

Title:

Shift work dynamics and division of labor: honeybee foraging and fanning tasks

Authors:

Manuel A. Giannoni-Guzmán¹, Tugrul Giray² and Jose L. Agosto-Rivera²

Affiliations:

1. Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
2. Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, PR

Corresponding author: Manuel A. Giannoni-Guzmán

e-mail: manuel.giannoni10@gmail.com

Key words: shift work, honeybees, *Apis mellifera*, foraging, fanning, task

1 **Abstract:**

2 In complex societies common social needs such as vigilance, care giving, resource gathering,
3 and production are attended around the clock. In humans, these services are constantly
4 provided using a shift work strategy where different individuals, or groups of individuals
5 perform their tasks at different times of the day. However, shift work strategy in job
6 organization in other social organisms remains unclear. Previous studies in honeybees for two
7 jobs support shift work for only pollen foragers and not for nursing behavior. Here we examined
8 shift work dynamics for three types of jobs performed by honeybee foragers. Specifically, we
9 studied pollen foragers, non-pollen foragers and bees fanning at the entrance of the colony, a
10 job important for orientation and temperature control. Major features of the observed shift work
11 were: 1) individuals can be divided into early and late shifts; 2) there are constant workers; 3)
12 based on job, shift work is performed by fewer or greater number of individuals; 4) shift work
13 of an individual is plastic and may change with age; 5) foraging and fanning shifts are coupled
14 yet dissociable. This study adds to the findings that shift work is not exclusive to modern
15 human societies and that a natural form of shift work exists in honeybees. These results
16 suggest that shift work in honeybees is a feature of worker division of labor. Future studies
17 aiming to further understand the structure, function and mechanism of this natural form of shift
18 work in honey bees not only could have an impact on agriculture but also may provide insight
19 into alternative forms of shift work strategies that may reduce the various health problems
20 associated with shift work in humans.

21

22

23

24

25

26

27

28 **Introduction:**

29 Principles that organize social work are common across social organisms (Gordon,
30 2007; Oster & Wilson, 1978). Specialization, based on ontogenetic, morphological or genetic
31 mechanisms, occurs in many social species (Fjerdingstad & Crozier, 2006; Jeanson, Fewell,
32 Gorelick, & Bertram, 2007; O'Riain, Jarvis, Alexander, Buffenstein, & Peeters, 2000;
33 Robinson, 1992). Parallel processes performed by multiple agents result in networks.
34 Networks of individuals can modulate behavior via feedback regulation, that may depend on
35 order of task performance, such as foraging followed by nectar unloading and storage (Craig
36 et al., 2012; Jeanne, 1986; O'Donnell & Jeanne, 1992) or based on chemical communication
37 such as pheromones or cuticular hydrocarbons (Inoshita, Martin, Marion-Poll, & Ferveur,
38 2011; Pankiw, 2004; Sagili, Pankiw, & Metz, 2011). Spatial organization confines activities to
39 specific locations, often enhancing the effects of other mechanisms that organize work (Jandt
40 & Dornhaus, 2009; Mersch, Crespi, & Keller, 2013). Temporal organization, restricts the
41 performance of a task to a specific time period of the day and may have molecular, cellular
42 and behavioral correlates (C S Pittendrigh, 1993; Roenneberg, Wirz-Justice, & Merrow, 2003;
43 Southerton, 2006). At the behavioral level, various temporal organization strategies have
44 emerged throughout history. Among them, shift work strategies have become a mainstay in
45 modern human societies (Folkard, 2003a; Pati, Chandrawanshi, & Reinberg, 2001). However,
46 shift work has not been studied extensively in social insects.

47 Shift work is a method of organizing individuals or groups to perform specific tasks at
48 different times of the day such that these tasks can be continuously performed (IARC Working
49 Group on the Evaluation of Carcinogenic Risks to Humans, 2010; Pati et al., 2001).
50 Professions such as health care, emergency response teams (e.g. firemen), transportation
51 and food service use various shift work strategies to provide these essential services around
52 the clock (Adan et al., 2012). Although shift work strategies succeed by providing many
53 benefits for society and employers, there are costs at the individual and social level.
54 Catastrophes such as the Chernobyl nuclear meltdown, Three Mile Island and the Exxon

55 Valdez oil spill, have been linked to errors associated with shift work (Akerstedt & Wright,
56 2009; Folkard, 2003b; Klerman, 2005; Mitler et al., 1988; Pati et al., 2001; S. M W Rajaratnam
57 & Arendt, 2001). Studies examining the relationship of shift work and health problems provide
58 convincing evidence that misalignment of circadian rhythms is one of the key contributors to
59 many, if not all, of the negative effects associated with shift work (Knutsson, 1989; Shantha M
60 W Rajaratnam, Howard, & Grunstein, 2013). It has thus become important to study what
61 strategies other social organisms, use to achieve their 24/7 needs.

62 In honeybees, colony structure is best defined by castes with clear division of
63 labor system with diploid queens and haploid males (drones) attending reproductive tasks,
64 while sterile diploid workers perform all other jobs associated with colony maintenance
65 (Robinson, 1992; Mark L Winston, 1987). Within workers, division of labor is an age-related
66 process, where workers perform a series of tasks from the moment they emerge as adults
67 and change tasks as they age until they begin foraging (~21 days of age) (Seeley, 1985, 1995;
68 Mark L Winston, 1987). The rate of division of labor in workers has been shown to be
69 genetically, behaviorally and hormonally regulated and as a result, individuals of the same
70 age can be observed performing different tasks (Giray & Robinson, 1996; Giray, Guzman-
71 Novoa, et al., 1999; Huang & Robinson, 1992; Leoncini et al., 2004).

72 In the colony tasks such as brood care, cleaning cells, fanning and foraging are
73 performed throughout the day, or for extended periods of time. Whether individuals are
74 constantly performing these tasks or if they use shift work strategies has been asked. Previous
75 work examined if nurses used shift work or similar strategies to take care of the brood. Moore
76 and colleagues (1998) marked and observed task performance of individual bees and found
77 that brood care is performed throughout the day without specific timing (Moore, Angel,
78 Cheeseman, Fahrbach, & Robinson, 1998). This coincides with the idea that the brood
79 releases pheromones that make honey bee workers lose their circadian rhythmicity such that
80 they feed the brood (Moore, 2001; Nijland & Hepburn, 1985; Yair Shemesh, Eban-Rothschild,
81 Cohen, & Bloch, 2010; Spangler, 1972; Stussi, 1972). Based on these studies nurses take

82 care and feed the brood, in a similar manner as human mothers take care of new-born children,
83 around the clock. However, this finding in brood care may not extend to other jobs in the
84 honeybee colony.

85 Fanning behavior is a task that workers perform to regulate the temperature of the
86 colony, release Nasonov's pheromone and mature honey (Seeley, 1995; Mark L Winston,
87 1987). A study examining thermoregulation of the colony, focusing of fanning behavior, found
88 that colonies with a uniform genetic background (originated from one male) are less efficient
89 at maintaining temperature levels compared to colonies with a diverse genetic background (J
90 C Jones, Myerscough, Graham, & Oldroyd, 2004). However, whether bees use a particular
91 strategy to organize fanning throughout the day has remained unexplored.

92 In the case of foraging, bees use the full daylight period in order to gather the various
93 resources that colonies need on a daily basis. Through the use of sun compass navigation (R
94 M Goodwin & Lewis, 1987; von Frisch, 1967), time memory (Moore & Doherty, 2009; Moore,
95 Van Nest, & Seier, 2011; B. N. Van Nest & Moore, 2012) and circadian rhythms(Bloch &
96 Robinson, 2001; Cheeseman et al., 2012; Eban-Rothschild & Bloch, 2012; Y Shemesh, Cohen,
97 & Bloch, 2007; Yair Shemesh et al., 2010), bees predict the availability of different resources
98 throughout the day. Individual workers can specialize in the collection of a specific resource
99 such as pollen, nectar or water (Fewell & Page, 1993; Robinson & Page, 1989; Seeley, 1995).
100 Studies examining the underlying factors of this resource specialization have found genetic,
101 neuroendocrine and behavioral differences between pollen and nectar specialists (Barron,
102 Maleszka, Vander Meer, & Robinson, 2007; Erber, Hoormann, & Scheiner, 2006; Giray,
103 Galindo-Cardona, & Oskay, 2007; Page & Erber, 2002; Scheiner, Barnert, & Erber, 2003;
104 Scheiner, Page, & Erber, 2001; Scheiner, Plückhahn, Oney, Blenau, & Erber, 2002; Scheiner,
105 Toteva, Reim, SÃ,vik, & Barron, 2014; Taylor, Robinson, Logan, Lavery, & Mercer, 1992;
106 Wagener-Hulme, Kuehn, Schulz, & Robinson, 1999).

107 In contrast to brood care, in a recent study, researchers captured incoming pollen

108 foragers in the morning and afternoon for four days and genotyped them with microsatellite
109 DNA markers (Kraus, Gerecke, & Moritz, 2011). They uncovered that a small percentage of
110 pollen foragers from specific patrilines were only captured in the morning, while foragers from
111 other patrilines were only captured in the afternoon. This finding suggests that some pollen
112 foragers make their foraging trips in shifts and this behavior is in part influenced by the genetic
113 origin of the individual (Kraus et al., 2011). Organization of shift work for pollen foraging and
114 potentially other jobs can be examined through direct observations as was done for nursing.

115 Here we present a comprehensive analysis of foraging and fanning behavior in
116 honeybee workers to determine the presence and organization of shift work. In this study, we
117 1) determined whether a shift work strategy is evident in pollen, non-pollen foraging and
118 behaviors and if so, 2) describe the behavioral characteristics of this shift work. We performed
119 direct behavioral observations at the hive entrance workers of an age cohort. Our central
120 hypothesis was that if foragers perform specific tasks in shifts then we would observe groups
121 of individuals performing these behaviors at specific times of the day. To address specific
122 characteristics of shift work we conducted our observations over most of the foraging life of
123 the age cohort. In this way, we could examine the degree of plasticity associated with shift
124 work and whether the organization of shift workers varies between different jobs. Lastly, we
125 examined possible relationships of the temporal allocation between foraging and fanning tasks
126 for each individual.

127 **Materials and Methods**

128 1. Observation ramp

129 A two-story hive with a naturally mated queen was fitted with an extended entrance ramp
130 with a glass top measuring 45cm wide and 40cm in length (Giray et al., 2007). Briefly, to train
131 the bees to the entrance ramp, we first installed the ramp without the glass top. Two days
132 following the placement of the ramp a piece of glass of 5cm in length was lined with colored
133 tape and placed in the ramp. The following days the length of the glass was slowly extended

134 until it covered the full length of the ramp. The glass top assured a narrow space within which
135 bees were unable to cover each other or walk upside down.

136 2. Bees

137 Honeybee workers were obtained from 2 healthy colonies (collection colonies) with a
138 naturally mated queen at the University of Puerto Rico Bee Research Facility at the Gurabo
139 Experimental Agriculture Station. From each of the colonies, we marked three groups of 500
140 bees (n=3,000 marked individuals) with a three-day interval between each marking group. To
141 mark, we extracted 2 brood frames with large numbers of capped brood in the afternoon. The
142 frames were gently brushed to remove the attending nurses and transported to our laboratory
143 incubator (Thermo Scientific Precision Incubator 815), where they remained overnight. Bees
144 that had emerged on the following morning were extracted and individualized by applying a
145 colored numbered tag in the thorax and a paint dot (acrylic, Testors®: TES1127TT,
146 TES1146TT and TES1172TT) in the abdomen identifying the Age cohort. After marking, bees
147 were placed inside of the colony that had been previously fitted with the observation ramp.

148

149 3. Observation periods

150 Observations were twice a day for 14 days, from 9:00-11:00 and from 14:00-16:00, in a
151 similar manner as in a previous study (Krauss et al., 2011). In addition, these periods were
152 chosen to prevent the overlap of foraging trips between observation periods. Researchers
153 have observed that the duration of foraging trips can range from 4-25 min on average but
154 foraging trips longer than 50 minutes have been recorded ((Mattu, Raj, & Thakur, 2012; Partap,
155 Shukla, & Verma, 2000; Singh, 2009; Wagner, Van Nest, Hobbs, & Moore, 2013). Before each
156 observation period began, a thin coating of petroleum jelly (Vaseline®) was applied to the glass
157 to prevent bees from walking upside down. Colonies were observed sequentially during the
158 summer, in this manner colony 1 observations took place from May 25th – June 7th, 2012 while
159 colony 2 observations took place from June 28th – July 11th, 2012. During observation the

160 entry, exit and fanning behavior of each individual was recorded in a laboratory notebook with
161 an accompanying time stamp, and later transcribed to JMP for data analysis.

162 During the 14-day observation periods, for colony 1, of the 1,500 marked individuals we
163 were able to observe a total of 1,030 bees and recorded 5,102 individual observations. For
164 the same duration, 535 of 1,500 marked bees were observed in colony 2 and a total of 2,698
165 individual observations were recorded. Observations for colony 2 took place during Puerto
166 Rico's rainy season, and constant interruptions due to weather conditions may account for the
167 differences in the number of observations. Our methodology allowed us to record, on
168 average5 direct behavioral observation for each of more than a thousand individuals.

169 4. Morningness ratio

170 To establish if bees perform shift work for each of the observed behaviors (foraging trips
171 or fanning) we tabulated the number of observations during the morning observation periods
172 and afternoon observation periods for each individual. We then calculated the ratio of morning
173 observations over the total observations. This formula was modified from that previously
174 described and used by Moore et al. (1998). In this manner, individuals that mainly forage or
175 fan in the afternoon would have morningness ratios close to 0 (afternoon shift), while those
176 that forage or fan mainly in the morning would have a ratio close to 1 (morning shift). Similarly,
177 if individuals have no temporal preference for performing a specific task, they would have a
178 ratio close to 0.5 (no shift).

179 5. Foraging patterns

180 To answer if bees' preference to forage in the morning or afternoon changed as they aged,
181 we examined each individual's foraging trip observations in scatterplots. We identified five
182 foraging pattern phenotypes: morning; afternoon; morning-afternoon, who began in the
183 morning and after some time switched to the afternoon; afternoon-morning, began in the
184 afternoon and switched in the morning; and constant. For an individual to be included in a
185 foraging pattern their observations had to span for a period of 6 days or more and the majority

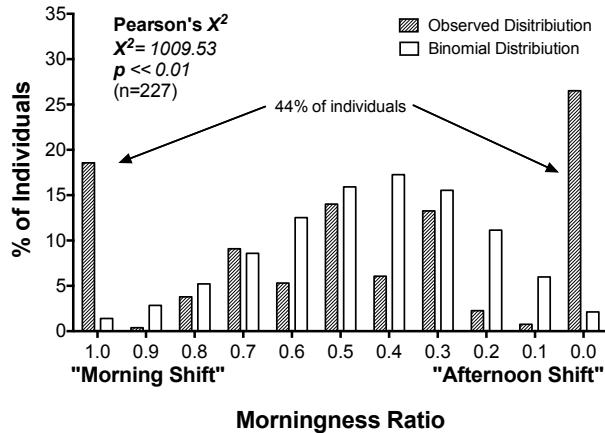
186 of these had to have occurred within the 12-19 days of age to control for any possible bias
187 fewer observations on an individual may generate.

188 6. Data Analysis

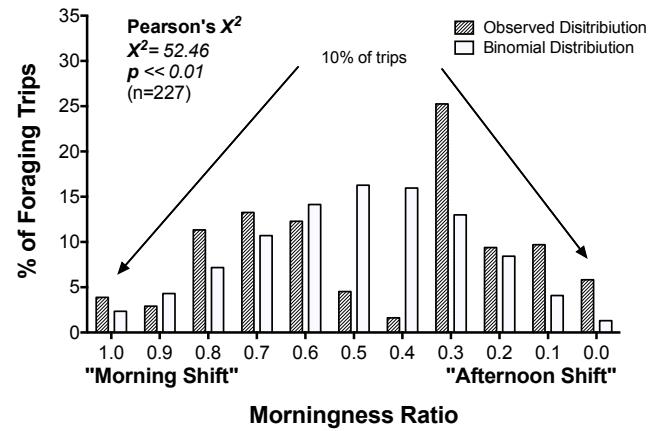
189 For both foraging trips and fanning behavior only individuals with 3 or more observations
190 were considered for data analysis. We also excluded individuals for whom all observations
191 were taken on the same day. Comparison of the observed frequency distributions of the
192 morningness ratio for foraging trips and fanning behavior, for each colony, was statistically
193 compared using chi-square goodness of fit with theoretical frequencies from a binomial
194 distribution that assumes no shift work (null hypothesis). To compare the observed
195 distributions of each colony (foraging trips or fanning) we utilized the Kolmogorov-Smirnov test
196 of distributions. Median test was used to compare the foraging pattern frequency distributions,
197 the mean trips taken, the probability of taking a foraging trip and the mean number of trips in
198 a foraging period. For the correlations of the foraging and fanning morningness ratios, pairs
199 of observations from the same day were tested with Kendall's tau association test. All
200 statistical analyses were performed using the statistical software program JMP (SAS Institute
201 Inc.). Figures were prepared using GraphPad PRISM 6.00, GraphPad software, La Jolla
202 California USA and R (R Core Team).

203 **Results:**

204 ***Foragers use two temporal strategies to gather resources for the hive.***

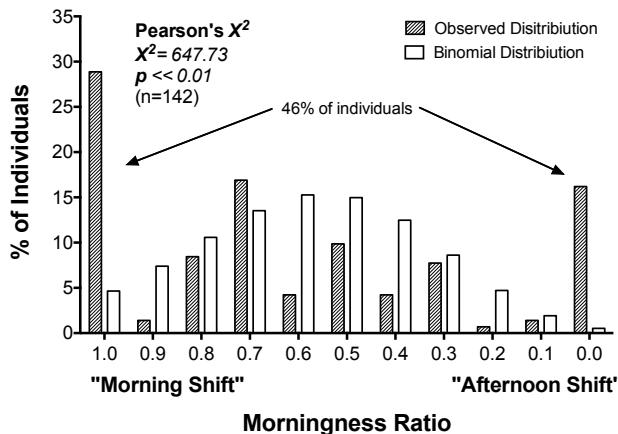

205 To determine if all foragers go out throughout the day or if groups of individual
206 bees forage at different times of the day, we calculated the number of morning observations
207 over the total number of observations (morningness ratio) for each forager. Since foraging in
208 African-hybrids, such as the ones used in this study, can start as early as 11 days of age
209 (Giray, Huang, Guzman-Novoa, & Robinson, 1999; M L Winston, 2003; Mark L Winston, 1987),
210 we used the data observations from 17 days of age onward. Consistent with our hypothesis,

211 our results revealed that more than 40% of the individuals exclusively foraged either in the
212 morning or afternoon, now on referred to as shift workers (Figure 1A). In addition, to shift
213 workers, we also observed constant workers, which foraged both in the morning and afternoon.
214 To determine if the observed shift work ratios were significantly different from chance, the
215 observed distribution was compared with a theoretical binomial distribution that assumed the
216 absence of shifts. This comparison using Pearson's χ^2 resulted in significant differences for
217 both colonies sampled, suggesting that groups of workers forage at different times of the day
218 (colony 1: Pearson's $\chi^2= 1009.53$, $p < 0.01$, $n=227$; colony 2: Pearson's $\chi^2= 647.73$, $p <$
219 0.01 , $n=142$). Statistical comparison using the Kolmogorov-Smirnov statistical analysis was
220 also performed to compare the observed distributions of the sampled colonies. This resulted
221 in significant differences between the observed distributions of each colony (Kolmogorov-
222 Smirnov two-sided test, $D=0.1671$, $p=0.02$), suggesting possible colony-colony differences in
223 shift work.

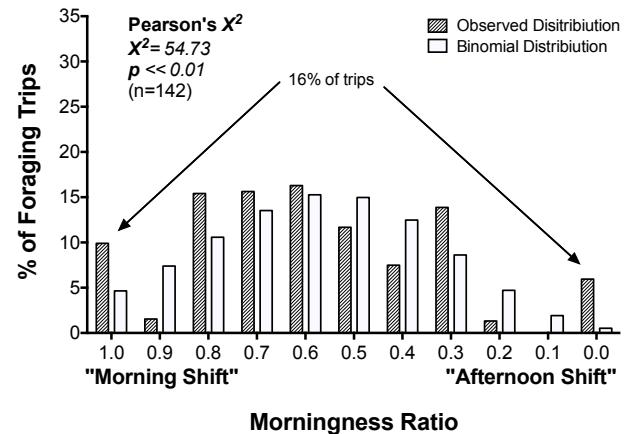

224 Further examination of our data set revealed that the number of observations between
225 shift workers and constant workers varied greatly. We hypothesized that constant workers,
226 who forage throughout the day, would perform at least twice the foraging trips than shift
227 workers, who only forage at specific times of the day. To test this hypothesis, we took into
228 account the number of observation periods, that constant workers would be observed in both
229 periods and the proportion of constant workers that were observed we predicted that constant
230 workers would be responsible for ~75% of the observed foraging trips. Consistent with our
231 prediction, constant workers account for more than 80% of our observed foraging trips, while
232 shift workers performed less than 20% of foraging trips observed (Figure 1B).

1) Colony 1

A) Foraging Task



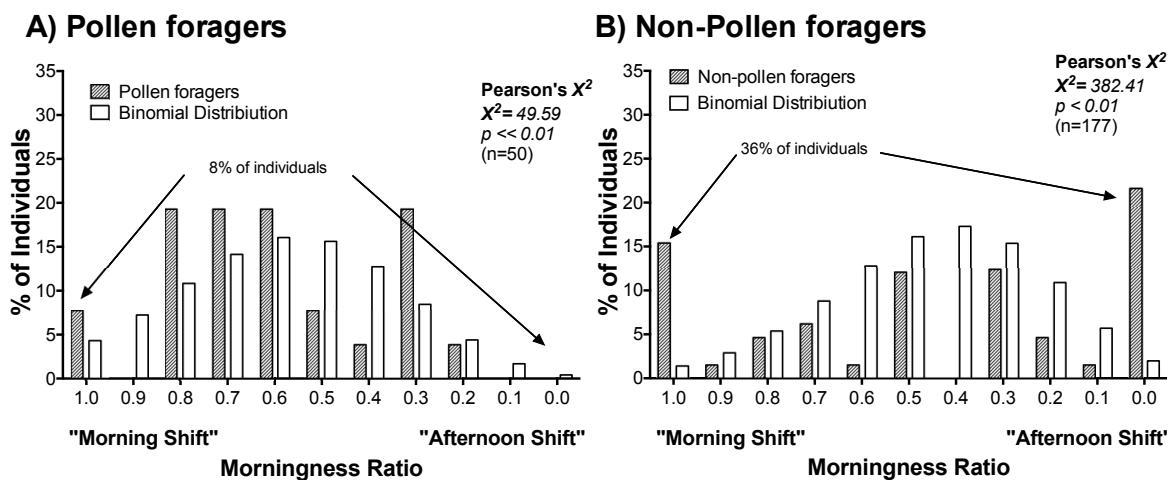
B) Percent of Foraging Trips



2) Colony 2

A) Foraging Task

B) Percent of Foraging Trips


233

234 Figure 1. **Exclusive shifts in morning and afternoon are present foraging task.** (A) Frequency
235 distribution of observed morningness ratio for per cent of individuals (shaded bars) compared to a
236 theoretical binomial distribution (white bars) revealed that more than 40% of sampled individuals
237 foraged exclusively in the morning or afternoon as pointed as pointed for 1) colony 1
238 and 2) colony 2. Goodness of fit test revealed significant differences between the observed and
239 theoretical distributions (colony 1: Pearson's $\chi^2 = 1009.53$, $p << 0.01$, $n=227$; colony 2: Pearson's
240 $\chi^2 = 647.73$, $p << 0.01$, $n=142$). Comparison between the observed distributions of individuals for
241 each colony via Kolmogorov-Smirnov two-tailed test revealed significant differences between the
242 observed morningness ratio distributions ($D=0.17$, $p=0.02$). (B) Frequency distribution of
243 morningness ratio and the present of trips observed (shaded bars) reveals that less than 20% of
244 trips are made by foragers who exclusively forage in the morning or afternoon as pointed.
245 Comparison of each of the observed distribution with a theoretical binomial distribution (white bars)
246 revealed significant differences between the observed and theoretical distributions (colony 1:
247 Pearson's $\chi^2 = 52.46$, $p << 0.01$, $n=227$; colony 2: Pearson's $\chi^2 = 54.73$, $p << 0.01$, $n=142$).
248 Comparison between the per cent of trips for each colony via the Kolmogorov-Smirnov two-tailed
249 test revealed significant differences each observed distribution ($D=0.31$, $p << 0.01$).

250

251 **Shift workers within pollen foragers represent a small subset of individuals**

252 Previous work presenting genetic evidence for shift work in foragers was restricted to
253 pollen foragers (Kraus et al., 2011). In our experiments we observed marked foragers in
254 general and were able to discern between pollen and non-pollen foragers. By separating
255 pollen and non-pollen foragers we found within both pollen and non-pollen foragers there are
256 individuals foraging in shifts (Figure 2). In the case of pollen foragers less than 10% perform
257 foraging in shifts, which is consistent to the genetic work previously published (Kraus et al.,
258 2011). Conversely, 36% percept of non-pollen individuals exclusively forage in the morning or
259 afternoon (Figure 2), suggesting that non-pollen foraging has a stronger shift worker
260 component than pollen foraging.

261
262 Figure 2. **Shift work allocation depends on foraging specialization were only 8% of pollen**
263 **foragers present a shift. A)** Frequency distribution of observed morningness ratio for pollen

264 specialists of colony 1 (shaded bars) compared to a theoretical binomial distribution (white bars)

265 of the null hypothesis. Goodness of fit test reveals significant differences between the observed

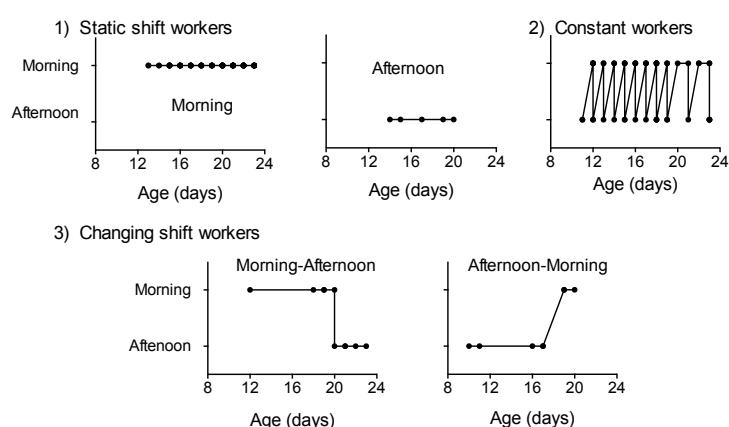
266 and theoretical distributions (Pearson's $\chi^2= 49.59$, $p << 0.01$, n=50). **B)** Frequency distribution of

267 observed morningness ratio of non-pollen specialists of colony 1 (shaded bars) compared to a

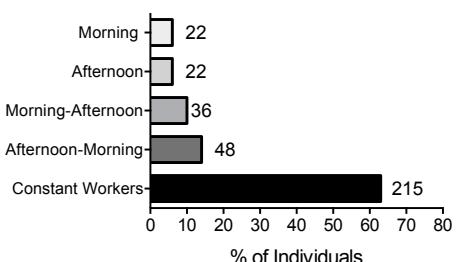
268 theoretical binomial distribution (white bars) of the null hypothesis (Pearson's $\chi^2= 382.41$, $p << 0.01$,

269 n=117). Pollen specialists compose less than 20% of individuals that perform foraging exclusively

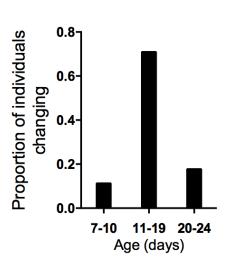
270 in the morning or afternoon


271

272 **Foraging shifts may change as bees age**


273 Since division of labor in honey bee workers is a complex age based process (Seeley,
274 1985, 1995; Mark L Winston, 1987), we hypothesized that age-related plasticity may be
275 evident in worker shifts. Our approach to address this interest was to examine those

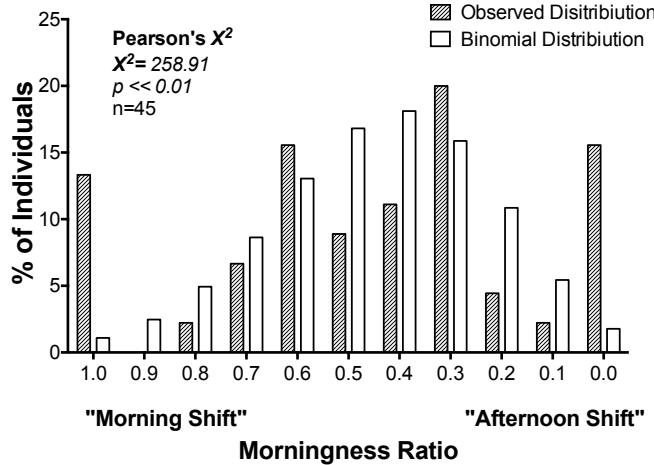
276 individuals for which data was collected over a 6-day time period. Our analysis described five
 277 distinct behavioral patterns, which we sorted into different groups: 1) individuals that preferred
 278 to forage during one of the periods (morning or afternoon), classified as static shift workers,
 279 and 2) individuals that foraged indiscriminately in either period, classified as constant workers
 280 (Figure 3 A). In addition, a third foraging pattern was observed, where individuals presented
 281 a shift and after some time changed from that shift to the opposite and classified as changing
 282 shift workers (morning-afternoon, afternoon-morning) (Figure 3A). Comparing the frequency
 283 of each of the foraging patterns shows that constant workers represent more than 60% of the
 284 observed foraging population (Figure 3B). We further studied individuals who changed shifts
 285 to establish if there was a specific time window in the forager's life for this change and whether
 286 the nature of this change in shift is endogenous or exogenous in origin. By establishing the
 287 age at which each of the observed individuals changed shift we were able to establish the age
 288 range that presents the highest probability a forager changes shift (Figure 3C). Our results
 289 revealed that approximately 75% of individuals change shifts from 11-19 days of age, the early
 290 stage of the individuals foraging life.


A. Foraging patterns

B. Frequency of foraging patterns

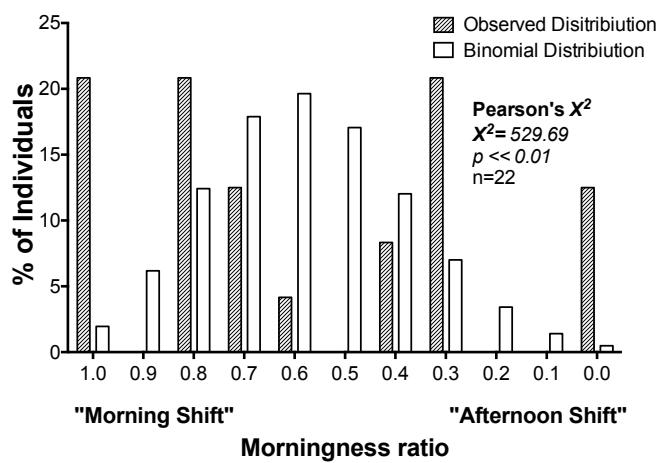
C. Probability of change with age

Figure 3. Shift work in foraging is plastic and can change with age.


A) Examples of the 5 foraging patterns obtained from honeybee entry and exit data from entrance observations: 1) Static Shifts (Morning and Afternoon); 2) Changing shifts (Morning-Afternoon and Afternoon-Morning); and 3) Constant foragers. **B)** Proportion of individuals changing shifts (morning to afternoon or afternoon to morning) at different age blocks. No significant differences were found between the colonies. **C)** Foraging pattern distribution of sampled individuals. Non selective individuals makeup more than 60% of our sample group, while approximately 20-25% of individuals change shifts once during their life and around 15% of individuals have static shifts. Comparison between colonies via contingency analysis did not reveal significant differences.

316 ***Fanning is performed in shifts***

317 While our results show that foraging is performed in shifts in honeybee colonies,
318 whether the observed shift work is endogenously driven or regulated by environmental factors,
319 such as flowers, was not distinguishable in our data set. For this reason, we analyzed if fanning
320 behavior at the entrance of the colony was done in shifts. Given the narrow regulation of
321 temperature in honeybee colonies we hypothesized that fanning behavior at the entrance of
322 the colony would be performed by some individuals in shifts and by others constantly
323 throughout the day. Consistent with this hypothesis, our results show that some workers
324 perform fanning in shifts, while others were observed fanning throughout the day (Figure 4).
325 Comparison between the theoretical binomial distribution for no shift work and the observed
326 distribution via Pearson's χ^2 resulted in significant differences for both colonies sampled
327 (colony 1: $\chi^2 = 258.91$, $p < 0.001$, $n=45$; colony 2: $\chi^2 = 529.69$ $p < 0.001$, $n=22$; Figure 4). In
328 addition, comparison between colonies via Kolmogorov-Smirnov test resulted in significant
329 differences between the observed distributions for the colonies ($D = 0.346$, $p \leq 0.05$). The finding
330 that fanning is also performed in shifts and colonies differ in distribution of individuals, suggest that
331 shift work may be endogenously driven.

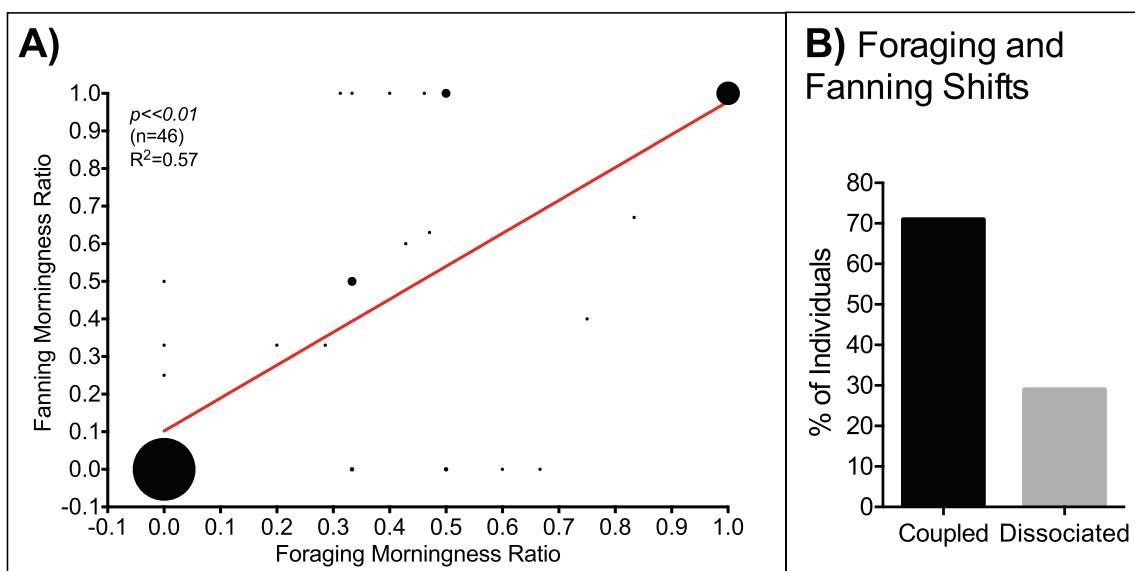

A) Colony 1

Fanning Task

B) Colony 2

Fanning Task

332


333 **Figure 4. Exclusive morning and afternoon shifts are present in fanning task. A)** Frequency
334 distribution of the observed morningness ratio for colony 1 (shaded bars) of fanning behavior in
335 the observation ramp. The observed distribution was compared to a theoretical binomial
336 distribution (white bars) that assumes no shift work. Goodness of fit test revealed significant
337 differences between the observed and theoretical distributions ($\chi^2 = 258.91, p << 0.01, n=45$).
338 **B)** Frequency distributions of the observed morningness ratio (shaded bars) and theoretical
339 binomial distribution (white bars for fanning behavior of colony 2. Consistent with the result from
340 colony 1, Goodness of fit test showed significant differences between the observed and the
341 binomial distribution ($\chi^2 = 529.69, p << 0.01, n=22$). Comparison between the observed distributions
342 for fanning behavior via Kolmogorov-Smirnov two-tailed test revealed significant differences
343 between the frequency distributions of each colony ($D = 0.346, p < 0.05$).

344

345 *Endogenous relationship of foraging and fanning shifts*

346 To examine how foraging and fanning shifts may be related we compared foraging and
347 fanning morningness ratio of individuals that performed both foraging and fanning during our

348 observations. This analysis resulted in a positive correlation between foraging and fanning shifts,
349 suggesting that shift in one behavior influences the shift in the other (Figure 5A). However, upon
350 closer inspection we observed that there were individuals had a shift for foraging but not for fanning
351 and vice versa. Individuals that present shifts in both foraging and fanning behavior or lacked shifts
352 were classified as presenting a non-dissociable shift, while individuals with shift in either foraging
353 or fanning behavior were classified as dissociable shifts. By doing this we found that ~30% of
354 individuals present a dissociable shift (Figure 5B). These results suggest that foraging and fanning
355 shifts are processes that are connected yet dissociable.

356

357 **Figure 5. Foraging and fanning shifts are coupled yet dissociable behaviors. A)**
358 Pearson correlation of foraging and fanning morningness ratios for individuals that performed
359 both tasks resulted in a positive correlation ($R^2=0.57$, $p < 0.01$, $n=46$). The size of the dots is
360 representative of the number of individuals in each data point. **B)** Per cent of individuals who's
361 foraging and fanning correlates (coupled) compared with those that do not correlate
362 (dissociated).

363

364 **Discussion:**

365 The most significant finding of this study is that different shift work strategies contribute
366 to the organization of different jobs in the honeybee colony. Foraging bees take advantage of
367 the full daylight period to collect resources for the colony (Moore & Doherty, 2009; Moore &
368 Rankin, 1983; Byron N. Van Nest & Moore, 2012; von Frisch, 1967; Wagner et al., 2013; Mark

369 L Winston, 1987). Before our findings, it was not clear if foraging was performed continuously
370 by each individual throughout the day or if distinct sub-groups (shifts) foraged at different times
371 of the day. Here we show that both of these strategies are present in honey bee colonies, i.e.
372 there are foragers that constantly work throughout the daylight period (Constant workers) and
373 groups of foragers that only work in the morning or the afternoon (Shift workers) (Figure 1). In
374 addition, we characterize various features of the honeybee shift work strategy. We observed
375 that the demography of shift workers varies from task to task (Figure 2) and can be divided
376 into individuals that maintain the same shift as they age, and those that change from one shift
377 period to another (Figure 3). We also show that fanning, another task performed by workers,
378 has a similar composition, with some individuals performing the job constantly throughout the
379 day, and others doing so in shifts (Figure 4). Interestingly, around 60% of individuals, that were
380 observed foraging and fanning, showed the same shift for both behaviors (Figure 5),
381 suggesting that the shifts are coupled yet dissociable from one another.

382 We found that more than 40% of the individuals perform foraging trips exclusively in
383 either the morning or the afternoon, while the remaining individuals (constant workers) forage
384 throughout the daylight period (Figure 1). A previous study exploring the temporal organization
385 of brood care found that nurses work around the clock (Moore et al., 1998). Their finding is
386 consistent with the lack of circadian rhythmicity of nurses in the colony and the constant
387 demand of brood care, regulated by brood pheromones (Yair Shemesh et al., 2010). In
388 contrast, foragers are thought to rely on their circadian rhythms and time memory to
389 successfully collect different resources and return to the colony (Moore & Doherty, 2009;
390 Byron N. Van Nest & Moore, 2012; Wagner et al., 2013). The presence of both types of
391 foragers (constant, shift workers) may be adaptive to the colony, and it could potentially result
392 in the daylight period being more efficiently utilized by foragers.

393 Consistent with our hypothesis that the majority of foraging would be performed by
394 constant workers, our results show that constant workers perform the majority (~80%) of
395 foraging trips (Figure 1). We expected that constant workers would perform at least twice the

396 number of foraging trips than shift workers. By taking into account that we had 2 observation
397 periods, that constant workers will be observed at both periods, and the proportion of shift
398 workers and constant workers in our sample, we expected that constant workers would
399 perform ~75% of foraging trips. Since the predicted proportion of trips was similar to the
400 predicted value (75% predicted vs. 80% obtained), the observed differences in workload
401 between shift workers and constant workers can be accredited to 1) the higher proportion of
402 constant workers and 2) the two potential observation periods for constant workers. It is likely
403 that shift work was not uncovered directly until now since the majority of studies examining
404 foragers at the colony or in artificial feeders make observations throughout the day, and until
405 recently did not identify each individual. This combined with the low percentage of foraging
406 flights taken by shift workers would significantly reduce the probability of collecting and
407 observing shift workers in previous experimental setups.

408 Since honey bee foragers match their foraging activity to the time when the resource
409 they are collecting is at the peak of production and establish a time memory of this event that
410 allows them to anticipate resource availability (Moore & Doherty, 2009; Moore & Rankin, 1983;
411 Moore, Siegfried, Wilson, & Rankin, 1989; Moore et al., 2011; Byron N. Van Nest & Moore,
412 2012; Wagner et al., 2013), it is possible that shift workers and constant workers visit groups
413 of resources that are available at different times during the day. Evidence supporting this
414 comes from the fact that, the temporal availability and duration of a resource, such as nectar
415 or pollen, varies from flower to flower (Kleber, 1935; Linnaeus, 1755; Parker, 1926; von Buttel-
416 Reepen, 1903). In addition, bees foraging to a food source that is available at noon or late in
417 the afternoon have been shown to scout the food source on average up to 4 hours, prior to
418 the resource availability on earlier days (Moore & Doherty, 2009; Moore & Rankin, 1993;
419 Moore et al., 1989). Furthermore, once the resource a forager is exploiting closes for the day,
420 the forager goes into the hive and does not take additional foraging flights for the day (Körner,
421 1940; Moore et al., 1989; Seeley, 1995; von Buttel-Reepen, 1903; von Frisch, 1940). It is
422 possible that constant workers in our study are foraging to food sources available early in the

423 afternoon, while afternoon shift workers are foraging to food source available in the late
424 evening, but further studies are needed to test this hypothesis.

425 Alternatively, constant foragers could be classified as reticent foragers, who wait in the
426 dance floor for a food source to be announced and forage as recruited by other individuals
427 (Moore et al., 2011; Wagner et al., 2013). Another possibility is that the observed shift work
428 strategy stems from the availability of stable food sources around the colony. In this scenario,
429 foragers could specialize to more efficiently exploit a particular food source at its highest
430 production point of the day, thus encouraging a shift work strategy. In contrast, a habitat where
431 resources are scarce and constantly changing would foster foragers taking foraging trips at all
432 times. Evidence for this notion stems from studies of different honey bee subspecies in Turkey,
433 where *Apis mellifera syriaca*, which originate from an arid habitat with mild winters, presented
434 higher flower fidelity than *A.m. carnica* and *A.m. caucasica*, which inhabit mountain regions
435 with cold winters and short summers (Cakmak et al., 2010). Since the experiments in the
436 previous study were performed in the same location it is likely that flower fidelity has a genetic
437 component and this component may play a role in the shift work strategy that we observe in
438 the current study.

439 Genotyping efforts by Kraus and colleagues (2011) suggested that shift work might be
440 present and strongly affected by patrilineal genotype. Our findings are consistent with their
441 measures, as pollen foragers with shift make up approximately 8% of the observed pollen
442 specialists (Figure 2A). In contrast, approximately 36% of non-pollen foragers observed
443 presented either a morning or afternoon shift (Figure 2B). This difference in the proportion of
444 shift workers could be the result of intrinsic factors that differentiate pollen and non-pollen
445 foragers, environmental factors such as resource availability or a combination of both. Studies
446 examining resource specialization in foragers demonstrate intrinsic differences between
447 pollen and nectar foragers, such as genetic background, sucrose responsiveness, phototaxis
448 and octopamine titters (Barron et al., 2007; Erber et al., 2006; Giray et al., 2007; Page & Erber,
449 2002; Scheiner et al., 2003, 2001, 2002, 2014; Taylor et al., 1992; Wagener-Hulme et al.,

450 Given the similarity of proportion of shift work in this and the Kraus et. al study, it is
451 likely that shift work in foraging may be dependent on foraging specialization. Alternatively,
452 since pollen and nectar availability varies throughout the day from one flower to another (R.M.
453 Goodwin, 1986; Linnaeus, 1755; Nakamura & Seeley, 2006; Stone, Willmer, & Alexandra
454 Rowe, 1998), it is possible that the difference between pollen and non-pollen foragers stems
455 from the availability of the particular resource a forager exploits. Future studies will examine
456 how resource availability affects foraging timing and strategies and will explore if differences
457 in patrilineal origin of non-pollen foragers influences their foraging shift.

458 We found that a group of individuals may begin foraging in either the morning or
459 afternoon shift and over time switch shifts (Figure 3A). This switch is more probable to occur
460 early in the foraging life (Figure 3C). This mechanism may be linked to epigenetic, hormonal,
461 developmental or morphological changes occurring after the onset of foraging behavior
462 (Brown, Napper, & Mercer, 2004; Farris, Robinson, & Fahrbach, 2001; Withers, Fahrbach, &
463 Robinson, 1995). Since honeybee colonies need to constantly adapt to changes in the outside
464 environment and resource availability, having a foraging force that can adjust at a moment's
465 notice may result in a constant flow of resources into the colony. Alternatively, it is possible
466 that changes in the timing of foraging result from the disappearance of the resource the bee
467 was exploiting, causing her to visit a new resource that may be available at a different time.
468 Although much work remains to be done, both of these scenarios are consistent with the idea
469 that shift work may be plastic and thus adopts to the colony's constant needs.

470 While our findings show that some individuals perform foraging in shifts, our direct
471 observations of foraging behavior cannot determine if shifts are intrinsic or a function of
472 external factors. While assaying foraging we also observed fanning at the entrance of the
473 colony. To our surprise, we found that some individuals fanned exclusively in the morning or
474 afternoon, while others had no preference for a specific shift (Figure 4). The observed shifts
475 in fanning suggest that shift work may have one or more intrinsic drivers. One of these drivers
476 may be genetic variation among individuals in the colony, as previously described for pollen

477 foragers (Kraus et al., 2011). Previous studies looking at genetic variation within fanning bees
478 found that colonies with natural genetic variation have a more rigorous control of temperature
479 inside of the colony (via fanning) in comparison with colonies that originate from a single
480 artificially inseminated queen (J C Jones et al., 2004; Julia C Jones, Nanork, & Oldroyd, 2007;
481 Su et al., 2007). Furthermore, evidence suggests that genetic variation in the colony increases
482 overall colony fitness (Mattila & Seeley, 2007). Taken together, our data on fanning task and
483 that of previous studies, it is possible that shift work in honeybees has one or more intrinsic
484 mechanisms driving it. If this driver or drivers have a genetic component, the study of single-
485 cohort colonies may result in the loss of one or both shifts in foraging and fanning tasks.

486 Since some of the marked individuals we observed foraging also fanned, we explored
487 the potential relationship of shift work between these tasks. Our results revealed that while a
488 proportion of individuals (30%) perform foraging and fanning behaviors at different time
489 periods, the remaining individuals presented the same shift for both foraging and fanning
490 (Figure 5). This suggests that while these tasks may share a relationship with regards to shifts,
491 they can be dissociated from one another (Figure 5B). This difference between foraging and
492 fanning shifts could be explained by differences in the influences of endogenous (genetic
493 background, life stage) and exogenous factors (light, temperature, resource availability, colony
494 needs). Previous work done using the fruit fly *Drosophila melanogaster*, uncovered
495 experimental proof of the multiple circadian oscillator hypothesis originally proposed by Dan
496 and Pittendrigh (Colin S. Pittendrigh & Daan, 1976; Stoleru, Peng, Agosto-Rivera, & Rosbash,
497 2004). This hypothesis states that complex multicellular organisms possess various
498 independent or loosely coupled circadian pacemakers (C. S. Pittendrigh, 1972). In the case
499 of the fruit fly researchers uncovered that different cells were responsible for the morning and
500 evening activity peaks in locomotor behavior (Stoleru et al., 2004). Similarly, we hypothesize
501 that each task (foraging and fanning) is under a set of different circadian oscillators and while
502 the oscillators may be in synchrony in some individuals, this may vary across individuals.

503 Based on our observation of a shift work strategy in foraging and fanning tasks, we
504 posit that the use of this strategy may confer various benefits to honeybee colonies. The use
505 of shift work in foraging will allow the colony to take advantage of stable resources available
506 throughout the day. Constant workers could enhance the efficiency of shift workers by being
507 ready to forage when a food source is announced, thus increasing the number of foraging
508 flights to the particular food source. Although having shift work can provide a number of
509 benefits to the hive, it may have negative effects on the individual. For example, if we presume
510 that phase differences in the circadian clock underlie the observed shift work, then some
511 individuals may be desynchronized with respect to environmental cycles. A number of studies
512 in humans have shown that individuals with evening chronotypes have increased susceptibility
513 to a number of disorders such as circadian misalignment, cancer and depression (Adan et al.,
514 2012; Antunes, Levandovski, Dantas, Caumo, & Hidalgo, 2010; Davis & Mirick, 2006; Dibner,
515 Schibler, & Albrecht, 2010; Lépine & Briley, 2011; Reinberg, Touitou, Lewy, & Mechkouri,
516 2010). In the case of honeybees, shift work could potentially have negative effects on the
517 individual workers. Future studies will look at dissecting the relationship between shift work in
518 foraging and fanning behavior and circadian rhythms in bees (Giannoni-Guzmán et al., 2014).

519 In conclusion, this study shows for the first time direct behavioral evidence of shift work
520 strategy being used in foraging and fanning tasks in honeybee colonies and characterize
521 behavioral components of this shift work strategy. These findings reveal yet a new layer of
522 social and temporal organization of honeybee colonies. Future studies may aim to understand
523 the specific genetic components and neural mechanisms underlying shift work. Since
524 honeybees use their endogenous circadian clock to predict time of day, the relationship
525 between circadian rhythms and shift work is an area of great interest. Studying this relationship
526 may eventually provide clues on how to attack the negative consequences of imposed shift
527 work in humans.

528

529 **Acknowledgements:**

530 We would like to thank honeybee specialist Gabriel Diaz for honeybee colony care. Dr.
531 Arian Avalos, Emmanuel Rivera, Liz Hernandez, Jonathan Aleman-Rios and Carlos Vazquez
532 for help with the experiments. Thanks to Dr. Arian Avalos and Luis de Jesus for their
533 comments and suggestions. We would also like to recognize the director, Manuel Diaz and
534 the personnel of the Gurabo Experimental Agriculture Station of the University of Puerto Rico
535 at Mayaguez for use of facilities at “Casa Amarilla”. This work was sponsored by the National
536 Science Foundation (NSF) awards 1026560, 1633184, 1707355 and the National Institute of
537 Health (NIH) 2R25GM061151-13, P20GM103475.

538

539

540

541

542

543

544

545

546

547

548

549

550 **References:**

551 Adan, A., Archer, S. N., Hidalgo, M. P., Di Milia, L., Natale, V., & Randler, C. (2012). Circadian
552 typology: a comprehensive review. *Chronobiology International*, 29(9), 1153–1175.
553 <http://doi.org/10.3109/07420528.2012.719971>

554 Akerstedt, T., & Wright, K. P. (2009). Sleep Loss and Fatigue in Shift Work and Shift Work
555 Disorder. *Sleep Medicine Clinics*, 4(2), 257–271.
556 <http://doi.org/10.1016/j.jsmc.2009.03.001>

557 Antunes, L. C., Levandovski, R., Dantas, G., Caumo, W., & Hidalgo, M. P. (2010). Obesity
558 and shift work: chronobiological aspects. *Nutr Res Rev*, 23(1), 155–168.
559 <http://doi.org/10.1017/S0954422410000016>

560 Barron, A. B., Maleszka, R., Vander Meer, R. K., & Robinson, G. E. (2007). Octopamine
561 modulates honey bee dance behavior. *Proceedings of the National Academy of Sciences
562 of the United States of America*, 104(5), 1703–7.
563 <http://doi.org/10.1073/pnas.0610506104>

564 Bloch, G., & Robinson, G. E. (2001). Chronobiology. Reversal of honeybee behavioural
565 rhythms. *Nature*, 410(6832), 1048. <http://doi.org/10.1038/35074183>

566 Brown, S. M., Napper, R. M., & Mercer, A. R. (2004). Foraging experience, glomerulus volume,
567 and synapse number: A stereological study of the honey bee antennal lobe. *Journal of
568 Neurobiology*, 60(1), 40–50. <http://doi.org/10.1002/neu.20002>

569 Cakmak, I., Song, D. S., Mixson, T. A., Serrano, E., Clement, M. L., Savitski, A., ... Wells, H.
570 (2010). Foraging response of turkish honey bee subspecies to flower color choices and
571 reward consistency. *Journal of Insect Behavior*, 23(2), 100–116.
572 <http://doi.org/10.1007/s10905-009-9199-7>

573 Cheeseman, J. F., Winnebeck, E. C., Millar, C. D., Kirkland, L. S., Sleigh, J., Goodwin, M., ...
574 Warman, G. R. (2012). General anesthesia alters time perception by phase shifting the
575 circadian clock. *Proceedings of the National Academy of Sciences of the United States
576 of America*, 109(18), 7061–7066. <http://doi.org/10.1073/pnas.1201734109>

577 Craig, D. P. A., Grice, J. W., Varnon, C. A., Gibson, B., Sokolowski, M. B. C., & Abramson, C.
578 I. (2012). Social reinforcement delays in free-flying honey bees (*Apis mellifera* L.). *PLoS
579 One*, 7(10), e46729. <http://doi.org/10.1371/journal.pone.0046729>

580 Davis, S., & Mirick, D. K. (2006). Circadian disruption, shift work and the risk of cancer: a
581 summary of the evidence and studies in Seattle. *Cancer Causes Control*, 17(4), 539–545.
582 <http://doi.org/10.1007/s10552-005-9010-9>

583 Dibner, C., Schibler, U., & Albrecht, U. (2010). The mammalian circadian timing system:
584 organization and coordination of central and peripheral clocks. *Annual Review of
585 Physiology*, 72, 517–49. <http://doi.org/10.1146/annurev-physiol-021909-135821>

586 Eban-Rothschild, A., & Bloch, G. (2012). Honeybee Neurobiology and Behavior, 31–45.
587 <http://doi.org/10.1007/978-94-007-2099-2>

588 Erber, J., Hoormann, J., & Scheiner, R. (2006). Phototactic behaviour correlates with gustatory

589 responsiveness in honey bees (*Apis mellifera* L.). *Behav Brain Res*, 174(1), 174–180.
590 <http://doi.org/10.1016/j.bbr.2006.07.023>

591 Farris, S. M., Robinson, G. E., & Fahrbach, S. E. (2001). Experience- and Age-Related
592 Outgrowth of Intrinsic Neurons in the Mushroom Bodies of the Adult Worker Honeybee.
593 *J. Neurosci.*, 21(16), 6395–6404. Retrieved from
594 <http://www.jneurosci.org/content/21/16/6395.short>

595 Fewell, J. H., & Page, R. E. (1993). Genotypic variation in foraging responses to environmental
596 stimuli by honey bees, *Apis mellifera*. *Experientia*, 49(12), 1106–1112.
597 <http://doi.org/10.1007/BF01929923>

598 Fjerdingstad, E. J., & Crozier, R. H. (2006). The Evolution of Worker Caste Diversity in Social
599 Insects. <http://doi.org/10.1086/499545>

600 Folkard, S. (2003a). Shift work, safety and productivity. *Occupational Medicine*, 53(2), 95–101.
601 <http://doi.org/10.1093/occmed/kqg047>

602 Folkard, S. (2003b). Shift work, safety and productivity. *Occupational Medicine*, 53(2), 95–101.
603 <http://doi.org/10.1093/occmed/kqg047>

604 Giannoni-Guzmán, M. A., Avalos, A., Marrero Perez, J., Otero Loperena, E. J., Kayím, M.,
605 Medina, J. A., ... Agosto-Rivera, J. L. (2014). Measuring individual locomotor rhythms in
606 honey bees, paper wasps and other similar-sized insects. *The Journal of Experimental
607 Biology*, 217(Pt 8), 1307–15. <http://doi.org/10.1242/jeb.096180>

608 Giray, T., Galindo-Cardona, A., & Oskay, D. (2007). Octopamine influences honey bee
609 foraging preference. *Journal of Insect Physiology*, 53(7), 691–698.
610 <http://doi.org/10.1016/j.jinsphys.2007.03.016>

611 Giray, T., Guzman-Novoa, E., Aron, C. W., Zelinsky, B., Fahrbach, S. E., & Robinson, G. E.
612 (1999). Genetic variation in worker temporal polyethism and colony defensiveness in the
613 honey bee, *Apis mellifera*. *Behavioral Ecology*, 11(1), 44–55. <http://doi.org/10.1093/Beheco/11.1.44>

615 Giray, T., Huang, Z.-Y., Guzman-Novoa, E., & Robinson, G. E. (1999). Physiological
616 correlates of genetic variation for rate of behavioral development in the honeybee, *Apis
617 mellifera*. *Behav Ecol Sociobiol*, 47, 17–28.

618 Giray, T., & Robinson, G. E. (1996). Common endocrine and genetic mechanisms of
619 behavioral development in male and worker honey bees and the evolution of division of
620 labor. *Proceedings of the National Academy of Sciences of the United States of America*,
621 93(21), 11718–11722. Retrieved from
622 <http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=38124&tool=pmcentrez&rendertype=abstract>

624 Goodwin, R. M. (1986). Kiwifruit flowers: Anther dehiscence and daily collection of pollen by
625 honey bees. *New Zealand Journal of Experimental Agriculture*, 14(4), 449–452.
626 <http://doi.org/10.1080/03015521.1986.10423064>

627 Goodwin, R. M., & Lewis, D. (1987). Honeybees use a biological clock to incorporate sun
628 positions in their waggle dances after foraging under heavy overcast skies. *New Zealand*

629 *Entomologist*, 10, 138–140.

630 Gordon, D. M. (2007). Control without hierarchy. *Nature*, 446(7132), 143.
631 <http://doi.org/10.1038/446143a>

632 Huang, Z. Y., & Robinson, G. E. (1992). Honeybee colony integration: worker-worker
633 interactions mediate hormonally regulated plasticity in division of labor. *Proceedings of
634 the National Academy of Sciences of the United States of America*, 89(24), 11726–9.
635 Retrieved
636 from
637 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137229/>

638 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2010). Painting,
639 firefighting, and shiftwork. *IARC Monographs on the Evaluation of Carcinogenic Risks to
640 Humans / World Health Organization, International Agency for Research on Cancer*, 98,
641 9–764.

642 Inoshita, T., Martin, J. R., Marion-Poll, F., & Ferveur, J. F. (2011). Peripheral, central and
643 behavioral responses to the cuticular pheromone bouquet in *Drosophila melanogaster*
644 males. *PLoS One*, 6(5), e19770. <http://doi.org/10.1371/journal.pone.0019770>

645 Jandt, J. M., & Dornhaus, A. (2009). Spatial organization and division of labour in the
646 bumblebee *Bombus impatiens*. *Animal Behaviour*, 77(3), 641–651.
647 <http://doi.org/10.1016/j.anbehav.2008.11.019>

648 Jeanne, R. L. (1986). The organization of work in *Polybia occidentalis*: costs and benefits of
649 specialization in a social wasp. *Behavioral Ecology and Sociobiology*, 19(5), 333–341.
650 <http://doi.org/10.1007/BF00295706>

651 Jeanson, R., Fewell, J. H., Gorelick, R., & Bertram, S. M. (2007). Emergence of increased
652 division of labor as a function of group size. *Behavioral Ecology and Sociobiology*, 62(2),
653 289–298. <http://doi.org/10.1007/s00265-007-0464-5>

654 Jones, J. C., Myerscough, M. R., Graham, S., & Oldroyd, B. P. (2004). Honey bee nest
655 thermoregulation: diversity promotes stability. *Science*, 305(5682), 402–404.
656 <http://doi.org/10.1126/science.1096340>

657 Jones, J. C., Nanork, P., & Oldroyd, B. P. (2007). The role of genetic diversity in nest cooling
658 in a wild honey bee, *Apis florea*. *Journal of Comparative Physiology. A, Neuroethology,
659 Sensory, Neural, and Behavioral Physiology*, 193(2), 159–65.
660 <http://doi.org/10.1007/s00359-006-0176-8>

661 Kleber, E. (1935). Hat das Zeitgedächtnis der Bienen Biologische Bedeutung? *Zeitschrift Für
662 Vergleichende Physiologie*, 22(2), 221–262. <http://doi.org/10.1007/BF00586500>

663 Klerman, E. B. (2005). Clinical aspects of human circadian rhythms. *Journal of Biological
664 Rhythms*, 20(4), 375–386. <http://doi.org/10.1177/0748730405278353>

665 Knutsson, A. (1989). Shift work and coronary heart disease. *Scand J Soc Med Suppl*, 44, 1–
666 36. Retrieved from <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137229/>

667 Körner, I. (1940). Zeitgedächtnis und Alarmierung bei den Bienen. *Zeitschrift Für
668 Vergleichende Physiologie*, 27(4), 445–459.

669 Kraus, F. B., Gerecke, E., & Moritz, R. F. a. (2011). Shift work has a genetic basis in honeybee
670 pollen foragers (*Apis mellifera* L.). *Behavior Genetics*, 41(2), 323–328.
671 <http://doi.org/10.1007/s10519-010-9382-9>

672 Leoncini, I., Conte, Y. Le, Costagliola, G., Plettner, E., Toth, A. L., Wang, M., ... Robinson, G.
673 E. (2004). Regulation of behavioral maturation by a primer pheromone produced by adult
674 worker honey bees. *Proceedings of the National Academy of Sciences of the United
675 States of America*, 101(50), 17559–17564. <http://doi.org/10.1073/pnas.0407652101>

676 Lépine, J.-P., & Briley, M. (2011). The increasing burden of depression. *Neuropsychiatric
677 Disease and Treatment*, 7(Suppl 1), 3–7. <http://doi.org/10.2147/NDT.S19617>

678 Linnaeus, C. (1755). *Philosophia Botanica*. 1751. IT Trattner Viennae.

679 Mattila, H. R., & Seeley, T. D. (2007). Genetic diversity in honey bee colonies enhances
680 productivity and fitness. *Science (New York, N.Y.)*, 317(5836), 362–4.
681 <http://doi.org/10.1126/science.1143046>

682 Mattu, V., Raj, H., & Thakur, M. (2012). Foraging Behavior Of Honeybees On Apple Crop And
683 Its Variation With Altitude In Shimla Hills Of Western Himalaya, India. *International
684 Journal of Science & Nature*, 3(1), 296–301.

685 Mersch, D. P., Crespi, A., & Keller, L. (2013). Tracking individuals shows spatial fidelity is a
686 key regulator of ant social organization. *Science (New York, N.Y.)*, 340(6136), 1090–3.
687 <http://doi.org/10.1126/science.1234316>

688 Mitler, M. M., Carskadon, M. a, Czeisler, C. a, Dement, W. C., Dinges, D. F., & Graeber, R. C.
689 (1988). Catastrophes, sleep, and public policy: consensus report. *Sleep*, 11(1), 100–9.
690 Retrieved from
691 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517096/> tool=pmcentrez&re
692 ndertype=abstract

693 Moore, D. (2001). Honey bee circadian clocks: behavioral control from individual workers to
694 whole-colony rhythms. *Journal of Insect Physiology*, 47, 843–857.

695 Moore, D., Angel, J. E., Cheeseman, I. M., Fahrbach, S. E., & Robinson, G. E. (1998).
696 Timekeeping in the honey bee colony: integration of circadian rhythms and division of
697 labor. *Behav Ecol Sociobiol*, 43, 147–160.

698 Moore, D., & Doherty, P. (2009). Acquisition of a time-memory in forager honey bees. *Journal
699 of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral
700 Physiology*, 195(8), 741–751. <http://doi.org/10.1007/s00359-009-0450-7>

701 Moore, D., & Rankin, M. A. (1983). Diurnal changes in the accuracy of the honeybee foraging
702 rhythm. *The Biological Bulletin*, 164(March), 471–482. <http://doi.org/10.2307/1541256>

703 Moore, D., & Rankin, M. A. (1993). Light and Temperature entrainment of a locomotor rhythm
704 in honeybees. *Physiological Entomology*, 18, 271–278.

705 Moore, D., Siegfried, D., Wilson, R., & Rankin, M. A. (1989). The Influence of Time of Day on
706 the Foraging Behavior of the Honeybee, *Apis mellifera*. *Journal of Biological Rhythms*,
707 4(3), 305–325.

708 Moore, D., Van Nest, B. N., & Seier, E. (2011). Diminishing returns: the influence of experience
709 and environment on time-memory extinction in honey bee foragers. *Journal of
710 Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology*,
711 197(6), 641–51. <http://doi.org/10.1007/s00359-011-0624-y>

712 Nakamura, J., & Seeley, T. D. (2006). The functional organization of resin work in honeybee
713 colonies. *Behavioral Ecology and Sociobiology*, 60(3), 339–349.
714 <http://doi.org/10.1007/s00265-006-0170-8>

715 Nijland, M. J. M., & Hepburn, H. R. (1985). Ontogeny of a circadian rhythm in the cluster
716 temperature of honeybees. *South African Journal of Science*.

717 O'Donnell, S., & Jeanne, R. L. (1992). Lifelong patterns of forager behaviour in a tropical
718 swarm-founding wasp: effects of specialization and activity level on longevity. *Animal
719 Behaviour*, 44(6), 1021–1027. [http://doi.org/10.1016/S0003-3472\(05\)80314-8](http://doi.org/10.1016/S0003-3472(05)80314-8)

720 O'Riain, M. J., Jarvis, J. U., Alexander, R., Buffenstein, R., & Peeters, C. (2000). Morphological
721 castes in a vertebrate. *Proceedings of the National Academy of Sciences of the United
722 States of America*, 97(24), 13194–7. <http://doi.org/10.1073/pnas.97.24.13194>

723 Oster, G. F., & Wilson, E. O. (1978). *Caste and ecology in the social insects*. Princeton
724 University Press.

725 Page, R. E., & Erber, J. (2002). Levels of behavioral organization and the evolution of division
726 of labor. *Die Naturwissenschaften*, 89(3), 91–106. Retrieved from
727 <http://www.ncbi.nlm.nih.gov/pubmed/12046634>

728 Pankiw, T. (2004). Brood pheromone regulates foraging activity of honey bees (Hymenoptera:
729 Apidae). *Journal of Economic Entomology*, 97(3), 748–51. Retrieved from
730 <http://www.ncbi.nlm.nih.gov/pubmed/15279247>

731 Parker, R. L. (1926). The collection and utilization of pollen by the honeybee. *Mem. Cornell
732 Agric. Exp. Stn.*

733 Partap, U., Shukla, A., & Verma, L. (2000). Comparative Foraging Behaviour of *Apis cerana*
734 and *Apis mellifera* in Pollinating Peach and Plum Flowers in Kathmandu Valley, Nepal.
735 ... Conference, Kathmandu. Retrieved from
736 http://lib.icimod.org/record/22911/files/c_attachment_201_2648.pdf

737 Pati, A. K., Chandrawanshi, A., & Reinberg, A. (2001). Shift work: consequences and
738 management. *Current Science*, 81(1), 32–52. Retrieved from <Go to
739 ISI>://WOS:000169943800016

740 Pittendrigh, C. S. (1972). Circadian Surfaces and the Diversity of Possible Roles of Circadian
741 Organization in Photoperiodic Induction. *Proceedings of the National Academy of
742 Sciences*, 69(9), 2734–2737. <http://doi.org/10.1073/pnas.69.9.2734>

743 Pittendrigh, C. S. (1993). Temporal organization: reflections of a Darwinian clock-watcher.
744 *Annual Review of Physiology*, 55, 16–54. <http://doi.org/10.1146/annurev.physiol.55.1.17>

745 Pittendrigh, C. S., & Daan, S. (1976). A functional analysis of circadian pacemakers in
746 nocturnal rodents - V. Pacemaker structure: A clock for all seasons. *Journal of
747 Comparative Physiology* ??? A. <http://doi.org/10.1007/BF01417860>

748 Rajaratnam, S. M. W., & Arendt, J. (2001). Health in a 24-h society. *Lancet*, 358(9286), 999–
749 1005. [http://doi.org/10.1016/S0140-6736\(01\)06108-6](http://doi.org/10.1016/S0140-6736(01)06108-6)

750 Rajaratnam, S. M. W., Howard, M. E., & Grunstein, R. R. (2013). Sleep loss and circadian
751 disruption in shift work: health burden and management. *The Medical Journal of Australia*,
752 199(8). <http://doi.org/10.5694/mja13.10561>

753 Reinberg, A., Touitou, Y., Lewy, H., & Mechkouri, M. (2010). Habitual moderate alcohol
754 consumption desynchronizes circadian physiologic rhythms and affects reaction-time
755 performance. *Chronobiology International*, 27(9-10), 1930–42.
756 <http://doi.org/10.3109/07420528.2010.515763>

757 Robinson, G. E. (1992). Regulation of division of labor in insect societies. *Annual Review of
758 Entomology*, 37, 637–65. <http://doi.org/10.1146/annurev.en.37.010192.003225>

759 Robinson, G. E., & Page, R. E. (1989). Genetic determination of nectar foraging, pollen
760 foraging, and nest-site scouting in honey bee colonies. *Behavioral Ecology and
761 Sociobiology*, 24(5), 317–323. <http://doi.org/10.1007/BF00290908>

762 Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: daily temporal
763 patterns of human chronotypes. *Journal of Biological Rhythms*, 18(1), 80–90.
764 <http://doi.org/10.1177/0748730402239679>

765 Sagili, R. R., Pankiw, T., & Metz, B. N. (2011). Division of labor associated with brood rearing
766 in the honey bee: how does it translate to colony fitness? *PLoS One*, 6(2), e16785.
767 <http://doi.org/10.1371/journal.pone.0016785>

768 Scheiner, R., Barnert, M., & Erber, J. (2003). Variation in water and sucrose responsiveness
769 during the foraging season affects proboscis extension learning in honey bees.
770 *Apidologie*, 34(1), 67–72. <http://doi.org/10.1051/apido:2002050>

771 Scheiner, R., Page, R. E., & Erber, J. (2001). The effects of genotype, foraging role, and
772 sucrose responsiveness on the tactile learning performance of honey bees (*Apis mellifera*
773 L.). *Neurobiology of Learning and Memory*, 76(2), 138–50.
774 <http://doi.org/10.1006/nlme.2000.3996>

775 Scheiner, R., Plückhahn, S., Oney, B., Blenau, W., & Erber, J. (2002). Behavioural
776 pharmacology of octopamine, tyramine and dopamine in honey bees. *Behavioural Brain
777 Research*, 136(2), 545–53. Retrieved from
778 <http://www.ncbi.nlm.nih.gov/pubmed/12429417>

779 Scheiner, R., Toteva, A., Reim, T., SÃ,vik, E., & Barron, A. B. (2014). Differences in the
780 phototaxis of pollen and nectar foraging honey bees are related to their octopamine brain
781 titers. *Frontiers in Physiology*, 5. <http://doi.org/10.3389/fphys.2014.00116>

782 Seeley, T. D. (1985). *Honeybee ecology: a study of adaptation in social life*. Princeton
783 University Press.

784 Seeley, T. D. (1995). The Wisdom of the Hive. *Harvard University Press*, Retrieved from
785 [http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+Wisdom+of+the+
Hive#2](http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+Wisdom+of+the+
786 Hive#2)

787 Shemesh, Y., Cohen, M., & Bloch, G. (2007). Natural plasticity in circadian rhythms is

788 mediated by reorganization in the molecular clockwork in honeybees. *FASEB*, 21(10),
789 2304–2311. <http://doi.org/10.1096/fj.06-8032com>

790 Shemesh, Y., Eban-Rothschild, A., Cohen, M., & Bloch, G. (2010). Molecular dynamics and
791 social regulation of context-dependent plasticity in the circadian clockwork of the honey
792 bee. *The Journal of Neuroscience : The Official Journal of the Society for Neuroscience*,
793 30(37), 12517–12525. <http://doi.org/10.1523/JNEUROSCI.1490-10.2010>

794 Singh, M. (2009). Foraging behaviour of the Himalayan honeybee (*Apis cerana* F.) on flowers
795 of *Fagopyrum esculentum* M. and its impact on grain quality and yield. *Ecoprint: An
796 International Journal of Ecology*, 15, 37–46. Retrieved from
797 <http://www.nepjol.info/index.php/ECO/article/viewArticle/1940>

798 Southerton, D. (2006). Analysing the Temporal Organization of Daily Life:: Social Constraints,
799 Practices and their Allocation. *Sociology*, 40(3), 435–454.
800 <http://doi.org/10.1177/0038038506063668>

801 Spangler, H. G. (1972). Daily Activity Rhythms of Individual Worker and Drone Honey Bees.
802 *Annals of the Entomological Society of America*, 65(5), 1073–1076.

803 Stoleru, D., Peng, Y., Agosto-Rivera, J. L., & Rosbash, M. (2004). Coupled oscillators control
804 morning and evening locomotor behaviour of *Drosophila*. *Nature*, 431(7010), 862–868.
805 <http://doi.org/10.1038/nature02926>

806 Stone, G. N., Willmer, P., & Alexandra Rowe, J. (1998). Partitioning of pollinators during
807 flowering in an African Acacia community. *Ecology*, 79(8), 2808–2827.
808 [http://doi.org/10.1890/0012-9658\(1998\)079\[2808:POPDFI\]2.0.CO;2](http://doi.org/10.1890/0012-9658(1998)079[2808:POPDFI]2.0.CO;2)

809 Stussi, T. (1972). [Ontogenesis of circadian rhythm in energetic consumption in bees].
810 *Archives Des Sciences Physiologiques*, 26(2), 161–73. Retrieved from
811 <http://www.ncbi.nlm.nih.gov/pubmed/4650830>

812 Su, S., Albert, S., Zhang, S., Maier, S., Chen, S., Du, H., & Tautz, J. (2007). Non-destructive
813 genotyping and genetic variation of fanning in a honey bee colony. *Journal of Insect
814 Physiology*, 53(5), 411–7. <http://doi.org/10.1016/j.jinsphys.2007.01.002>

815 Taylor, D., Robinson, G. E., Logan, B., Laverty, R., & Mercer, A. (1992). Changes in brain
816 amine levels associated with the morphological and behavioural development of the
817 worker honeybee. *Journal of Comparative Physiology A*, 170(6), 715–721.
818 <http://doi.org/10.1007/BF00198982>

819 Van Nest, B. N., & Moore, D. (2012). Energetically optimal foraging strategy is emergent
820 property of time-keeping behavior in honey bees. *Behavioral Ecology*, 23(3), 649–658.
821 <http://doi.org/10.1093/beheco/ars010>

822 Van Nest, B. N., & Moore, D. (2012). Energetically optimal foraging strategy is emergent
823 property of time-keeping behavior in honey bees. *Behavioral Ecology*.
824 <http://doi.org/10.1093/beheco/ars010>

825 von Buttel-Reepen, H. B. (1903). *Die stammesgeschichtliche entstehung des bienenstaates
826 sowie beiträge zur lebensweise der solitären u. sozialen bienen (hummeln, meliponinen,
827 etc.): Vortrag gehalten auf dem Zoologen-kongress in Giessen (1902). Stark erweitert,*

828 *mit anmerkungen und zusätz.* G. Thieme.

829 von Frisch, K. (1940). Die Tänze und das Zeitgedächtnis der Bienen im Widerspruch.
830 *Naturwissenschaften*, 28(5), 65–69.

831 von Frisch, K. (1967). *The Dance Language and Orientation of Bees*. Cambridge, MA.:
832 Harvard University Press.

833 Wagener-Hulme, C., Kuehn, J. C., Schulz, D. J., & Robinson, G. E. (1999). Biogenic amines
834 and division of labor in honey bee colonies. *J Comp Physiol A*, 184(5), 471–479.
835 <http://doi.org/10.1007/s003590050347>

836 Wagner, A. E., Van Nest, B. N., Hobbs, C. N., & Moore, D. (2013). Persistence, reticence and
837 the management of multiple time memories by forager honey bees. *The Journal of
838 Experimental Biology*, 216(Pt 7), 1131–1141. <http://doi.org/10.1242/jeb.064881>

839 Winston, M. L. (1987). *The biology of the honey bee*. Cambridge, MA: Harvard University
840 Press.

841 Winston, M. L. (2003). The Biology and Management of Africanized Honey Bees. Retrieved
842 from
843 <http://www.annualreviews.org/doi/abs/10.1146/annurev.en.37.010192.001133?journalCode=ento>

845 Withers, G. S., Fahrbach, S. E., & Robinson, G. E. (1995). Effects of experience and juvenile
846 hormone on the organization of the mushroom bodies of honey bees. *Journal of
847 Neurobiology*, 26(1), 130–144.

848