

The Role of Colony Temperature in the Entrainment of Circadian Rhythms of Honey Bee Foragers

Authors:

Manuel A. Giannoni-Guzmán¹, Emmanuel Rivera², Janpierre Aleman-Rios³, Alexander M. Melendez Moreno³, Melina Perez Ramos², Eddie Pérez-Claudio⁴, Darimar Loubriel¹, Darrell Moore⁵, Tugrul Giray³ and Jose L. Agosto-Rivera³

Affiliations:

1. Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
2. Department of Biology, Brandeis University, Waltham, MA, USA
3. Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, PR
4. Department of Biomedical Informatics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
5. Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA

Corresponding author: Manuel A. Giannoni-Guzmán

e-mail: manuel.giannoni10@gmail.com

1 **Abstract**

2 Honey bees utilize their circadian rhythms to accurately predict the time of day. This ability
3 allows foragers to remember the specific timing of food availability and its location for several
4 days. Previous studies have provided strong evidence toward light/dark cycles being the primary
5 Zeitgeber for honey bees. Work in our laboratory described large individual variation in the
6 endogenous period length of honey bee foragers from the same colony and differences in the
7 endogenous rhythms under different constant temperatures. In this study, we further this work by
8 examining temperature inside the honey bee colony. By placing temperature and light data
9 loggers at different locations inside the colony we measured temperature at various locations
10 within the colony. We observed significant oscillations of temperature inside the hive, that show
11 seasonal patterns. We then simulated the observed temperature oscillations in the laboratory and
12 found that using the temperature cycle as a Zeitgeber, foragers present large individual
13 differences in the phase of locomotor rhythms with respect to temperature. Moreover, foragers
14 successfully synchronize their locomotor rhythms to these simulated temperature cycles.
15 Advancing the cycle by six hours, resulted in changes in the phase of activity in some foragers in
16 the assay. The results shown in this study highlight the importance of temperature as a potential
17 Zeitgeber in the field. Future studies will examine the possible functional and evolutionary role of
18 the observed phase differences of circadian rhythms.

19

20

21

22 **Keywords:** Honey bees, Foragers, circadian, Temperature, synchronization, locomotor activity

23

24

25 **Introduction:**

26 One of the major functions of endogenous circadian clocks is to maintain the appropriate
27 timing (phasing) of physiological and behavioral processes with respect to daily variations (such
28 as light-dark and temperature cycles) in the external environment. Typically, most of these clock-
29 driven biological rhythms are not in perfect synchrony with such environmental cycles but, instead,
30 occur at stable, fixed phases that anticipate or trail certain aspects (dawn, dusk, increasing or
31 decreasing temperatures) of the environmental cycles(Moore and Rankin 1983, Frisch and
32 Aschoff 1987, Panda et al. 2002, Hut and Beersma 2011). The endogenous circadian clock and
33 the circadian rhythms orchestrated by it are thus entrained by daily environmental time cues
34 (Zeitgebers). While circadian rhythms were originally measured as daily behavioral patterns, such
35 as locomotor activity, egg laying, mating, and food acquisition, at the molecular level, circadian
36 rhythms are driven by a set of proteins that generate negative feedback loops that regulate the
37 transcription, translation and post translational modifications of a large number of canonical clock
38 genes (Dunlap 1999, Blau 2001, Cyran et al. 2003, Gardner et al. 2006). These feedback loops
39 generate near 24-hour (circadian) oscillations in the expression levels of the genes that make up
40 the clock (Takahashi 1999, Ko and Takahashi 2006).

41 In honey bees, the circadian clock is associated with various complex behavioral
42 processes that drive the survival and fitness of the colony. Drones and queens (the reproductive
43 castes in the colony) mate at a specific time during the day (Galindo-Cardona et al. 2012).
44 Foragers, who go out in search of different resources during daylight, learn the time and location
45 of a food source and anticipate its availability on following days (von Frisch 1967, Moore 2001,
46 Moore and Doherty 2009).Foragers also rely on the circadian clock for time-compensation, an
47 essential component of their sun-compass navigation and dance language communication
48 functions (Lindauer 1960, von Frisch 1967, Cheeseman et al. 2012) Although these and other

49 processes rely on precise timing of the circadian clock, few studies have examined the potential
50 environmental cues that entrain circadian rhythms in nature.

51 The first studies of honey bee circadian rhythms looked at foraging rhythms at the colony
52 level (Buttel-Reepen 1900, Forel 1910, Wahl 1932, 1933). Studies examining the potential
53 Zeitgebers that entrain circadian rhythms in honey bee colonies as well as individual bees
54 concluded that light-dark cycles are the primary entraining agents (Renner 1960, Beier 1968,
55 Beier and Lindauer 1970, Detrain et al. 1999). Studies in which groups of individuals from whole
56 colonies were trained to visit a specific food source at a particular time of day were then
57 translocated to a different time zone (ex. New York to California) exhibited foraging activity at the
58 time relative to their original light-dark cycles. Over a span of several days, foragers from the
59 transplanted colony re-entrained to the new light-dark regimen (Renner 1959). At the individual
60 forager level, studies have demonstrated that light-dark cycles indeed entrain forager locomotor
61 rhythms (Spangler 1972, Moore and Rankin 1985) and that the lights-off transition determines the
62 forager's phase of activity (Moore and Rankin 1993). However, the fact that honey bee colonies
63 and individuals entrain to light-dark cycles does not exclude the possibility of entrainment by other
64 environmental cues.

65 An important aspect of hive maintenance is that honey bees socially regulate colony
66 temperature, keeping it optimally at 35°C (Heinrich 1980). At the behavioral level this is achieved
67 by heat production via vibration of wing muscles, fanning (ventilation), and water evaporation
68 inside the colony (Seeley 1974, Kronenberg and Heller 1982). Researchers examining the
69 mechanisms underlying this thermoregulation found that individual variation at the genetic level
70 is associated with differences in worker's fanning response threshold to temperature (Jones et al.
71 2004). This variation results in different patrilines fanning at different temperatures and, therefore,
72 promoting the stability of brood nest temperature (Jones et al. 2004). A primary challenge to
73 colony thermoregulation is the daily variation in external heat associated with sunlight. The

74 contribution of variation in circadian rhythms at the level of the individual bee to thermoregulation
75 remains unknown.

76 Thermoregulation of honey bee colonies is essential for colony performance and survival
77 (Heinrich , 1981; Heinrich, 1993). Experiments examining the effects of low temperatures (28-
78 30°C) on brood development revealed that these temperatures can cause shriveled wings or other
79 malformations, while brood kept at high temperatures (38°C-40°C) exhibit high mortality rates
80 (Heinrich, 1993; Himmer, 1927). Subsequent studies showed that pupal development at 32°C,
81 only 3°C lower than optimal core temperature, results in significant deficits in waggle dance
82 behavior as well as learning and memory assays, compared to bees raised at 36°C (Tautz et al.
83 2003). Nonetheless, little is known about the effects of colony temperature on circadian rhythms
84 in honey bees.

85 While in the tropics and neotropics environmental temperatures are somewhat stable
86 throughout the year, honey bee colonies in temperate and subpolar regions are exposed to drastic
87 temperature changes on an annual basis. Honey bee colonies are heterothermic. In the winter,
88 temperature regulation is driven around the survival of the cluster. When a colony is exposed to
89 a cold stress, its workers will cluster up densely in order to reduce colony heat loss(Southwick
90 1985). At the individual level, workers will produce heat by shivering their flight muscles in order
91 to keep the core temperature of the cluster above the environmental temperature (Heinrich and
92 Esch 1994, Stabentheiner et al. 2003). In contrast, during the spring and summer when colonies
93 are rearing brood, temperature must be controlled within a very narrow range(Kronenberg and
94 Heller 1982, Fahrenholz et al. 1989, Jones et al. 2004). Even small discrepancies from the 35°C
95 optimal temperature for brood development can have negative consequences for adult worker
96 fitness (Tautz et al. 2003, Jones et al. 2004).

97 Previous studies have explored the entrainment of circadian rhythms by square-wave
98 temperature cycles and found that cycles with amplitudes greater than 9°C successfully entrain

99 circadian locomotor rhythms of individual foragers in the laboratory (Moore and Rankin 1993).
100 However, whether temperature cycles strong enough to entrain circadian rhythms exist inside the
101 colony has not been thoroughly studied. Changes in environmental temperature in the laboratory
102 have been shown to have strong effects on the endogenous period length of foragers (Fuchikawa
103 and Shimizu 2007, Giannoni-Guzman et al. 2014). Furthermore, work from our group has
104 revealed a broad range of individual difference in the endogenous period length of the circadian
105 clock among foragers (Giannoni-Guzman et al. 2014). This large variation in the endogenous
106 period length could be adaptive at the colony level with possible effects on fanning, shivering and
107 clustering behaviors and could result in large differences in the phase of the circadian clock to
108 time givers.

109 The primary goal of this study was to ascertain if temperature changes on a daily basis
110 inside honey bee colonies and, if so, are these changes (temperature cycles) capable of
111 influencing circadian rhythms of honey bee foragers? We measured light and temperature at
112 various locations inside of the colony to determine if these potential Zeitgebers showed daily
113 oscillations. We then explored the effects of temperature cycles observed in the colony on the
114 circadian locomotor rhythms of honey bee foragers in the laboratory. Finally, we phase-shifted
115 the temperature cycle in an attempt to confirm if the locomotor rhythms in individual bees were
116 capable of stable entrainment to the temperature cycles.

117 **Materials and Methods**

118 **Colony Light and Temperature Measurements**

119 Light and temperature measurements were carried out using HOBO® pendant data
120 loggers (UA-002-64). Four loggers were placed inside the colony at the center, entrance,
121 periphery and top, while one was placed outside the hive as shown (Figure 1A). The colony in
122 which we collected these measurements was a two story colony in good health with a naturally
123 mated queen laying eggs, and containing approximately 6-8 brood frames and 60,000 workers.

124 With the exception of 30 minutes during July 11, 2013, when data were uploaded from the
125 pendants and the batteries were replaced, temperature and light measurements were
126 continuously collected in 30-minute intervals from June 13, 2012 until September 2, 2014. The
127 bees and colonies described in our experiments were located in Gurabo, Puerto Rico. Throughout
128 the year, mean high temperatures averaged from 28-30°C, while the low temperatures averaged
129 between 16-20°C (Acevedo-Gonzalez et al. 2019, Feliciano-Cardona et al. 2020). Temperature
130 and light data presented are averaged monthly values for the month of July 2013 (Figure 1). The
131 peak to trough amplitudes were calculated using the calculated amplitudes of the temperature
132 oscillations and multiplying by 2 (Figure 2). The phase of the average monthly temperature was
133 calculated using cosine fitting in the circadian dynamics app (24 Dimensions LLC).

134 **Forager Collection**

135 All of the bees utilized in our experiments came from colonies in good health that had
136 naturally mated queens and were laying eggs at the time of the experiments. For each experiment,
137 foragers were collected returning to the colony by blocking the entrance with 8-mesh wire screen
138 and capturing them in tubes as previously described (Giray et al. 2007). Collected bees were
139 provided with food and water during transportation to UPR Rio Piedras campus (30-40 min car
140 ride). Once in the lab, bees were anesthetized and placed in locomotor activity monitors as
141 previously described (Giannoni-Guzman et al. 2014).

142 **Experiment 1: Simulating temperature cycles of the colony in the laboratory**

143 Locomotor activity recordings were performed inside an environmental chamber (Percival,
144 I-30BLL), where temperature was programed to oscillate with an amplitude of 9.2°C, as observed
145 in the periphery of the colony (Figure 1C). To ensure that the temperature was oscillating in the
146 same manner (or as close as possible) as the observed oscillation in nature, the incubator was
147 set up and calibrated 2 weeks prior to the experiment. Age was controlled by paint marking
148 individual 1-day old workers and returning them to the colony on October 7th 2014. Foragers were

149 from the same colony of origin. Locomotor activity recordings began at 21 days of age and took
150 place from October 28th until November 7th 2014. Phase analysis of locomotor activity was
151 performed on days 6-11 of locomotor recording, to allow 5-6 days needed for bees to acclimate
152 to square wave temperature cycles (Moore and Rankin 1993). Data of foragers in constant
153 darkness at 35°C used is from previously published work (Giannoni-Guzman et al. 2014).

154 **Experiment 2: 6-hour phase advance of simulated temperature cycles**

155 Foragers from the same colony were collected at the entrance of the colony September
156 18th, 2015 on a sunny afternoon and placed in constant darkness with oscillating temperature
157 cycles later that same afternoon. Data shown and used for analysis were taken beginning the first
158 midnight. Locomotor activity assays were conducted using the same environmental conditions as
159 experiment 1 for the first 6 days of the experiment. On the 7th day the environmental temperature
160 cycle was advanced by 6 hours and was kept with this timing until the end of the experiment
161 (Figure 4 and 5).

162 **Data analyses**

163 Locomotor activity data were processed using MatLab® toolboxes developed in Jeffrey
164 Hall's laboratory (Levine et al. 2002). Period length was calculated using autocorrelation analysis.
165 The phase angle (ψ) of the acrophase locomotor rhythm in relation to the acrophase temperature
166 cycles to which bees were exposed was determined via cross correlation analysis. Changes in
167 the phase of temperature measurements throughout the year were analyzed via Mixed-effect
168 Modeling and post hoc tests were performed between groups.

169 **Results**

170 Previous work has shown that square-wave temperature cycles are successful Zeitgebers
171 for the circadian clock of honey bees under laboratory conditions (Moore and Rankin 1993).
172 However, whether temperature cycles capable of entrainment of the circadian rhythm of honey

173 bees are present inside the colony was unknown. To examine if temperature cycles are present
174 in honey bee colonies, we placed 5 data loggers at different locations of the colony (center,
175 entrance, top, periphery and outside) and recorded light and temperature measurements in 30-
176 minute intervals (Figure 1A). Our results revealed that temperature oscillates inside honey bee
177 colonies in a daily manner, with amplitudes greater than 7 degrees (Figure 1). Specifically, we
178 observed that at the center of the colony temperature was maintained within 35 ± 0.7 °C, while
179 daily temperature cycles at the entrance (peak to trough amplitude=7.3°C), periphery (peak to
180 trough amplitude=9.2°C) and top (amplitude= 16.3°C) of the colony were detected. The control
181 data logger that was placed outside the colony, as expected, detected strong temperature and
182 light-dark cycles with greater amplitude than those detected in the colony (Figure 1E). In addition,
183 the presence of light inside the colony was only detected by the logger at the entrance and was
184 200 times less at its highest peak than that detected by the logger outside the hive (Figure 1E,
185 F).

186 Having observed that temperature oscillates in parts of the colony, we next looked at
187 whether there were significant seasonal changes in these temperature oscillations inside the
188 colony. We focused on comparing the peripheral temperature (Figure 1C) with that of the outside
189 environment. Our results show that the amplitude and the phase of temperature cycles at the
190 periphery of the hive varies throughout the year. We observed significant phase and amplitude
191 differences between the periphery and environment during the spring and summer months, for
192 example May (Figure 2A), with similar phasing and amplitude of the cycles in the month of
193 December (Figure 2B). The amplitude of the temperature cycles in the periphery of the colony
194 was significantly different from the environment for all months with the exception of December
195 and January (Figure 2C). Importantly, the variance over the year was significantly less inside the
196 periphery of the hive than outside ($F_{(11,11)}=3.89$, $p=0.0334^*$). Comparing the mean phase of the
197 two temperatures revealed significant phase delays in the peak of peripheral temperature cycles

198 from April to July compared to those of the environment (Figure 2D). These data suggests that
199 bees inside of the colony actively regulate the phase and amplitude of temperature oscillations in
200 the periphery of the hive throughout the year.

201 Given the previously reported effects of constant environmental temperature on the
202 endogenous rhythm of honey bees (Fuchikawa and Shimizu 2007, Giannoni-Guzman et al. 2014),
203 we examined the possible effect of the observed temperature cycles on the locomotor rhythms of
204 foragers. We simulated the temperature cycle recorded from the periphery of the colony in the
205 laboratory and measured the locomotor activity rhythms of individual foragers subjected to this
206 cycle under constant dark conditions. We simulated the peripheral temperature oscillation of the
207 month in which we performed the bees were collected (October), which had a 9.2° C peak to
208 trough amplitude. We hypothesized that exposing foragers to simulated temperature cycles would
209 result in their locomotor activity rhythms achieving a stable, consistent phase relationship with the
210 temperature cycle. Alternatively, locomotor activity could still be influenced by the temperature
211 cycle but not attain a fixed phase relationship. Our results showed consistent phase relationships,
212 but with a broad range of individual differences among the phases (ψ) of locomotor activity with
213 respect to the temperature cycle (Figure 3).

214 Most individuals in our sample were phase advanced (Figure 3A), while some showed a
215 delayed phase (Figure 3B). Phase quantification for each individual was performed via cross-
216 correlation of the locomotor activity and the temperature cycle (Figure 3, panel (iii)). Frequency
217 distribution of the phase of individuals revealed that more than 60 percent of foragers are phase
218 advanced to the temperature cycle (Figure 3C). In addition, the mean period \pm SE of the activity
219 rhythm under the temperature cycle was 24.00 ± 0.06 h and its variance was significantly smaller
220 than that of the period of foragers under constant conditions (Giannoni-Guzman et al. 2014) (Fig.
221 3D). The 24.00 hour period of the locomotor activity rhythm under the temperature cycle, coupled
222 with the fact that the variance in period is smaller under the temperature cycle compared to

223 constant conditions (23.8 ± 0.19 h) (Giannoni-Guzman et al. 2014), suggests that the locomotor
224 activity rhythm is entrained to the temperature cycle.

225 To further test if the observed temperature cycles were capable of entraining the locomotor
226 rhythms of foragers, we performed a 6-hour phase advance of the temperature cycle on the 7th
227 day of locomotor activity measurements (Figure 4). We hypothesized that if the temperature
228 cycles observed in the colony were capable of entraining the circadian locomotor rhythms, then
229 shifting the temperature cycle would result in a shift in the phase of locomotor activity of bees over
230 several days (transients) until resuming the previous phase relationship with respect to the
231 temperature cycle. Consistent with this hypothesis, we did observe that approximately 51%
232 individuals showed a response to the phase advance of the temperature cycles (Figure 4A, B and
233 C). Within these individuals 56% gradually advanced their locomotor phase of activity (Figure 4A-
234 B), consistent with the expression of transients associated with re-entrainment, while 44%
235 abruptly advanced their phase with respect to the temperature cycle, which could be consistent
236 with masking (Figure 4C). In these cases, the activity apparently moved to establish a consistent
237 phase relationship with the new temperature cycle.

238 In addition to the foragers that responded to shifts in the temperature cycle, we also
239 observed that approximately 49% of foragers were apparently unaffected by the temperature
240 shifts (Figure 4D). Furthermore, a large subset of the foragers in this experiment exhibited short-
241 period activity rhythms and no discernable response to the temperature advance (Figure 5A). To
242 determine if the magnitude of the shift correlated with the phase prior to the temperature advance,
243 we calculated the magnitude of phase changes using the following formula: $((\text{Phase after}$
244 $\text{temperature advance} - \text{Phase before temperature advance})/6) \times 100$. This correlation revealed that the
245 later the peak of activity prior to the shift the greater the phase change (Figure 5B). However, a
246 correlation of the magnitude of phase change and period length before the shift was positive (Figure
247 5C), suggesting changes in phase are mostly driven by changes in the period length of the foragers

248 examined. Comparing the period length distribution of foragers from our previous temperature
249 cycle experiment with that from the days prior to the phase advance of this experiment revealed
250 significant differences in variance between the experiments (Figure 5D). The fact that the phase
251 advance experiment shows greater variance in period lengths, suggests that many bees were
252 free running and therefore unresponsive to the temperature (Figure 4D and Figure 5A). This
253 period length distribution is similar to the previously observed difference in variance when
254 comparing foragers under constant conditions to those exposed to a temperature cycle (Figure
255 3D). However, although variance was greater it was still significantly less than that under constant
256 conditions ($F_{57,57}=1.83$, $p=0.0250^*$). Taken together, our results suggest that while 51% bees
257 responded to temperature and shifted their activity in the direction of the temperature cycle phase
258 shift, 49% of bees in this experiment did not respond to either of the temperature cycles.

259 **Discussion:**

260 Here we show that at the periphery of the colony, where foragers spend much of their time
261 (Van Nest et al. 2016), temperature significantly oscillates in a 24 hour period (Figure 1). The
262 amplitude and phase of these oscillations change with respect to the time of the year, and the
263 amplitude varies even less than the environmental temperatures (Figure 2). These findings
264 indicate a tight regulation of temperature oscillations in the periphery of the hive. Simulating this
265 temperature signal in the laboratory is sufficient to synchronize and phase advance the circadian
266 locomotor rhythms of some forager bees, suggesting that temperature could be an important
267 Zeitgeber in the colony (Figure 3, 4, 5). Interestingly, we found that there are large individual
268 differences in the phase of locomotor rhythms with respect to the temperature cycles as well as
269 the responses to a temperature phase shifts. Taken together, we believe that temperature is an
270 important environmental cue inside the colony capable of entraining the circadian rhythms of
271 foragers in nature.

272 Until recently, the circadian clock of honey bees was thought to be entrained mainly by
273 light-dark cycles (Renner 1959, 1960, Moore and Rankin 1985). Recent work has shown that
274 social cues, such as substrate-born vibrations and colony volatiles are capable of entraining and
275 synchronizing the circadian clock of bees (Bloch et al. 2013, Fuchikawa et al. 2016, Siehler and
276 Bloch 2020). However, these experiments do not take into account temperature changes that
277 occur within the colony. Our findings in the present study, as well as those from previous studies
278 (Kronenberg and Heller 1982), suggest that temperature cycles, strong enough to synchronize
279 the circadian rhythms of foragers, are present inside the colony (Figure 1).

280 The seasonal changes we observed in peripheral temperature (Figure 2), suggest that the
281 active regulation of temperature inside the colony is not limited to the brood nest. This
282 maintenance of the oscillation could serve as a possible entrainment cue for times of the year
283 when bees are unable to go out, such as winter. The delayed phase of the temperature peak
284 during the spring and summer months could potentially play an important role in circadian
285 synchronization for bees inside the colony during their more active periods of the year. Future
286 studies will examine the role of these temperature oscillation in swarming, timing of drone flights
287 and overwintering preparations inside the colony.

288 Previous research under laboratory conditions proposed that light and temperature may
289 have a synergistic effect on the circadian clock system in honey bees (Moore and Rankin 1993).
290 Experiments employing both light and temperature cycles show that some individuals responded
291 most strongly to the presence of light, while others concentrated their present locomotor activity
292 during times of overlap between the photophase and higher temperatures (Moore and Rankin
293 1993). Since foragers have been shown to stay inside the colony after visiting their food source
294 (von Buttel-Reepen 1903, Körner 1940, von Frisch 1940, Moore et al. 1989, Seeley 1995), it is
295 possible that, while inside the dark colony, foragers rely on temperature cycles to accurately
296 maintain entrainment to the natural day-night cycle and use light input as a Zeitgeber when

297 foraging. This hypothesis stems from the lack of light inside most of the colony (Figure 1). In order
298 to test this hypothesis, further studies exploring the functional role of temperature cycles in the
299 colony as well as the mechanisms of circadian entrainment to temperature cycles are needed.

300 Consistent with the results from the Moore and Rankin (1993) study, we observed that
301 honey bee foragers synchronize to these simulated peripheral temperature cycles. To our
302 knowledge, this is the first time that gradual temperature cycles, simulating those observed in the
303 field, have been utilized in the laboratory. In addition, by simulating the peripheral temperature
304 cycles we found that foragers present a large degree of individual variation in the phase of
305 locomotor rhythms with respect to temperature (Figure 3). Although further studies are needed to
306 understand the functional and evolutionary role of this variation, we can speculate that phase
307 differences of the individual honey bee foragers may result in differences in the temporal
308 allocation of tasks. The individual differences within the foraging population could potentially help
309 with smoothing temperature regulation processes of the colony. This idea is consistent with work
310 where decreasing the genetic diversity of the colony decreases the colonies ability to regulate
311 temperature (Jones et al. 2004, 2007). Another possible functional role for this variation is foraging
312 specialization. This hypothesis would be in line with the results of a recent study that suggests
313 the existence of shift work in honey bees and its genetic component (Bernhard Kraus et al. 2011,
314 Giannoni-Guzmán 2016, Giannoni-Guzmán et al. 2020). Alternatively, the observed differences
315 in the phase of circadian rhythms could be the result of previous entrainment to an outside
316 stimulus, such as light, nectar or pollen. The latter can be evidenced by the ability of foragers to
317 successfully be trained for several days to a food source (Frisch and Aschoff 1987).

318 When performing a 6-hour advance on the temperature cycle, we observed that
319 approximately 51% individual's locomotor activity advanced and reached stable synchronization
320 with the new temperature cycles, while 49% were unaffected by either temperature cycle (Figure
321 4). Within individuals unaffected by temperature, we observed a large number of individuals with

322 short period length. Surprisingly, most of the foragers in this experiment presented short
323 locomotor activity period lengths (Figure 5). This result differs from our previous experiment
324 (Figure 5D) and could be the result of the time of year the experiments took place and that a
325 different colony was used for each experiment. This variation in the change of locomotor activity
326 patterns may reflect differences in the perception of temperature by the circadian system of
327 foragers. Future work could simulate temperature cycles of the higher amplitudes cycles found
328 inside the hive and test bees response to temperature in greater detail

329 Our results show evidence for temperature entrainment in the form of a strong response
330 to phase advance of temperature by some foragers (Figure 4). Furthermore, given the large
331 degree of individual variation in the free-running period of honey bees and their tendency to
332 present short periods, we interpret the proximity to 24 hour periodicity and the significant decrease
333 in variance as an additional sign of entrainment (Figure 3). Although some individuals gradually
334 shifted their activity after the phase advance, as expected of circadian entrainment, there were
335 individuals that shifted abruptly (Figure 4C). Further experiments to determine whether this
336 particular groups response to temperature represents entrainment or masking are required.
337 Specifically, exposing foragers to temperature cycles and later transferring them into constant
338 conditions would clarify if abrupt responses to phase advance are masking.

339 Although the mechanisms for light and temperature input to the clock of honey bees
340 remain to be elucidated, studies in *Drosophila* have shown that temperature cycles successfully
341 entrain the locomotor and molecular rhythms (Tomioka et al. 1998, Yoshii et al. 2002, Glaser and
342 Stanewsky 2005, Boothroyd et al. 2007). Light and temperature act in a synergistic manner to
343 entrain both locomotor activity and molecular clock of *Drosophila* (Yoshii et al. 2009). Furthermore,
344 studies indicate that there are clock cells in the brain that selectively respond to temperature
345 cycles, while other clock cells respond to light/dark cycles (as reviewed by Ki et al. 2015). Given
346 the similarities between the neural clock of bees and *Drosophila* (Fuchikawa et al. 2017, Beer et

347 al. 2018), it is likely that at least some of the properties uncovered in the fly with respect to the
348 clocks response to temperature will be analogous in the bee circadian clock.

349 While our results show how temperature variation in honey bee colonies can synchronize
350 the circadian rhythms of foragers, other environmental factors remain to be considered. For
351 instance, we have observed that humidity in the periphery of the colony also oscillates in a 24
352 hour cycle and changes seasonally (unpublished results). In plants it is clear that humidity is
353 capable of entraining the circadian clock (Mwimba et al. 2018). However, whether these
354 oscillations are capable of entraining the clock of bees remains a subject of future research.

355 Taken together, our results indicate that temperature cycles in the colony are capable of
356 synchronizing locomotor rhythms of honey bee foragers. Individual differences in the response to
357 phase advances suggest differences in the sensitivity of the clock to changes in temperature.
358 Future studies will explore the importance of temperature as a time giver in typical colony
359 conditions and its synergistic effects with light and other social cues. Individual differences in the
360 phase of circadian rhythms are loosely reminiscent to those of circadian chronotypes in human
361 populations and with further studies, honey bees could be a potential model for these differences
362 in human populations. Our study adds to the rich and complex interactions of temperature and
363 social organization in honey bees, demonstrating altered temperature effects on circadian
364 rhythms. Research into the functional relevance of this synchronization and the seasonal
365 differences in the colony temperatures may lead to a better understanding of the evolutionary
366 relation of circadian rhythms and sociality.

367

368 **Acknowledgements:**

369 We would like to thank Dr. Arian Avalos, for help with the experiments. Thanks Dr. Luis
370 de Jesus for their comments and suggestions. We would also like to recognize the director,

371 Manuel Diaz and the personnel of the Gurabo Experimental Agriculture Station of the University
372 of Puerto Rico at Mayaguez for use of facilities at “Casa Amarilla”. We would like to thank Josue
373 Rodriguez for his help with data processing. This work was sponsored by the National Science
374 Foundation (NSF) awards 1026560, 1633184, 1707355 and the National Institute of Health (NIH)
375 2R25GM061151-13, P20GM103475.

376 **References:**

377 **Acevedo-Gonzalez, J. P., A. Galindo-Cardona, A. Avalos, C. W. Whitfield, D. M. Rodriguez, J. L. Uribe-Rubio, and T. Giray. 2019.** Colonization history and population differentiation
378 of the Honey Bees (*Apis mellifera* L.) in Puerto Rico. *Ecol. Evol.* 9: 10895–10902.

380 **Beer, K., E. Kolbe, N. B. Kahana, N. Yayon, R. Weiss, P. Menegazzi, G. Bloch, and C. Helfrich-Förster. 2018.** Pigment-Dispersing Factor-expressing neurons convey circadian
381 information in the honey bee brain. *Open Biol.* 8: 170224.

383 **Beier, W. 1968.** Beeinflussung der inneren Uhr der Bienen durch Phasenverschiebung des
384 Licht-Dunkel-Zeitgebers. *Z Bienenforsch.* 9: 356–378.

385 **Beier, W., and M. Lindauer. 1970.** Der Sonnenstand als Zeitgeber für die Biene. *Apidologie.* 1:
386 5–28.

387 **Bernhard Kraus, F., E. Gerecke, and R. F. A. Moritz. 2011.** Shift work has a genetic basis in
388 honeybee pollen foragers (*Apis mellifera* L.). *Behav. Genet.* 41: 323–328.

389 **Blau, J. 2001.** The *Drosophila* circadian clock: What we know and what we don’t know. *Semin.*
390 *Cell Dev. Biol.* 12: 287–293.

391 **Bloch, G., E. D. Herzog, J. D. Levine, and W. J. Schwartz. 2013.** Socially synchronized
392 circadian oscillators. *Proc. R. Soc. B Biol. Sci.* 280: 20130035–20130035.

393 **Boothroyd, C. E., H. Wijnen, F. Naef, L. Saez, and M. W. Young. 2007.** Integration of light

394 and temperature in the regulation of circadian gene expression in *Drosophila*. PLoS Genet.
395 3: 0492–0507.

396 **Buttel-Reepen, H. 1900.** Sind die bienen reflexmaschinen?: Experiementelle beiträge zur
397 biologie der honigbiene. Arthur Georgi.

398 **von Buttel-Reepen, H. B. 1903.** Die stammesgeschichtliche entstehung des bienenstaates
399 sowie beiträge zur lebensweise der solitären u. sozialen bienen (hummeln, meliponinen,
400 etc.): Vortrag gehalten auf dem Zoologen-kongress in Giessen (1902). Stark erweitert, mit
401 anmerkungen und zusätzl. G. Thieme.

402 **Cheeseman, J. F., E. C. Winnebeck, C. D. Millar, L. S. Kirkland, J. Sleigh, M. Goodwin, M.**
403 **D. M. Pawley, G. Bloch, K. Lehmann, R. Menzel, and G. R. Warman. 2012.** General
404 anesthesia alters time perception by phase shifting the circadian clock. Proc. Natl. Acad.
405 Sci. 109: 7061–7066.

406 **Cyran, S., A. Buchsbaum, K. Reddy, M.-C. Lin, N. R. J. Glossop, P. E. Hardin, M. W.**
407 **Young, R. V. Storti, and J. Blau. 2003.** vrille, Pdp1, and dClock Form a Second
408 Feedback Loop in the *Drosophila* Circadian Clock. Cell. 112: 329–341.

409 **Detrain, C., J. L. Deneubourg, and J. M. J. M. Pasteels. 1999.** Information Processing in
410 Social Insects.

411 **Dunlap, J. C. 1999.** Molecular bases for circadian clocks. Cell.

412 **Fahrenholz, L., I. Lamprecht, and B. Schricker. 1989.** Thermal investigations of a honey bee
413 colony: thermoregulation of the hive during summer and winter and heat production of
414 members of different bee castes. J. Comp. Physiol. B. 159: 551–560.

415 **Feliciano-Cardona, S., M. A. Döke, J. Aleman, J. L. Agosto-Rivera, C. M. Grozinger, and T.**
416 **Giray. 2020.** Honey Bees in the Tropics Show Winter Bee-Like Longevity in Response to
417 Seasonal Dearth and Brood Reduction. Front. Ecol. Evol. 8: 1–8.

418 **Forel, A. 1910.** Das Sinnesleben der Insekten: eine Sammlung von experimentellen und
419 kritischen Studien über Insektenpsychologie.

420 **Frisch, B., and J. Aschoff. 1987.** Circadian rhythms in honeybees: entrainment by feeding
421 cycles. *Physiol. Entomol.* 12: 41–49.

422 **von Frisch, K. 1940.** Die Tänze und das Zeitgedächtnis der Bienen im Widerspruch.
423 *Naturwissenschaften.* 28: 65–69.

424 **von Frisch, K. 1967.** The Dance Language and Orientation of Bees. Harvard University Press,
425 Cambridge, MA.

426 **Fuchikawa, T., K. Beer, C. Linke-Winnebeck, R. Ben-David, A. Kotowoy, V. W. K. Tsang,
427 G. R. Warman, E. C. Winnebeck, C. Helfrich-Förster, and G. Bloch. 2017.** Neuronal
428 circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees
429 and in arrhythmic nurses. *Open Biol.* 7: 170047.

430 **Fuchikawa, T., A. Eban-Rothschild, M. Nagari, Y. Shemesh, and G. Bloch. 2016.** Potent
431 social synchronization can override photic entrainment of circadian rhythms. *Nat. Commun.*
432 7: 11662.

433 **Fuchikawa, T., and I. Shimizu. 2007.** Effects of temperature on circadian rhythm in the
434 Japanese honeybee, *Apis cerana japonica*. *J. Insect Physiol.* 53: 1179–1187.

435 **Galindo-Cardona, A., A. C. Monmany, R. Moreno-Jackson, C. Rivera-Rivera, C. Huertas-
436 Dones, L. Caicedo-Quiroga, and T. Giray. 2012.** Landscape Analysis of Drone
437 Congregation Areas of the Honey Bee, *Apis mellifera*. *J. Insect Sci.* 12: 1–15.

438 **Gardner, M. J., K. E. Hubbard, C. T. Hotta, A. N. Dodd, and A. A. Webb. 2006.** How plants
439 tell the time. *Biochem J.* 397: 15–24.

440 **Giannoni-Guzmán, M. A. 2016.** Individual Differences in Circadian and Behavioral Rhythms of

441 Honey Bee Workers. Dr. Diss. Universidad Puerto Rico, Rio Piedras.

442 **Giannoni-Guzman, M. A., A. Avalos, J. M. Perez, E. J. O. O. Loperena, M. Kaym, J. A.**

443 **Medina, S. E. Massey, M. Kence, A. Kence, T. Giray, J. L. Agosto-Rivera, M. A.**

444 **Giannoni-Guzmán, A. Avalos, J. M. Perez, E. J. O. O. Loperena, M. Kayým, J. A.**

445 **Medina, S. E. Massey, M. Kence, A. Kence, T. Giray, and J. L. Agosto-Rivera. 2014.**

446 Measuring individual locomotor rhythms in honey bees, paper wasps and other similar-
447 sized insects. *J. Exp. Biol.* 217: 1307–1315.

448 **Giannoni-Guzmán, M. A., T. Giray, and J. L. Agosto-Rivera. 2020.** Shift work dynamics and
449 division of labor: Honeybee foraging and fanning tasks. *bioRxiv*.

450 **Giray, T., A. Galindo-Cardona, and D. Oskay. 2007.** Octopamine influences honey bee
451 foraging preference. *J. Insect Physiol.* 53: 691–698.

452 **Glaser, F. T., and R. Stanewsky. 2005.** Temperature synchronization of the *Drosophila*
453 circadian clock. *Curr. Biol.* 15: 1352–1363.

454 **Heinrich, B. 1980.** Mechanisms of body-temperature regulation in honeybees, *Apis mellifera*: II.
455 Regulation of thoracic temperature at high air temperatures. *J. Exp. Biol.* 85: 73–87.

456 **Heinrich, B. 1981.** The Mechanisms and Energetics of Honeybee Swarm Temperature
457 Regulation. *J. Exp. Biol.* 91: 25–55.

458 **Heinrich, B. 1993.** The Hot-Blooded Insects. 608.

459 **Heinrich, B., and H. Esch. 1994.** Thermoregulation in bees. *Am. Sci.* 82: 164–170.

460 **Himmer, A. 1927.** Ein Beitrag zur Kenntnis des Wärmehaushalts im Nestbau sozialer
461 Hautflügler. *Z. Vgl. Physiol.* 5: 375–389.

462 **Hut, R. A., and D. G. M. Beersma. 2011.** Evolution of time-keeping mechanisms: early
463 emergence and adaptation to photoperiod. *Philos. Trans. R. Soc. B Biol. Sci.* 366: 2141–

464 2154.

465 **Jones, J. C., M. R. Myerscough, S. Graham, and B. P. Oldroyd. 2004.** Honey bee nest
466 thermoregulation: Diversity promotes stability. *Science* (80-.). 305: 402–404.

467 **Jones, J. C., P. Nanork, and B. P. Oldroyd. 2007.** The role of genetic diversity in nest cooling
468 in a wild honey bee, *Apis florea*. *J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav.*
469 *Physiol.* 193: 159–165.

470 **Ki, Y., H. Ri, H. Lee, E. Yoo, J. Choe, and C. Lim. 2015.** Warming Up Your Tick-Tock:
471 Temperature-Dependent Regulation of Circadian Clocks. *Neuroscientist*. 21: 503–518.

472 **Ko, C. H., and J. S. Takahashi. 2006.** Molecular components of the mammalian circadian
473 clock. *Hum. Mol. Genet.* 15.

474 **Körner, I. 1940.** Zeitgedächtnis und Alarmierung bei den Bienen. *Z. Vgl. Physiol.* 27: 445–459.

475 **Kronenberg, F., and H. C. Heller. 1982.** Colonial thermoregulation in honey bees (*Apis*
476 *mellifera*). *J. Comp. Physiol. B*. 148: 65–76.

477 **Levine, J. D., P. Funes, H. B. Dowse, and J. C. Hall. 2002.** Signal analysis of behavioral and
478 molecular cycles. *BMC Neurosci.* 3.

479 **Lindauer, M. 1960.** Time-compensated sun orientation in bees. *Cold Spring Harb. Symp.*
480 *Quant. Biol.* 25: 371–377.

481 **Moore, D. 2001.** Honey bee circadian clocks: behavioral control from individual workers to
482 whole-colony rhythms. *J. Insect Physiol.* 47: 843–857.

483 **Moore, D., and P. Doherty. 2009.** Acquisition of a time-memory in forager honey bees. *J.*
484 *Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol.* 195: 741–751.

485 **Moore, D., and M. A. Rankin. 1983.** Diurnal changes in the accuracy of the honeybee foraging
486 rhythm. *Biol. Bull.* 164: 471–482.

487 **Moore, D., and M. A. Rankin. 1985.** Circadian locomotor rhythms in individual honey bees.

488 Physiol. Entomol. 10: 191–197.

489 **Moore, D., and M. A. Rankin. 1993.** Light and Temperature entrainment of a locomotor rhythm

490 in honeybees. Physiol. Entomol. 18: 271–278.

491 **Moore, D., D. Siegfried, R. Wilson, and M. A. Rankin. 1989.** The Influence of Time of Day on

492 the Foraging Behavior of the Honeybee, *Apis mellifera*. J. Biol. Rhythms. 4: 305–325.

493 **Mwimba, M., S. Karapetyan, L. Liu, J. Marqués, E. M. McGinnis, N. E. Buchler, and X.**

494 **Dong. 2018.** Daily humidity oscillation regulates the circadian clock to influence plant

495 physiology. Nat. Commun. 9: 1–10.

496 **Van Nest, B. N., A. E. Wagner, C. N. Hobbs, and D. Moore. 2016.** Dance floor clustering:

497 food-anticipatory behavior in persistent and reticent honey bee foragers. Behav. Ecol.

498 Sociobiol. 70: 1961–1973.

499 **Panda, S., J. B. Hogenesch, and S. A. Kay. 2002.** Circadian rhythms from flies to human.

500 Nature.

501 **Renner, M. 1959.** Über ein weiteres Versetzungsexperiment zur Analyse des Zeitsinnes und

502 der Sonnenorientierung der Honigbiene, Zeitschrift FÜR Vergleichende Physiol.

503 **Renner, M. 1960.** The contribution of the honey bee to the study of time-sense and

504 astronomical orientation, pp. 361–367. *In* Cold Spring Harb. Symp. Quant. Biol. Cold

505 Spring Harbor Laboratory Press.

506 **Seeley, T. D. 1974.** Atmospheric carbon dioxide regulation in honey-bee (*Apis mellifera*)

507 colonies. J. Insect Physiol. 20: 2301–2305.

508 **Seeley, T. D. 1995.** The Wisdom of the Hive. Harvard Univ. Press.

509 **Siehler, O., and G. Bloch. 2020.** Colony Volatiles and Substrate-borne Vibrations Entrain
510 Circadian Rhythms and Are Potential Cues Mediating Social Synchronization in Honey Bee
511 Colonies. *J. Biol. Rhythms.* 35: 246–256.

512 **Southwick, E. E. 1985.** Allometric relations, metabolism and heart conductance in clusters of
513 honey bees at cool temperatures. *J. Comp. Physiol. B.* 156: 143–149.

514 **Spangler, H. G. 1972.** Daily Activity Rhythms of Individual Worker and Drone Honey Bees 1, 2.
515 *Ann. Entomol. Soc. Am.* 65: 1073–1076.

516 **Stabentheiner, A., H. Pressl, T. Papst, N. Hrassnigg, and K. Crailsheim. 2003.** Endothermic
517 heat production in honeybee winter clusters. *J. Exp. Biol.* 206: 353–358.

518 **Takahashi, J. 1999.** Genetic Analysis of Daily Activity in Humans and Mice. 387567.

519 **Tautz, J., S. Maier, C. Groh, W. Rossler, A. Brockmann, W. Rössler, A. Brockmann, W.**
520 **Rossler, A. Brockmann, W. Rössler, and A. Brockmann. 2003.** Behavioral performance
521 in adult honey bees is influenced by the temperature experienced during their pupal
522 development. *Proc. Natl. Acad. Sci. U. S. A.* 100: 7343–7347.

523 **Tomioka, K., M. Sakamoto, Y. Harui, N. Matsumoto, and A. Matsumoto. 1998.** Light and
524 temperature cooperate to regulate the circadian locomotor rhythm of wild type and period
525 mutants of *Drosophila melanogaster*. *J. Insect Physiol.* 44: 587–596.

526 **Wahl, O. 1932.** Neue Untersuchungen über das Zeitgedächtnis der Bienen. *Z. Vgl. Physiol.* 16:
527 529–589.

528 **Wahl, O. 1933.** Beitrag zur Frage der biologischen Bedeutung des Zeitgedächtnisses der
529 Bienen. *Z. Vgl. Physiol.* 18: 709–717.

530 **Yoshii, T., M. Sakamoto, and K. Tomioka. 2002.** A temperature-dependent timing mechanism
531 is involved in the circadian system that drives locomotor rhythms in the fruit fly *Drosophila*

532 melanogaster. *Zoolog. Sci.* 19: 841–850.

533 **Yoshii, T., S. Vanin, R. Costa, and C. Helfrich-Förster. 2009.** Synergic entrainment of
534 drosophila's circadian clock by light and temperature. *J. Biol. Rhythms.* 24: 452–464.

535

536 **Figures and Legends:**

537 **Figure 1. Temperature oscillates with a 24 hour period in the periphery of the colony. A)** Top
538 and side view of a two story honey bee colony presenting the positions of the 5 sensors used to
539 measure environmental temperature and light, inside and outside the hive. Average temperature
540 \pm SEM and light environmental data logged at the **B)** center, **C)** periphery, **D)** top, **E)** entrance and **F)**
541 outside the colony in the month of October 2013. Temperature was plotted on the left y-axis (black
542 line), while light is plotted on the right Y-axis (blue line). As sensors move further away from the center
543 of the colony peak to trough differences (Temp 2*A) of temperature oscillations increases from 0.7°C
544 at the center of the colony up to 16.3°C in the top of the colony.

545 **Figure 2. Bees actively regulate the phase and amplitude of temperature oscillations in the hive**
546 **periphery** Average temperatures of hive periphery (black) and outside environment across the day in
547 the months of **A)** May and **B)** December 2013. Grey and yellow in the background represent the
548 photoperiods during each of these months. **C)** Mean \pm SEM monthly peak to through Amplitude for
549 the hive periphery and environmental monitors in 2013. Mixed effects model was significant time of
550 year ($F_{(5,31, 316.2)} = 47.11; p<0.0001****$) location of sensor ($F_{(11, 656)} = 10087; p<0.0001****$) and their
551 interaction ($F_{(11, 656)} = 31.56; p<0.0001****$). Sidak's multiple comparisons test between groups showed
552 significant differences ($p<0.001***$) for each month with the exception of January and December. **D)**
553 Mean \pm SEM monthly phase of temperature cycles in the hive periphery (black) and the outside
554 environment (pink). Mixed effects model was significant time of year ($F_{(7,369, 437.5)} = 24.81;$
555 $p<0.0001****$) location of sensor ($F_{(1, 653)} = 25.07 p<0.0001****$) and their interaction ($F_{(11, 653)} = 22.55;$

556 $p<0.0001^{***}$). Sidak's multiple comparisons test between groups showed significant differences
557 ($p<0.01^*$) for marked months.

558

559 **Figure 3. Simulating peripheral temperature oscillations is associated with strong rhythmicity**
560 **and large individual differences in circadian phase.** Representative examples of foragers that
561 presented **A)** phase advance or **B)** phase delay with respect to the simulated temperature cycles in
562 controlled laboratory conditions. **i)** Double plotted actogram of representative individual locomotor
563 activity (blue bars) with simulated temperature overlayed (red lines). **ii)** Autocorrelation analysis was
564 utilized to determine period length and overall rhythm strength of locomotor rhythms (Levine et al.,
565 2002). **iii)** Phase of the locomotor rhythms with respect to the temperature cycles (ψ) was quantified
566 using cross-correlation analysis, which compares the distribution of locomotor activity with the
567 temperature cycle and yields the phase as the lag (h). **C)** Frequency distribution of the phase of
568 locomotor activity with respect to temperature cycle. **D)** Period length distributions of foragers kept
569 under constant conditions (darkness, 35°C) and bees exposed to the measured peripheral
570 temperature oscillations (t-test: n.s.; $p=0.4641$) ($F_{(57,68)}=7.878$, $p<0.0001^{***}$).

571

572 **Figure 4. Simulated temperature oscillations are capable of phase advancing the locomotor**
573 **activity of forager bees.** Representative double plotted actograms of locomotor activity (blue bars)
574 with simulated temperature cycles overlayed (red lines). At midnight on the 7th day the temperature
575 cycle was advanced 6 hours. For each activity plot the phase of locomotor tor rhythms with respect to
576 the temperature cycles (ψ) was quantified using cross-correlation analysis. Two cross correlations
577 were calculated, the first on days 4, 5 and 6 before the temperature manipulation and the second 48
578 hours after temperature change (days 9, 10 and 11). **A)** Representative plot of forager synchronizing
579 his locomotor activity rhythm to the phase of temperature in response to temperature advance. **B)**
580 Representative individual maintaining a consistent phase relationship with simulated temperature
581 cycles before and after the temperature manipulation. **C)** Representative plot of forager showing an

582 abrupt response to temperature advance. **D)** Representative forager showing no response to
583 temperature advance.

584 **Figure 5. Relationship of phase changes and period length of locomotor activity** **A)**
585 Representative double plotted actogram of forager presenting short activity period length and no
586 apparent response to temperature cycle manipulation. Cross correlation analysis for days 4, 5 and 6
587 before the temperature manipulation and days 9, 10 and 11 are shown with respect to the temperature
588 cycle during these days. **B)** Correlation examining the relationship between the magnitude of phase
589 change and the phase before the temperature advance resulted in a significant correlation (Pearson
590 $r(58)=-0.3282$, $p=0.012^*$). Magnitude of the phase change was calculated as follows: ((Phase after
591 temperature advance - Phase before temperature advance)/6) $\times 100$. **C)** Correlation of the Magnitude
592 of the phase change and the period length of the locomotor activity before the temperature advance
593 (Pearson $r(58)=-0.3411$, $p=0.009^{**}$) **D)** Period length distributions of foragers kept exposed to
594 temperature cycles from our first experiment and days 4-6 before the environmental manipulation of
595 phase advance experiment (t-test: n.s.; $p=0.0592$) ($F_{(57,68)}=4.31$, $p<0.0001^{****}$).

596

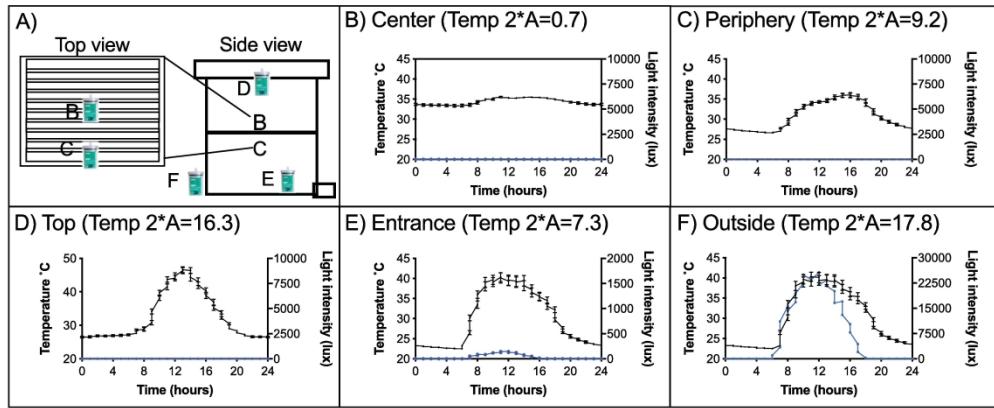
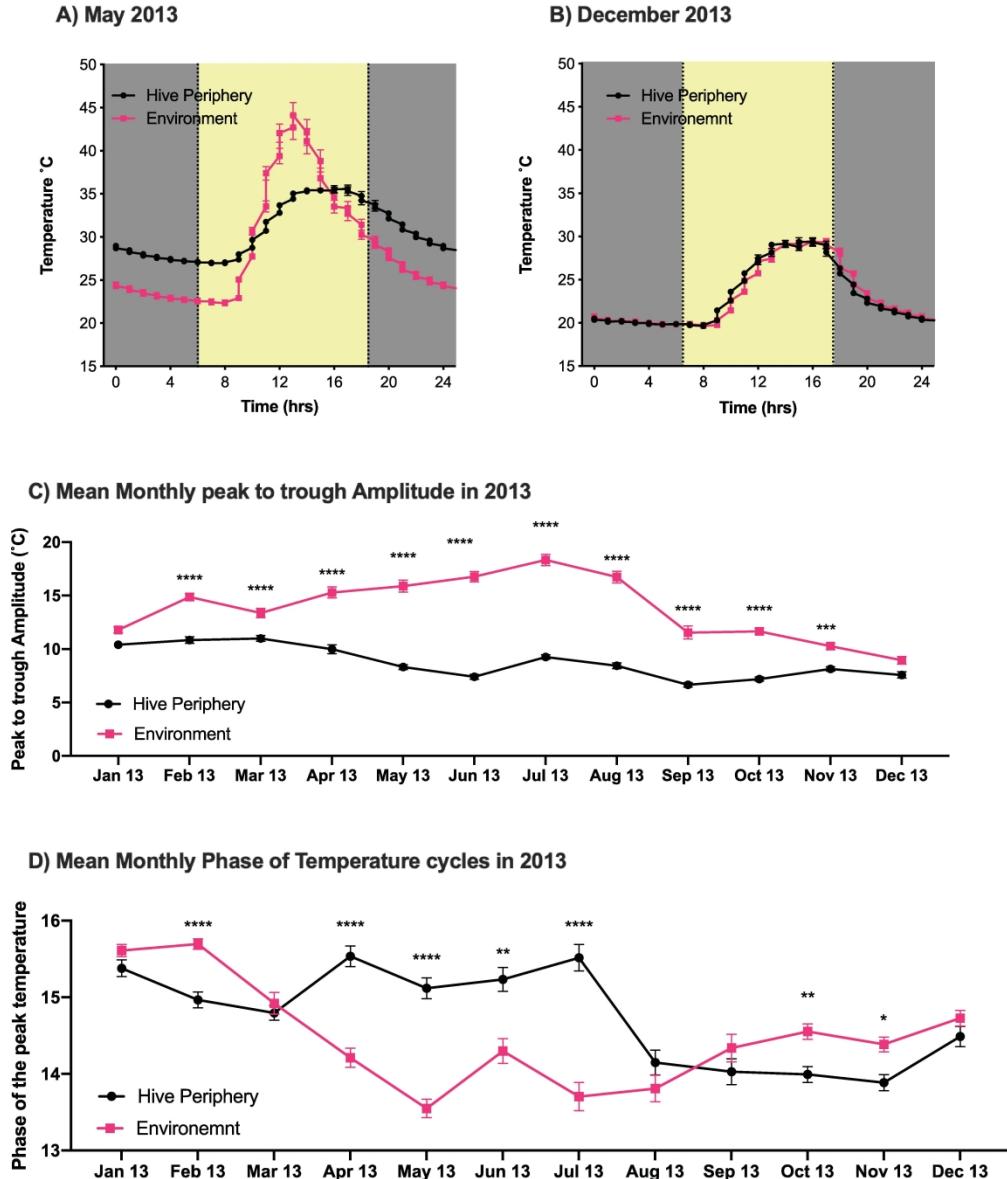
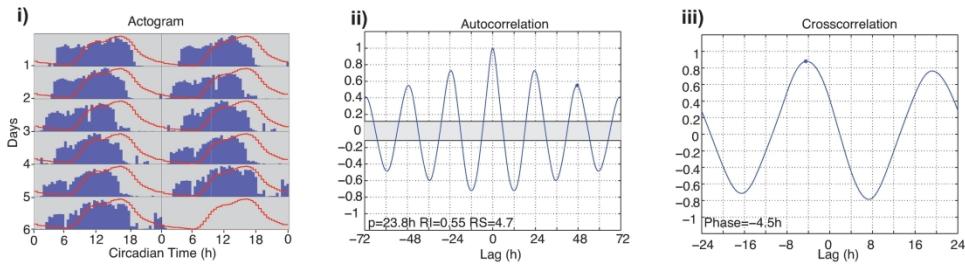
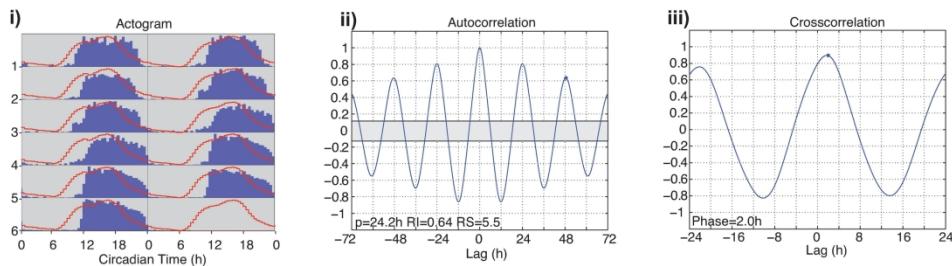


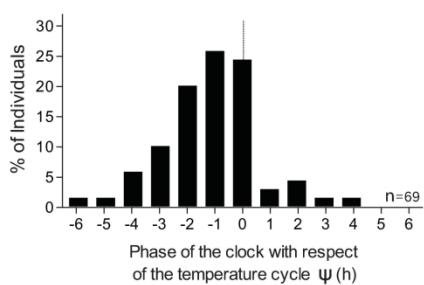
Figure 1

194x80mm (600 x 600 DPI)


Figure 2

195x230mm (600 x 600 DPI)


A) Advanced forager

B) Delayed forager

C) Phase Distribution

D) Period length Distribution

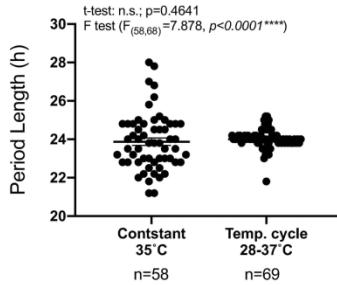


Figure 3

215x231mm (300 x 300 DPI)

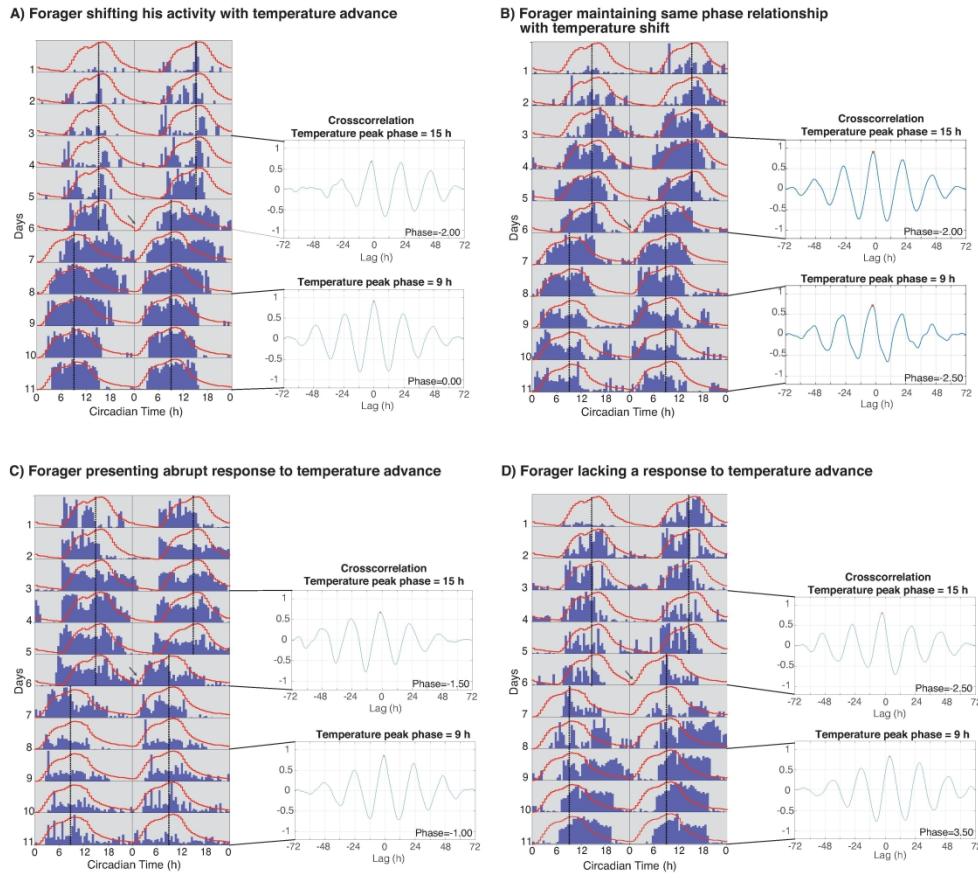


Figure 4

170x147mm (600 x 600 DPI)

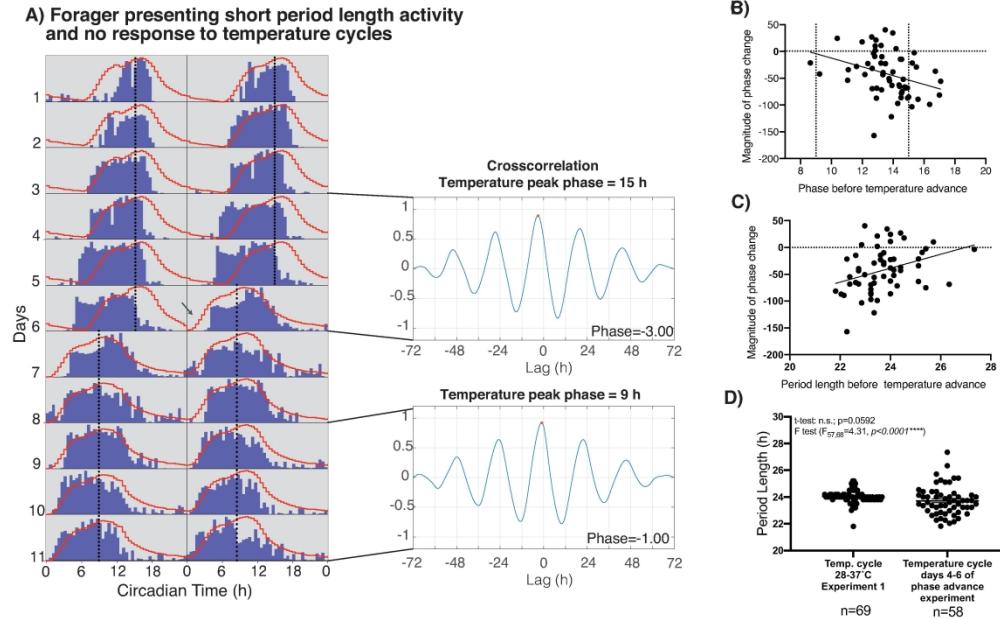


Figure 5

170x105mm (600 x 600 DPI)