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Abstract

Several studies have investigated the association between microbial and colorectal cancer (CRC).
However, the replicable markers for early stage adenoma diagnosis across multiple populations
remain elusive. Here, ameta-analysis of six studies, comprising a total of 1057 fecal samples, was
performed to identify candidate markers. By adjusting the potential confounders, 11 and 26
markers (P<0.05) were identified and separately applied into constructing Random Forest
classifier models to discriminate adenomafrom control, and adenomafrom CRC, achieving robust
diagnostic accuracy with AUC = 0.80 and 0.89, respectively. Moreover, these markers
demonstrated high diagnostic accuracy in independent validation cohorts. Pooled functional
analysis and targeted qRT-PCR based genetic profiles reveal that the altered microbiome triggers
different pathways of ADP-heptose and menaquinone hiosynthesis (P<0.05) in adenoma vs.
control and adenoma vs. CRC sequences respectively. The combined analysis of heterogeneous
studies confirm adenoma-specific but universal markers across multi-populations, which improves
early diagnosis and prompt treatment of CRC.
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Introduction

Colorectal cancer (CRC) is one of the most common cancer with an overall high mortality rate.
According to the report of the International Agency for Research on Cancer (IARC), there were
over 1,800,000 new CRC cases and over 860,000 deaths in 2018(1). And CRC accounted for
approximately 10% of all new cancer cases globally(2). It is estimated that the national
expenditures in the United States on cancer care, specifically colorectal cancer, were about 16.63
billion dollars in 2018(3), and the CRC burden is continuously growing over years. Colorectal
adenomas are recognized as precursors for the majority of CRC(2). The early detection of CRC at
precancerous-stage adenoma has increased the 5-year relative survival rate to about 90%,
significantly facilitating early decision making, aleviating the incidence of CRC and reducing
economic burden(2, 4).

Gut microbiome is a novel stool-based non-invasive biomarker for metabolic diseases and
cancers(5, 6). Many studies have reported that the gut microbiome is an important aetiological
element in the initiation and progression of CRC(4, 7) and identified some fecal microbial markers
of CRC(8-10). However, there is limited knowledge on whether these biomarkers could more
precisely detect early-stage of CRC, adenomas. And this cognitive gap needs to be filled with
more intellectua efforts. Furthermore, current knowledge of the associations between microbiome
and biomarkers for colorectal adenoma early-detection is poor as well. Only a few studies have
investigated the microbia alterations in colorectal adenoma(4, 7, 11-13). However, a substantial
variation exists among microbial makersin these studies, and its cause could be various biological
factors influencing gut microbiome composition and inconsistent processng of microbial
sequencing data.

Meta-analys's offers a set of tools that is powerful, informative and unbiased to improve the
robustness of microbiome aterations and reduce the noise of biological and technical confounders
so that consistent aterations across multiple studies could be identified. Recently, several
meta-analysis of multi-studies have identified universal microbial markers across multiple
diseases, such as CRC(11, 13-15), obese(16), Inflammatory bowel disease (IBD)(17), via 16S
rRNA sequencing or whole metagenome shotgun sequencing (WMS) technique. However,
previous researches based on meta-analysis(11, 13) still could not identify universal stool-based
microbial markers for colorectal cancer across multiple cohorts (Supplementary Note 1).
Additionally, the commonly used non-invasive stool-based screening test, Faecal
Immunochemical Test (FIT), has drawbacks such as poor sendtivity to early and advanced
adenoma (7.6% and 38%, respectively)(18). Therefore, it is urgent to explore and identify novel
stool-based microbial markers that could more precisely and efficiently diagnose colorectal
adenomaand its various stages.

Here, we presented a meta-analysis study, aiming to identify a series of markers that enable
distinguishing adenoma from healthy control or CRC with high accuracy across multiple cohorts.
We included fecal 16S rRNA sequencing studies considering that 16S rRNA gene-based profiles
are more closely matching the “real community” (19). We then invegtigated the potential
mechanisms of the disordered microbiome in colorectal adenomas, which may provide biological
insights and therapeutical strategiesto detect early syndromes and alleviate symptoms of CRC.

Results
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Characterigtics of the datasetsin meta-analysis

In this study, we investigated 16S rRNA sequencing data from four studies to measure the gut
microbiome changes as CRC progresses (from control to adenoma to cancer) and to identify the
biomarkers specific to adenoma. In total, we collected 307 samples from colorectal adenoma
patients, 217 from CRC subjects and 252 samples as control. The demographic information was
listed in detail in Table 1. All samples were sequenced at sufficient depth, with average counts of
85637 in each sample. Consistent processing was performed for all raw sequencing data on the
QIIMEZ2 platform.

Table 1 Characteristics of the large-scale adenoma datasets included in this study

* Age BMI Sex
Study Group(N) " Country
(averagetsd.)” (averagetsd.) F(%)/M(%)"
Control(30) 55.27+9.22 26.73+5.19 63.30/36.70
12) American
CA Adenoma(30) 61.30 +11.15 27.40 £4.45 60.00/40.00 o
anadian
Cancer(30) 59.40 +10.99 30.59+7.18 70.00/30.00
Control(50) 62.3248.98 24.66+4.69 52.00/48.00
(20)
FR Adenoma(38) 62.29+8.51 27.40 +4.45 28.90/71.10 France
Cancer(41) 65.51+10.51 30.59+7.18 41.50/58.50
Adenoma(41) 62.34+9.01 26.37+4.28 34.10/65.90
ust@ American
Cancer(26) 61.65+12.89 28.63+7.19 42.30/57.70
Control(172) 54.29+9.93 26.69+5.33 64.50/35.50
U@ Adenoma(198)  63.35+11.47 26.27+4.73 40.40/59.60 American
Cancer(41) 63.78+12.89 28.89+7.25 43.30/56.70
Control(252) 56.00+10.14 26.48+5.25 61.90/38.10
Total: Adenoma(307)  62.89+10.80 26.21+4.80 38.89/61.11
Cancer(217) 63.25+12.28 28.30+7.23 41.01/58.99

* Number of samples
# Standar d deviation;
T Theratio of per centage of female and male

Identification of the potential confounder in meta-analysis

Since differences existed among these studies in both technical and biological aspects, we first
investigated the potential confounders. The variances explained by disease status for each ASV
were caculated to quantify the effects of potential confounders (see method confounder analysis)
(Supplementary Fig. 1, 2). Thisanalysis reveaed that the factor ‘study’ had a predominant impact
on microbial composition (Fig. 1a and Supplementary Fig. 1). Additionally, the microbial alpha
and beta diversity also supported that the heterogeneity of studies had a more significant impact
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on microbial composition than disease status (Fig. 1b and Supplementary Fig. 3). Therefore, we
treated ‘study’ as a blocking factor in the subsequent analysis.

Alterationsof gut microbial compostion in colorectal adenoma

At the phylum level, the gut microbiota was dominated by members of Firmicutes and
Bacteroidetes, followed by Proteobacteria, Actinobacteria, Verrucomicrobia, Tenericutes and
Fusobacteriain healthy controls, adenomas and CRC. These dominant phyla were similar to those
reported in previous studies on gut microbiota(20). Furthermore, the phylum Fusobacteria, the
most CRC-associated bacteria as reported(23), were observed with significantly decreased
abundance in adenoma compared to that in cancer, while there was no significant difference
between adenoma patients and controls (Fig. 1c).

At the ASV level, dgnificant aterations across studies were observed among different disease
status. In the comparison of gut communities between controls and patients with adenoma, 43
ASVs were identified with distinguishable abundances (Supplementary Note 2). Moreover, we
aso identified 114 differentially abundant ASV's between adenoma and cancer (Supplementary
Note 3).

Additionally, pathogenic bacteria with increased abundance were detected in adenoma or
cancer compared with control. For instance, Parvimonas genus was enriched in adenoma
compared with controls while Fusobacterium, Porphyromonas, Peptostreptococcus, Parvimonas,
and Escherichia-Shigella genus were enriched in cancer compared with adenoma. Particularly,
Fusobacterium, Porphyromonas, Parvimonas and Peptostreptococcus were identified as oral
pathogens associated with CRC(17, 24). Notably, there were only 9 common differential ASVs
between healthy controls versus adenoma and adenoma versus cancer, which could be further
classified into Ruminococcaceae, Lachnospiraceae, Family X1 and Veillonellaceae family (Fig.
1d). The two sets of differential ASVs with a Jaccard distance of 0.939 indicate that the
microbiota has a remarkable difference between adenoma and control or cancer.
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Fig. 1 Alterations of gut microbial composition in different disease status accounting for study
heterogeneity. a, Variance explained by disease status (adenoma versus cancer) is plotted against
variance explained by study effects for individual ASVs. The significantly differential ASVs are
colored in red and the dot size is proportional to the abundance of each ASV. b, Principal coordinate
analysis of samples from all four studies based on Bray-Curtis distance; the study is color-coded and
the group (control, adenoma and cancer) is indicated by different shapes. The upper-right and the
bottom-left boxplots illustrate that samples projected onto the first two principal coordinates broken
down by study and disease status, respectively. P values were calculated with a Kruskal-Wallis test for
study and group. All boxplots represent 25th—75th percentile of the distribution; the median is shownin
thick line at the middle of the box; the whiskers extend up to values within 1.5 times, and outliers are
represented as dots. ¢, Relative proportions of bacterial phyla in healthy controls, adenomas and CRC
across four different studies. d, Venn diagram shows the overlap of differential ASVs between
adenomas and healthy controls or CRC.

Micraobial classfication modelsfor colorectal adenoma
Next, we constructed RF models by pooling all samples to select features capable of
distinguishing adenoma from control and cancer. Besides using differential ASV's as key metrics,
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apha diversity indices including Shannon Index, Simpson Index and Observed ASV's, and three
patient metadata, age, gender and BMI were also included in model building. To obtain the best
performing models and most important features, an IEF step was further applied.

A robust RF model was constructed with a core set of important features, including 8
differential ASV's (as biomarkers) together with age, gender and BMI, which were proved to have
the best capability to distinguish control subjects from patients with adenoma (AUC = 0.80) (Fig.
2a, ¢ and Supplementary Table 3). Among these, the ASV assigned as Christensenellaceae R-7
group sp. was the highest-ranking biomarker (Fig. 2a). The biomarkers aso included the increased
abundance ASVs of [Eubacterium] coprostanoligenes group, Ruminiclostridium 9 sp.,
Christensenellaceae R-7 group sp., Ruminococcaceae UCG-005 sp. and Veillonella parvula as
well as the decreased abundance of Rothia dentocariosa and Aminipila butyrica in adenoma
(Supplementary Fig. 4).

Similarly, the best performance of the RF model for distinguishing adenoma from cancer is
0.89 (AUC). The RF model was built with 24 ASV's together with age and BMI (Fig. 2b, d and
Supplementary Table 4). Among these biomarkers, the ASV belonging to Streptococcus
thermophilus TH1435 was the top-ranking biomarker(Fig. 2b). The following ASVs were
assigned as Parvimonas micra, Bacteroides dorei, [ Clogtridium] scindens, Erysipelatoclostridium
ramosum, Blautia sp., [ Eubacterium] coprostanoligenes group sp. and Lachnospira pectinoschiza
(Fig. 2b). The [Clostridium] scindens was significantly (P < 0.001) enriched in cancer compared
with adenoma with a generaized fold change of 0.49. Additionally, the abundance of Blautia sp.,
Hungatella hathewayi WAL-18680 and Eubacterium ruminantium were gradually increased while
Streptococcus thermophilus TH1435, Erysipelatoclostridium ramosum, [ Eubacterium] ventriosum
group sp. and Roseburia intestinalis were gradually decreased during CRC carcinogenesis
(Supplementary Fig. 5). In the two models, age was ranked as the top and third predictor in the
testing phase, respectively. In the two sets of biomarkers, there was only one common ASV
classified as Eubacterium ruminantium.

Moreover, we also identified that a core set of 34 ASV's, together with age, gender and BMI,
collectively had the highest capability to digtinguish control from cancer (AUC=0.93)
(Supplementary Fig. 6, Supplementary Note 4). It is worth noting that there was no common ASV
in the two sets of biomarkers between healthy controls and adenomas or CRC(Supplementary Fig.
7). Thus these results highlighted that microbial markers aimed to detect CRC are specific and
exclusive, and would not be used as optimal diagnosis of adenoma.

Co-occurrenceand clustering analysis of microbiota in different sates

Through the co-occurrence network of differential ASV's, our results suggested that most of the
identified biomarkers have functional importance in the network (Supplementary Note 5). To gain
further insight, we analyzed metagenomes of patients in adenoma and control. Co-occurrences
anaysis demonstrated four clusters of biomarkers with digtinct taxonomic composition
(Supplementary Fig. 9a). These clusters are not tightly associated with patient characteristics such
as Age, Sex and BMI (Supplementary Fig. 10a), revealing that the adenoma-associated microbiota
closely resembles that of the healthy control. These results further proved the high detection
accuracy (AUC of 0.8) and overall success of merely using 11 important features to distinguish
control from adenoma.
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Moreover, we also explored the CRC patient metagenomes for co-occurrences among a panel
of 24 biomarkers and yielded three clusters (Supplementary Fig. 9b). Cluster 2 demonstrated
strong taxonomic consistency, which was primarily comprised of members following Clostridiales
order. In contrast, the other two clusters exhibited heterogeneous taxonomy, with cluster 1
containing high-ranking biomarkers and cluster 3 assorting together the species that highly
prevailed in CRC individuals. We then investigated the association between these three clusters
and various tumor characteristics. Clostridiales cluster 2 is significantly enriched in male CRC
patients. Besides, both cluster 1 and cluster 3 show a dight tendency toward late-stage CRC
(containing stages 3 and 4 according to the American Joint Committee on Cancer), and this
tendency is significant for cluster 3. Associations with patient age and BMI are weaker and not
significant (Supplementary Fig. 10b). Based on these results, it can be deduced that the
adenoma-associated microbiota differs from that of CRC. To consider the impact of using
different studies, al of these tests were adjusted by blocking for “sudy” (see method
co-occurrence and clustering analysis).
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Fig. 2 Performance of discriminating adenoma from control or cancer using important features. a, b,
The important biomarkers identified to construct RF model for discriminating adenoma from control (a)
and CRC (b). Therank in (a) and (b) means the order of feature importance in the RF model; *: P <
0.05, **: P < 0.0land **: P < 0.001. ¢, d, The AUC of the optimized models constructed with
biomarkers and metadata of Control versus Adenoma (c) and Adenoma versus Cancer (d). Mean ROC
in (c) and (d): the average AUC from tenfold cross-validation.
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Validation of the color ectal adenoma classifiers

To test whether the selected important features are universal and robust across multiple studies,
we performed study-to-study transfer validation and LODO validation on the entire samples. In
study-to-study transfer validation, the average AUC for healthy controls versus adenoma model
was 0.64 and the AUCs of all datasets ranged from 0.52 and 0.86, which maintained the
diagnostic accuracy of within-study (Fig. 3a). Notably, the US2 study serves as a better training
set than other studies through exhibiting relatively higher testing AUCs. The reason could be that
the US2 study has a larger data set that is beneficial to develop accurate classifiers. Moreover, we
aso compare the diagnostic performance of selected important features with FIT, which illustrates
improved adenoma diagnostic ability by combining with non-invasive clinical screening tests
(Supplementary Note 6). Additionaly, in the LODO analysis, the AUC values of control versus
adenomamodels range from 0.61 to 0.87 with an average 0.72, which is superior to study-to-study
transfer validation owing to using large datasets (Fig. 3a). This reveals that more training samples
would in principle improve the robustness of classifiers.

Similar results were observed in the adenoma versus cancer model (Fig. 3b). The average AUC
of study-to-study transfer validation is 0.76 and the AUCs of all datasets range from 0.59 to 0.93.
Besides, the classification accuracy of the CA within-study is relatively low. The possible reason
is that the CA study was small-sized and subjects came from different countries, which indicates
that classifiers may be geographic region-specific when dataset is limited. This result reinforced
Zhou's research that region variation limits the usefulness of disease modelling(25). Moreover,
the AUC values are aso elevated in the LODO analysis, ranging from 0.86 to 0.95 with an
average 0.89 (Fig. 3b). We notice that the classifiers performed better in adenoma versus cancer
than that in control versus adenoma, which reinforced previous findings that the
adenoma-associated stool microbiome closely resembled that of the health status(7, 11, 20).

To determine the maximum subset of important features required to provide comparable
accuracy on validation studies and methods, we analyzed sets of featuresincluding all ASV's (all),
differentially abundant ASVs (control versus adenoma43, adenoma versus cancer:114), all
important features (control versus adenoma:11, adenoma versus cancer:26) and reduced important
features according to the feature ranks of the RF classifiers. In both study-to-study transfer
validation (Fig. 3c, d) and LODO validation (Supplementary Fig. 12a, b), as the number of
important features increases, the average AUC increases and reaches maximum when all the
important features are included for all studies except the CA study. This may also be owing to the
characteristics of small-sized and geographic heterogeneity in the CA study. As we continued to
add more ASV's, especially the ones not part of important features among disease status, the
average AUC of cross-validation decreases. Therefore, thisresult further confirmed that the sets of
selected important features contributed to the accuracy of classifiers.
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Fig. 3 Prediction performance of important features across studies and identification of minimal
features for detecting adenoma. a, b, Cross-prediction matrix depicting prediction values for
differentiating adenoma from control (a) and CRC (b) as AUC obtained usng important features.
Values on the diagonal refer to the results of within-cohort validation; Off-diagonal values refer to the
AUC values obtained from cross-cohort validation, which training the classifier on the study of the
corresponding row and applying it to the study of the corresponding column; The LODO values refer
to the performances obtained by training the classifier using all but the study of the corresponding
column and applying it to the study of the corresponding column (see methods). ¢, d, Average AUC of
study-to-study transfer validation classifiers for control versus adenoma (c) and adenoma versus cancer
(d) at different sets of features. The x-axisin (c) and (d) indicate different sets of features: All (c-d): all
ASVs; 43 (c) and 114 (d): differentially abundant ASVs; 11 (c) and 26 (d): all important features and
other top-ranking important features. The different studies were indicated in different colors.

Validation of colorectal adenoma markersin independent cohorts

To further validate our meta-analysis results, two additional independent cohorts from America
(Validation Cohortl) and China (Validation Cohort2) were incorporated into this study. The
validation cohortl is comprised of 70 controls and 102 adenoma patients, while there were 57
adenoma patients and 52 CRC patients in the validation cohort2(Supplementary Table 8). The
independent predictive RF model was confirmed to be relatively accurate on the two new cohorts,
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with an AUC of 0.73 and 0.83 for digtinguishing adenoma from controls or cancer, respectively
(Supplementary Fig. 13a, b). Although the validation cohort2 was lack of patient metadata, it
obtained a relatively high AUC, indicating that the gut microbial biomarkers could distinguish
adenomas from CRC precisely. Additionally, Ruminococcaceae UCG-005 sp. and
Chrigtensenellaceae R-7 group sp. were confirmed as the top-ranking biomarkers between
controls and adenoma patients in validation cohortl. Furthermore, Parvimonas micra,
Streptococcus thermophilus TH1435 and Bacteroides dorel were confirmed as the three
top-ranking biomarkers for digtinguishing between adenoma and CRC patients in validation
cohort2.

The specificity of colorectal adenoma predictive models

After evaluating the accuracy of the above colorecta adenoma predictive models on different
cohorts, we further validated the specificity of colorectal adenoma related important features in
other potentially microbiome-linked diseases. Five microbiome-linked diseases including NAFLD,
T2D, CD, UC and IBS were considered in this analysis(Supplementary Table 8). We randomly
drew samples from each disease and the control of these non-CRC studies and added them to the
control class of the validation cohortl. By comparing AUC scores between adding non-CRC cases
and adding the corresponded externa controls, we found a small decrease (ranging from 1% to
4%) in prediction accuracy for the non-CRC group(Supplementary Fig. 14). When adding both
control and case samples of the IBD study, the AUCs decreased more than other studies, which
may be caused by lack of several key featuresincluding BMI and two biomarkers. Taken together,
these results indicated that the colorecta adenoma-specific model might not be necessarily
applicable to other microbiome-associated diseases.

Microbial functional changesin colorectal adenoma

We investigated the microbial-based functional alterations for multiple different disease status.
There are 27 differential pathways between control and adenoma (Supplementary Table 9) and 41
differential pathways between adenoma and cancer (Supplementary Table 10) consistently
detected across studies. A total of 64 differential pathways (4 pathways were overlapped) were
clustered based on their generalized fold change scores. (Fig. 4, Supplementary Note 7).


https://doi.org/10.1101/2020.08.16.253344
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.16.253344; this version posted August 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(S)-prop 1,2-diol degradation
L=histidine degradation | 02
L-lysine fermentation to acetate and butanoate
superpathway of chonsmale metabolism

L-glutamate deg V (via hy itarate)
heme b biosynthesis | (aerobic)

superpathway of menaguinol-9 biosynthesis
superpathway of menagquinol-6 biosynthesis |
superpathway of menaquinol-10 biosynthesis
superpathway of heme b biosynthesis from glutamate
fatty acid beta-oxidation | (generic)

allantoin degradation to glyoxylate Il

thiazole biosynthesis |l (aerobic bacteria)

0.1

Generalized fold change
o

y g I
glycerol degradation to butanol
superpathway of iinol-6 biosy [ “ia
superpathway of d il linol-9 biosynthesi 2
4-aminobutanoate degradation V
cob{lljyrinate a,c-diamide biosynthesis | (early cobalt insertion)
succinate fermentation to butanoate
heme b biosynthesis Il (oxygen-independent)

TCA cycle VI (Helicobacter)

D-glucarate degradation |
superpathway of heme b bmsynmesm frum umporprrynnogen-lll
superpathway of C y 0 fermentation
pyruvale fermentation (o butanoate
] _ Ilactose and galactose degradation |
hexitol fe to lactate, K , ethanol and acelate
» far ion to
l i auperpsthway of hexitol degradation (bacteria)
B - superpathway of menaquinol-8 bmynmams 1]
l oo anhydromurapeptides recydling
& superpmrmay of L= aspan.ale and L= asparagma biosynthesis
e toluene degradalmn 1 (aerobnc} twa o—cresol}
— toluene degradation |l (aerobic) (via 4-methylcatechol)
- S-adenosyl-L-methionine cycle |
adenine and adenosine salvage III
2 L-lysine biosynthesis VI
2 CDPF-diacylglycerol biosynthesis |
3 CDP-diacylglycerol biosynthesis Il
I = poly(glycerol phosphate) wall teichoic acid biosynthesis
- peptidoglycan biosynthesis IV (Enterococcus faecium)
— CMP-legionaminate biosynthesis |
nitrate reduction VI (assimilatory)
- superpathway of L-methionine bmynl.hess (by wlﬁrydr;rlamnl
. ADP-L-glycero-beta-D-manno

superpathway of thiamine diphosphate biosynthesis Il

E * superpathway of glycolysis and the Entner-Doudoroff pathway

.. P 4 b o : )
I - pamal TC-A cyde tobhgate auiulrophs:
B y is |
| | L * GDP D-glynero-eﬂpha-[‘. manno-hep biesynth
aambsc respxrahon | (cymnhmmn c}

&

- > superpathway ul“ idi punne and idine bi h
it urea cycle
* assimilatory sulfate
. palmitate biosynthesis |l (bacteria and plant cytoplasm)
* pyrimidine deoxyribonuclectides de novo biosynthesis Il
b superpathway of adenosine nucleotides de nova bnosynlhesns ]
= adenosine deoxyri tides de novo biosynthesis Il
e guanosine deaxyrib leotides de novo b thesis Il
Control Adenoma
versus Adenoma  versus Cancer
Amine and Polyamine Degradation Fatty Acid and Lipid Biosynthesis/Degradation
Amino Acid Biosynthesis/Degradation Fermentation
Aromatic Compound Degradation Inorganic Nutrient Metabolism
Carbohydrate Biosynthesis/Degradation Nucleoside and Nucleotide Biosynthesis/Degradation
Carboxylate Degradation Secondary Metabolite Biosynthesis/Degradation
Cell Structure Biosynthesis TCA cycle
- Cofactor, Prosthetic Group, Electron Carrier, and Vitamin Others
Electron Transfer

Fig. 4 Functional alterations in control, adenoma and cancer. The relative abundances of functional
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Notably, the biosynthesis of ADP-heptose, a key metabolic intermediate in the biosynthesis of
lipopolysaccharide (LPS) was significantly enriched in adenoma compared with control. It was
associated with the activation of Nuclear factor-kB (NF-kB) and a strong pro-inflammatory
response(26) which led to colorectal adenoma. The ASV was assigned as Veillonella, one of the
biomarkers differentiating healthy controls from adenoma samples (Fig. 2a). It was highly ranked
among al ASVs in the average contribution of the ADP-heptose. (Supplementary Table 11).
There are five limiting steps catalyzed by genes of hldE, rfaD, gmhA and gmhB in the biosynthesis
of ADP-heptose. These four genes were consistently enriched in adenoma compared with control
(Supplementary Table 12). To further validate the results and explore its possibility of application
in diagnosis, we analyzed the expression patterns of these genes based on gRT-PCR. As shown in
Fig. 5a-d, the expressions of the hidE and rfaD gene were enriched in adenoma compared with
control, in consistent with the picrust2 results, especidly that the hidE gene was datistically
significant.

Moreover, it is worth noting that menaguinone (Vitamin K2) biosynthesis was significantly
enriched in cancer compared with adenoma. Especially, the MK-10 (one type of Vitamin K2) was
mainly produced by Bacteroides, one of the biomarkers between adenoma and cancer (Fig. 2b),
which reinforced the previous study that Bacteroides had high-level production of MK-10(27).
The ASV assigned as Bacteroides ranked the 3™ and 4™ in contribution to MK -10 biosynthesisin
adenoma and cancer among all ASV's (Supplementary Table 13). Collectively, the production of
Vitamin K2 by microbiota may serve as a response to compensate for induction of feedback
inhibition in colorectal cancer cells(28). We found a significantly increased abundance of menH,
menF and menC in CRC samples compared with that of control in pooled datasets by blocked
Wilcoxon test (Supplementary Table 12). These results were further confirmed in adenoma and
CRC by gRT-PCR on severa patient samples (Fig. 5e-g), especialy the menH and menF genes
with statistical significances.
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Fig. 5 Relative abundance of candidate genes is plotted against gRT-PCR quantification in gDNA
extracted from stool samples of healthy controls, adenomas and CRC . The expression of (a) hidE; (b)
rfaD; (c) GmhA; (d) GmhB were compared between control and adenoma groups, while the expression
of (€) menH; (f) menF; (g) menC were compared between between adenoma and cancer groups. All
results are presented as mean + standard error. *: P < 0.05.

Discussion

This study comprehensively assessed the aterations of CRC-associated gut microbiome and the
ability of microbial markers for the early detection of CRC. Thus, we first constructed machine
learning classifiers. The best performing model achieves a high accuracy (AUC=0.80) with 11
important features to distinguish colorectal adenoma from non-tumor controls (Fig. 2c). Similarly,
the AUC of the best model for detecting colorectal adenoma from CRC with 26 important features
is0.89 (Fig. 2d). Through study-to-study transfer validation and LODO validation across multiple
datasets, the selected microbial markers could overcome technical and geographical discrepancies
with the average AUC of 0.72 in the adenoma-control model (Fig. 3a) and 0.89 in the
adenoma-cancer model (Fig. 3b), while previous researches reveaed that the magjority of
differential microbial taxa differed in given case-control studies(17). Furthermore, the two
additional independent cohorts strengthened and validated the extensibility of these makers
(Supplementary Fig. 13a, b). The accuracy of classifiers with adenoma-specific markers is higher
than that in previous WMS based studies(11, 14), probably due to more complete taxonomic
profilings represented by ASVs. WMS data is well-recognized to possess the advantage of
species- and even dtrain-level resolution. However, the current strategies for characterizing
microbial community compositions with WMS are “closed annotation” that strongly rely on the
known reference genome database(29-31), which is likely missing some species without known
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genomes or maker genes. It will thus result in biases in relative abundance egtimation.
Consistently, we built the cancer-control model with a panel of 34 important ASVs and achieved
performance AUC of 0.93, whose accuracy is significantly higher than meta-analysis based WM S
analysis(AUC=0.84)(11, 14). Importantly, the co-occurrence network analysis confirmed several
biomarkers that are crucial in subnetworks, for example, Ruminococcaceae UCG-005 sp.,
[Clogtridium] scindens, Blautia sp., etc. Furthermore, the performance of these features in
diagnosing colorectal adenoma worsened when randomly adding samples from other
microbiome-associated diseases, such as IBD and NAFLD (Supplementary Fig. 14), indicating that
the panel of markers was adenoma-specific. Overall, all these validations point to the robustness
of the classifiers and provide evidence that microbia classfier could serve as an effective
non-invasive clinical indicator for colorectal adenoma.

Severd other studies have reported that some feca bacteria could serve as biomarkers for
non-invasive diagnosis of colorectal cancer, such as Fusobacterium nucleatum, Escherichia coli,
Bacteroides fragilis(8, 32-34). Unlike these existing studies, we aim to identify microbial-derived
markers that could effectively diagnose adenoma (early stage of colorectal cancer), which
represents a primary target for CRC screening at the early stage, as majority of CRC begins with
the malignant transformation of benign polyps, the colorectal adenoma(2). Microbial communities
atered in both colorectal adenoma and cancer during the progression of CRC, and the difference
of microbiome alteration remains unclear. Notably, we found markers for distinguishing adenoma
and cancers from healthy controls are not dways the same (Supplementary Note 8). What's more,
the combination of the important adenoma-specific features and FIT improved the classifier's
accuracy (AUC=0.81) compared to microbial makers (AUC=0.78) or FIT (AUC=0.60) alone
(Supplementary Fig. 11), indicating the non-invasive clinical screening tests could be used as
complementary characteristics of gut microbiota for early screening of adenoma. Recently, a 16s
rRNA analysis showed that microbiome dysbiosis in adjacent tissues could discriminate colorectal
adenomas from hesalthy controls effectively(13), providing a new insight for following research of
adenoma biomarkers.

The functional analysis sheds light on the convoluted underlying mechanisms and would
greatly enhance our understanding and interpretation of CRC development (Supplementary Fig.
15). Among the differential pathways, we found the biosynthesis of ADP-heptose is significantly
enriched in adenoma compared with control. ADP-heptose is a key metabolic intermediate in the
biosynthesis of LPS, which is associated with the activation of NF-xB and then induces a strong
pro-inflammatory response(35) in the initiation and progression of colorectal cancer, especialy in
adenoma(36). More importantly, the contribution decomposition analysis indicated that the
adenoma-specific marker Veillonella parvula was highly ranked in the average contribution of the
ADP-heptose among al ASVs (Supplementary Table 11). This suggests that the microbial
markers contributed to the activation of pro-inflammatory pathways that ultimately led to the
progression of colorectal adenoma. Notably, hldE was an important bifunctional protein involved
in the biosynthesis of ADP-heptose, which catalyzes the nucleotide-activated heptose precursors
used in the biosynthesis of LPS and in post-trandational protein glycosylation(37). HIdE was
significantly enriched in adenoma compared with control according to computational finding and
was further validated by qRT-PCR validation analysis(Fig. 5a). Since the hldE was reported to
play an important role in bacterial virulence(37), it is promising to utilize it as an attractive target
for therapeutic treatment of colorectal adenoma. Moreover, a series of Vitamin K2 biosynthesisis
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significantly different between adenoma and cancer. Especially, the MK-10 pathway increased in
cancer compared with adenoma and the biomarker Bacteroides dorei was ranked as the third and
fourth contributor to MK -10 biosynthesis in adenoma and cancer among al ASV's (Supplementary
Table 13). Computational finding and qRT-PCR results demonstrated that the menH and menF
gene were significantly increased in CRC compared with adenoma (Fig. 5e, f). Specifically, menH
catalyzesthe first step and plays digtinct roles in the biosynthesis of MK-10 biosynthesis(38). The
increased abundance of menH in CRC samples activated the synthesis of this pathway. Previous
studies indicated that Vitamin K2 played a key role in antitumor effect via cell-cycle arrest, cell
differentiation and cell apoptosis(28). Therefore, the increased production of Vitamin K2 may bea
compensatory effect of the dysregulated microbiota to survive the tumor microenvironment,
which also shows a potential novel CRC intervention strategy targeting Vitamin K2 biosynthesis
bacteria. Though the main pathways differ between the control-adenoma and the adenoma-CRC
stage, all these important pathways triggered by atered microbiome could offer promising
perspectives and evidence for intervention and treatment in the CRC carcinogenesis
(Supplementary Note 9).

Methods

Data collection

We collected data from studies in PubMed.gov that published 16S rRNA sequencing data on
patients with CRC, adenomas and healthy controls. Only four studies with accessible metadata of
every sample were included in this work. Raw sequencing data of these studies were downloaded
from Sequence Read Archive (SRA) and European Nucleotide Archive (ENA) using identifiers:
PRINA389927 for Zeckular et a(12), PRIEB6070 for Zeller et a(20), PRINA290926 for Baxter
et al(22) and PRINA362366 for Sze et al(21). Besides, two additional cohorts (Supplementary
Table 8) were used as independent cohorts with accession numbers PRINA534511(39) and
PRINA280026(40).

The collection of human data for real-time quantitative PCR (QRT-PCR) analysis was approved
by the Review Board of School of Public Health, Shanghai Jiao Tong University School of
Medicine. Patients were recruited for initial diagnosis and had never received any treatment before
fecal sample collection. Patients with hereditary CRC syndromes, with a previous history of CRC
were excluded from the study. Based on pathological section and colonoscopy results, recruited
subjects were classified into three groups: (1) healthy subjects, namely controls. individuals with
colonoscopy negative for tumor, adenoma or other diseases;, (2) patients with adenoma
individuals with colorectal adenoma(s); and (3) patients with CRC: individuals with newly
diagnosed CRC. A total of 94[]subjects were initially recruited based on criteria sex, age, BM|I
and other confounding factors. Finally, 43 were remained: 300! patients with CRC, 6 ladenomas
and 7Jcontrols. Stool was collected in fecal collection tubes and was stored at —8071°C. DNA was
extracted from fecal samples using Stool Genomic DNA Kit (CW20925, CWBIO, China)
following the manufacturer’ s instructions. Relative gene expression by qRT-PCR and the patient
characterigtics for qRT-PCR were summarized in Supplementary Table 14.

Data Preprocessing
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The 16S rRNA sequencing data were analyzed using Quantitative Insights Into Microbial Ecology
(QIIME2 V.2018.11), a plugin-based platform for microbiome analysis(41). DADA2 software,
wrapped in QIIME2, was used to filter out sequencing reads with quality score Q > 25 and
denoise reads into amplicon sequence variants (ASV's) (i.e. 100% exact sequence match), resulting
with feature tables and representative sequences. Taxonomy classification was assigned based on
the naive Bayes classfier usng the classfy-sklearn package(42) against the Silva-132-99
reference sequences. ASVs that couldn’'t be precisely annotated to species were reassigned to ones
having the most similar sequences in the same genus (or family) usng NCBI Blast. Subsequently,
representative sequences were aligned using Fast Fourier Transform (MAFFT) in Multiple
Alignment and a phylogenetic tree was generated with the Fast-Tree plugin. Then, the feature
tables were converted to relative abundance tables. A set of ASV sthat were confidently detectable
in a least three studies and were present in at least 80% of samples were selected for further
analysis.

Confounder analysis

We used ANOVA-like analysis(14) to quantify the effect of potential confounding factors and
disease dtatus. The total variance of a given ASV was compared to the variance explained by
disease status (control, adenoma and cancer) and the variance by confounding factors (age, BMI,
diabetes, Nongteroidal anti-inflammatory drug (NSAID), platform, race, gender and study) akin to
a linear model. Variance calculations were performed on ranks to account for non-Gaussian
distribution of microbiome abundance data(14). Potential confounding factors with continuous
values were transformed into discrete variables either as quartiles or in the case of BMI as groups
of lean(>25), overweight (25-30), and obese(>30) based on conventional cutoffs.

M eta-analysis of differentially abundant ASV's

The significance of differential abundance was tested on a per ASV using the blocked Wilcoxon
test implemented in the R (V.3.5.2) ‘coin’ package (P values < 0.05 were deemed as significant in
al differential analysis). Confounder with high variance explanation was defined as a block to
adjust the differential analysis. Significance was tested againgt a conditional null distribution
derived from permutations of the observed data. Permutations were performed within ‘study’ to
control variations in block size and compostion(14). For further analysis, we evaluated a
generalization of the (logarithmic) fold change for each ASV. This quantity is widely applied to
genomic sequencing data such as RNA-seq and GRO-seq and further improved for better
resolution of sparse microbiome profiles(43). The generalized fold change was calculated as the
mean difference between predefined quantiles (ranging from 0.1 to 0.9 in increments of 0.1 in this
study) of the logarithmic control and adenoma, and between adenoma and cancer distributions.

M odel construction and features extraction

Following the differentially abundant ASV's anaysis, we built Random Forest (RF) classifier
models with stratified 10-fold cross-validation to distinguish adenomafrom cancer or control. The
features used for model building consisted of patient metadata as well as differential ASV's and
apha diversity indices. The apha diversity indices consisted of Shannon Index, Simpson Index
and Observed ASV's, while the patient metadata features consisted of age, gender and BMI. The
RF classifier models were built with 501 egtimator trees and each tree had 10% of the total
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features. Then an iterative feature elimination (IFE) step was used to optimize the performance of
subsequent RF models. The top features from the top-performing model were selected as
“important features’ and the top microbial features as “biomarkers’. Finally, the AUC was used to
evaluate the performance of the optimized models.

Co-occurrence and clustering analysis

To further analyze the co-occurrence of biomarkers, the relative abundances of biomarkers were
discretized into binary values ‘positive’ or ‘negative. For each biomarker, the 90th percentile in
control or adenoma was used as the threshold. A sample was labeled ‘positive’ when the relative
abundance of ASV was above the defined threshold(14). Based on the binarized
markers-by-sample matrix, biomarkers were then clustered using the Jaccard index. Associations
between clusters and metadata were calculated by a Cochran—Mantel-Haenszel test with * study’
as blocking factors.

Model evaluation
To assess the generalizability of microbial-based adenoma classifiers across geographic and
technica differences of metagenomic data generation and processng in multiple patient
populations, both study-to-study transfer validation and leave-one-dataset-out (LODO) validation
were performed. In study-to-study transfer validation, RF classifiers were trained in one single
study and externally assessed on al other studies (off-diagonal cellsin Fig. 3a-b). Meanwhile, we
applied a nested cross-validation procedure on the training study to calculate within-study
accuracy (diagonal cellsin Fig. 3a b). In LODO validation, data from one study was set as the
testing set, while data from the remaining three studies were pooled as the training set. The input
features of the validation classifiers were the important features identified from the IFE analysis.
To evauate whether the selected important features would achieve the best performances in
study-to-study transfer validation and LODO validation, we constructed RF models with 3
different sets of input features, including (1) all ASVs, (2) differential ASVs and (3) important
features. Then we sought to identify if there was a minimal set of important features that could
achieve higher accuracy. A few of the top-ranking important features were always included in the
minimal set in prior. We used the same methods as the study-to-study transfer validation and
LODO validation and then calculated the average AUC of each testing study as each point in Fig.
3c, d. Finally, we compared the predictive valuesin the testing set across RF models with different
sets of input features.

Additional validation of independent studies and other diseases

As an externa test, we used additional independent data to validate the performance of the
selected important features to differentiate adenoma from cancer or control. The input features of
RF models were the ASV s with the same taxonomy assignments as the selected important features
as well as patient metadata (validation cohort2 without the patient metadata only used ASV's as
input features).

To assess the specificity of the selected important features for colorectal adenoma, we
investigated five non-CRC diseases. For each disease, we randomly drew 30 samples from the
control group (excluding NAFLD and IBD diseases of which 15 samples were selected) as well as
30 samples from the cases, and added them to the vaidation cohortl dataset in turns, labeled as
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controls. The random selection process was repeated ten times, and the validation AUC was
computed accordingly.

Functional profile analysis

The functions of gut microbiome were inferred from 16S rRNA sequences with Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) as previoudy
published(44). Functional metagenome profiles that have more than 20% samples with relative
abundance < 1x10° and show up in less than three of the studies were removed. The differential
analysis and generalized fold change calculations were performed on pathway profilesin the same
way as on ASVs profiles (see data preprocessing method). Then, we evaluated the contribution of
each ASV to overall differential pathways. The contribution was defined as the ratio of one ASV
functional abundance to the total functional abundance of al ASVsin agiven pathway.

Quantitative PCR validation

To quantify the abundance and expression of genes from two selected biosynthes's, the gqRT-PCR
analysis was performed on 14 heathy controls, 12 adenoma and 30 CRC samples. For these
samples, the gDNA was extracted with the FecalGen DNA Kit (Cat# €9604) according to the
manufacturer’s ingructions. We used the primes in the Supplementary Table 15 for candidate
genes; standard primers F515 and R806 for 16S. To perform the gRT-PCR reaction, the final
primer concentration was diluted to 0.5 uM including 5 ng of gDNA in a 20 ul final reaction
volume with the SYBR Green qPCR Mix (Thermo Fisher Scientific). The used gRT-PCR
program was as follows. pre-denaturation at 95 °C for 10 min; denaturation at 95 °C for 15 sfor
40 cycles; annealing at 60°C for 60 s followed by melt curve analysis(14). The gRT-PCR anaysis
was to calculate 2! values between candidate genes and 16S Ct values. The significance of
the comparison between adenoma and control or CRC samples was tested by Wilcoxon test
(P<0.05).
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