

1 **The 3'UTR of the *orb2* gene encoding the *Drosophila* CPEB translation factor plays a critical role**
2 **in spermatogenesis**

3
4 Rudolf A. Gilmutdinov¹, Eugene N. Kozlov¹, Ludmila V. Olenina², Alexei A. Kotov², Justinn Barr³,
5 Mariya V. Zhukova¹, Paul Schedl^{3*}, Yulii V. Shidlovskii^{1,4}

6
7 ¹ Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian
8 Academy of Sciences, Moscow, Russia

9 ² Department of Molecular Genetics of Cell, Institute of Molecular Genetics, National Research Centre
10 «Kurchatov Institute», Moscow, Russia

11 ³ Department of Molecular Biology, Princeton University, Princeton, USA

12 ⁴ Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University,
13 Moscow, Russia

14
15 * Corresponding author

16 E-mail: pschedl@princeton.edu (PS)

17
18 **Abstract**

19 CPEB proteins are conserved translation regulators involved in multiple biological processes. One of
20 these proteins in *Drosophila*, Orb2, is a principal player in spermatogenesis. It is required for meiosis
21 and spermatid differentiation. During the later process *orb2* mRNAs and proteins are localized within
22 the developing spermatid. To evaluate the role of *orb2* mRNA 3'UTR in spermatogenesis, we used the
23 CRISPR/Cas9 system to generate a deletion of the *orb2* 3'UTR, *orb2^R*. This deletion disrupts the

24 process of spermatid differentiation, but has no apparent effect on meiosis. While this deletion appears
25 to destabilize the *orb2* mRNA and reduce the levels of Orb2 protein, this is not the primary cause of the
26 differentiation defects. Instead, differentiation appears to be disrupted because *orb2* mRNAs and
27 proteins are not properly localized within the differentiating spermatids. Other transcripts and proteins
28 involved in spermatogenesis are also mislocalized in *orb2^R* spermatids.

29 **Author summary**

30 The conserved family of cytoplasmic polyadenylation element binding (CPEB) proteins can activate or
31 repress translation of target mRNAs, depending on the specific biological context, through interaction
32 with special cytoplasmic polyadenylation element (CPE) sequences. These proteins function mainly in
33 highly polarized cells. Orb2, one of the two *Drosophila melanogaster* CPEB proteins, is predominantly
34 expressed in the testes and is crucial for spermatogenesis. The 3'UTR of *orb2* transcript contains
35 multiple CPE-like motifs, which is indicative of *orb2* self-regulation. We have generated a deletion that
36 removes the greater portion of 3'UTR. While this deletion causes a reduction in the levels of *orb2*
37 mRNA and the protein, this does not appear to be responsible for the defects in spermatogenesis
38 observed in the deletion mutant. Instead, it is the mislocalization of the mRNA and protein in the
39 developing spermatids.

40

41 **Introduction**

42 Cytoplasmic polyadenylation element binding (CPEB) proteins are highly conserved translation factors.
43 They interact with special cytoplasmic polyadenylation element (CPE) motifs in the 3'UTRs of target
44 transcripts and can activate or repress their translation depending on the biological context [1, 2].
45 Vertebrates have four functionally distinct CPEB proteins—CPEB1, CPEB2, CPEB3, and CPEB4—
46 while flies have two, Orb and Orb2. CPEB proteins take part in a broad range of biological processes,
47 including translational control of embryonic cell division [3], cellular senescence [4], and the formation
48 of synaptic plasticity underlying learning and long-term memory [5, 6]. They also have important

49 functions in oogenesis and spermatogenesis. In *Xenopus* oocytes, for example, the sequential activation
50 of CPEB1 and CPEB4 helps to control egg maturation [3, 7-10].

51 The two CPEB proteins in flies, Orb and Orb2, differ significantly in their N-terminal ends and have
52 largely different activities. Orb is required in the female germline for the proper development of the egg
53 chamber and regulates the translation of oocyte transcripts at multiple time points during this process. It
54 is also expressed during the last stages of spermatogenesis in spermatids and in a subset of mushroom
55 body neurons in the fly brain [11-14]. In contrast, Orb2 is more widely expressed and plays important
56 roles in somatic development and spermatogenesis. During embryonic development, Orb2 is expressed
57 at high levels in the central and peripheral nervous system and functions as a fidelity factor in
58 asymmetric cell division in these tissues and in muscle progenitor cells [15]. In the adult, it has been
59 implicated in learning and memory [6, 16, 17].

60 In addition to these activities, Orb2 has critical functions during spermatogenesis, and *orb2* mRNA and
61 protein expression levels in adults are the highest in the testes. Two Orb2 protein isoforms are expressed
62 in the testes: the 60-kDa Orb2A isoform and the 75-kDa Orb2B isoform, the latter being more abundant.
63 The two proteins share a 542-amino acid C-terminal sequence that includes several polyQ and polyG
64 amino acid stretches, two RRM-type RNA binding domains, and a zinc finger domain. On the other
65 hand, they have unique N-terminal domains of 162 and 9 amino acids, respectively. The transcripts
66 encoding the larger isoform have relatively long 3'UTRs (580–5791 nt) with multiple CPEs and CPE-
67 like elements, while the transcript encoding the smaller isoform has a short 3'UTR (~400 nt) with no
68 CPEs. The large isoform is essential for male fertility, while the smaller isoform is not [18].

69 Orb2 expression is not observed at the early stage of spermatogenesis. It is not expressed in the germline
70 stem cells, and only a very low level of this protein can be detected in the mitotic cysts. However, Orb2
71 expression is substantially upregulated after the 16-cell cysts are formed and the interconnected
72 spermatocytes duplicate their DNA and begin to grow. At this stage as well as during the two meiotic
73 divisions, Orb2 is cytoplasmic and is largely delocalized except puncta around the nuclear envelope
74 [18]. Once the spermatocytes have fully matured, they synchronously enter meiosis I, which is followed

75 by meiosis II. At the end of meiosis, a cyst consisting of 64 interconnected spermatids with haploid
76 nuclei is formed. The cells in the cyst remain undifferentiated during the meiotic divisions but start to
77 differentiate as soon as meiosis is completed. One of the first steps is the reorganization and oriented
78 polarization of the germ cells in the cyst so that all nuclei are clustered towards its basal side (relative to
79 the apical basal polarity of the testes). Basal bodies, which function as microtubule nucleation centers,
80 are located on the apical side of the nuclei. They initiate the assembly of the flagellar axonemes that
81 grow towards the apical tip of the testes. The axonemes elongate until they almost reach this tip and then
82 normally cease to grow [19-22]. During the elongation phase, *orb2* transcript and protein are
83 concentrated in a ring near the tip of the advancing axoneme. Similar to other gene products that are
84 localized during the axoneme growth, *orb2* transcript and protein form a “comet tail” extending back
85 through the axonemes towards the nuclei clustered at the basal pole of the spermatids [18, 23]. Once
86 elongation is complete, the process of individualization begins. Individualization is accomplished by the
87 assembly of a special structure called the individualization complex (IC). The IC consists of 64 actin
88 cones that assemble around the nuclei at the basal cap of spermatid. The IC then travels down the
89 bundled flagellar axonemes, ensheathing each in a plasma membrane and pushing the excess cytoplasm
90 into a waste bag. During this phase, the spermatid nuclei undergo a series of morphological transitions
91 that alter the protein composition of their chromatin [19, 24-26].

92 Analysis of *orb2* mutants indicates that this gene has important functions in several steps of
93 spermatogenesis [18, 27]. The *orb2* null mutants show no obvious defects in spermatocytes during the
94 prolonged G2 leading up to meiosis I, but these cells are arrested early in meiosis I, accumulating high
95 levels of nuclear cyclin A. In addition to being required in meiosis, Orb2 is also important for spermatid
96 differentiation. In particular, it has a role in the initial polarization of cells in the 64-cell cyst, where this
97 Orb2 appears to have two different functions. One is in orienting cyst polarization relative to the apical–
98 basal axis of the testis. The other is in the polarization of germ cells in the cyst so that their nuclei
99 cluster together at one surface of the cyst, while microtubule nucleation centers (basal bodies) are
100 oriented so that microtubule assembly is directed towards the other (apical) surface of the cyst. Once the

101 64-cell cyst is properly polarized, *orb2* contributes to the elongation of the flagellar axonemes. It is
102 required for localizing transcripts in a comet pattern in the growing flagellar axonemes and activating
103 their translation. The transcripts whose localization and translation depend on Orb2 include *orb2* and
104 *apk2* mRNAs [18, 27]. *orb2* mutants are also defective in that the growth of the flagellar axonemes is
105 not properly terminated and defective ICs are assembled.

106 Studies on the other fly CPEB protein, Orb, have shown that it has a positive autoregulatory activity:
107 Orb binds to sequences in the 3'UTR of its own transcript, localizes the transcript to the developing
108 oocyte, and controls its on-site translation. This 3'UTR-dependent autoregulatory activity helps drive
109 oocyte specification in the newly formed 16-cell cysts, while at later stages of oogenesis it is important
110 for ensuring that sufficient levels of Orb protein are localized to the developing oocyte [14, 28]. Similar
111 to the *orb* 3'UTR, most of the *orb2* 3'UTRs are quite long and carry multiple CPE-like elements.
112 Moreover, we and other authors have found that Orb2 is associated with *orb2* transcript *in vivo* [18, 29,
113 30]. Hence, the question has arisen whether the *orb2* 3'UTR has important functions in
114 spermatogenesis. To address this question, we used the CRISPR/Cas9 system to delete the *orb2* 3'UTR
115 and analyzed the mutants for the effect of this deletion on spermatogenesis.

116

117 **Results**

118 **Deletion of the *orb2* 3'UTR**

119 The *orb2* gene is predicted to encode five transcript species that differ in their transcription start sites,
120 splicing patterns, and the lengths of their 3'UTRs. Only one of them, RA, encodes the smaller 60-kDa
121 Orb2A isoform. As shown in Fig 1, RA has a very short 3'UTR that lacks not only the canonical
122 UUUUAU CPE, but also other known CPE-like motifs. All other *orb2* transcripts encode the larger 75-
123 kDa Orb2B isoform. One of them, RB, has a short 580-nt 3'UTR that lacks the canonical UUUUAU
124 CPE, but contains two CPE-like motifs, UUUUGT and UUUUGUU, that are reported to be enriched
125 in Orb2-associated mRNAs [30]. The RC transcript has a 1563-nt 3'UTR, while the two remaining

126 transcripts, RD and RH, have 3'UTRs of 3826 and 5791 nt, respectively. The distribution of canonical
127 CPEs in these transcripts is different. There is one canonical and six non-canonical CPEs in the 1563-nt
128 RC 3'UTR, whereas the two larger 3'UTRs have 27 and 37 CPE-like sequences respectively that
129 include 9 canonical UUUUAU motifs.

130 As the RD and RH 3'UTRs contain a much greater number of canonical and non-canonical CPEs, we
131 designed a deletion that selectively removes the bulk of their 3'UTR sequences. As shown in Fig 1, the
132 CRISPR/Cas9 deletion excises a 4522-nt DNA segment that includes all canonical CPEs in RC, RD and
133 RH. Since the proximal endpoint of the deletion is well downstream of the RA and RB polyadenylation
134 signal, these transcripts should not be affected. For RC, the single canonical CPE and one of the non-
135 canonical CPEs are removed together with its predicted polyA addition sequences. The predicted
136 polyadenylation signal of RC and RD transcripts in the deletion is expected to be the same as that of
137 RH. For all three of these transcripts, the 3'UTR sequence upstream of the deletion breakpoint is 1008
138 nt long and contains five non-canonical but Orb2-enriched CPEs (UUUUUGT or UUUUUGUU).

139 In the initial fly stock, the deleted DNA was replaced by the *DsRed* gene flanked by loxP sites and an
140 attP sequence. *DsRed* was then excised to give the *orb2* gene carrying attP and loxP sites in place of the
141 4522-nt deletion. The deletion was verified by sequencing, and the resulting mutation was designated
142 *orb2^R*.

143 **Most *orb2^R* males are sterile**

144 While *orb2* null alleles are semi-lethal, with only a few flies surviving to adulthood, the *orb2^R* mutation
145 does not appear to affect any essential processes during development, since the number of homozygous
146 *orb2^R* flies reaching the adult stage is close to that in wild-type (WT) flies (Suppl. Fig 1). On the other
147 hand, male fertility in the *orb2^R* mutants is reduced. Figure 2 shows the results of experiment where 35
148 *orb2^R* males were mated with 70 WT females. After 10-day incubation, adult flies were removed from
149 the vials and their offspring were allowed to develop to adulthood. Quantification of the number of
150 offspring indicates that the overall fertility of *orb2^R* males is reduced approximately tenfold.

151 Two scenarios could potentially explain the reduction of male fertility in *orb2^R* flies. First, the
152 production of functional sperm could be more or less uniformly impaired in all *orb2^R* males. An
153 alternative, though seemingly less likely possibility is that the fertility of individual flies could be
154 affected differentially, so that some males are fertile while others are sterile. To distinguish between
155 these alternatives, we measured the fertility of individual *orb2^R* males. In the first experiment, we mated
156 individual males to two WT virgin females for one week and then scored the number of males that
157 produced offspring. Unexpectedly, we found that second scenario was correct: about 75% of the *orb2^R*
158 males were completely sterile (Fig. 2B). When *orb2^R* was placed in *trans* to the null allele *orb2³⁶* (a
159 deletion of *orb2*), no offspring were produced. Moreover, the number of offspring from the few fertile
160 *orb2^R* males is substantially reduced, compared to WT or to males heterozygous for *orb2³⁶*. In the
161 experiment shown in Fig. 2C, we mated males of the above genotypes to WT females and then scored
162 the number of offspring they produced. WT males typically have more than 60 offspring, while males
163 heterozygous for an *orb2* null allele, *orb2³⁶*, have slightly fewer, with an average of a bit more than 60
164 offspring. In contrast, of the fertile *orb2^R* males most had substantially reduced fertility and produced
165 fewer than 30 offspring.

166 **The accumulation of *orb2* transcript and protein is reduced in *orb2^R* testes**

167 To better understand the nature of spermatogenesis defects in the *orb2^R* mutant, we examined the
168 expression of both *orb2* mRNA and Orb2 protein. Quantitative RT–PCR (reverse transcription–
169 polymerase chain reaction) was used to measure the relative levels of *orb2* transcript in the testes of WT
170 and *orb2^R* males. The *GADPH* transcript, which lacks canonical CPEs, served as a control for RNA
171 input. As shown in Fig. 3A, the level of *orb2* mRNA in *orb2^R* testes is reduced approximately by half,
172 compared to WT. This appears to be due to the decreased stability of the mRNA, since the level of *orb2*
173 primary transcripts (detected with primers located on the intron–exon junction) in *orb2^R* testes is close to
174 that in WT.

175 Both Orb2 isoforms were detected in Western blots of extracts from *orb2^R* testes, but the 75-kDa
176 isoform in mutants proved to be reduced, compared to WT. The difference in the levels of this protein is

177 illustrated in the blot of serial dilutions of the extracts from WT and *orb2^R* males (Fig. 3B). Quantitative
178 analysis (Fig. 3C) showed that the 75-kDa isoform of Orb2 in mutant males was reduced approximately
179 twofold, as in the case of *orb2* mRNA.

180 The above experiments indicate that the deletion of sequences in the 3'UTRs of the *orb2* transcripts
181 results in a twofold reduction in both mRNA and protein levels, while transcription is unaffected. This
182 finding suggests that the deletion mutant mRNAs are less stable. However, it is surprising that a two-
183 fold reduction in the level of mRNA and protein is sufficient to significantly perturb spermatogenesis so
184 that most *orb2^R* males were sterile. In fact, there is no evidence of a strong haploinsufficiency as males
185 heterozygous for the *orb2* deletion (*orb2³⁶*) produced nearly as many offspring as WT males (Fig. 2C)
186 and showed no obvious abnormalities in spermatogenesis. To confirm that *orb2³⁶/+* testes have the
187 expected two-fold reduction in *orb2* gene products, we compared *orb2* mRNA and protein levels in WT
188 and *orb2³⁶/+*. As shown in Fig. 3A, the amount of *orb2* mRNA in *orb2³⁶/+* testes was only about a
189 quarter that in WT. By contrast, *orb2* mRNA was only reduced about two-fold in *orb2^R*. Similar results
190 were obtained when we compared protein levels in WT and either *orb2³⁶/+* or *orb2^R/orb2³⁶*. The level
191 of Orb2 protein in *orb2³⁶/+* was about one third that in WT, and about one quarter that in *orb2^R/orb2³⁶*.
192 These findings indicate that the reduction in *orb2* mRNA and protein in homozygous *orb2^R* testes is if
193 anything less than that in *orb2³⁶* heterozygotes, while the fertility of these flies is significantly different.
194 Hence, it is unlikely that the reduction in mRNA and protein in *orb2^R* testes is in itself responsible for
195 the significantly reduced fertility of the 3'UTR deletion mutant.

196 **The *orb2* 3'UTR is required for proper *orb2* transcript and protein localization**

197 To better understand why most *orb2^R* males are sterile, we examined *orb2* transcript and protein
198 expression during spermatogenesis. The pattern of their accumulation in premeiotic and meiotic cysts is
199 similar to that in WT. The expression of *orb2* transcript and protein in *orb2^R* testes is upregulated after
200 the formation of the 16-cell spermatocyte cysts, and the protein is distributed more or less evenly
201 throughout the cytoplasm. However, the amounts of transcript and protein are reduced, compared to WT

202 (Suppl. Fig. 2). Unlike in flies homozygous for the null-allele *orb2*³⁶, spermatogenesis in *orb2*^R does not
203 arrest prior to meiosis I even though Orb2 protein level are lower than in WT; instead, both meiotic
204 divisions appear to be normal, and 64-cell cysts are formed.

205 While spermatogenesis appears to be unaffected through the completion of meiosis, a series of
206 abnormalities become evident once the spermatids begin to differentiate. When they are first formed, the
207 64-cell cysts in *orb2*^R resembled those in WT. The haploid cells in the cyst have a round shape and are
208 about ~10 μ m in diameter. Subsequently, the cyst begins to polarize. All nuclei cluster towards the basal
209 side of the cyst, while the basal body associated with each nucleus localizes to the apical side of the
210 cysts and initiates the assembly of the flagellar axoneme. The flagellar axonemes then begin elongating
211 towards the apical end of the testis and ultimately form elongated cells that are almost 2 mm long [19,
212 21, 22].

213 During elongation, *orb2* transcript and protein concentrate in a band near the growing tip of flagellar
214 axoneme, with a comet tail extending back towards the nuclei. This is illustrated in Figs. 4A and 4B,
215 respectively, and the distribution of *orb2* transcript and protein along the flagellar axoneme is quantified
216 in Fig. 4C. A different result is obtained in *orb2*^R mutant testes, or when *orb2*^R is in *trans* to the *orb2*³⁶
217 deletion. Instead of accumulating near the tip of the flagellar axonemes, *orb2*^R transcripts in *orb2*^R/*orb2*^R
218 and *orb2*^R/*orb2*³⁶ mutant testes are concentrated mainly in the middle regions of the axoneme, while
219 their level near the top is substantially reduced (Figs. 4A, 4C). Likewise, the amount of Orb2 protein in
220 WT also increases near the tip (Fig. 4C), but this is not the case in *orb2*^R or in *orb2*^R/*orb2*³⁶ (see Figs.
221 4B, 4C). These findings indicated that the deleted 3'UTR sequences are important for the proper
222 localization of *orb2* transcript and protein during flagellar axoneme elongation.

223 **The *orb2*^R mutation affects the axonemal localization of other transcripts and proteins**

224 A number of other transcripts and proteins have been found to have a comet-like distribution in
225 elongating flagellar axonemes [18, 23]. One of these is *orb*, which encodes the other fly CPEB protein.
226 In WT *orb* mRNA preferentially accumulates in a band near the tip of the elongating flagellar axonemes

227 (see Fig. 5A); however, it does not appear to be translated until the late elongation phase, when Orb2
228 protein begins to disappear. Abnormalities in the localization of *orb* transcript and the expression of Orb
229 protein were evident in *orb2^R* and *orb2^R/orb2³⁶* testes. Instead of being localized to the tip of the
230 elongating axonemes, *orb* transcript in *orb2^R* was distributed over much of the axoneme (Fig. 5A). In
231 addition to being delocalized in *orb2^R/orb2³⁶* testes, the levels of *orb* transcript in the axonemes are also
232 reduced. In line with the disruption in transcript localization, Orb proteins did not show preferential
233 accumulation at the tip of the flagellar axonemes, and also were present prematurely. As indicated by
234 the brackets in Fig 5B, the tips of the flagellar axonemes in *orb2^R* and *orb2^R/orb2³⁶* testes contained little
235 Orb protein. Instead, Orb either accumulated in an intermediate position or was distributed over much of
236 the flagellar axonemes.

237 The fly homolog of the mammalian DAZ fertility factor is the RNA binding protein Boule (Bol) [31].
238 The Bol protein can be co-immunoprecipitated with Orb2 in an RNase-resistant complex, and during the
239 spermatid elongation phase it co-localizes with Orb2 in a region near the tip of the growing flagellar
240 axonemes [18]. There is also a comet-like gradient that extends back from the tip towards the nuclei on
241 the basal side of spermatids (Fig. 6). This pattern of localization is not observed in *orb2^R* or
242 *orb2^R/orb2³⁶* testes. Unlike in WT, Bol is not preferentially localized close to the end of elongating
243 axoneme (see brackets in Fig. 6). Instead, it is distributed more or less uniformly over much of the
244 axoneme.

245 **Organization of nuclei in early and late *orb2^R* spermatids**

246 The polarization of the 64-cell cysts is one of the first steps in spermatid differentiation. The nuclei
247 cluster towards the basal side of the cyst, while the basal bodies associated with each nucleus anchor the
248 flagellar axonemes on the apical side of the cyst [19, 21, 22]. While *orb2^R* and *orb2^R/orb2³⁶* cysts
249 assemble flagellar axonemes, there are defects in the initial clustering of nuclei on the basal side of the
250 cyst, and the nuclei are found randomly distributed in the elongating flagellar axonemes (see Fig. 7). As
251 the spermatid tails grow, the nuclei in WT undergo a series of morphological changes. Initially they
252 have a spherical shape but then undergo transition through several intermediate stages, including the

253 leaf, early canoe, late canoe, and finally needle stage [19, 21, 22]. Along with these morphological
254 changes, the nuclei coalesce into a tight bundle to form an inverted cap-like structure (Fig. 8A) [22]. In
255 *orb2^R* testes, most of the nuclei in the cysts appear to progress to the needle stage, but their subsequent
256 coalescence into the cap-like structure is defective, with only a few exceptions (~10% of the testes)
257 (Figs 8A, 8C). In about 45% of the testes, only a subset of the spermatid cysts has nuclei that coalesced
258 into a cap-like structure, while in other cyst the nuclei are scattered or display only partial coalescence.
259 No coalesced nuclei were found in the remaining testes (~45%) (Fig. 8C). When *orb2^R* is *trans* to
260 *orb2³⁶*, only cysts with scattered nuclei are observed.

261 **Individualization complex was not properly assembled in mutants**

262 When flagellar axoneme elongation is complete, the spermatids enter the individualization stage. The
263 actin-rich individualization complex (IC) is assembled around each nucleus in a cap-like structure. The
264 IC then begins to move down the flagellar axonemes, investing each spermatid with its own plasma
265 membrane and extruding the excess cytoplasm into a “waste bag” [24, 32]. ICs are successfully
266 assembled in only about 15% of the *orb2^R* testes (Figs 8B, 8D) In the remaining *orb2^R* testes, either only
267 a subset of the elongated spermatids assemble an IC or there is no IC assembly at all. IC assembly in
268 *orb2^R/orb2³⁶* *trans*-heterozygotes is completely disrupted.

269 Consistent with the defects in the assembly of ICs, only about 30% of seminal vesicles in *orb2^R* are
270 filled with mature sperm, while others are either empty or filled only partially (Fig. 9). Seminal vesicles
271 in *orb2^R/orb2³⁶* contain no functional sperm. These findings are consistent with data on the fertility of
272 *orb2^R* and *orb2^R/orb2³⁶* males.

273

274 **Discussion**

275 The localization of gene products to the cellular domains where their functions are required is critical to
276 the establishment of cell polarity. Depending on the context, a variety of mechanisms can be employed
277 to ensure proper targeting [33, 34]. One of them involves the on-site translation of localized transcripts.

278 After their synthesis and export, the translationally silenced transcripts are localized either by an active
279 microtubule-dependent mechanism or by passive diffusion. Once the transcripts are on site, RNA-
280 binding proteins interact with them to regulate their translation. The CPEB protein family is a group of
281 translation factors that help anchor and control the on-site translation of localized transcripts [35-40].
282 CPEBs recognize CPE elements in the 3'UTR of localized transcripts and can function to repress or
283 activate their translation, depending on the context. The canonical CPE sequence is UUUUAU;
284 however, several variants of this motif are enriched in transcripts that are found associated with different
285 members of the CPEB family. *Drosophila* has two CPEB proteins, Orb and Orb2. The former has
286 essential functions during oogenesis and is required for the translation of multiple oocyte-localized
287 transcripts [12, 13, 41]. Moreover, it also has a autoregulatory activity, with Orb binding to the *orb*
288 transcript 3'UTR and activating its own expression [14]. This autoregulatory activity plays a key role in
289 oocyte specification, and *orb* mutants that lack portions of the *orb* transcript 3'UTR fail to specify an
290 oocyte [28].

291 Although *orb2* has no essential function in oogenesis, it is required at several stages of spermatogenesis
292 [18, 27]. Here, we have investigated the role of *orb2* 3'UTR sequences in the transcripts encoding the
293 larger 75-kDs isoform in *orb2* activity during spermatogenesis. Four transcripts (RB, RC, RD, and RH)
294 are predicted to encode the 75-kDa isoform. They carry 3'UTRs of different lengths with different
295 numbers of CPE and CPE-like elements, from 2 (RB) to 37 (RH). We generated a deletion that removed
296 32 out of 37 CPE-like elements, and the resultant allele was named *orb2^R*. This deletion was
297 downstream of the RB polyadenylation site but included the RC and RD polyadenylation sites. As a
298 result, RC, RD, and RH were predicted to all have the same polyadenylation site and contain a total of 5
299 CPE-like elements in a 3'UTR of 1269 nt in length.

300 Orb2 has essential functions during meiosis and subsequent differentiation of the spermatids. The
301 3'UTR deletion had no apparent effect on meiosis, and 64-cell spermatid cysts are formed without any
302 visible defects. However, spermatid differentiation is disrupted. The earliest defect is observed in the
303 polarization of the spermatid cyst. In WT cysts, the spermatid nuclei cluster towards the basal side of the

304 cyst. This process is perturbed in *orb2^R*, and the nuclei in a subset of mutant cysts remain scattered
305 through the cyst. When *orb2^R* is combined with the null allele, *orb2³⁶*, all cysts exhibit polarization
306 defects. The 3'UTR deletion also disrupts the localization of *orb2* mRNAs and proteins near the tips of
307 the elongating flagellar axonemes. Similar localization defects are observed for Boule and for *orb*
308 mRNA and protein. While the progressive alterations in chromosome structure that accompany the
309 maturation of the spermatids appear to take place, other steps in the maturation process are defective.
310 These include the coalescence of the spermatid nuclei into a cap-like structure and the assembly and
311 progression of the IC down the flagellar axoneme. Because of these defects, most *orb2^R* males are
312 sterile, while the few that are fertile have a significantly reduced number of offspring.

313 Our results indicate that sequences in the *orb2* 3'UTR have important roles in spermatid differentiation,
314 but they also raise several interesting questions. We have found that the levels of *orb2* transcript and
315 protein in *orb2^R* are reduced about twofold. The simplest interpretation of this result is that the presence
316 of intact 3'UTRs is important for *orb2* mRNA stability. However, in view of the sequence organization
317 of the *orb2^R* deletion, it is also possible that the reduced amount mRNA and, consequently, protein
318 levels is due to an inefficient use of the RH polyadenylation sequence. The approximately twofold
319 reduction in the levels of *orb2^R* gene products is accompanied by variable and incompletely penetrant
320 effects on spermatogenesis and male fertility. One explanation for these phenotypes is that *orb2* is
321 haploinsufficient for several critical steps in spermatid differentiation and maturation. However,
322 heterozygosity for *orb2³⁶* (an *orb2* deletion) results in a similar, if not greater, reduction in *orb2*
323 transcripts and proteins without any concomitant effect on spermatogenesis or male fertility. Thus, a
324 more likely explanation for the impairment of spermatogenesis and fertility in *orb2^R* is that the deleted
325 3'UTR sequences are required not only for normal mRNA accumulation but also for *orb2* function.

326 Since *orb2* transcripts and proteins are not properly localized during flagellar axoneme elongation, a
327 plausible conclusion is the deleted sequences are needed to facilitate the localization and/or translational
328 regulation of *orb2* transcripts. In the deletion, insufficient amounts of Orb2 protein are produced in the

329 cytoplasmic domains where it is required, and this, in turn, affects the localization of other transcripts
330 and proteins (such as Boule and Orb) that have important roles in spermatogenesis.

331 Although our findings indicate that the deleted 3'UTR sequences are required for full *orb2* activity, the
332 mutant phenotypes are variable and incompletely penetrant. This contrasts with the effects of deletions
333 in the *orb* 3'UTR, which completely disrupts its key functions during oogenesis [42]. In the case of
334 *orb2*, it is possible that there are other 3'UTR-independent mechanisms that can partially compensate
335 for the defects in *orb2* function resulting from the 3'UTR deletion. It is also possible that this variability
336 reflects the functional properties of the mutant *orb2* gene. In this respect, it is noteworthy that all
337 transcripts produced by the *orb2^R* mutant, except RB are predicted to have a fairly long 3'UTR that
338 retains five CPE-like elements. These 5 CPEs have sequences, UUUUUGU and UUUUUGUU, which
339 were found to be enriched in Orb2-associated transcripts in tissue culture cells. Thus, the variable and
340 incompletely penetrant phenotypes may arise because the 3'UTR still retains some functionality.

341 Taken together, our data show that the 3'UTR of the *orb2* mRNA has a critical role in the regulation of
342 its localization in spermatids. It implies the existence of *orb2* self-regulation feedback loop, which is
343 important for male fertility.

344

345 **Materials and methods**

346 ***Drosophila* stocks**

347 The fly stock expressing Cas9 (#51324 from Bloomington Drosophila Stock Center) was used as WT
348 control. The *orb2³⁶* stock (#58479 in the Bloomington Drosophila Stock Center) was described
349 previously [18].

350 **Generation of *orb2^R* allele**

351 Two guide RNAs were used to delete the portion of *orb2* 3'UTR using the CRISPR/Cas9 system (see
352 Supplement). gRNA sequences were cloned into pU6 vector (pU6-gRNA, Addgene plasmid # 5306; a

353 gift from Caixia Gao), and corresponding 1-kbp homology arms were cloned into pHD vector (pHD-
354 DsRed, Addgene plasmid #51434; a gift from Kate O'Connor-Giles). These constructs were injected
355 into #51324 fly stock, and dsRed-positive flies were selected. The marker was removed using loxP sites;
356 and the 3'UTR of *orb2^R* was sequenced.

357 **Fertility assay**

358 Groups of 20–28 male flies of the WT, *orb2^R* and *orb2^R/orb2³⁶* genotypes were individually crossed
359 with two WT virgin females for 7 days, and then adult flies were removed from the vials. The presence
360 of larvae, pupae, and adults in the vials was examined after another 2 weeks. The males that were able to
361 mate and produce larvae were regarded as fertile.

362 **Breeding efficiency analysis**

363 A total of 175 males of the WT, *orb2^R* and *orb2^R/orb2³⁶* genotypes were individually crossed to WT
364 virgin female flies for 7 days. The adult flies were then removed, and the numbers of offspring from
365 each individual male were estimated and ranged into groups.

366 **Viability assay**

367 Viability test was based on Mendelian inheritance in the offspring of *orb2^R* and *orb2^R/orb2³⁶* alleles. For
368 *orb2^R*, individual *orb2^R/TM3 Ser* male and female flies were crossed with each other for 7 days; for
369 *orb2^R/orb2³⁶*, crosses were made between individual *orb2³⁶/TM3 Ser, Sb* males and *orb2^R/TM3 Ser*
370 females. After the next 2 weeks, the phenotypic ratio in the offspring was evaluated by chi-square
371 analysis.

372 **Antibodies**

373 The antibodies used were as follows: mouse anti-Orb2 (4G8) at 1:100 for Western blotting, mouse anti-
374 Orb2 (4G8 & 2D11) at 1:25 and mouse anti-Orb (6H4) at 1:30 for whole testis staining. These
375 antibodies were produced and deposited to the DSHB by P. Schedl. Rabbit anti-bNactes (used at 1:300)
376 was a gift of Dr. G.L. Kogan (Institute of Molecular Genetics). Rabbit anti-Bol (used at 1:1500) was a

377 gift from Steven Wasserman. Secondary antibodies were goat anti-mouse IgG conjugated with Alexa
378 488 or 546 and goat anti-rabbit IgG conjugated with Alexa 546 (Invitrogen). Alexa 633–phalloidin at
379 1:300 (Thermo Fisher Scientific) was used for actin staining in whole mounts of testes.

380 **Whole mount immunostaining**

381 Testes from 1- to 3-day males were dissected in PBST (0.1% Tween-20 in 1× PBS), fixed in 4%
382 paraformaldehyde for 20 min, washed with three portions of PBST (here and below, each wash for 5
383 min), and then passed through an ascending-descending methanol wash series (30%, 50%, 70%, 100%,
384 70%, 50%, 30% in 1×PBS). The testes were then washed with two portions of PBST and incubated in
385 PBSTX (0.1% Tween-20 and 0.3% Triton X-100 in 1×PBS) with 5% normal goat serum (Life
386 Technologies) at room temperature for at least 1 h. This was followed by overnight incubation with
387 primary antibody and, after washing with three portions of PBSTX, with secondary antibody at room
388 temperature for at least 2 h. After final washing with three portions of PBSTX, the preparations were
389 mounted on slides in VECTASHIELD mounting medium with DAPI (Vector Laboratories).

390 **Fluorescence in situ hybridization**

391 Quasar 670-conjugated *orb2* and *orb* FISH probes were from LGC Biosearch Technologies [27]. Testes
392 were taken from young male flies that were fed yeast paste for 2–3 days. They were dissected in 1×PBS,
393 fixed in 4% paraformaldehyde for 30 min, rinsed in four portions of PBST, dehydrated through an
394 ascending methanol series, and stored in 100% methanol at –20°C for 10 min. After rehydration in
395 PBST, the testes were additionally rinsed in four portions of PBST, transferred to wash buffer (4×SSC,
396 35% formamide, 0.1% Tween-20) for 15 min at 37°C. This was followed by incubation with the FISH
397 probes overnight at 37°C in hybridization buffer (10% dextran sulfate, 0.01% salmon sperm single-
398 strand DNA, 1% vanadyl ribonucleoside, 0.2% BSA, 4×SSC, 0.1% Tween-20, and 35% formamide).
399 The resulting preparations were washed in two portions of wash buffer, 1 h each, at 37°C and mounted
400 in Aqua-Poly/Mount (Polysciences, Inc.).

401 **Microscopy**

402 Stained preparations were scanned and imaged under an LSM 510 META confocal laser scanning
403 microscope (Carl Zeiss Jena, Germany) in multichannel mode using 63 \times or 40 \times oil objective lenses and
404 10 \times air objective lens (numerical aperture 1.4). Images with a frame size of 1024 \times 1024 pixels and a z
405 resolution of 1 μ m were taken at a scan speed of 7, in four replicates, and imported into Imaris 5.0.1
406 (Bitplane) and Adobe Photoshop for subsequent processing.

407 **RNA isolation, reverse transcription, and qPCR**

408 Testes of 1- to 3-day male flies were dissected in cold 1 \times PBS. Total RNA was isolated from 25 pair of
409 testes using TRIzol (Life Technologies) according to the manufacturer's protocol, treated with DNase
410 (TURBO DNA-free kit, Thermo Fisher Scientific), and reverse transcribed into cDNA. The level of the
411 transcripts was estimated using gene-specific primers (see Supplement). RT-qPCR for each sample was
412 performed in technical triplicate. The data presented correspond to the mean of $2^{-\Delta\Delta C_t}$ from at least ten
413 independent experiments.

414 **Semi-quantitative western blot**

415 Testes of 1-3 day male flies were dissected in cold 1 \times PBS and immediately transferred to lysis buffer
416 (100 mM KCl, 5 mM MgCl₂, 10 mM HEPES, 0.5% NP-40, 1 mM DDT, PIC, PMSF). Total protein
417 lysates were prepared from 25 pair of testes and loaded in equal dilution series (5, 10, and 20 μ g) onto
418 precast stain-free PAAG gel (Bio-Rad). After electrophoresis, the gel was visualized in a ChemiDoc
419 system (Bio-Rad) to evaluate protein concentrations and perform normalization against the total protein
420 level. The proteins from the gel were blotted onto a PVDF membrane, which was incubated with
421 primary antibodies, secondary HRP-conjugated antibodies, and the Super Signal Western Femto
422 substrate (Thermo Fisher Scientific). The induced chemiluminescence was measured with a ChemiDoc
423 visualization system.

424 **Quantification and statistical analysis**

425 The *orb2* mRNA and protein enrichment was calculated using average intensity projections of the
426 growing end of spermatid cysts (Fig. 4C). First, the mean fluorescence intensity of the growing tip of

427 the flagellar axoneme was determined by averaging several z-stacks in the three areas of interest. The
428 mean fluorescence intensity in spermatocytes was determined in the same way. Then the mean
429 fluorescence intensity of each area of interest within a spermatid was divided by the mean fluorescence
430 intensity of spermatocytes for each testis. These ratios are shown as box plots. The Imaris software was
431 used to quantify the fluorescence signal of *orb2* mRNA and Orb2 protein.

432 Experimental data were processed statistically with the GraphPad Prism software. The statistical
433 significance of the observed differences was estimated by unpaired two-tailed *t*-test (Figs. 3A, 4C).
434 Mendelian inheritance in the offspring was analyzed using the nonparametric chi-square method.
435 Variable values for each group are presented as the mean \pm standard deviation (SD) or \pm standard error
436 of mean (SEM). For all panels, $^*P < 0.05$, $^{**}P < 0.005$, $^{***}P < 0.0005$, $^{****}P < 0.0001$; ns, not
437 significant.

438

439 **Acknowledgments**

440 This study was supported by the Russian Science Foundation (grant 18-74-10051 to MZ) and a NIH
441 (R35GM126975 to PS). The authors are grateful to the Center for Precision Genome Editing and
442 Genetic Technologies for Biomedicine of IGB RAS for mRNA and protein quantification, the Core
443 Facilities Center of IGB RAS, and the IMG RAS Core Facility “Center of Cell and Gene Technologies”
444 for providing the equipment for microscopy.

445

446 **References**

- 447 1. Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in
448 development, health, and disease. *Annu Rev Cell Dev Biol.* 2014;30:393-415. Epub 2014/07/30. doi:
449 10.1146/annurev-cellbio-101011-155831. PubMed PMID: 25068488.
- 450 2. Khan MR, Li L, Perez-Sanchez C, Saraf A, Florens L, Slaughter BD, et al. Amyloidogenic
451 Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator. *Cell.*

- 452 2015;163(6):1468-83. Epub 2015/12/08. doi: 10.1016/j.cell.2015.11.020. PubMed PMID: 26638074;
453 PubMed Central PMCID: PMCPMC4674814.
- 454 3. Kronja I, Orr-Weaver TL. Translational regulation of the cell cycle: when, where, how and why?
455 Philos Trans R Soc Lond B Biol Sci. 2011;366(1584):3638-52. Epub 2011/11/16. doi:
456 10.1098/rstb.2011.0084. PubMed PMID: 22084390; PubMed Central PMCID: PMCPMC3203463.
- 457 4. Groppe R, Richter JD. CPEB control of NF-kappaB nuclear localization and interleukin-6
458 production mediates cellular senescence. Mol Cell Biol. 2011;31(13):2707-14. Epub 2011/05/04. doi:
459 10.1128/mcb.05133-11. PubMed PMID: 21536657; PubMed Central PMCID: PMCPMC3133380.
- 460 5. Hervas R, Rau MJ, Park Y, Zhang W, Murzin AG, Fitzpatrick JA, et al. Cryo-EM structure of a
461 neuronal functional amyloid implicated in memory persistence in Drosophila. Science.
462 2020;367(6483):1230-4. Epub 2020/03/14. doi: 10.1126/science.aba3526. PubMed PMID: 32165583;
463 PubMed Central PMCID: PMCPMC7182444.
- 464 6. Kruttner S, Traunmuller L, Dag U, Jandrasits K, Stepien B, Iyer N, et al. Synaptic Orb2A
465 Bridges Memory Acquisition and Late Memory Consolidation in Drosophila. Cell Rep.
466 2015;11(12):1953-65. Epub 2015/06/23. doi: 10.1016/j.celrep.2015.05.037. PubMed PMID: 26095367;
467 PubMed Central PMCID: PMCPMC4508346.
- 468 7. Hochegger H, Klotzbücher A, Kirk J, Howell M, le Guellec K, Fletcher K, et al. New B-type
469 cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation. Development.
470 2001;128(19):3795-807. Epub 2001/10/05. PubMed PMID: 11585805.
- 471 8. Igea A, Méndez R. Meiosis requires a translational positive loop where CPEB1 ensues its
472 replacement by CPEB4. Embo j. 2010;29(13):2182-93. Epub 2010/06/10. doi: 10.1038/emboj.2010.111.
473 PubMed PMID: 20531391; PubMed Central PMCID: PMCPMC2905248.
- 474 9. Richter JD. CPEB: a life in translation. Trends Biochem Sci. 2007;32(6):279-85. Epub
475 2007/05/08. doi: 10.1016/j.tibs.2007.04.004. PubMed PMID: 17481902.
- 476 10. Sarkissian M, Mendez R, Richter JD. Progesterone and insulin stimulation of CPEB-dependent
477 polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev. 2004;18(1):48-

- 478 61. Epub 2004/01/16. doi: 10.1101/gad.1136004. PubMed PMID: 14724178; PubMed Central PMCID: PMCPMC314275.
- 480 11. Castagnetti S, Ephrussi A. Orb and a long poly(A) tail are required for efficient oskar translation
481 at the posterior pole of the Drosophila oocyte. Development. 2003;130(5):835-43. Epub 2003/01/23.
482 doi: 10.1242/dev.00309. PubMed PMID: 12538512.
- 483 12. Chang JS, Tan L, Schedl P. The Drosophila CPEB homolog, orb, is required for oskar protein
484 expression in oocytes. Developmental biology. 1999;215(1):91-106. Epub 1999/10/20. doi:
485 10.1006/dbio.1999.9444. PubMed PMID: 10525352.
- 486 13. Chang JS, Tan L, Wolf MR, Schedl P. Functioning of the Drosophila orb gene in gurken mRNA
487 localization and translation. Development. 2001;128(16):3169-77. Epub 2001/11/02. PubMed PMID:
488 11688565.
- 489 14. Tan L, Chang JS, Costa A, Schedl P. An autoregulatory feedback loop directs the localized
490 expression of the Drosophila CPEB protein Orb in the developing oocyte. Development.
491 2001;128(7):1159-69. Epub 2001/03/14. PubMed PMID: 11245581.
- 492 15. Hafer N, Xu S, Bhat KM, Schedl P. The Drosophila CPEB protein Orb2 has a novel expression
493 pattern and is important for asymmetric cell division and nervous system function. Genetics.
494 2011;189(3):907-21. Epub 2011/09/09. doi: 10.1534/genetics.110.123646. PubMed PMID: 21900268;
495 PubMed Central PMCID: PMCPMC3213381.
- 496 16. Hervas R, Li L, Majumdar A, Fernandez-Ramirez Mdel C, Unruh JR, Slaughter BD, et al.
497 Molecular Basis of Orb2 Amyloidogenesis and Blockade of Memory Consolidation. PLoS Biol.
498 2016;14(1):e1002361. Epub 2016/01/27. doi: 10.1371/journal.pbio.1002361. PubMed PMID:
499 26812143; PubMed Central PMCID: PMCPMC4727891.
- 500 17. Kruttner S, Stepien B, Noordermeer JN, Mommaas MA, Mechtler K, Dickson BJ, et al.
501 Drosophila CPEB Orb2A mediates memory independent of Its RNA-binding domain. Neuron.
502 2012;76(2):383-95. Epub 2012/10/23. doi: 10.1016/j.neuron.2012.08.028. PubMed PMID: 23083740;
503 PubMed Central PMCID: PMCPMC3480640.

- 504 18. Xu S, Hafer N, Agunwamba B, Schedl P. The CPEB protein Orb2 has multiple functions during
505 spermatogenesis in *Drosophila melanogaster*. *PLoS Genet*. 2012;8(11):e1003079. Epub 2012/12/05. doi:
506 10.1371/journal.pgen.1003079. PubMed PMID: 23209437; PubMed Central PMCID:
507 PMCPMC3510050.
- 508 19. Fabian L, Brill JA. *Drosophila* spermiogenesis: Big things come from little packages.
509 *Spermatogenesis*. 2012;2(3):197-212. Epub 2012/10/23. doi: 10.4161/spmg.21798. PubMed PMID:
510 23087837; PubMed Central PMCID: PMCPMC3469442.
- 511 20. Tokuyasu KT. Dynamics of spermiogenesis in *Drosophila melanogaster*. 3. Relation between
512 axoneme and mitochondrial derivatives. *Exp Cell Res*. 1974;84(1):239-50. Epub 1974/03/15. doi:
513 10.1016/0014-4827(74)90402-9. PubMed PMID: 4206336.
- 514 21. Tokuyasu KT. Dynamics of spermiogenesis in *Drosophila melanogaster*. VI. Significance of
515 "onion" nebenkern formation. *Journal of ultrastructure research*. 1975;53(1):93-112. Epub 1975/10/01.
516 doi: 10.1016/s0022-5320(75)80089-x. PubMed PMID: 810602.
- 517 22. Tokuyasu KT, Peacock WJ, Hardy RW. Dynamics of spermiogenesis in *Drosophila*
518 *melanogaster*. II. Coiling process. *Zeitschrift fur Zellforschung und mikroskopische Anatomie* (Vienna,
519 Austria : 1948). 1972;127(4):492-525. Epub 1972/01/01. doi: 10.1007/bf00306868. PubMed PMID:
520 4625686.
- 521 23. Barreau C, Benson E, Gudmannsdottir E, Newton F, White-Cooper H. Post-meiotic transcription
522 in *Drosophila* testes. *Development*. 2008;135(11):1897-902. Epub 2008/04/25. doi:
523 10.1242/dev.021949. PubMed PMID: 18434411.
- 524 24. Fabrizio JJ, Hime G, Lemmon SK, Bazinet C. Genetic dissection of sperm individualization in
525 *Drosophila melanogaster*. *Development*. 1998;125(10):1833-43. Epub 1998/06/18. PubMed PMID:
526 9550716.
- 527 25. O'Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed.
528 *Spermatogenesis*. 2014;4(2):e979623. Epub 2014/05/01. doi: 10.4161/21565562.2014.979623. PubMed
529 PMID: 26413397; PubMed Central PMCID: PMCPMC4581055.

- 530 26. Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R.
531 Transition from a nucleosome-based to a protamine-based chromatin configuration during
532 spermiogenesis in *Drosophila*. *J Cell Sci.* 2007;120(Pt 9):1689-700. Epub 2007/04/25. doi:
533 10.1242/jcs.004663. PubMed PMID: 17452629.
- 534 27. Xu S, Tyagi S, Schedl P. Spermatid cyst polarization in *Drosophila* depends upon apkc and the
535 CPEB family translational regulator orb2. *PLoS Genet.* 2014;10(5):e1004380. Epub 2014/05/17. doi:
536 10.1371/journal.pgen.1004380. PubMed PMID: 24830287; PubMed Central PMCID:
537 PMCPMC4022466.
- 538 28. Barr J, Gilmutdinov R, Wang L, Shidlovskii Y, Schedl P. The *Drosophila* CPEB Protein Orb
539 Specifies Oocyte Fate by a 3'UTR Dependent Autoregulatory Loop. *Genetics.* 2019. Epub 2019/10/09.
540 doi: 10.1534/genetics.119.302687. PubMed PMID: 31594794.
- 541 29. Mastushita-Sakai T, White-Grindley E, Samuelson J, Seidel C, Si K. *Drosophila* Orb2 targets
542 genes involved in neuronal growth, synapse formation, and protein turnover. *Proc Natl Acad Sci U S A.*
543 2010;107(26):11987-92. Epub 2010/06/16. doi: 10.1073/pnas.1004433107. PubMed PMID: 20547833;
544 PubMed Central PMCID: PMCPMC2900709.
- 545 30. Stepien BK, Oppitz C, Gerlach D, Dag U, Novatchkova M, Kruttner S, et al. RNA-binding
546 profiles of *Drosophila* CPEB proteins Orb and Orb2. *Proc Natl Acad Sci U S A.* 2016;113(45):E7030-
547 e8. Epub 2016/10/30. doi: 10.1073/pnas.1603715113. PubMed PMID: 27791065; PubMed Central
548 PMCID: PMCPMC5111685.
- 549 31. Cheng MH, Maines JZ, Wasserman SA. Biphasic subcellular localization of the DAZL-related
550 protein boule in *Drosophila* spermatogenesis. *Developmental biology.* 1998;204(2):567-76. Epub
551 1999/01/12. doi: 10.1006/dbio.1998.9098. PubMed PMID: 9882490.
- 552 32. Noguchi T, Miller KG. A role for actin dynamics in individualization during spermatogenesis in
553 *Drosophila melanogaster*. *Development.* 2003;130(9):1805-16. Epub 2003/03/19. doi:
554 10.1242/dev.00406. PubMed PMID: 12642486.

- 555 33. McCaffrey LM, Macara IG. Widely conserved signaling pathways in the establishment of cell
556 polarity. *Cold Spring Harb Perspect Biol*. 2009;1(2):a001370. Epub 2010/01/13. doi:
557 10.1101/cshperspect.a001370. PubMed PMID: 20066082; PubMed Central PMCID:
558 PMCPMC2742088.
- 559 34. Nelson WJ. Adaptation of core mechanisms to generate cell polarity. *Nature*.
560 2003;422(6933):766-74. Epub 2003/04/18. doi: 10.1038/nature01602. PubMed PMID: 12700771;
561 PubMed Central PMCID: PMCPMC3373010.
- 562 35. Barr J, Yakovlev KV, Shidlovskii Y, Schedl P. Establishing and maintaining cell polarity with
563 mRNA localization in *Drosophila*. *Bioessays*. 2016;38(3):244-53. Epub 2016/01/17. doi:
564 10.1002/bies.201500088. PubMed PMID: 26773560; PubMed Central PMCID: PMCPMC4871591.
- 565 36. Besse F, Ephrussi A. Translational control of localized mRNAs: restricting protein synthesis in
566 space and time. *Nat Rev Mol Cell Biol*. 2008;9(12):971-80. Epub 2008/11/22. doi: 10.1038/nrm2548.
567 PubMed PMID: 19023284.
- 568 37. Lantz V, Ambrosio L, Schedl P. The *Drosophila* *orb* gene is predicted to encode sex-specific
569 germline RNA-binding proteins and has localized transcripts in ovaries and early embryos.
570 *Development*. 1992;115(1):75-88. Epub 1992/05/01. PubMed PMID: 1638994.
- 571 38. Lasko P. mRNA localization and translational control in *Drosophila* oogenesis. *Cold Spring
572 Harb Perspect Biol*. 2012;4(10). Epub 2012/08/07. doi: 10.1101/cshperspect.a012294. PubMed PMID:
573 22865893; PubMed Central PMCID: PMCPMC3475173.
- 574 39. Martin KC, Ephrussi A. mRNA localization: gene expression in the spatial dimension. *Cell*.
575 2009;136(4):719-30. Epub 2009/02/26. doi: 10.1016/j.cell.2009.01.044. PubMed PMID: 19239891;
576 PubMed Central PMCID: PMCPMC2819924.
- 577 40. St Johnston D. Moving messages: the intracellular localization of mRNAs. *Nat Rev Mol Cell
578 Biol*. 2005;6(5):363-75. Epub 2005/04/27. doi: 10.1038/nrm1643. PubMed PMID: 15852043.

- 579 41. Christerson LB, McKearin DM. *orb* is required for anteroposterior and dorsoventral patterning
580 during *Drosophila* oogenesis. *Genes Dev.* 1994;8(5):614-28. Epub 1994/03/01. doi:
581 10.1101/gad.8.5.614. PubMed PMID: 7926753.
- 582 42. Lantz V, Chang JS, Horabin JI, Bopp D, Schedl P. The *Drosophila* *orb* RNA-binding protein is
583 required for the formation of the egg chamber and establishment of polarity. *Genes Dev.* 1994;8(5):598-
584 613. Epub 1994/03/01. doi: 10.1101/gad.8.5.598. PubMed PMID: 7523244.
- 585 43. Kogan GL, Akulenko NV, Abramov YA, Sokolova OA, Fefelova EA, Gvozdev VA. [Nascent
586 Polypeptide-Associated Complex as Tissue-Specific Cofactor during Germinal Cell Differentiation in
587 *Drosophila* Testes]. *Mol Biol (Mosk)*. 2017;51(4):677-82. Epub 2017/09/14. doi:
588 10.7868/S0026898417040115. PubMed PMID: 28900087.

589

590 **Figure legends**

591 **Fig. 1. Structure of *orb2* transcripts and location of 3'UTR deletion.**

592 The *orb2* gene encodes five distinct mRNA species that differ in the length of their 3'UTRs and contain
593 different sets of canonical and non-canonical CPE sequences (indicated on the right). Cutting sites for
594 CRISPR/Cas9 gene modification are indicated. CPE motifs were taken from the CPEB CLIP dataset
595 [30].

596 **Fig. 2. Fertility assay.**

597 **(A)** Overall fertility: 35 WT or *orb2^R* males were mated with 70 WT females, and the total number of
598 offspring reaching adulthood was counted. **(B)** Individual fertility: males of the WT, *orb2^R* and
599 *orb2^R/orb2³⁶* genotypes were each mated with two WT virgin females for 7 days, and the number of males
600 that produced any offspring was counted (WT, $n = 287$; *orb2^R*, $n = 358$; *orb2^R/orb2³⁶*, $n = 145$). **(C)**
601 Frequency distribution of offspring from individually mated males. Males of the WT, *orb2^R* and *orb2³⁶*/
602 genotypes were crossed for 7 days with WT virgin females. The crossed flies were then removed, and the
603 numbers of offspring from each individual male were estimated and ranged into groups. All data are

604 represented as percentage relative to the total number of males tested. Tests were conducted with 175
605 males of each genotype.

606 **Fig. 3. Deletion in 3'UTR of *orb2* reduces its expression in testes.**

607 **(A)** The level of total *orb2* mRNA in *orb2^R* and *orb2^{36/+}* mutant testes and the level of primary *orb2*
608 transcripts in *orb2^R* mutant testes. Data were first normalized to the expression of *GAPDH* in testes and
609 expressed as the mean of fold change $[2^{-\Delta\Delta Ct}] \pm \text{SEM}$ in mutant testes relative to control ones (red
610 dashed line) (spliced isoform: control, $n = 29$; *orb2^R*, $n = 27$; *orb2^{36/+}*, $n = 18$; unspliced isoform:
611 control, $n = 10$; *orb2^R*, $n = 10$). Unpaired two-tailed t-test: **** $P < 0.0001$; ns, $P > 0.05$. **(B)** Western
612 blot analysis of Orb2 protein in twofold dilution series of testes lysates (total protein level is indicated
613 above). A fragment of gel stained for total protein is shown below. **(C)** Densitometry analysis of Orb2
614 level normalized to total protein level (Bio-Rad stain-free technology) in mutant testes compared with
615 WT testes (red dotted line). Quantitative data of western blotting were obtained from independent
616 biological replicates (*orb2^R*, $n = 7$; *orb2^R/orb2³⁶*, $n = 4$) and expressed as mean \pm SD.

617 **Fig. 4. The *orb2* 3'UTR is required for localization of mRNA and protein in spermatid cysts.**

618 **(A, B)** Maximum intensity projections of (A) *orb2* mRNA and (B) Orb2 protein within spermatid cysts
619 in WT, *orb2^R*, and *orb2^R/orb2³⁶* testes. Arrows indicate the mRNA or protein accumulated at the ends of
620 WT spermatid cysts; brackets indicate the spermatid cyst tail ends without corresponding mRNA or
621 protein accumulation in mutant testes. Scale bar, 40 μm . **(C)** Quantification of *orb2* mRNA and protein
622 distribution along the spermatid cyst. Areas analyzed within a spermatid cyst are shown at the top.
623 Below are box plots of *orb2* mRNA and protein levels in the different areas of spermatid cysts relative
624 to those in spermatocytes for WT ($n = 21$) and *orb2^R* ($n = 14$). **** $P < 0.0001$, *** $P < 0.0005$, ** $P <$
625 0.005; ns, not significant.

626 **Fig. 5. *orb* mRNA and protein localization in testes depend on *orb2* 3'UTR.**

627 **(A)** Maximum intensity projections of *orb* mRNA in WT ($n = 15$), *orb2^R* ($n = 24$), and *orb2^R/orb2³⁶* ($n =$
628 20) testes. A high fluorescence signal is observed at the ends of WT spermatid tails (arrows), whereas

629 this pattern in mutant testes is lost, and *orb* mRNA is distributed uniformly. **(B)** Maximum intensity
630 projections of Orb protein in WT ($n = 30$), *orb2^R* ($n = 28$), and *orb2^R/orb2³⁶* ($n = 13$) testes. Arrows
631 indicate Orb protein localization at the ends of WT spermatid cysts; brackets indicate the spermatid cyst
632 tail ends without Orb protein accumulation in mutant testes. Scale bar, 50 μ m.

633 **Fig. 6. The *orb2* 3'UTR deletion affects the Boule protein localization.**

634 Maximum intensity projections of Boule protein in WT and mutant testes. Boule is enriched at the ends
635 of elongated spermatid cysts in WT ($n = 9$) but is uniformly distributed along spermatid cysts in *orb2^R*
636 ($n = 22$) and *orb2^R/orb2³⁶* ($n = 32$). Brackets indicate the spermatid cyst tail ends. Scale bar, 40 μ m.

637 **Fig. 7. *orb2* 3'UTR is required for nuclear polarization in early elongated spermatid.**

638 Whole mount testis staining with β NACtes antibodies (red), which mark germline cells in testes [43].
639 Chromatin was stained by DAPI (blue). Brackets indicate the areas of nuclear polarization at the
640 proximal ends of early elongated spermatid cysts in WT ($n = 29$). In contrast, the distribution of nuclei
641 (arrows) along elongated spermatid is uniform in *orb2^R* ($n = 34$) and *orb2^R/orb2³⁶* ($n = 36$). Scale bar, 30
642 μ m.

643 **Fig. 8. The compaction of nuclei and formation of IC is disrupted in late *orb2^R* spermatids.**

644 **(A)** Confocal slices of immunostained whole mount testis preparations are shown. Chromatin was
645 stained by DAPI (blue). The arrow indicates a condensed spermatid nuclear bundle in WT and partially
646 assembled spermatid nuclear bundles in *orb2^R*. Arrowheads indicate scattered nuclei incapable of
647 compaction in mutant spermatids. **(B)** Individualization complexes are not properly assembled in
648 *orb2^R* and *orb2^R/orb2³⁶*. Confocal slices of whole mount testis preparations are shown. Chromatin was
649 stained by DAPI (blue), actin cones were stained using phalloidin (violet). The arrow indicates complete
650 ICs in WT and incomplete ICs in *orb2^R*. Arrowheads indicate scattered actin cones in mutant testes.
651 Scale bar: left panels, 100 μ m; right panels, 30 μ m. **(C)** The frequency of spermatids defective in nuclei
652 clustering in WT ($n = 86$), *orb2^R* ($n = 61$), and *orb2^R/orb2³⁶* ($n = 57$). **(D)** Quantification of the numbers
653 of testes with IC defect in WT ($n = 86$), *orb2^R* ($n = 60$) and *orb2^R/orb2³⁶* ($n = 56$).

654 **Fig. 9. Defects of seminal vesicle filling in *orb2^R* and *orb2^R/orb2³⁶*.**

655 (A) Staining for nuclei by DAPI shows that seminal vesicles in *orb2^R* are filled only partially, while
656 those in *orb2^R/orb2³⁶* are empty. Scale bar, 40 μ m. (B) Proportions (%) of seminal vesicles with filling
657 defects in WT ($n = 74$), *orb2^R* ($n = 47$), and *orb2^R/orb2³⁶* ($n = 37$).

658

659 **Supplementary Information**

660 **Suppl. Fig. 1. Mendelian inheritance of *orb2^R* allele.** Observed and expected offspring ratios and chi-
661 square analysis of offspring with different genotypes from *orb2^R/TM3 Ser* intercross.

662 **Suppl. Fig. 2. Orb2 protein and *orb2* mRNA in premeiotic and meiotic cysts.** (A) Fluorescence in
663 situ hybridization for *orb2* mRNA localization in primary spermatocytes (16-cell premeiotic cysts)
664 within the area indicated by an asterisk and in secondary spermatocytes (32-cell meiotic cyst) within the
665 highlighted area without an asterisk in WT and *orb2^R* testes. Except for a slight decrease in the signal,
666 the mutants show no obvious changes in the localization of *orb2* mRNA at these stages (WT, $n = 25$;
667 *orb2^R*, $n = 18$). (B) Whole mount staining of testes with Orb2 antibodies shows that the level of Orb2
668 protein in primary spermatocytes (left column) in *orb2^R* is reduced, compared to WT, with the pattern of
669 its localization remaining unchanged; the same is also true of secondary spermatocytes (right column)
670 (WT, $n = 20$; *orb2^R*, $n = 21$). Scale bar, 30 μ m.

671 **Sequences for Cas9 cut**

672 upstream cut, 5'- CTTCGTAATAGACCGTATTAT \downarrow GTAAGG;

673 downstream cut, 5'- CTTCGTGGAGTACTGCTGATA \downarrow TCTTGG.

674 **Primers used in qPCR**

675 *orb2* total mRNA, 5'-TAACACCAGCGAAAGGGGAC and 5'- CAGATGTGCGACGAGTGC;

676 *orb2* primary transcript, 5'-GCTGTTGGTGCTGATGGA and 5'-AGCCTCTTCATCTTGTGTC;

677 *GAPDH* mRNA, 5'-CTACCTGTTCAAGTTCGATTGAC and 5'-

678 AGTGGACTCCACGATGTATTG.

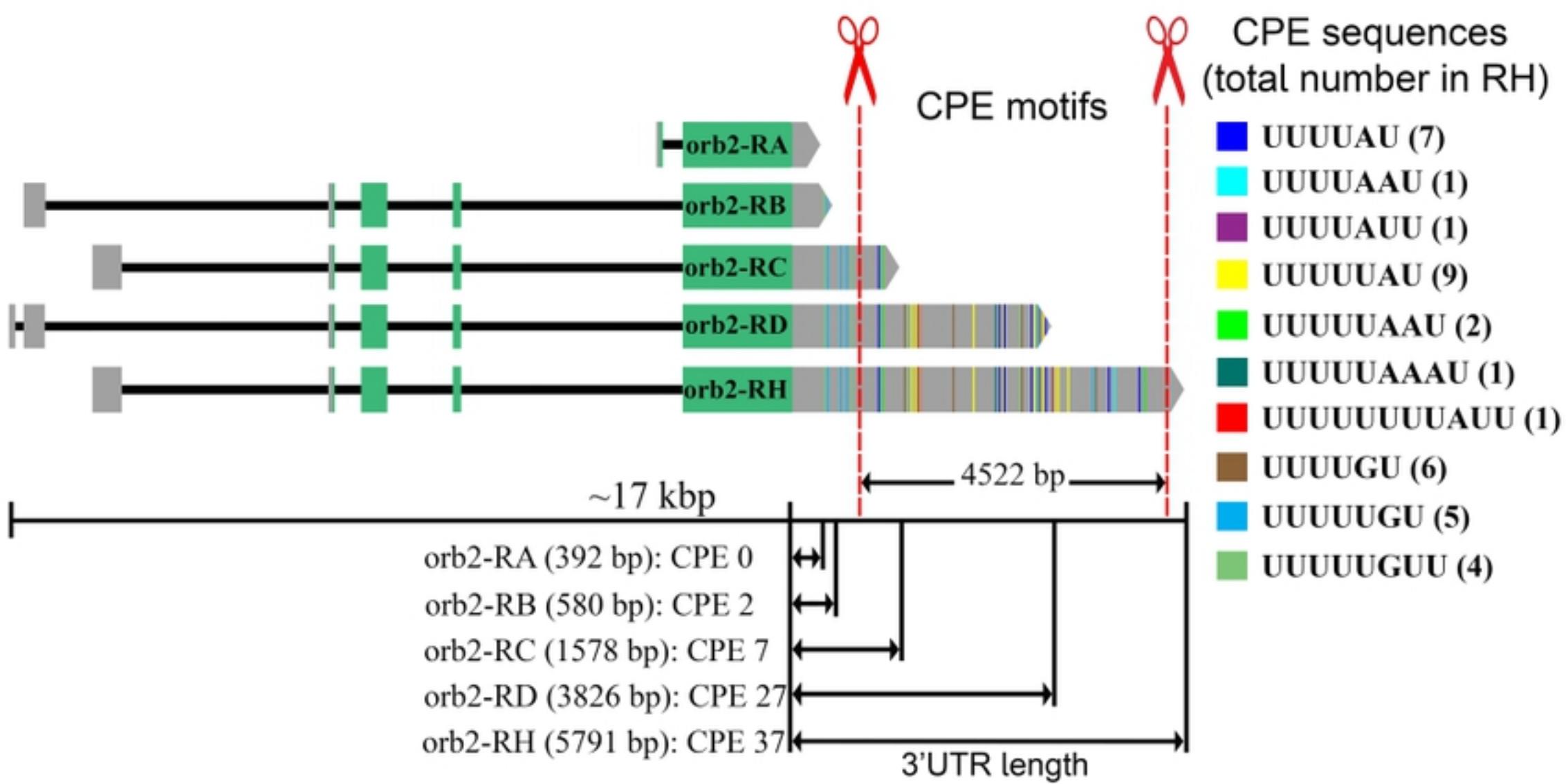
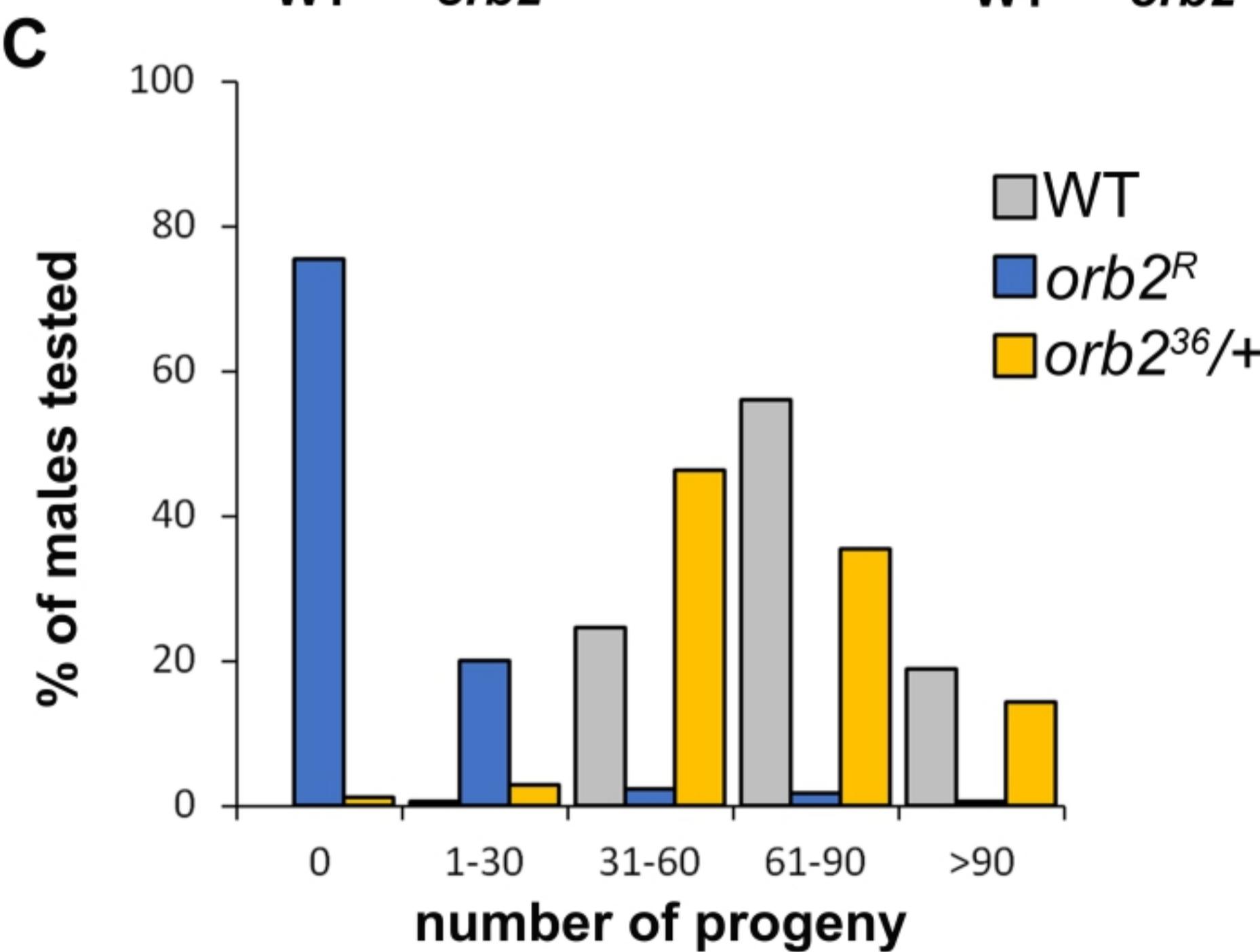
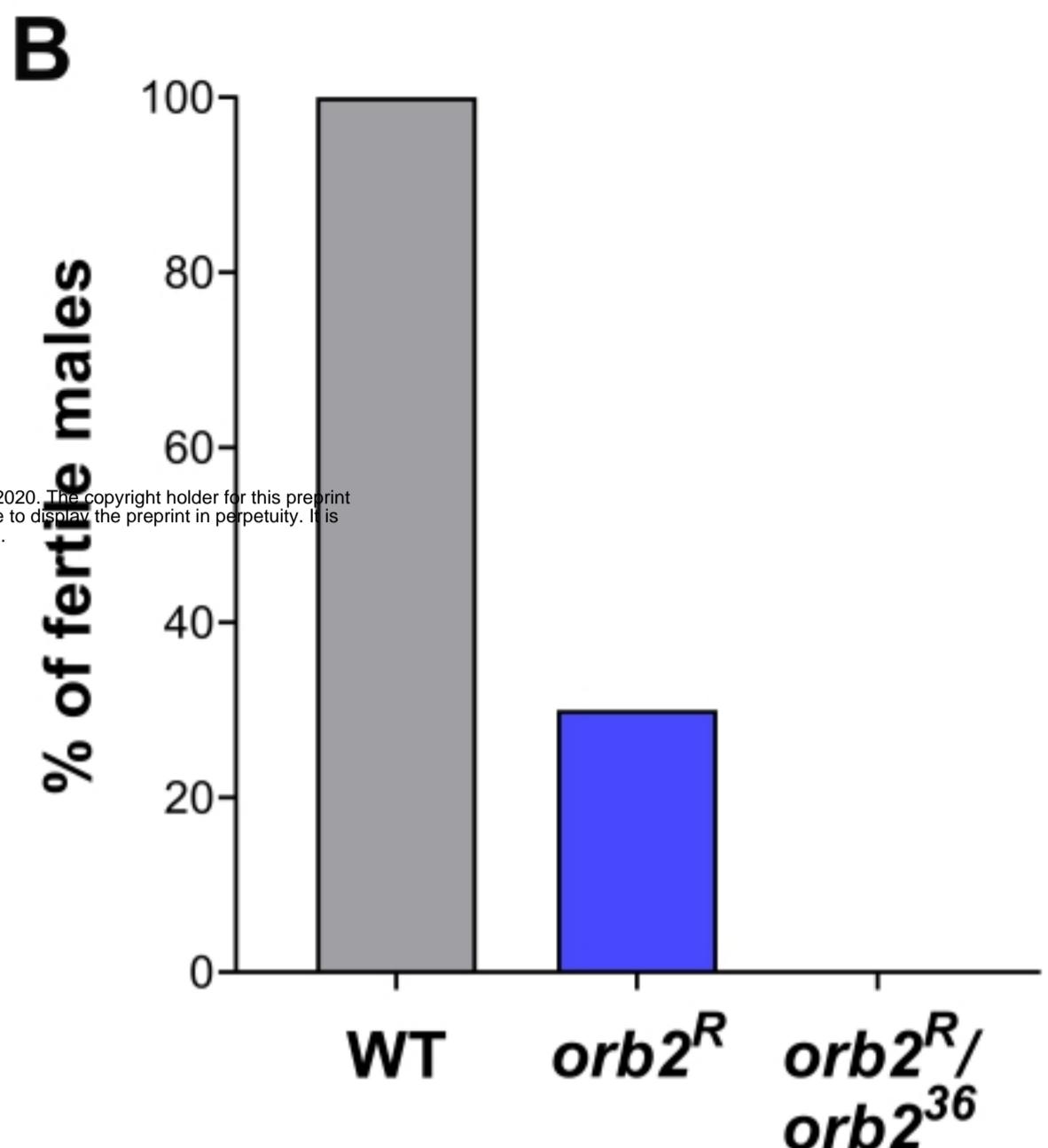
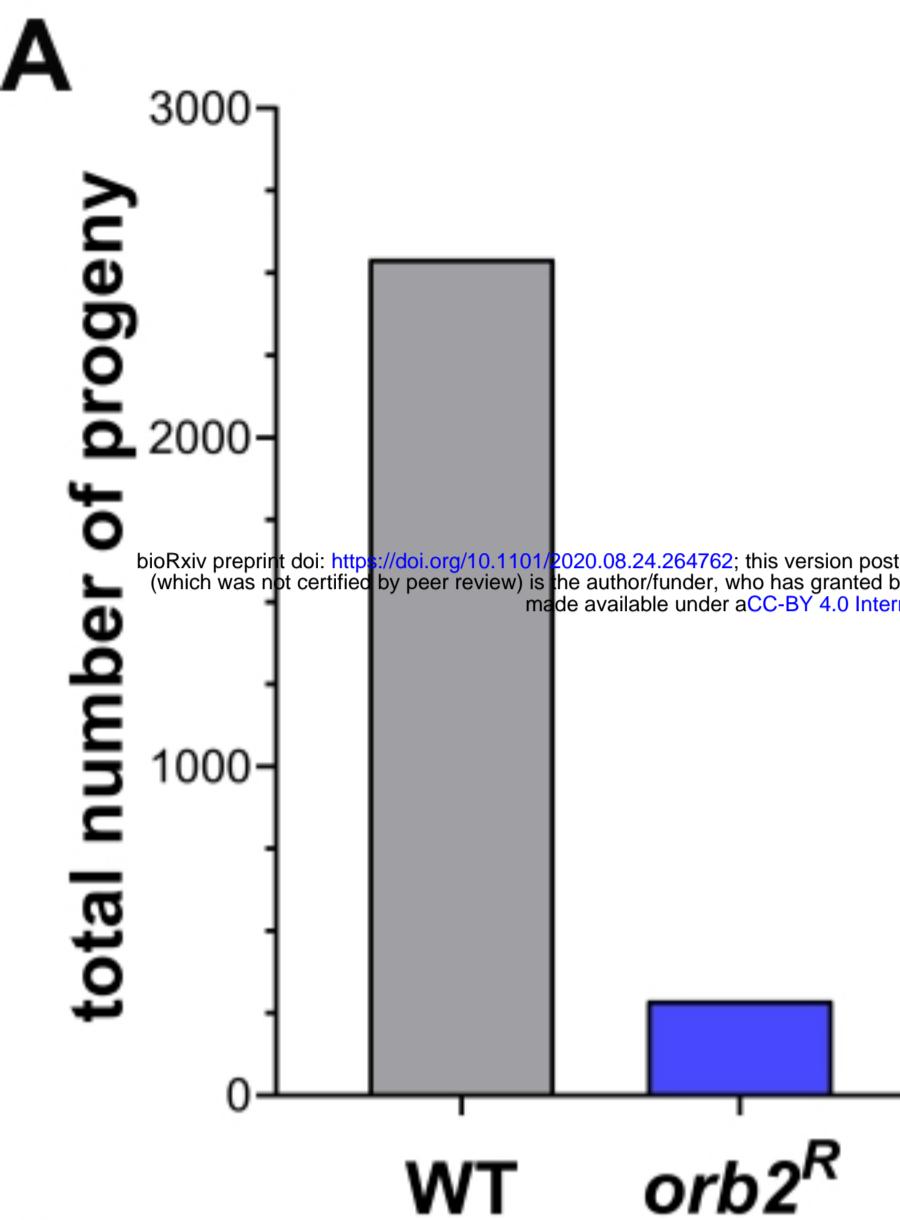
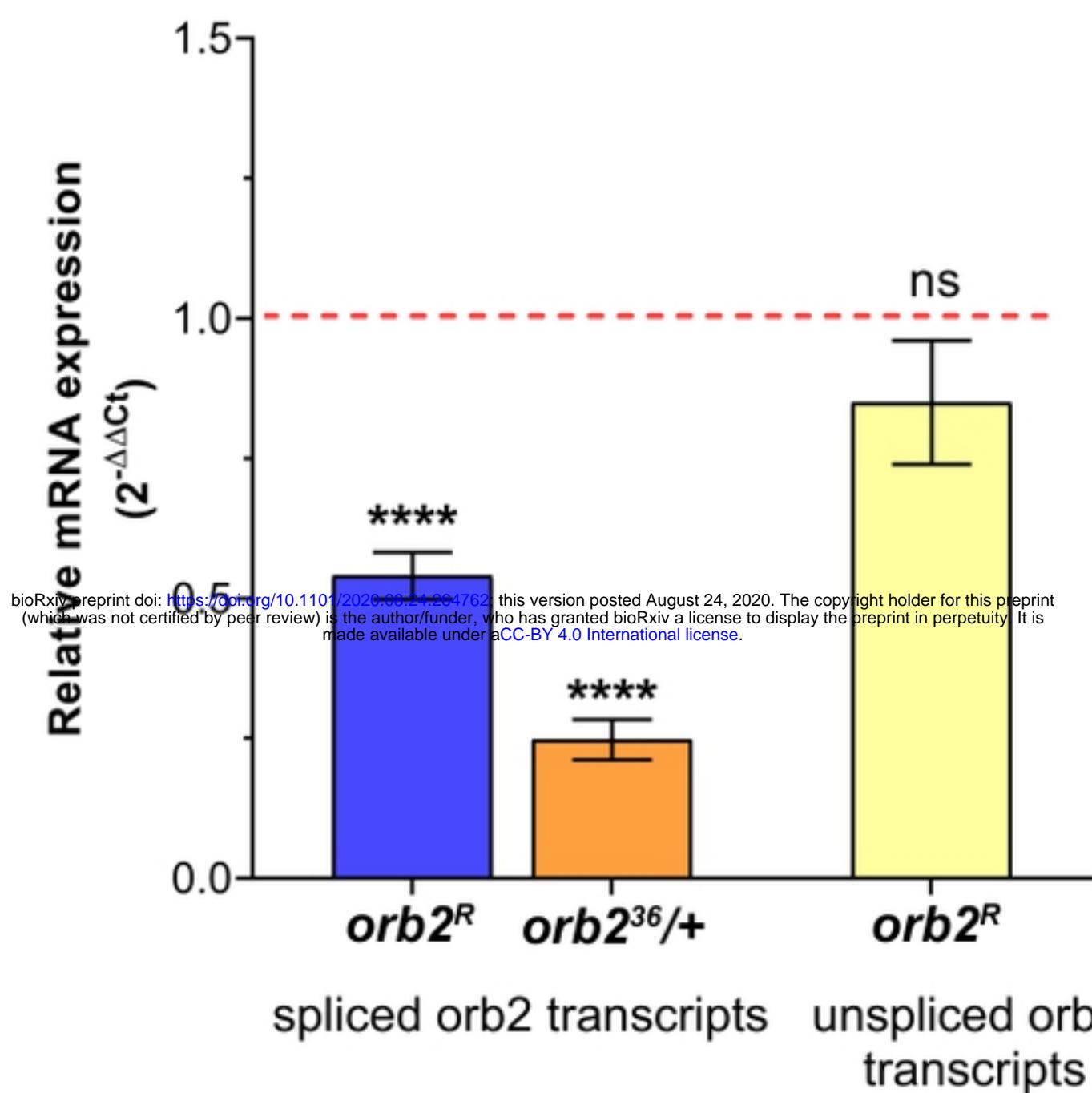
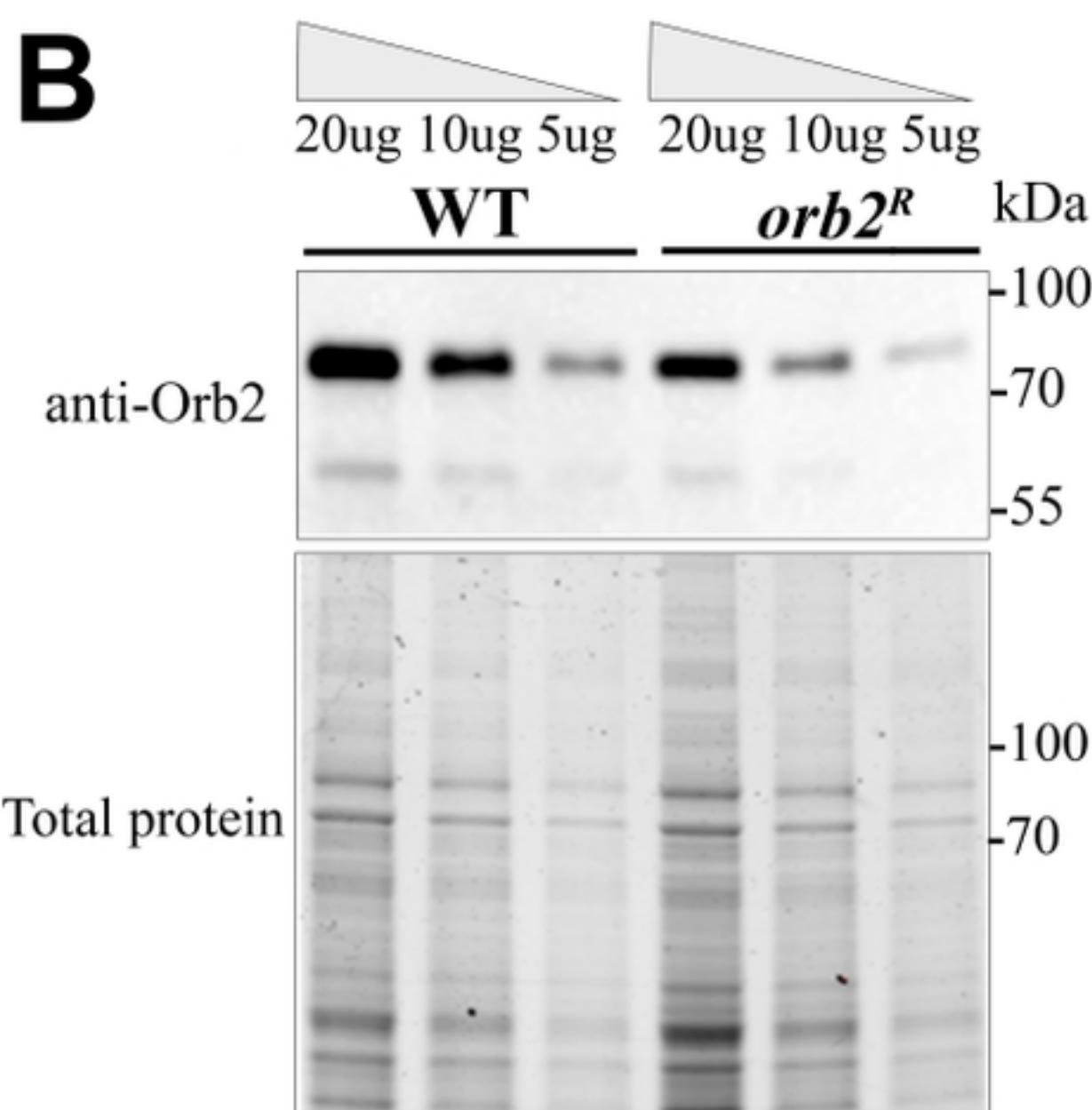
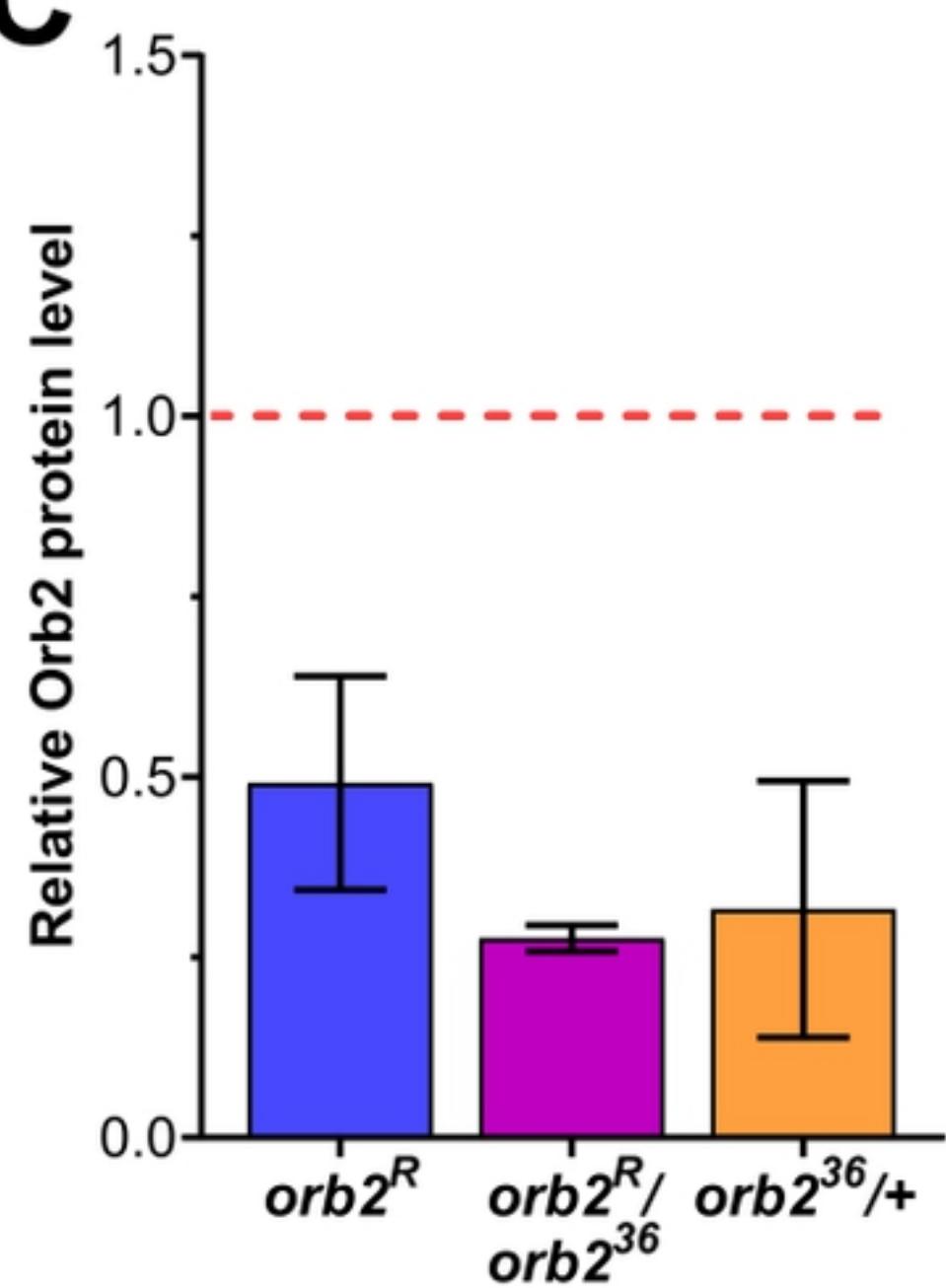
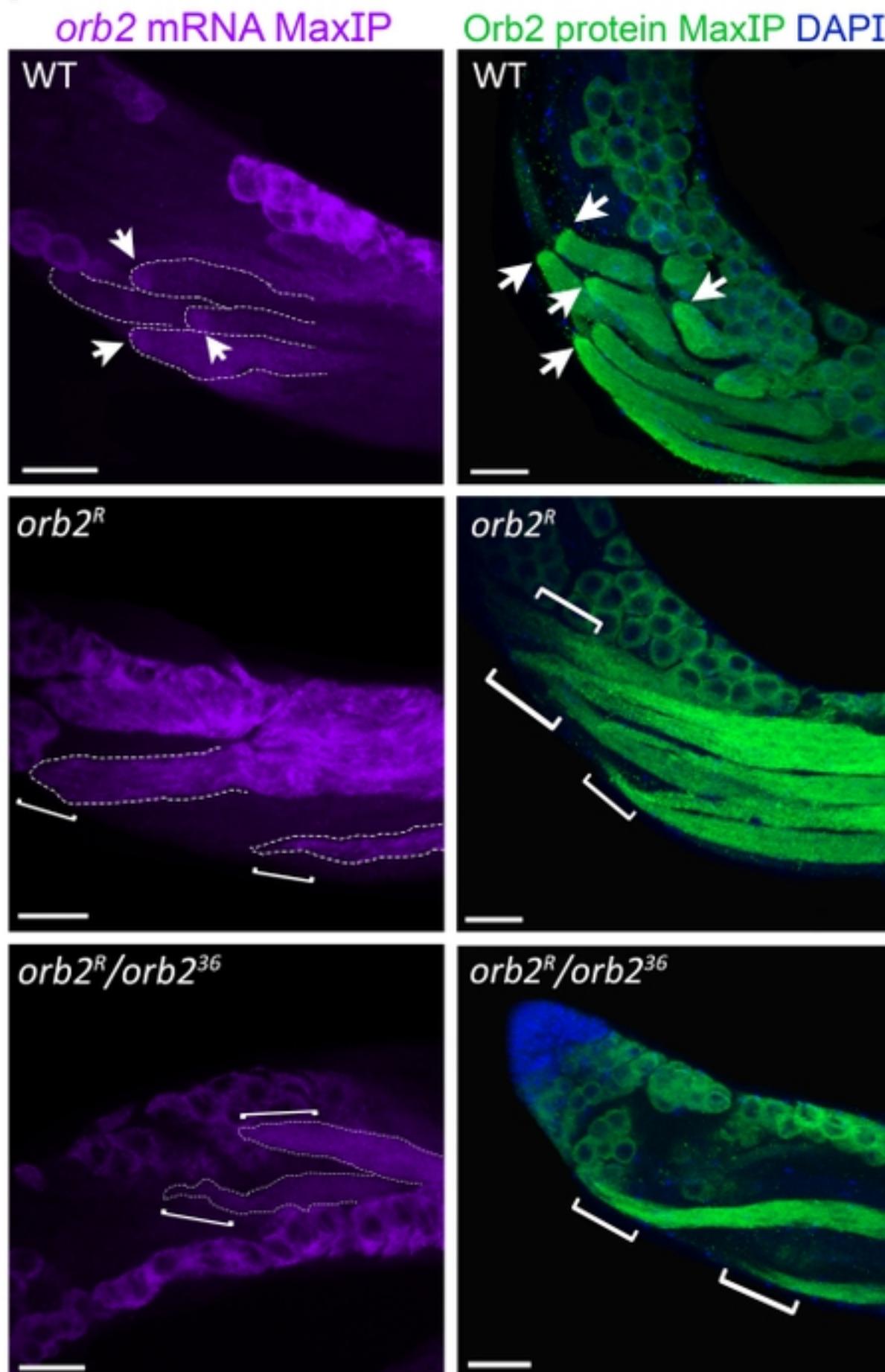
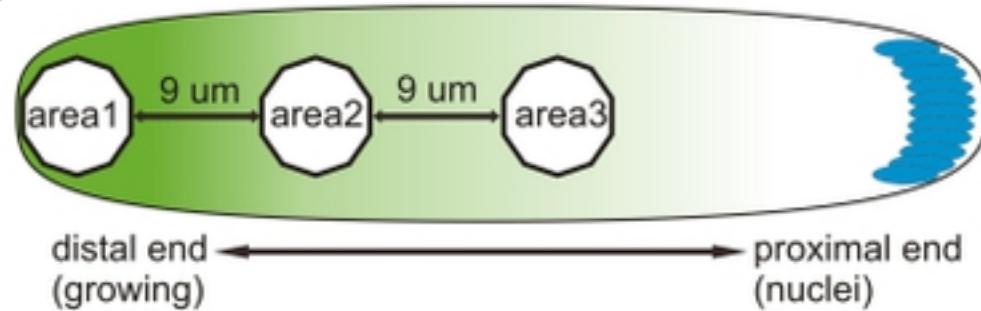
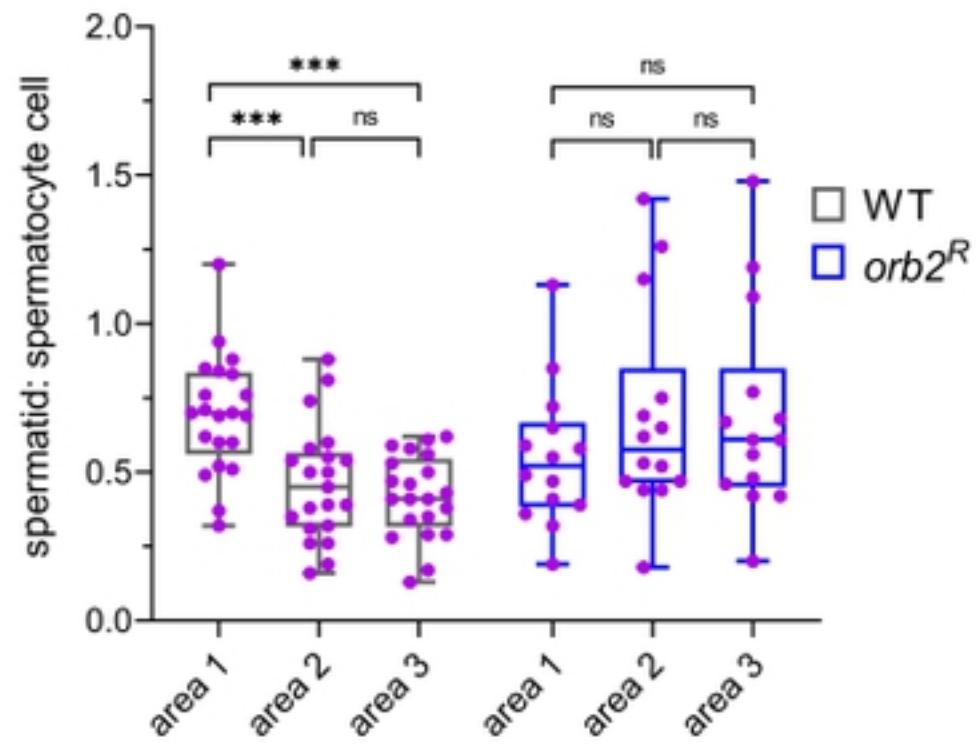


Figure 1


Figure 2

A**B****C****Figure 3**


A

C

orb2 mRNA enrichment

Orb2 protein enrichment

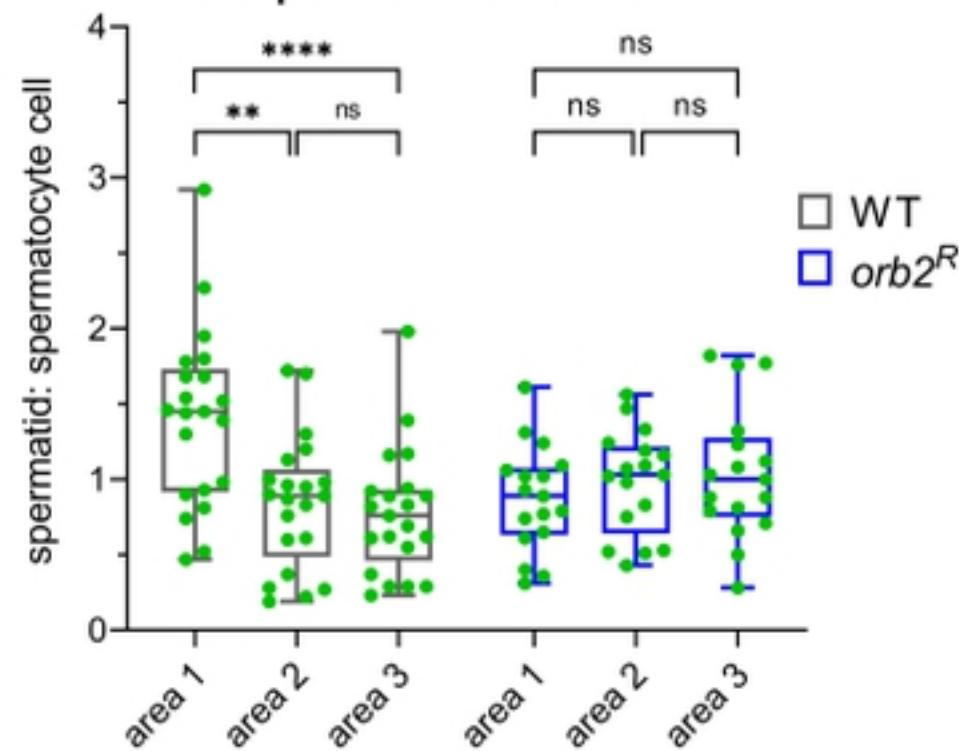
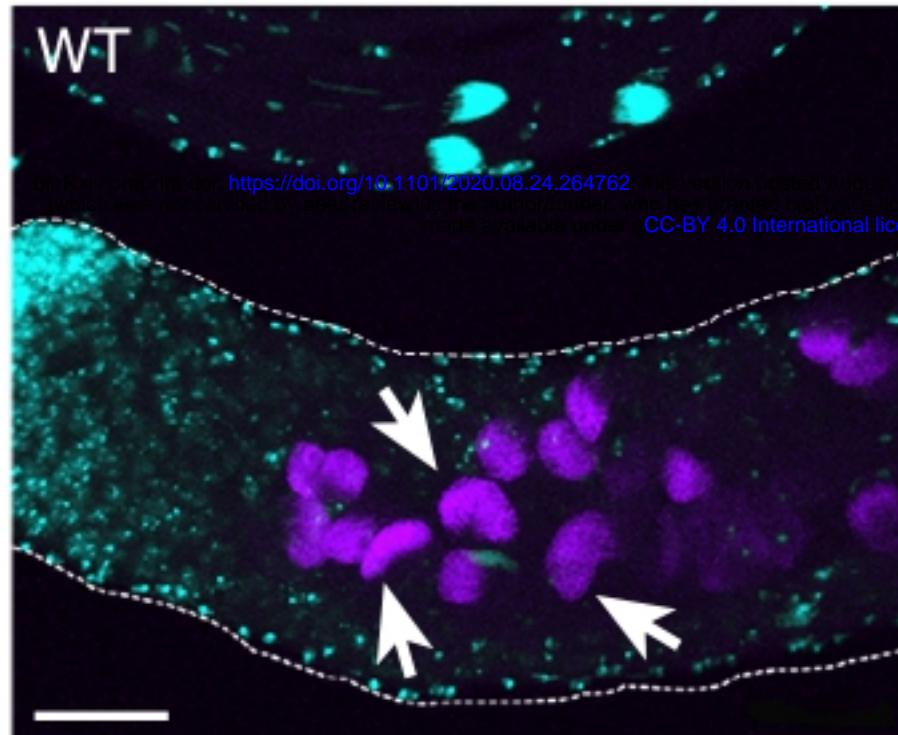
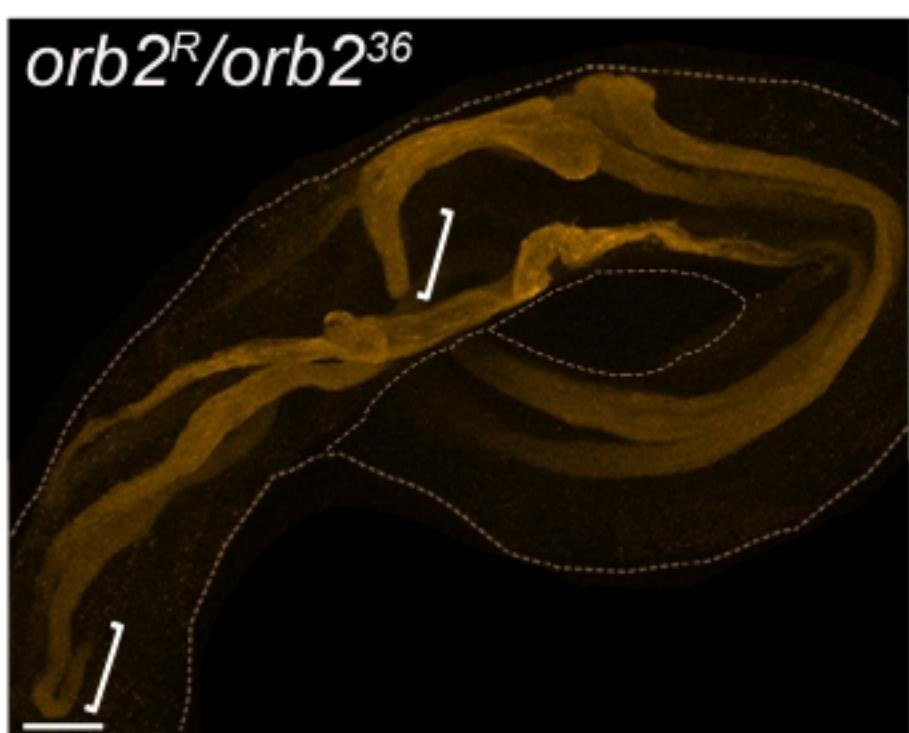
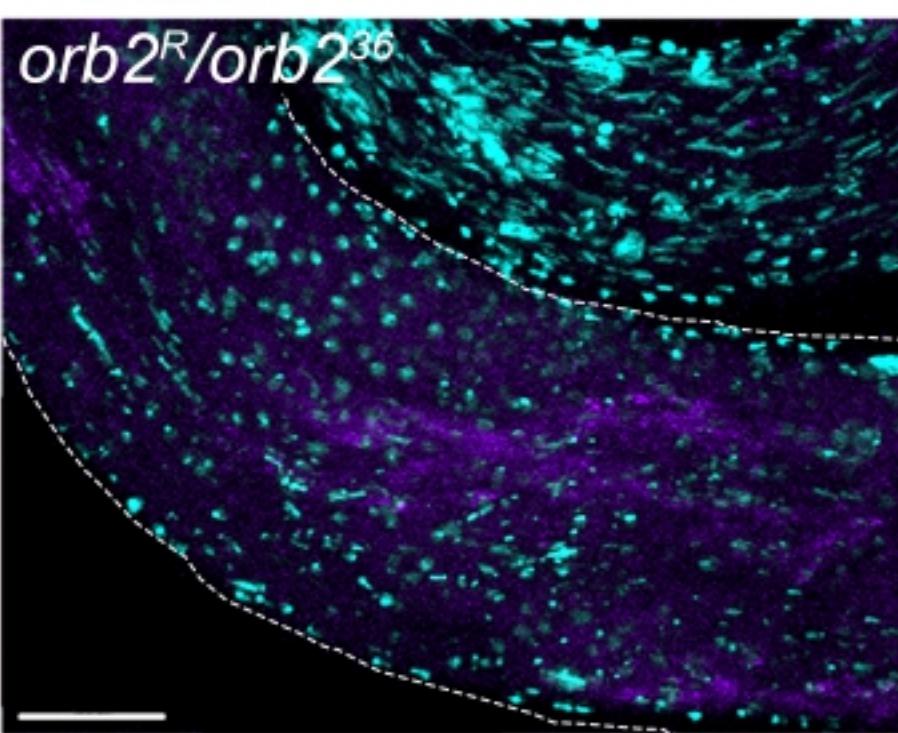
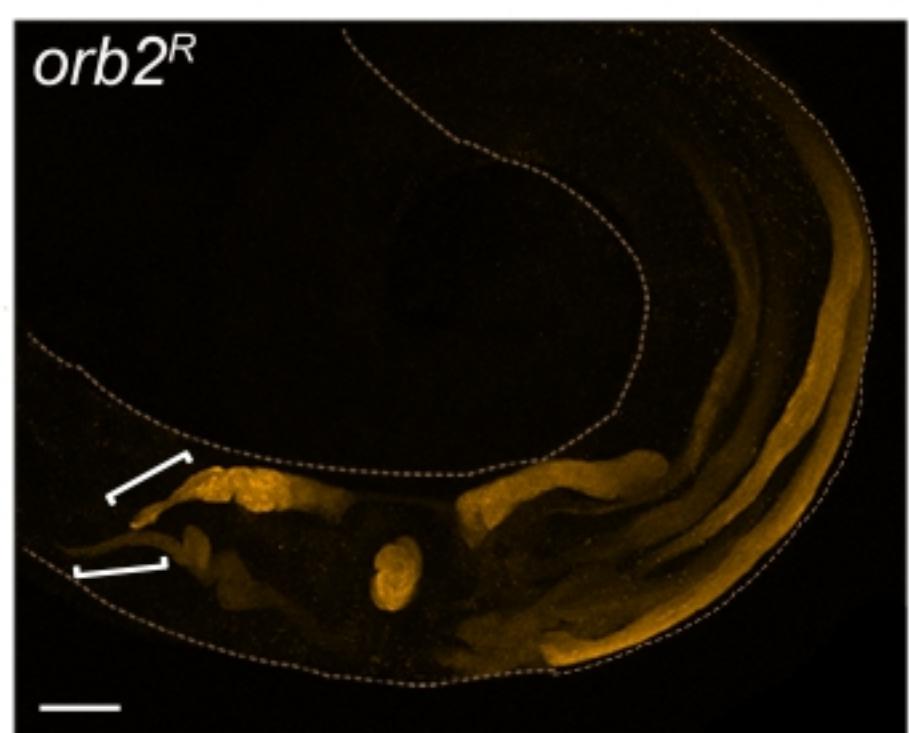
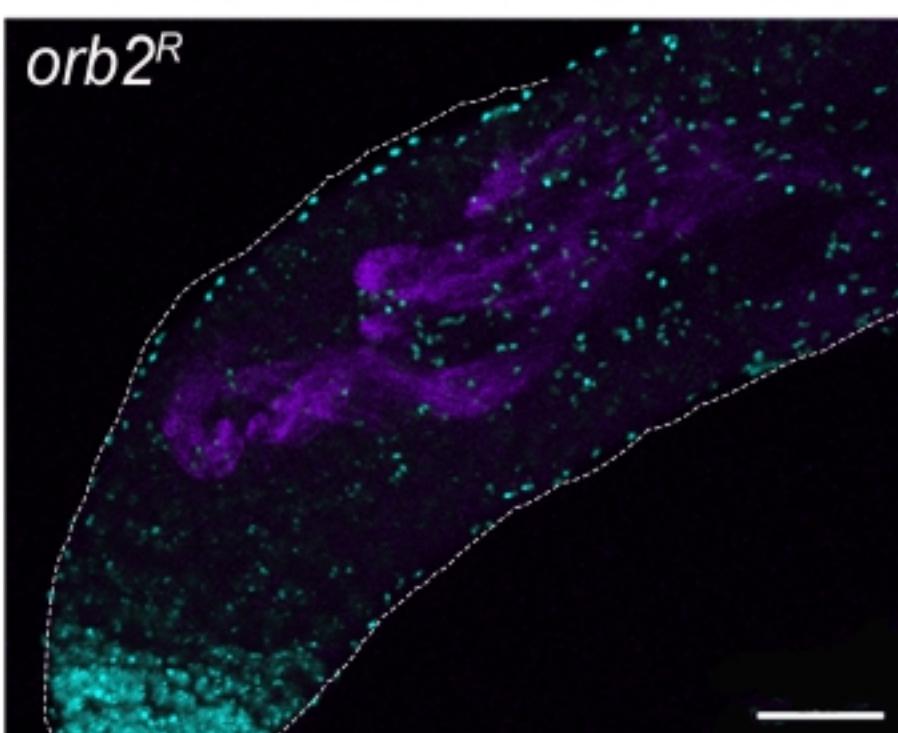
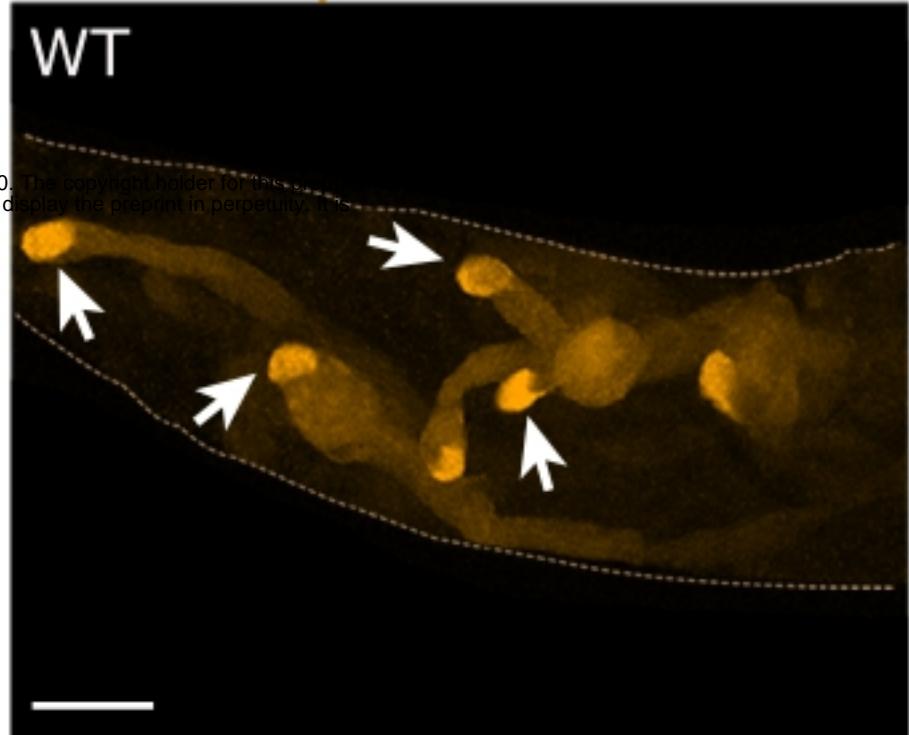








Figure 4

A*orb* mRNA MaxIP DAPI**B**

Orb protein MaxIP

Figure 5

Bol

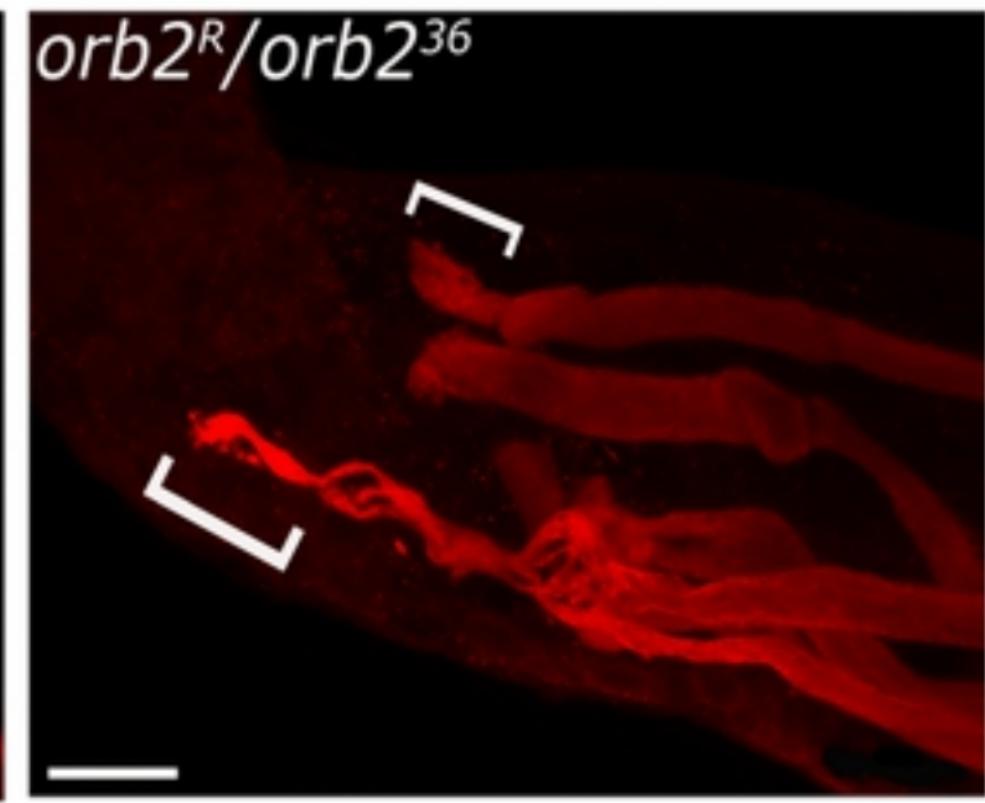
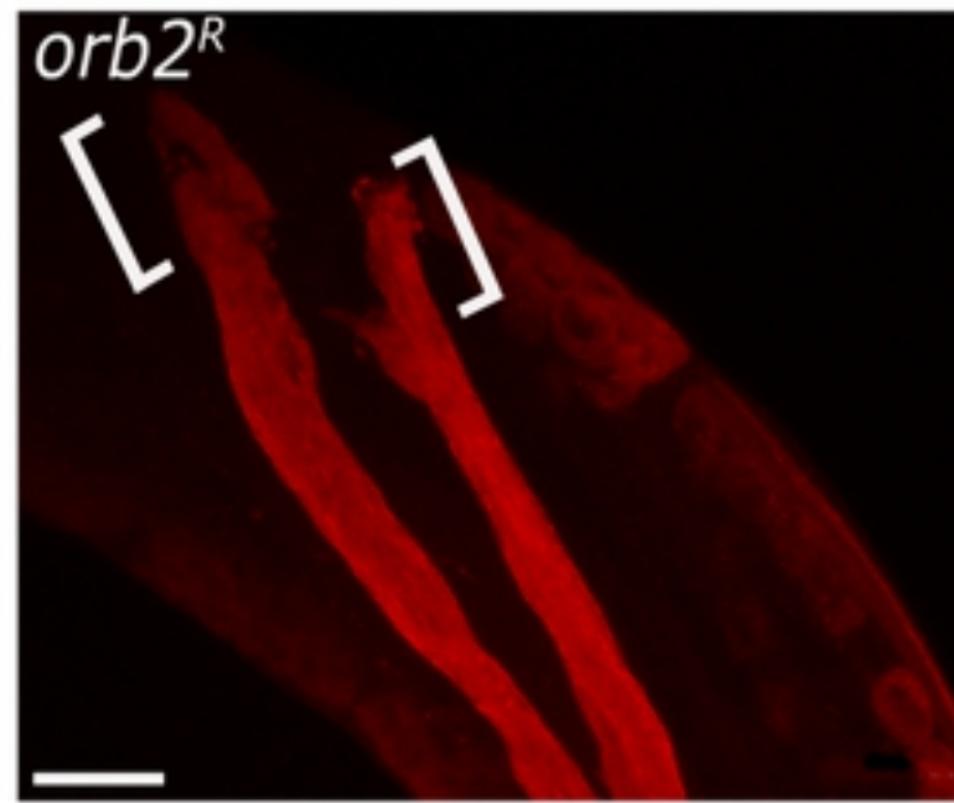
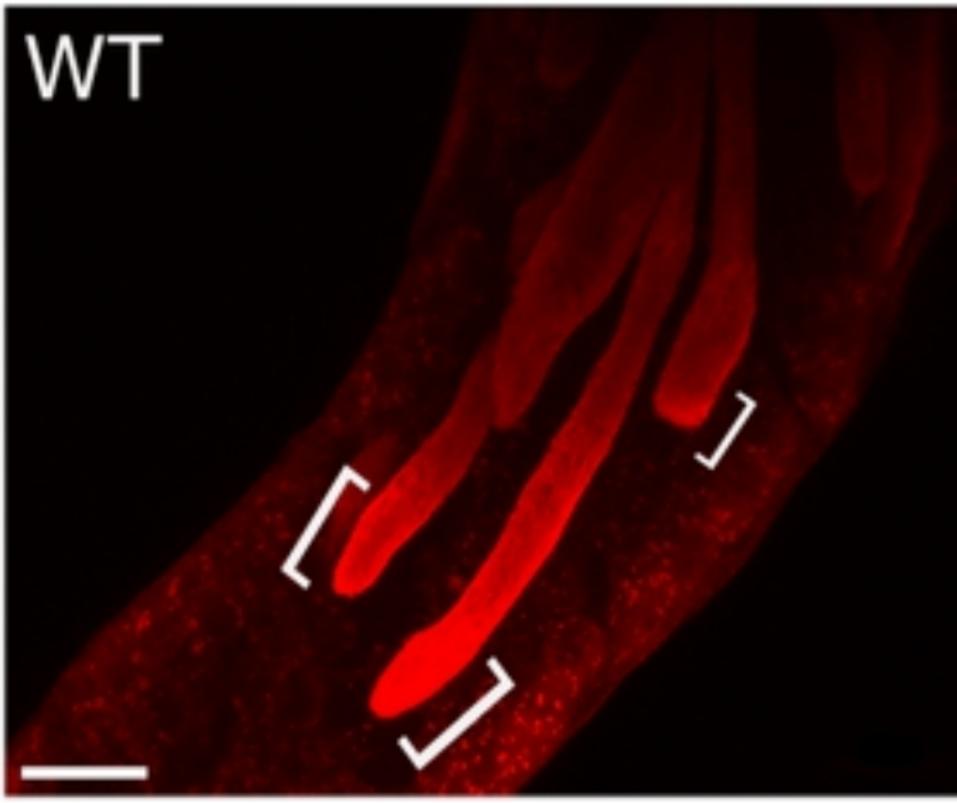




Figure 6

β NACtes DAPI

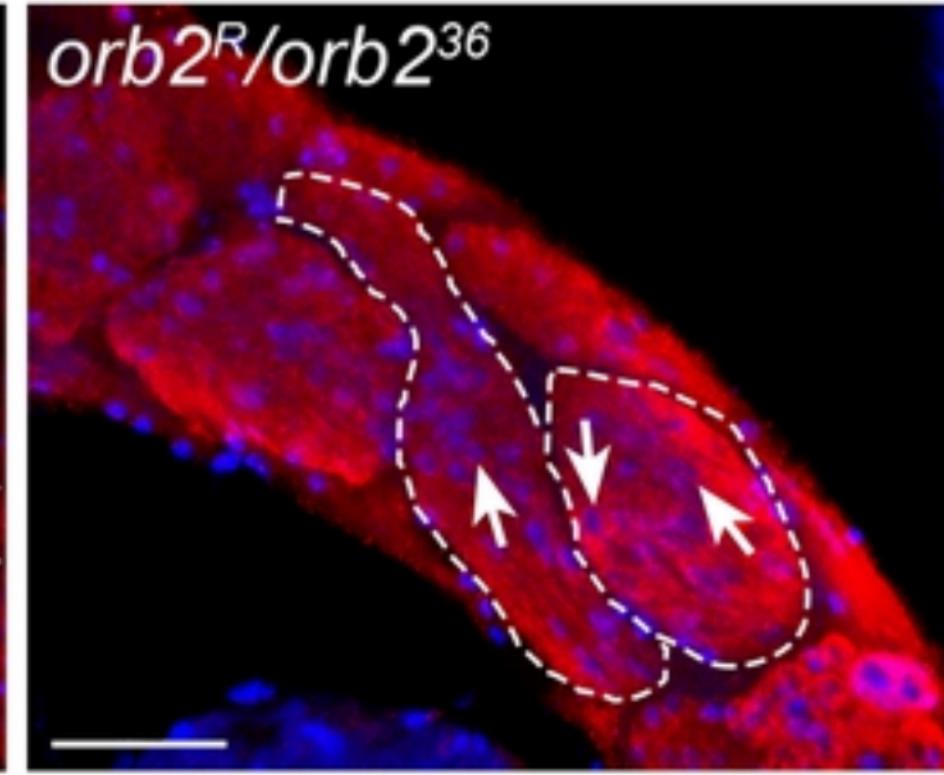
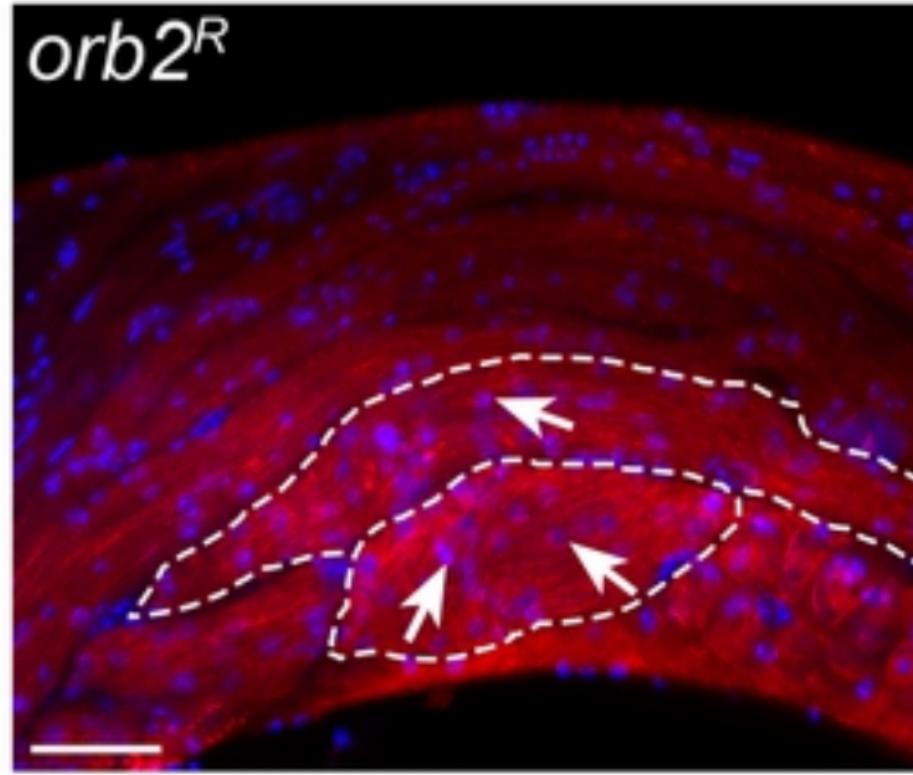
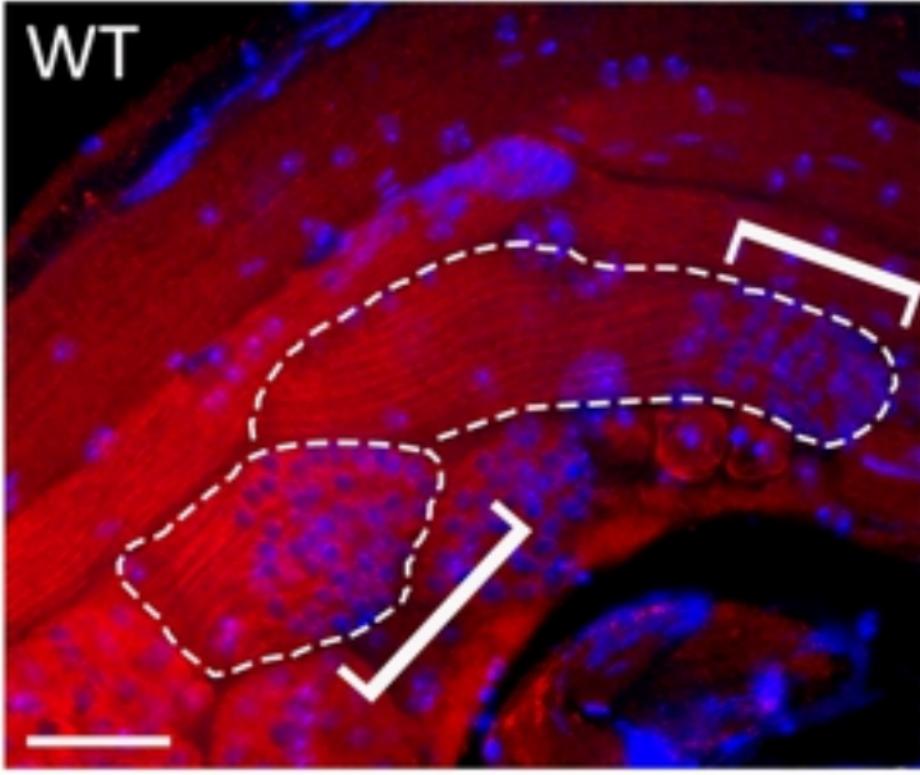
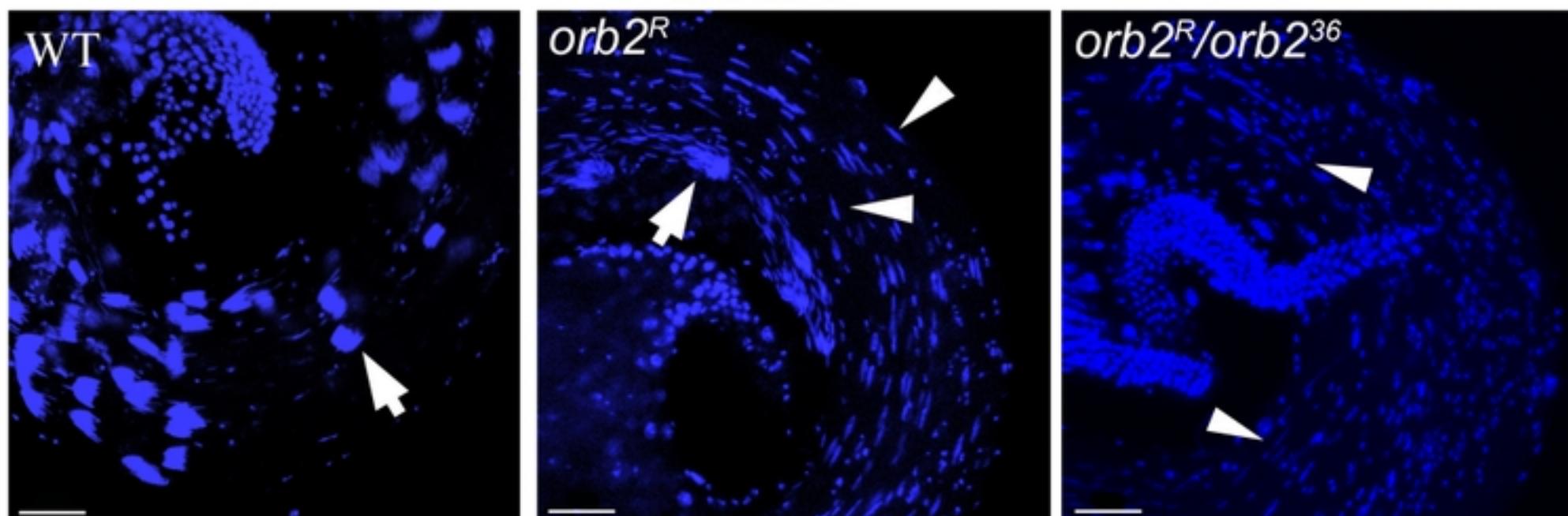
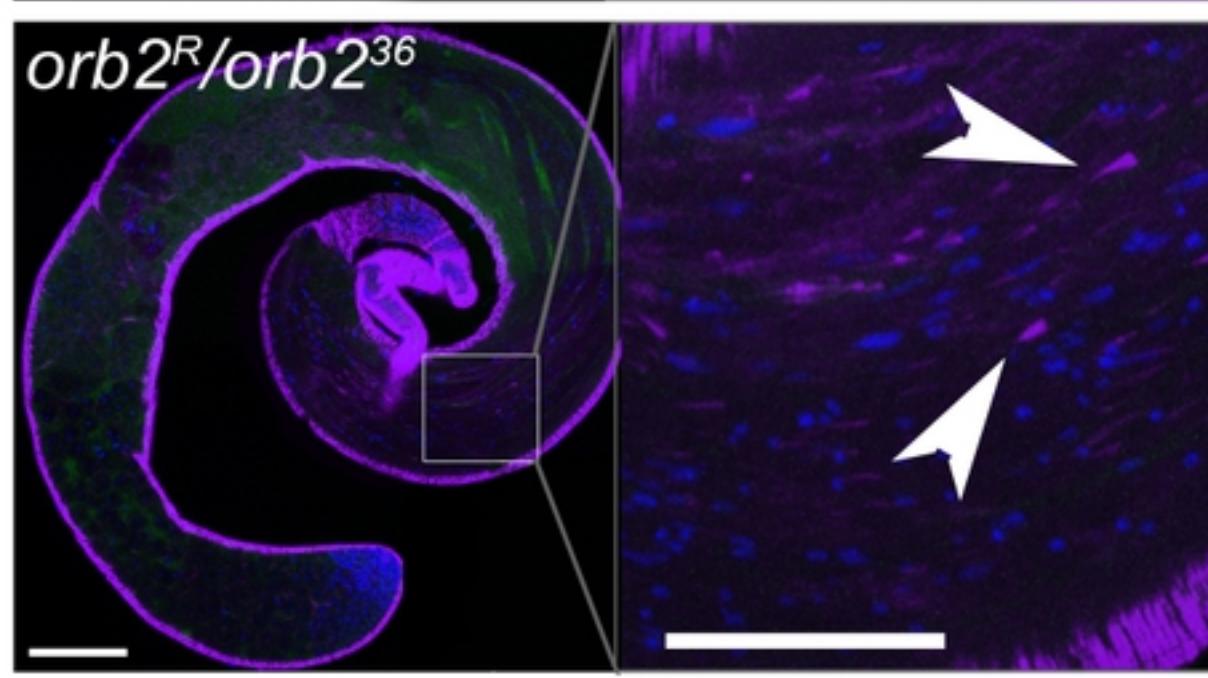
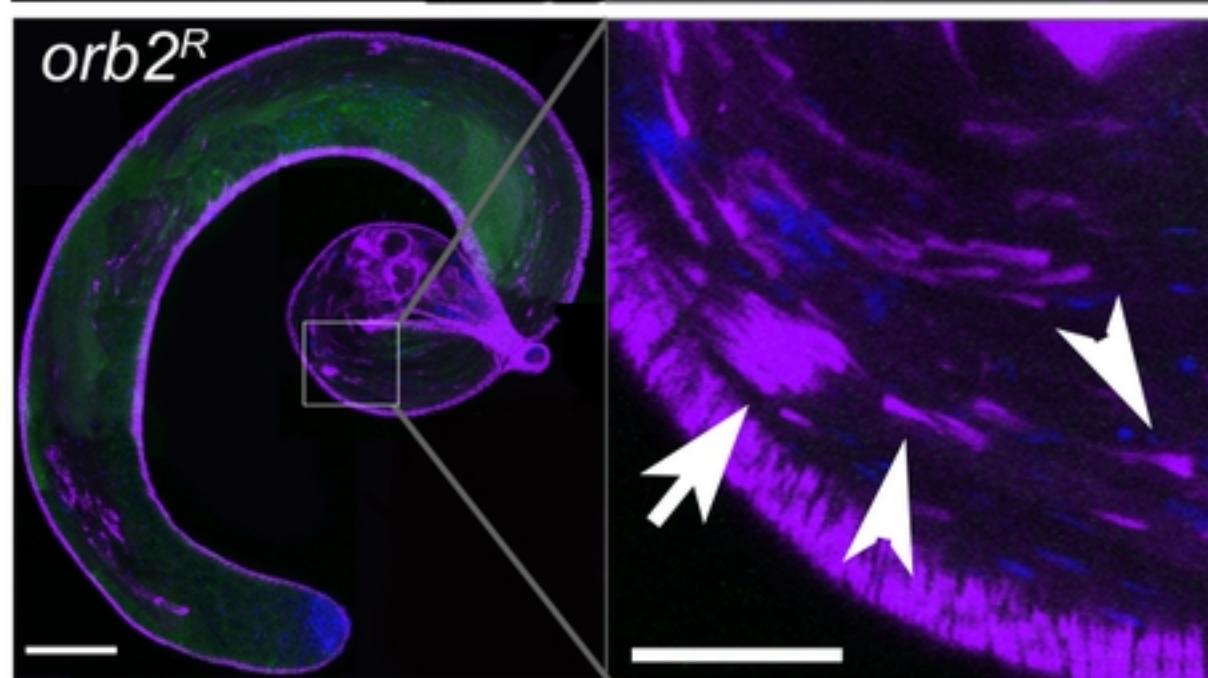
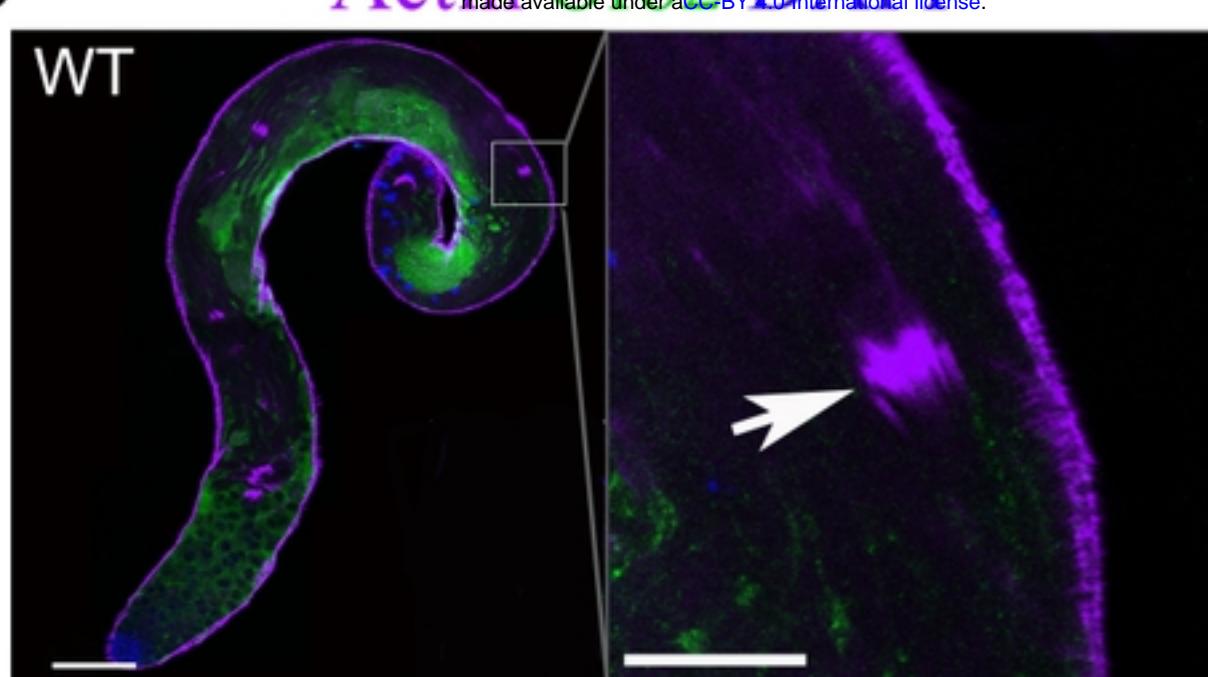
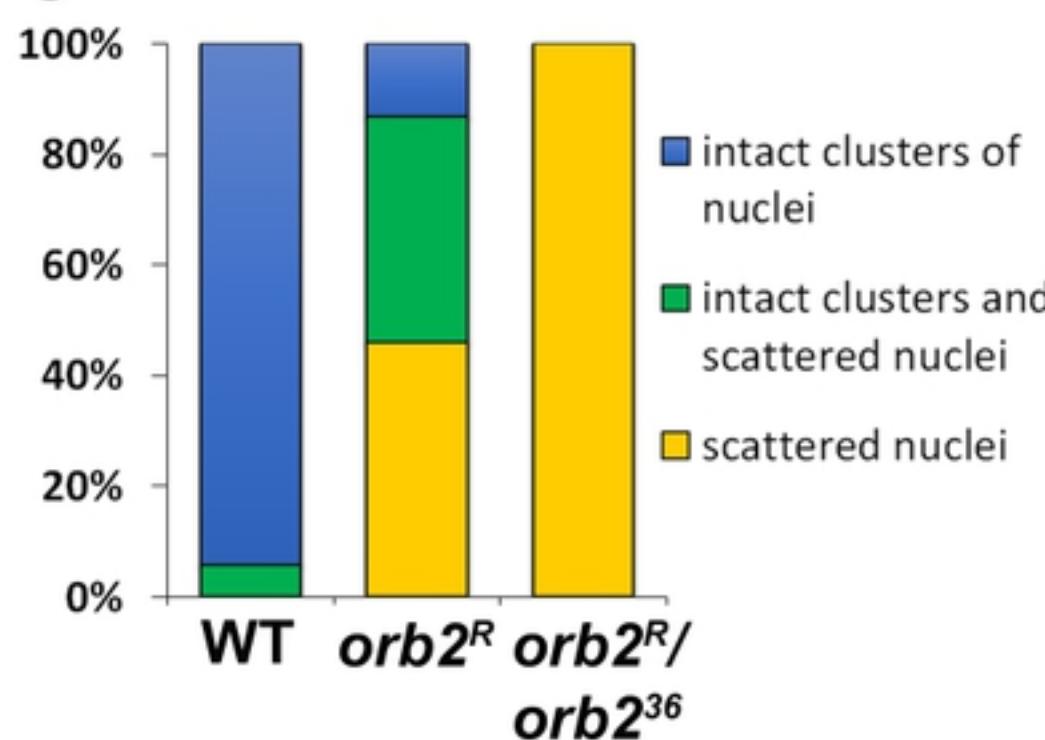
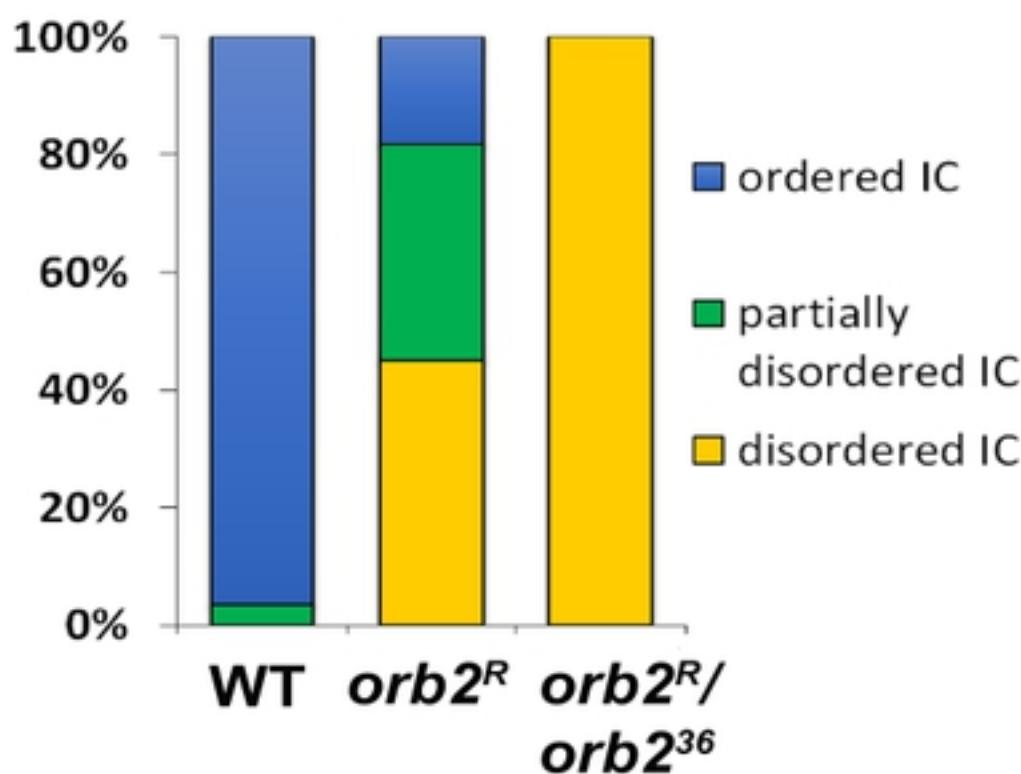
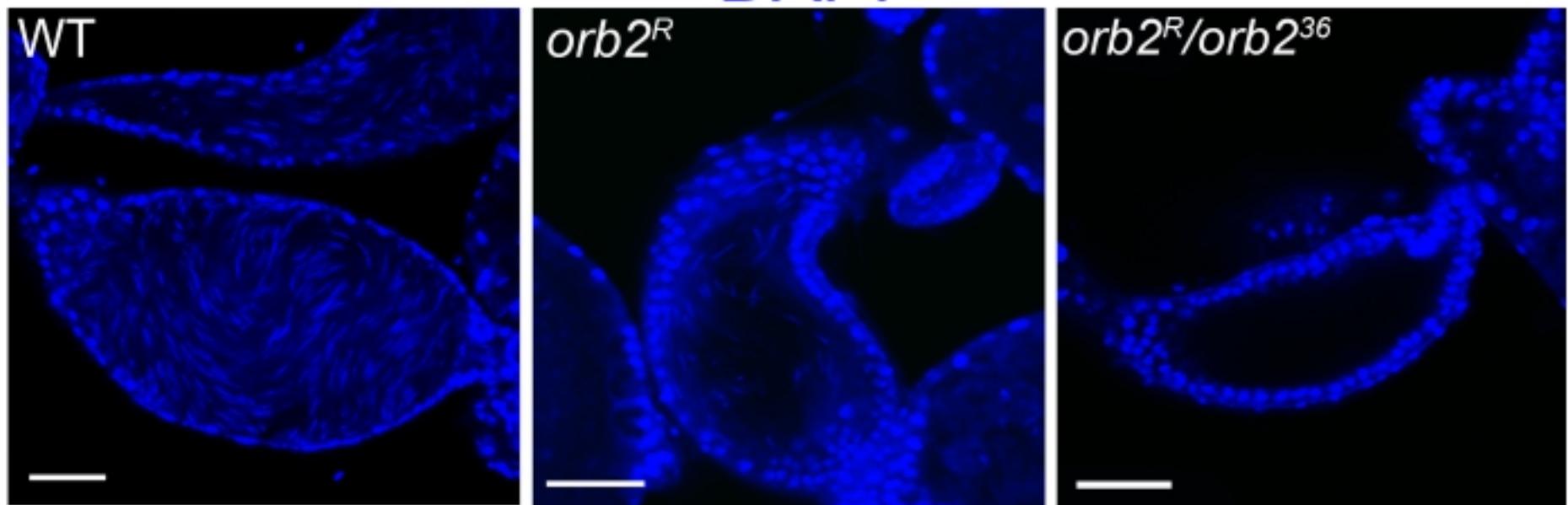
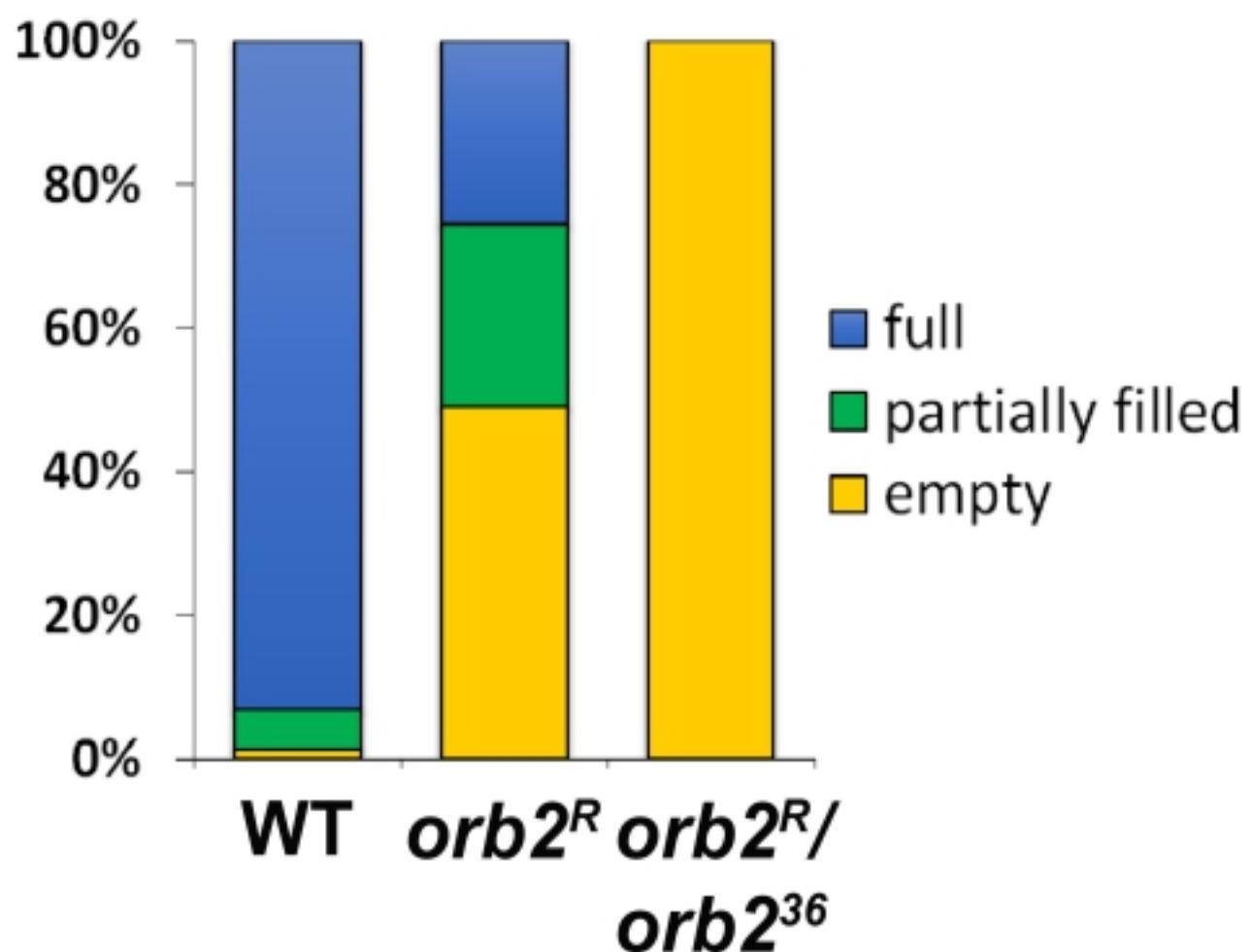
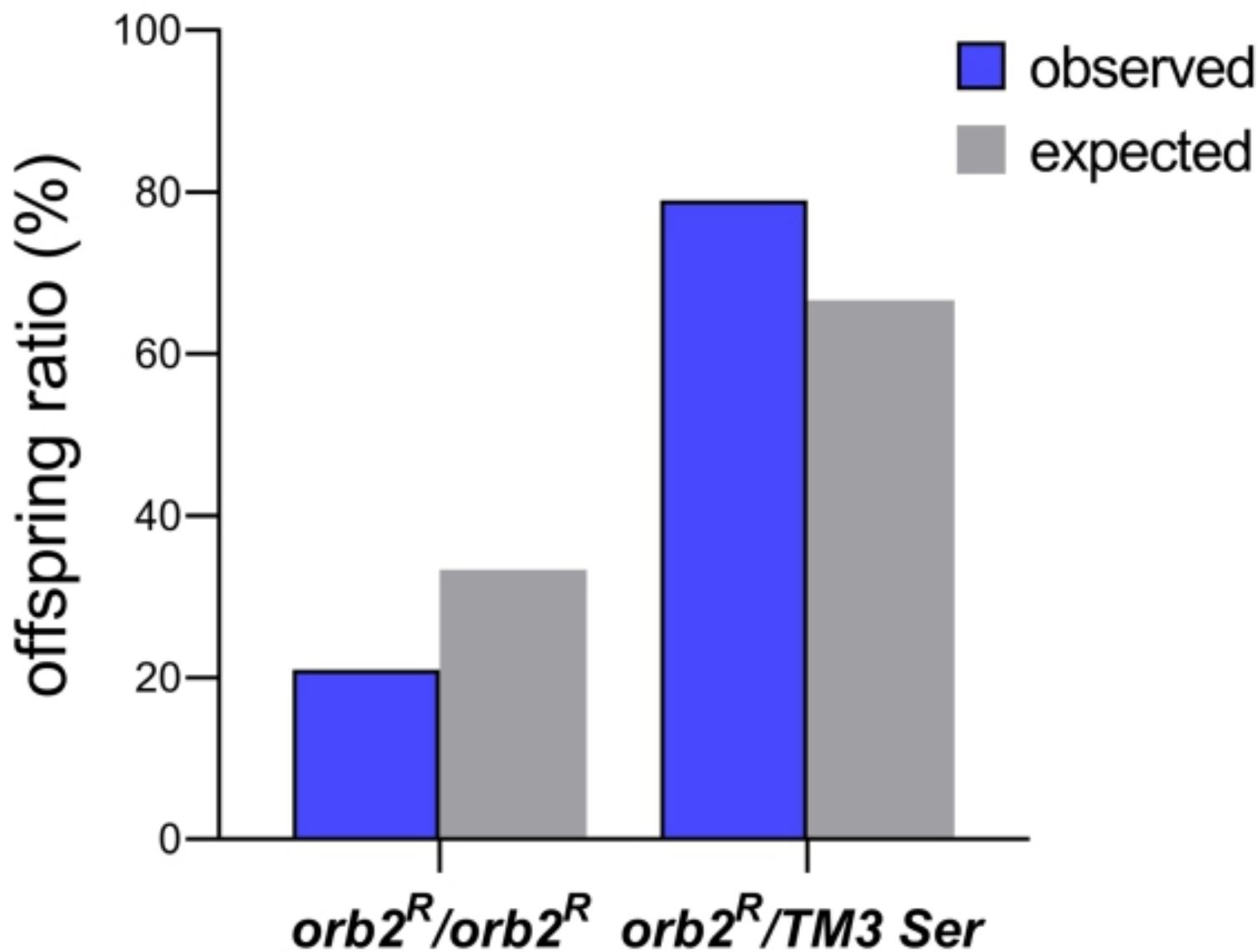
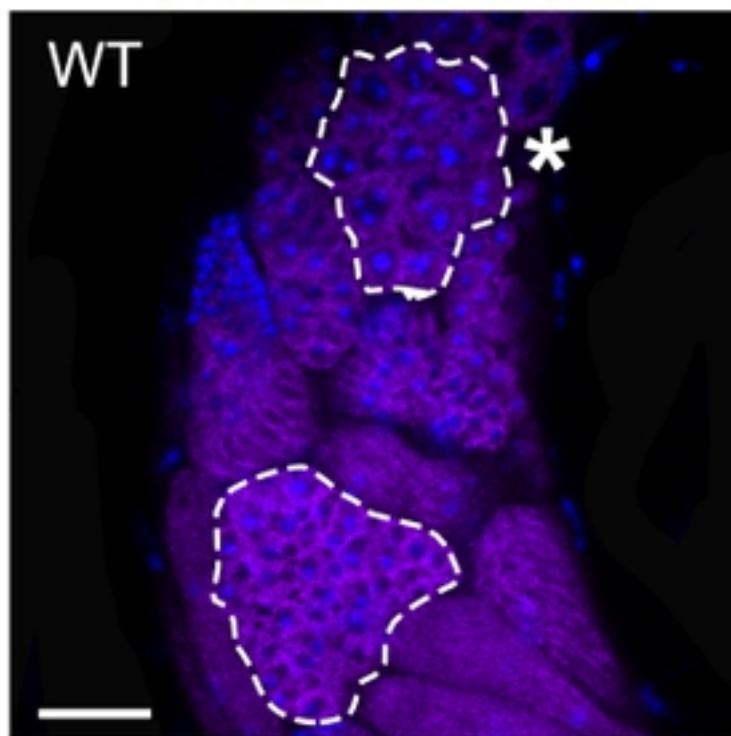












Figure 7

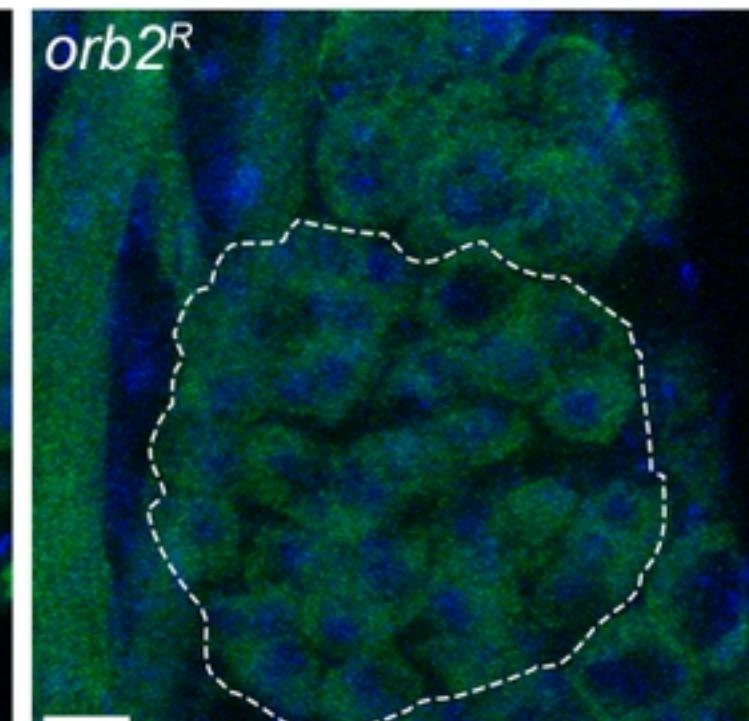
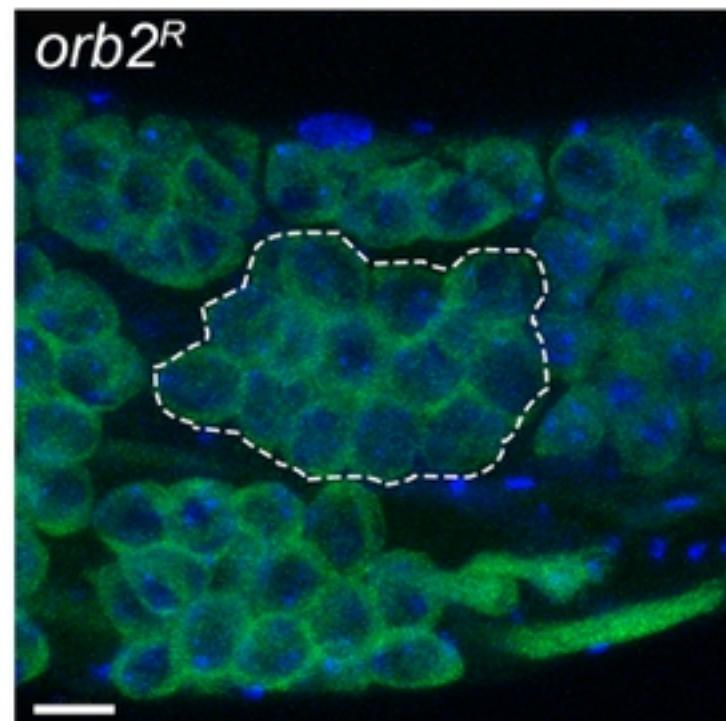
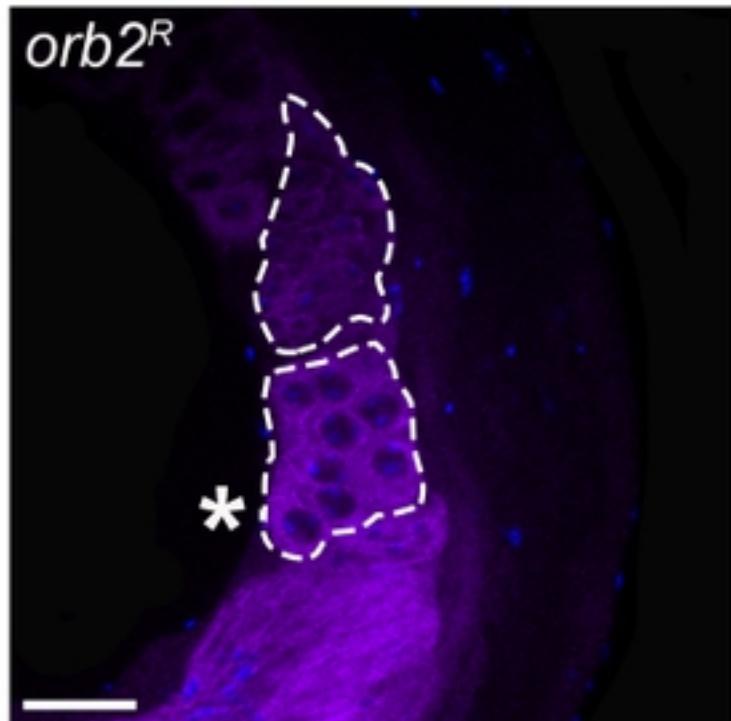
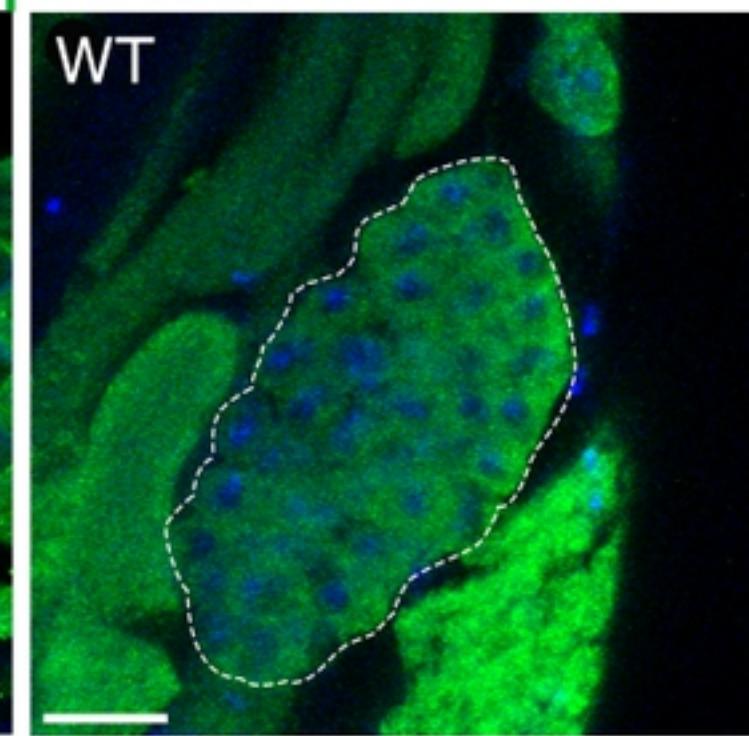
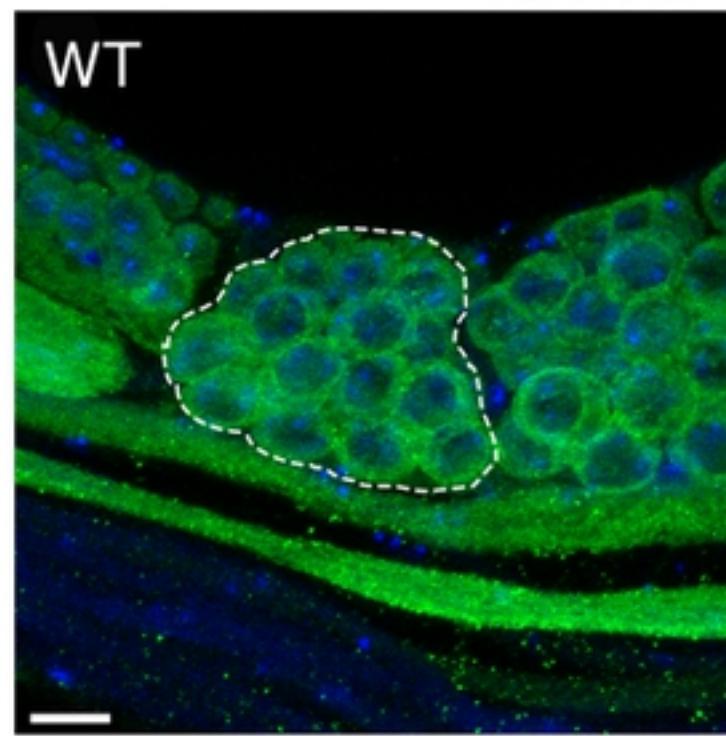

A**DAPI****B****Actin-GFP DAPI**

bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.24.264762>; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C**D****Figure 8**


A**DAPI****B****Figure 9**

$orb2^R/TM3\ Ser \times orb2^R/TM3\ Ser$

% $orb2^R/orb2^R$ exp./obs.	% $orb2^R/TM3\ Ser$ exp./obs.	% $TM3\ Ser/TM3\ Ser$ exp./obs.	χ^2 p-value
33,33/21,00	66,67/79,00	Lethal balancer combination	< 0,0001(n=1500)

SFigure 1

A*orb2* mRNA**B**

Orb2 protein

SFigure 2