venn diagrams are not to scale.


(B) Quantification of 24-nt siRNA relative abundances for (A). Each data point is a siRNA transcriptome. Bar heights are averages. x-axis-values are relative to total 24-nt siRNA reads. Letter grouping ($\alpha = 0.05$), and P values are based on Tukey tests.

(C) Distribution of siRNA loci along a chromosome. Chromosome 8 is chosen because it is one of the chromosomes with a completed sequenced centromeric region (Mizuno et al., 2018). Centrom. Centromeric regions; TIR: terminal inverted repeat transposons, CACTA superfamily excluded. *Gypsy*: *Gypsy* retrotransposons. Black boxes highlight regions with abundant *Gypsy* retrotransposons and relative depletion of TIR, seedling siRNA loci, embryo siRNA loci, DRM2 targets, and Z-E loci.


(D) Principal component plot showing siRNA loci distribution across the genome. Distributions are evaluated at 50-kb resolution across the genome. Each data point is the distribution of a loci category.

Zygote and 9 hap ovary data are from this study, all other data from Li et al., (2020).


A

B

C

Fig 5: Newly detected siRNA loci in zygote reset to the canonical siRNA profile and predict CHH methylation in embryo in an RdDM-dependent manner.

(A) Boxplots showing distance of siRNA loci to nearest genes. Middle lines are median. Boxes span interquartile range. Whiskers span 2.5th and 97.5th percentiles.

(B) Bar plots showing mean locus length overlapped by TIR or *Gypsy* transposons across siRNA loci categories. Statistical comparisons are made across siRNA loci categories within a TE superfamily.

(C) Boxplots showing CHH methylation level in mature wildtype and *drm2* mutant embryos. Middle lines are median. Boxes span interquartile range. Whiskers span 2.5th and 97.5th percentiles. E-Z loci: $n = 101,841$, Z-E loci: $n = 94,591$ (69% of all zygote siRNA loci).

Letter groupings ($\alpha = 0.05$) and P values are based on Tukey tests. *Embryo siRNA data from Rodrigues et al., (2013), which was based on a single replicate. Seedling, gametes, and pre-fertilization ovary data from Li et al., (2020).