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Synopsis

The microbial markers identified at the species/strain levels may be useful for
non-invasive diagnosis of NAFLD. The microbial differencesin bile acid metabolism
and strain-specific differences among NAFLD microbiota highlight the potential for

precision medicinein NAFLD treatment.
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86  Abstract
87 Background & Aims: Multiple mechanisms for the gut microbiome contributing to
88 the pathogenesis of non-alcohalic fatty liver disease (NAFLD) have been implicated.
89 Here, we aim to investigate the contribution and potential application for atered bile
90 acid (BA) metabolizing microbe in NAFLD using whole metagenome sequencing
91 (WMS) data.
92 Methods: 86 well-characterized biopsy-proven NAFLD patients and 38 healthy
93  controls were included in the discovery cohort. Assembly-based analysis was
94  performed to identify BA-metabolizing microbes. Statistical tests, feature selection
95 and microbial interaction analysis were integrated to identify microbial alterations and
96 markersin NAFLD. An independent validation cohort was subjected to similar
97  analyses.
98 Results: NAFLD microbiota exhibited decreased diversity and microbial interactions.
99 We established aclassifier model with 53 differential species exhibiting arobust
100 diagnostic accuracy (AUC=0.97) for dectecting NAFLD. Next, 8 important
101  differential pathway markers including secondary BA biosynthesis were identified.
102  Specifically, increased abundance of 7a-HSDH, baiA and baiB were detected in
103  NAFLD. Further, 10 of 50 BA-metabolizing metagenome-assembled genomes
104 (MAG)s, from Bacteroides ovatus and Eubacterium biforme, were dominant in
105 NAFLD and interplayed as a synergetic ecological guild. Importantly, two subtypes

106  of NAFLD patients were observed according to secondary BA metabolism potentials.
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107  Elevated capability for secondary BA biosynthesis was also observed in the validation
108  cohort.

109 Conclusions. We identified novel bacterial BA-metabolizing genes and microbes that
110  may contribute to NAFLD pathogenesis and serve as disease markers. Microbial

111  differencesin BA-metabolism and strain-specific differences among patients highlight

112  thepotential for precision medicinein NAFLD treatment.

113 Keywords: NAFLD; gut microbiota; secondary BA synthesis; whole metagenome

114  sequencing data
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116 Introduction

117  Non-acoholic fatty liver disease(NAFLD) has become one of the leading causes of
118 liver disease worldwide, with the global prevalence estimated to be 24%.[1] NAFLD
119 isexpected to bethe No. 1 cause for cirrhosis in the United States within adecade.[2]
120 The pathogenic mechanism of NAFLD remains unclear. The current multiple-hit
121  hypothesisisthat NAFLD is a consequence of amyriad of factors acting in a parallel
122 and synergistic manner in individuals with genetic predisposition.[3] Factors such as
123  insulin resistance, central obesity, environmental or nutritional factors, and gut

124 microbiota, aswell as genetic and epigenetic factors, are linked to its pathogenesis.[2,
125 4,5

126 Recently, the crosstalk between the gut and the liver is increasingly recognized, and
127  many studies have reported dysregulated gut microbiotain NAFLD patients. [6-10]
128 There are several potential mechanisms for the gut microbiotato influence NAFLD
129  development. These effects are mediated by microbial components and metabolites,
130 such aslipopolysaccharide, alcohol, and bile acid(BA).[11]

131 BA not only facilitate the digestion and absorption of fatty foods as detergent, they
132  aso act asimportant signaling molecules via nuclear receptors, such as farnesoid X
133  receptor(FXR) and G protein coupled BA receptor(GPBARL or TGR5) to modulate
134  hepatic BA synthesis, glucose and lipid metabolism. Recently, we observed

135  suppressed BA-mediated FXR signaling in NAFLD liver and intestine, whichisin

136  harmony with increased secondary BA production. Furthermore, using 16S rRNA
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137  data, we observed elevated abundance of secondary BA metabolizing related bacteria
138  and pathways in the gut microbiome of NAFLD. [12] However, the 16S rRNA

139  sequencing data has limited resolution which does not allow the identification of the
140  species or an accurate functional analysis. [13]

141 Whole metagenome sequencing(WMS) allows us to achieve a satisfactory

142  resolution of the microbiome. Earlier we have used the WM S data to characterize the
143  gut microbiotain NAFLD patients with and without advanced fibrosis and identified
144 37 differential bacterial species, among which the abundance of Escherichia coli and
145  Bacteroides vulgatus was increased in patients with advanced fibrosisand it's

146  association with microbial metabolites.[9, 14-16] WM S data were also used to study
147  theinteractions between the gut microbiome and steatosis in obesity.[15, 17]

148 However, asimilar study is lacking for the comparison of the gut community between
149  healthy and NAFLD subjects using WM S data, which is our goal in this study. Here
150 wereport the structural and functional characteristics of the gut microbiomein

151  NAFLD, and its association with BA metabolism.

152

153 Results

154  Gut microbiota alterations between NAFLD patients and healthy controls

155 WMS data from 86 well-characterized biopsy-proven NAFLD patients and 38 healthy

156  controls with similar characteristics (Table 1 and Table S1) were chosen to study the
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157  structural and functional differencesin gut microbiota between NAFLD patients and
158 healthy controls. And we have confirmed that gender or age distribution did not

159  account for the observed microbial differencesin this study (Figure S1).

160 Compositional changesin NAFLD gut microbiota

161  We determined the microbial compositions of NAFLD and healthy controls using
162 WMS data. Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria were the
163  dominant phylathat collectively account for around 90% proportions in both groups
164  (Figure S2A). NAFLD individuals had lower bacterial diversity than healthy controls
165 (Figure S2B). Besides, significant compositional differences were observed between
166  thesetwo groups (Figure S2C).

167 To identify microbial markers that may distinguish NAFLD from healthy subjects,
168 differential species were determined with Mann-Whitney U-tests. 53 species with
169 FDRvaues< 0.1 wereidentified as differential species (Figure 1 & Table S2).

170  Among these, 11 species were dominant in NAFLD patients, which mainly belong to
171  Clostridiaclass, including Eubacterium siraeum, Clostridium bolteae, E. coli and
172  B.ovatus, B.stercoris from Bacteroidia class. On the other hand, 42 species

173  significantly reduced in NAFLD patients were mainly of Bacteroidia class, including,
174  Bacteroides dorei, Alistipes shahii, and of Clostridia class, for instance, Eubacterium
175 eligens, Eubacterium hallii, and Faecalibacterium prausnitzii. In addition, random
176  forest (RF) model constructed with differential species achieved an AUC of 0.97 to

177  detect NAFLD patients from controls (Figure S3).

9
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178 Ecological structural changesin NAFLD gut microbiota

179  Furthermore, at whole-community level, microbial interaction analysis was performed
180 toinvestigate potential changesin ecological structure. There were more speciesin
181  healthy communities than thosein NAFLD communities (167 nodes vs 141 nodes)
182  though with similar amount of interactions. Then, we examined the “core community”
183  (interactions with magnitudes > 0.4) of healthy and NAFLD groups, respectively.

184  Considerable discrepancies existed in the “core community” of healthy and NAFLD
185 (Figure 2A&B). In detail, the healthy “core community” was more complex, with 162
186  species and 565 interactions, compared to the NAFLD community with 81 species
187  and 166 interactions. And the NAFLD community was separated into 8 isolated

188  components, an indication of unstable microbial community. Among them, the major
189  component harbored most species from Clostridia class, such as BA production

190 bacteria, C.bolteae (node NO. 78), C.clostridioforme (node NO. 138) with increased
191  proportion in NAFLD, while species from Bacilli class were dominant in the second
192 major component. Besides, species with increased abundance in NAFLD patients

193 (circle nodes in Figure 2B) were dominant in the “core community” and positively
194  interacted with each other. Then, we looked into the top 20 hub species of “core

195  community”, respectively. 10 of them were common in both group, such as C.bolteae,
196 C.hathewayi, Dorea longicatena, Flavonifractor plautii, which may play therole as
197  the*"keystone” to sustain the homeostasis (Figure 2C&D).

198

10
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199  Functional changesin NAFLD gut microbiota

200  Microbial functional profiles were determined at pathway level usng HUMANNZ2 and
201 92 differential pathways were identified between the NAFLD and the healthy groups
202 (Table S3). Similarly, we identified 8 important pathway features (Figure 3A) to build
203 RF model (AUC=0.83) that could distinguish NAFLD patients from healthy subjects
204  (Figure 3B). Most pathways were more represented in NAFLD microbiotathan in
205  controls. These pathways included secondary BA synthesis (ko00121) (Figure 3C),
206  benzoate degradation (ko00362), biosynthesis of ansamycins (ko01051) and oxidative

207  phosphorylation (ko00190) (Figure $4).

208  Novel genes and microbial genomes associated with secondary BA synthesis

209 Thefact that the secondary BAs biosynthesis pathway was significantly elevated in
210  NAFLD (Figure 3C) prompted us to examine the relevant BA metabolizing enzymes
211  encoded by the microbiome. Taking advantage of the WM S data, we were able to

212  quantify the gene abundance and to map these genes to specific microbial genomes.

213  Genesrelated to secondary BA synthesis

214  Bacteria genesdirectly involved in secondary BA synthesis catalyze the

215  deconjugation, the oxidation and epimerization, or the multi-step 7a-dehydroxylation
216  reactions (Figure 4A). Protein sequences of target enzymes were collected from

217  Integrated Microbioal Genomes(IMG) database (Figure 4A).[18] High quality protein

218  sequences were selected to construct hidden Markov models(tHMMs), in order to

11
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identify potential BA metabolizing enzymes.

The data (Figure 4B) showed that genes encoding 7-alpha-hydroxysteroid
dehydrogenase(7a-HSDH), BSH and bile acid inducible operon (bai)A, baiB, baiCD,
baiH were reletively more abundant than balE, baiF and bail. Importantly,
significantly increased abundance of 7a-HSDH, bai A and baiB were observed in
NAFLD compared to controls. These data were consistent with the pathway analysis

results, and confirmed the increased secondary BA production in NAFLD.[12]

Novel identification of microbial genomes related to secondary BA synthesis
using advanced bioinformatics
To identify the BA metabolizing microbial genomes, the metagenomic-assembled
species(MAG) analysis was performed. Prevalent genes in the non-redundant gene
catalog that presented in more than 5 samples were binned into 252 MAGs, which
were considered to represent distinct microbial genomes. Among these, 50 MAGs that
contain at least one gene encoding BSH, HSDH or bile acid inducible operons (Table
4) were defined as BA-metabolizing MAG. To obtain relatively complete microbial
genomes, we re-assembled these 50 MAGs using high quality reads mapped to genes
in each MAG.

Among these, 10 MAGs exhibited significantly increased abundance in NAFLD,
while 18 MAGs were reduced in NAFLD (Figure 5A). Among the 10 MAGs elevated

in NAFLD, 6 MAGs belong to Bacteroides (order Bacteroidales), including

12
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239  B.wulgatus, B.ovatus, and B.stercoris. Other MAG genomes were assigned as

240 E.rectale and E.biforme (order Clostridiales). BA-metabolizing MAGs with reduced
241  abundancein NAFLD are mainly from R.bromii, D.longicatena and B. dorei.

242  Furthermore, we explored the species contributions of pathwaysin via HUMANN2,
243  and found that the pathway secondary bile acids biosynthesis were mainly encoded by
244  E.eigens (48.3%) and B.vulgatus (26.2%)( Figure S5). Thisis consistent with the
245  increased BA-metablizing M AGs belonging to species Bacteroides vulgatus and

246  Eubacterium eligens.

247 For a better understanding of the BA metabolizing microbial community, microbial
248 interactions analysis was performed with BA-metabolizing MAGs. In contrast to the
249  situation where more interactions existed in healthy group on whole-community level,
250  we found that the sub-network of BA-metabolizing MAG was more complex with
251  considerableinteractionsin NAFLD than in controls (164 and 100 edges,

252  respectively) (Figure 5B &C). In addition, most MAGs with higher proportionsin
253  NAFLD patients were hub nodes in both healthy and NAFLD BA-metabolizing

254  communities and were positively interacted, such as Bacteroides sp. MAGO001,

255  B.wulgatus MAGO007, B.ovatus MAG026, B.vulgatus MAG030 and B.xylanisolvens
256 MAGI117. These are likely "house-keeping" species for BA metabolism. In contrast,
257  Bacteroides stercoris MAGO003, an MAG not included in the healthy network, was
258  highly elevated in NAFLD, ranked high in the NAFLD network, and positively

259 interacted with the "house-keeping” BA metabolizing species. Similarly, E.biforme

13
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260 MAGO036 and MAG089, which exhibited the lowest hub score in healthy network,
261  ranked the highest in NAFLD network.

262 In general, the observed species were represented by multiple MAGs. Here,

263  R.bromii was represented by 7 MAGs, and E.€ligens by 5 MAGs. However, only one
264  of the 7 Rbromii MAG was significantly increased in NAFLD group, while 4 others
265  showed decreased abundance (Table S5). Situations were similar in B.vulgatus (two
266  of threeincreased) and E.rectale (one increased and two decreased). Unexpectedly,
267 multiple MAGs of the same species were distributed in different modules both in

268  healthy and NAFLD communities(Table S6). Apparently, these observations indicate

269 that strains within the same species may function differently.

270  Different BA metabolizing potentials among NAFLD microbiota and

271  emergence of two subtypes of NAFLD: High BA versus normal BA subtype

272  Although the average abundances of the secondary BA metabolism pathway and

273  related genes wereincreased in NAFLD, we noticed that the abundances exhibited a
274 broad distribution among NAFLD patients (Figure 3C and 4B). Many of the NAFLD
275  microbiota exhibited BA metabolizing potentials similar to those of healthy controls.
276  Based on the abundance of 3 differential BA-metabolizing genes (7a-HSDH, baiA
277 and baiB), NAFLD patients were clustered into two subtypes: normal-BA subtype
278  comprising 45 patients and high-BA subtype comprising 37 patients (Figure 6A),

279  which was not related to the disease severity (p=0.7). The abundances of the 3 marker
280 geneswere all significantly higher in high-BA subtype, but were similarly represented

14


https://doi.org/10.1101/2020.08.14.251876
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.251876; this version posted August 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

281  between normal-BA subtype and healthy control group (Figure 6B). In addition, we
282  performed the PCA analysis based on the entire differential microbial enzymes and
283  found that the normal-BA subtype and the healthy control group exhibited closer

284  distance, as compared to the high-BA group (Figure 6C). In further characterization of
285 themicrobia profiles of the patterns of the normal-BA and high-BA groups, we

286 identified 3 species (Table S7), 68 enzymes (Table S8) and 16 pathways (Table S9)
287  that could distinguish the normal-BA subtype from the high-BA subtype, and, at the
288 sametime, could distinguish NAFLD from the healthy group. Based on the relative
289  abundance of these differential features, the study subjects were clustered into three
290 groups consistent with their BA metabolizing potentials. Features were also clustered
291  intotwo groups (Figure S6). One group (including species Flavonifractor plautii,

292  enzymes 2-dehydropantoate 2-reductase and glutamate 5-kinase and pathway

293  glycosaminoglycan degradation etc.) exhibited elevated abundance in normal-BA
294  subtype and reduced abundance in high-BA subtype. The other group (including

295  species Escherichiacoli and Ruminococcus bromii, enzymes glycerol dehydrogenase,
296  agmatinase and pathway citrate cycle, phosphotransferase system etc.) exhibited an

297  opposite distribution among the study groups.

298 Elevated secondary BA synthesis capability in the validation cohort of
299 NAFLD

300 Similar analyses were performed with the validation dataset. The secondary BA
301 synthesis genes 70-HSDH, BSH,baiA, baiB, baiCD, baiF, and baiH were reletively

15
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302  more abundant than baiE and bail. Importantly, significantly increased abundance of
303  most secondary BA synthesis genes were observed in NAFLD compared to controls
304 (Figure S7).

305 As for BA metabolizing microbial genomes, weidentified 13 MAGs, each carrying
306 at least one gene encoding BSH, HSDH or bai operon. Among these, 9 MAGs

307 exhibited atrend of increased abundance in NAFLD. Consistent with the discovery
308  cohort, these 9 MAGs belonged to B.vulgatus, and R. bromii(Table S10). Statistical
309 significance was not achieved for the increased abundances of the MAGs, likely due

310 tothesmall samplesize.

311 Discussion

312 Inthisstudy, we defined the structural and functional differencesin gut microbiota
313  between NAFLD and healthy subjects, at the resolutions of gene, species and strain.
314  Thecurrent study is novel in using WGS data to compare the gut microbiota between
315 NAFLD and healthy controls and underpinning the role of BA metabolizing

316 microbiomein NAFLD, and potentially identifying two microbiota-derived subtypes
317  of NAFLD that may have clinical implications for both biomarker as well as

318 therapeutic development. Compared with the approach of 16S rRNA sequencing,
319 WMSdataallow direct function quantification and accurate taxa assignment of the
320 entire gut microbiome, at the levels of species and strain. Out of the many differentia
321 representations of genes and species between NAFLD and healthy controls, one

322  outstanding observation is the increased abundance of secondary BA metabolizing
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323  genesand microbesin NAFLD and that BA metabolizing bacteria were dominant taxa
324  inthe gut of NAFLD. For the first time, we identified the genes and bacteria strains
325 responsible for elevated secondary BA synthesisin NAFLD. Similarly, increased

326  abundances of the BA metabolizing genes and bacterial species were observed in an
327  independent validation cohort. Considering the profound impact of BA signaling on
328 lipid and carbohydrate metabolism[19], the differential BA metabolizing genes and
329  bacterial strains we identified may serve as novel therapeutic targets for NAFLD

330 management.

331 We and others have reported elevated secondary BA production in NAFLD. [12,
332  20] In our previous study[12], we observed much increased secondary BAsin

333  NAFLD serum and consistently, an elevated taurine metabolizing microbiota, an

334 indication of increased BA metabolism in the gut. However, we did not observe any
335 significant change in the abundance of those microbes that directly metabolize BA
336 (that is, microbes encoding BSH, 7-alpha-HSDH and 7-a pha-dehydroxylase), likely
337  because the 16S rRNA sequencing approach was not able to provide a sufficient

338 resolution for functiona analysis. With the advantage WGS data, the current study
339 was ableto provide convincing evidence at a satisfactory resolution, that secondary
340 BA synthesis enzymes and microbes with secondary BA metabolizing potentials were
341  indeed elevated in NAFLD gut microbiota. As secondary BAs are potent antagonistic

342 ligandsfor FXR, data presented hereis a strong support for the hypothesis that
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343  elevated secondary BA synthesis by the microbiota contributesto NAFLD

344  etiology.[12, 21]

345 Although on average NAFLD patients exhibited elevated BA metabolizing

346  microbiota, and higher serum DCA (secondary BA) when compared to healthy

347  controls, our data showed that elevated BA metabolizing microbiotawas not a

348  unanimous phenomenon in NAFLD. More than half of the NAFLD patients (45 out of
349  82) had amicrobiota with normal BA metabolizing potential. Based on BA

350 metabolizing potentials, our NAFLD patients can be clustered into two subtypes. This
351 indicatesthat BA related pathomechanism does not apply to many NAFLD patients,
352 inlinewith the current multi-hit hypothesis.[3] Besides the differencein BA

353  metabolizing potentials, these two subtypes of the gut microbiota also exhibit

354  different abundances in other genes, pathways, and bacterial species. It isinteresting
355  tonotethat NAFLD microbiotawith higher BA metabolizing potentials also exhibited
356 elevated representation of E.coli, a potent alcohol producer[6, 22], suggesting that the
357  gut microbiota may impact NAFLD pathogenesis through multiple mechanismsin the
358 same patient.

359 BA based therapies such as obetichaolic acid has been shown to improve NASH.
360 [23] However, the response rates to OCA in improvement of one-stage of fibrosisin
361 the FLINT trial was 35% versus 19% in placebo.[24] It is plausible that NAFLD

362 patients with altered BA subtype may be more likely to respond to BA based therapies

18


https://doi.org/10.1101/2020.08.14.251876
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.251876; this version posted August 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

363 and those with anormal BA subtype should receive an alternate strategy paving the
364  pay for amicrobiome based precision medicine tool in NASH therapeutics.

365 Another outstanding observation in this study is that many strains of the same

366  speciesare functionally different. Specifically, different strains of Bacteroides ovatus
367  were clustered into different functional modules (modules 0, 2, 4 in healthy

368 communities and modules 3, 4, 6 in NAFLD communities). It is also interesting to
369 notethat only one of the four observed strains of Bacteroides ovatus was significantly
370 increased in NAFLD group. Similar observations were reported for F. prausnitzii[ 25,
371  26] and E.cali[27, 28], suggesting the genomic variability within a microbia

372  species.[29] Some of the microbiome studies based on 16S rRNA platforms may need
373  are-evauation because of this genomic variability.

374 It was interesting to note that 10 BA-metabolizing bacterial strains, including

375 B.stercoris, E.biforme, and R.bromii, were elevated and were dominant strainsin

376  NAFLD microbiota. These BA-metabolizing strains belong to two different phylum.
377 Zhao et d. proposed a concept in gut microbiota that a group of species that “exploit
378  the same class of environmental resources in asimilar way” may be considered asa
379  “guild” in ecology[30] and members of a guild do not necessarily share taxonomic
380 similarity, but they co-occur when adapting to the changing environment.[25]

381  Similarly, the 10 BA-metabolizing strains may act as a synergetic guild to promote
382  the secondary BA production in the NAFLD microbial community. There were more

383  positive interactions among these 10 strainsin NAFLD community than in healthy
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384 community, indicating elevated capabilities of secondary BA production and

385 intensified competition among these secondary BA producers within the microbial
386  guild of NAFLD. It islikely that these strains are responsible for elevated secondary
387 BA productionin NAFLD, contributing to NAFLD pathogenesis.[12] Among these
388 10strains, MAGO036 , MAGO089 , and MAGO003 with increased abundance and the
389  highest network importancein NAFLD may act as the “keystone” species[53], and
390 therefore, represent potential targets for intervention.

391 At the whole community level, the NAFLD gut microbiota exhibited significantly
392  reduced diversity compared to the healthy controls. In addition, much reduced

393 interactions among the members of the NAFLD gut microbiota were observed. With
394 lessstrains and sparse interactions, the gut microbial community in NAFLD is

395 relatively weak and unstable. Similarly, reduced biodiversity were reported in the gut
396  of obesity.[31] It is postulated that long-term dietary habit is the major cause for the
397  dtered gut microbiota.[32] The biodiversity disaster in the gut of humans demands
398 immediate attention. The restoration of the gut microbial diversity may, at the same
399 time, prevent or cure many of the microbiotarelated diseasesincluding NAFLD.
400 In summary, we identified specific genes and bacteria strains responsible for

401 elevated secondary BA production in NAFLD. These genes and strains may serve as
402  novel therapeutic targets for microbiome-based high-BA subtype of NAFLD. These
403  findings strongly support our hypothesis that elevated secondary BA synthesis

404  contributes to the development of NAFLD. In addition, our WGS study revealed the
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405 heterogeneity of the gut microbiota among NAFLD patients highlighting the
406  importance of personalized treatment for NAFLD. Our study also revealed many
407  other microbial characteristics of the NAFLD that demands attention such as the

408  much reduced diversity and the ecological guild in the gut of NAFLD.

409 Materialsand Methods

410 Datainformation and preprocessing

411 Discovery dataset: The NAFLD datasets and relevant meta data(Sequence Read

412  Archive, PRINA373901) were described previously[9] comprising 86 biopsy-proven
413 NAFLD patients. The healthy control dataset was from PRIJEB6070[33], with 38
414  hedlthy individuals with BMI < 25. These subjects were chosen because of similar
415 age and gender ratio compared to NAFLD patients to effectively reduce bias[34]

416 (Tablel & Table S1).

417 Validation dataset: 10 middle-aged NAFLD subjects [35] (PRINA420817) were
418 recruited to adiet trial and theinitial baseline data before diet interventionwere used
419 for thisstudy. 11 healthy subjects from MetaHit Project[36](Sequence Read Archive,
420 PRJEB1220) with similar age and gender ratio were chosen as controls (Table 1&
421  Table Sl).

422 All subjects provided a written informed consent and the study protocol was

423  approved by Institutional Review Board (approval number:UCSD IRB11298) or

424  registered at Clinical Trials.gov with identifier: NCT02558530.
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425 The KneadData(http://huttenhower.sph.harvard.edu/kneaddata) tool was used to
426  ensure the data consisted of high quality microbial reads free from contaminants. The
427  low quality reads were removed using Trimmomatic(SLIDINGWINDOW:4:15

428  MINLEN:75 LEADING:10 TRAILING:10). The remaining reads were mapped to the
429  human genome(hg38) by bowtie2[37], and the matching reads were removed as

430 contaminant reads from the host.

431  Gene-based taxonomic and functional profiling of gut microbiota

432  MetaPnlAn2[38] was used to identify the composition of gut microbial community
433  and to assess the abundance of the prokaryotes within each sample. Species that failed

434  to exceed 0.01% relative abundance in at least 20% samples were excluded.

435 The functional profiling of gut microbiome was determined by the HMP Unifiled
436 Metabolic Analysis Network (HUMANNZ2)[39]. In brief, high-quality metagenomic
437  reads were mapped to the pangenomes of species identified with MetaPhlAn2 and
438  these pangenomes have been pre-annotated by UniRef90 families. Reads failed to
439  map to a pangenome were aligned to UniRef90 by translated search with

440 DIAMOND[40Q]. Hitsto UniRef90 are weighted according to alignment quality,

441  sequence length and coverage. In this study, enzyme abundance was quantified by
442 regrouping (summed) according to EC number and pathway abundance by regrouping

443  (summed) genesin pathways against KEGG database.
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444 |dentification of genesrequired for secondary BA synthesis

445  Toidentify genes that encode enzymes catalyzing secondary BA synthesis, hidden
446  Markov models (HMMs) of BA-related genes were constructed. Secondary BA

447  synthesis mainly involves (1) deconjugation, (2) oxidation and epimerization and (3)
448  multi-step 7a-dehydroxylation. Enzymes participating in these processes are bile salt
449  hydrolase (BSH), hydroxysteroid dehydrogenase (HSDH) and enzymes required in
450  the multi-step 7a-dehydroxylation (including baiA, baiB, baiCD, baE, baiF, baiH and
451 bail).[18] Representative protein sequences of target enzymes were obtained from
452  Integrated Microbioal Genomes (IMG) database[41]. High quality sequences were
453  selected and aligned in Clustal Omega[42] before they were used to construct HMMs
454  on full-length proteins viahmmbuild in HMMER(3.1b2)[43]. M odel seed sequences
455  were realigned to the model using hmmalign (default mode) before rebuilding models
456  based on the obtained alignments until both model length and relative entropy per
457  position were constant. Subsequently, all protein sequences in non-redundant gene
458  catalog were screened (hmmsearch) for candidate protein sequences and sequences
459  with hmmscore > lower quartile score and e-value less than 10-5 were identified as

460 potential secondary BA synthesis associated genes.

461  Assembly-based microbial genomes

462  For functional analysis of the microbial genomes, we performed bin-based microbial

463 genome assembly with the WM S data, including de nove assembly and non-redundant
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464  human gut gene catalog construction, co-abundance clustering and determination of
465 metagenome-assembled genomes (MAG), MAG-augmented assembly and taxonomic

466  annotation.

467  De novo assembly and non-redundant human gut gene catalog constr uction

468  High-quality paired-end reads from each sample were used for de novo assembly with
469  Megahit[44] into contigs of at least 500-bp length. Genes were predicted on the

470  contigs with MetaGeneMark[45]. A non-redundant gene catalog related to NAFLD
471  was constructed with CD-HIT[46] using a sequence indentity cut-off of 0.95, with a
472  minimum coverage cut-off of 0.9 for the shorter sequences and 11,348,567 microbial

473  geneswere contained.

474  Co-abundance clustering and determination of MAG

475 Bowtie2 was used to align high quality reads to the non-redundant gene catal og.

476  Aligned results were random sampled and downsized to 15 million per sample

477  (FR-173, FR-719, FR-730, SRR4275396, SRR4275459, SRR4275469, SRR4275470
478  were excluded for not enough reads) to adjust for sequencing depth and technical
479  variability. The soap.coverage script (available at:

480  http://soap.genomics.org.cn/down/soap.coverage.tar.gz) was used to calculate

481  gene-length normalized base counts and the gene abundance profiling was calcul ated
482  asthe average abundance of 30 times of repeated sampling. All the genes were

483  clustered into MAG using M SPminer[47] based on their abundance with default
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484  parameters.

485 MAG-augmented assembly and taxonomic annotation

486  We performed augmented assembly for target MAG. Briefly, the MAG- and

487  sample-specific reads were derived by aligning al high-quality reads to the MAG
488  gene contigs with Burrows-Wheeler Aligner (0.7.17)[48], followed by de novo
489  assembly with SPAdes(3.13.0)[49] using k-mers from 21 to 55. CVtree3.0 web
490  server[50] was used to identify the taxonomy of the MAGs, which applies a

491  composition vector to perform phylogenetic analysis.

492  Statistic analysis

493 Differential features identification

494  Compositional features and functional features that present in at least 20% of the

495 samples and with average relative abundance over 0.01% in each group were selected
496 for further differential analysis. Differential features were identified by two-tailed
497  Mann-Whitney U-tests adjusted by Benjamini-Hochberg. Features with an FDR value
498 < 0.05 (FDR values < 0.1 for species) were identified as differential features. Then
499  differential compositional and functional feature profiles were used to build random
500 forest(RF) model using RandomForest package in R. Feature importance were

501 estimated viagini importance and then the best model were rebuilt by adding features
502  according to their importance ranks. Area Under the Receiver-Operator Curve(AUC)

503  was used to measure the accuracy of the models.
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504  Microbial interaction analysis

505  SparCC[51] was performed to construct compoasitionality-corrected microbial

506 interactions network, which is capable of estimating correlation values from

507  compositional data. Interactions were calculated with 100 refining interactions, after
508 which statistical significance of each interaction was estimated with 1000

509 permutations. Only interactions with p value < 0.05 were included in downstream
510 analysisand those interactions with magnitudes > 0.4 were included in the “core
511 community”. The importance of speciesin the community was calculated using

512  Hyperlink-Induced Topic Search(HITS) algorithms in Python package ‘ networkx’.
513  The networks were then visualized with Cytoscape[52] and module analysis was

514  performed with ModuLand in Cytoscape.

515 Other statistics

516 Analysisof similarities (ANOSIM) was performed based on distance matrix for

517  dtatistical comparisons of samples between groups or subtypes. P value was calcul ated
518 using 9999 permutations. p < 0.05 indicates significant difference. Hetamap was

519 plotted via“pheatmap” packagein R, and features were clustered based on euclidean
520 distance by “ward.D”. Differential features among healthy, normal-BA and high-BA
521  groups were identified with Dunn tests adjusted by Benjamini—Hochberg, and features

522  with FDR values < 0.05 were determined as significant differential features.
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719 Tablel Characteristics of the cohort included in this study
Discovery cohort Validation cohort
NAFLD Control NAFLD Control

Sample Size 86 38 10 11
Age 51.56+12.67 55.71+12.75 53.7+3.65 56.18+6.65
BMI 30.25¢546  23.03+1.88 34.1+1.2 23.19+0.92
Gender(F%/M %) 44.19/55.81  50.00/50.00 20.00/80.00 63.63/36.36
AST(U/L) 32542996 NA® 30.8+2.4 NA
LDL cholesterol(mg/dL) ~ 116+#37.12  NA 52.25+5.41% NA
HDL cholesterol (mg/dL) ~ 46+15.97 NA 20.36+1.26 NA
Triglycerides(mg/dL) 12949570  NA 50.45+7.21 NA
Total cholesterol(mg/dL) ~ 191.5+43.39 NA 95.90+5.41 NA

720  Data are presented as median+SD
721  $NA, not available. The control groupsincluded healthy individuals (Ref 33 and 36)
722  # Thedata are converted form mmol/L to mg/dL.
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725  Figure 1. The differential speciesdistinguishing NAFLD patients from healthy
726  controls. Differential species were selected by statistical tests (two-tailed

727  Mann-Whitney U-tests adjusted by Benjamini—Hochberg). Furthermore, the
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728  importance of the species that distinguish NAFLD patients from healthy controls was
729  evaluated with random forest model. The heatmap shows the relative abundance

730  (log-transformed) of the differential speciesin the NAFLD and the healthy groups,
731 thesize of the dotsis proportional to the importance and the color shows the FDR
732  vaue (-log-transformed). “+” indicates increased abundance while “-" indicates

733  decreased abundancein NAFLD.
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734
735  Figure 2. Microbiota“core community” in healthy controls (A& C) and NAFLD

736  patients (B&D). The microbial interactions were calculated using SparCC with 100

737  refining interactions, and p value of each interaction is approximated with 1000
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738  permutations. Only interactions with p value < 0.05 and interactions with magnitudes
739 > 0.4 wereincluded in the “core community”. The species were colored according to
740 the classthey belong to and the node size indicates the hub scorein their community.
741  Sub-network of top 20 hub nodes in healthy community (C) and NAFLD community
742 (D) was aso plotted. The nodes indicated by species hame were common speciesin

743  both sub-networks.
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745  Figure 3. The differential pathway markers distinguishing NAFLD patients from

746  healthy controls. Differential pathways were selected by two-tailed Mann-Whitney U-
747  testsadjusted by Benjamini—-Hochberg. Pathways with FDR values < 0.05 were

748  included. Important differential pathway markers were then identified with random
749  forest model and with the top 8 important pathways, the model achieved the highest
750 AUCvaue. (A). Theimportance of pathways evaluated in NAFLD with the random
751 forest model. (B). The AUC curve of random forest model with the top 8 important
752  pathways. (C). The abundance of secondary A biosynthesis pathway (ko00121) in the
753  healthy and the NAFLD groups. Values are the meantSD. * indicates FDR<0.05.
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Figure 4. The abundance of the bacterial genes related to secondary bile acid

synthesis. (A) Genes responsible for secondary bile acid biosynthesis can be grouped

into 3 categories: (1) deconjugation, (2) oxidation and epimerization and multi-step

7a-dehydroxylation. (B) Gene abundance in health and NAFLD groups. Differences

were identified by two-tailed Mann-Whitney U- tests adjusted by

Benjamini—Hochberg. BSH: bile salt hydrolase; HSDH: hydroxysteroid

dehydrogenase; baiA, 3a-hydroxysteroid dehydrogenase; baiB, bile acid-coenzyme A

ligase; baiCD, 7a -hydroxy-3-oxo0-D4-cholenoic acid oxidoreductase; baiE, bile acid

7a- dehydratase; baiF, bile acid coenzyme A transferase/hydrolase; baiG, primary bile
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764  acid transporter; baiH, 7beta-hydroxy-3-oxochol-24-oyl-CoA 4-desaturase; bail, bile
765  acid 7beta-dehydratase. *** indicates FDR<0.001.
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766
767  Figure 5. BA metabolizing MAG in NAFLD and healthy subjects. (A) MAG

768  exhibiting differential abundance between healthy controls and NAFLD patients.
769  Differential MAG were selected by two-tailed Mann-Whitney U- tests adjusted by
770  Benjamini—-Hochberg. MAG with FDR values < 0.1 were included. Values are mean
771 £ SEM. Interaction network for BA metabolising MAG community in healthy

772  controls (B) and NAFLD patients (C). Microbial interactions were calculated using
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773  SparCC with 100 refining interactions, and p value of each interaction is
774  approximated with 1000 permutations. Only interactions with p value < 0.05 were
775  included.
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777  Figure 6. Subgroups of NAFLD patients with different abundances of the secondary
778  BA synthesis genes. (A) NAFLD patients were clustered into two subgroups:

779  normal-BA subgroup and high-BA subgroup according to the abundances of 3

780 differential secondary BA synthesis genes. (B) Comparison of the abundances of 3
781 differential secondary BA synthesis genes among healthy control, normal-BA and

782  high BA groups. They were all significantly increased in high-BA subgroup, but was
783  not different between normal-BA subgroup and healthy group (Dunn tests adjusted by
784  Benjamini—Hochberg). (C) PCA plot based on the differential enzymes. Subjects were
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785  clustered according to the secondary BA metabolizing potentials (p <0.001 with
786 ANOSIM anaysis). Vaues are mean+SD. *** indicates FDR<0.001.
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