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Abstract

Background: Evidence for aspirin’s chemopreventative properties on colorectal cancer (CRC) is
substantial, but its mechanism of action is not well-understood. We combined a proteomic approach

with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk.

Methods: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable
isotope labelling with amino acids in cell culture (SILAC) based proteomics approach identified
altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N=3,301) and
expression QTLs (eQTLs) from the eQTLGen Consortium (N=31,684) were used as genetic proxies for
protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was
performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer
Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of

Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls).

Results: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCMB6,
RRM2 and ARFIP2 expression and MR analysis showed that a standard deviation increase in
mRNA/protein expression was associated with increased CRC risk (OR:1.08, 95% Cl:1.03-1.13,

OR:3.33, 95% Cl:2.46-4.50 and OR:1.15, 95% Cl:1.02-1.29, respectively).

Conclusion: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to
increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin

cytoskeletal regulation indicating a possible role in aspirin’s reduction of metastasis.

Impact: Our approach has shown how laboratory experiments and population-based approaches can

combine to identify aspirin-targeted proteins possibly affecting CRC risk.
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377 Introduction

378  Colorectal cancer (CRC) is the fourth most common cancer worldwide (1). Observational studies as
379  well as randomized controlled trials (RCTs) using aspirin for the prevention of vascular events have
380  shown that aspirin use is associated with a decrease in CRC incidence and mortality (2-5). This was
381  primarily thought to be through the acetylation of the cyclooxygenase (COX) enzymes thereby

382 inhibiting their action (6). These enzymes are involved in the COX/prostaglandin E2(PGE2) signalling

383  pathway which is frequently upregulated in CRC, driving many of the hallmarks of cancer (7,8).

384  Evidence for COX-independent mechanisms have also emerged, such as the prevention of NFkB

385  activation, inhibition of the extracellular-signal-regulated kinase (ERK) signalling pathway, cell cycle
386  progression inhibition and possible induction of autophagy (7,9). An aspirin derivative that does not
387  inhibit COX reduced the mean number of aberrant crypt foci (an early lesion in colorectal

388  carcinogenesis) in a mouse model of CRC more than aspirin itself (10). Furthermore, aspirin was able
389  toinhibit proliferation and induce apoptosis in COX-2 negative colon cancer cell lines as well as

390 reducing angiogenesis in 3D assays where COX-inhibitors showed no effect (11-13). Clinically, aspirin
391  has been shown to reduce tumour recurrence in phosphatidylinositol-4,5-bisphosphate 3-kinase
392  catalytic subunit alpha (PIK3CA) mutant cancer whereas rofecoxib (a COX-2 selective inhibitor)

393  showed no effect (14) and has also been shown to improve survival in patients with human

394  leukocyte antigen (HLA) class | antigen expression, regardless of COX-2 expression (15). There is now
395  asignificant number of studies that indicate the mechanism behind the action of aspirin on CRC risk

396 s still not fully understood and that multiple mechanisms are involved (16).

397 In conventional epidemiological studies it is often difficult to determine causality due to limitations
398  of confounding and reverse causation. While RCTs can overcome these limitations, they are

399  generally limited to assessing the causal role of health interventions or pharmaceutical agents on
400 disease outcomes, rather than understanding biological mechanisms. Furthermore, in the context of
401  cancer, RCTs for cancer primary prevention are not always feasible, as they require long-term follow-

402  up for the cancer to develop. Mendelian randomization (MR} is an epidemiological method which
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403  applies a similar notion of randomization as in the RCT to evaluate causality. In MR, genetic variants
404  (most commonly single nucleotide polymorphisms (SNPs)) are used to proxy an exposure of interest
405  (17). As genetic variants are randomly assorted at conception, an individual’s genetic makeup is
406  unlikely to be influenced by exposures later on in life, thus reducing the possibility of confounding

407  and reverse causation (18).

408  More recently, the increase in genome-wide association studies for molecular traits has identified
409  SNPsthat are associated with protein and mRNA expression levels, thereby providing protein

410 quantitative trait loci (pQTLs) and expression quantitative trait loci (€QTLs) (19,20), which may be
411  used to investigate the causal mechanism of drug targets on disease risk (21).Such methods can
412  complement laboratory experiments to better understand the mechanism of action of drugs on

413  cancer growth and progression.

414  Due to evidence showing that aspirin may prevent adenoma formation (22) and adenomas being the
415  precursors of most colorectal cancers (23), we focused on a colorectal adenoma cell line (RG/C2) in
416  this study and identified altered protein expression in relation to aspirin treatment. Findings were
417  then taken forward into an MR analysis to investigate which proteins targeted by aspirin may be
418  causally implicated in reducing risk of CRC incidence, thereby providing insight into alternative

419  mechanisms/pathways for the action of aspirin.

420
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4221 Methods

422  Cell culture experiments

423  The S/RG/C2 (referred to as RG/C2 henceforth whereby the prefix “S” denotes that they are from a
424  sporadic tumour) (RRID:CVCL_IQ11) colorectal adenoma cell line was derived in the Colorectal

425  Tumour Biology group and is described in detail elsewhere (24). These cells express RG/C2 cells

426  express WT full length APC (251) as well as wild type KRAS and PIK3CA (252) but express mutant
427 TP53 (25-27) .RG/C2s were cultured in Dulbecco’s Modified Eagles Medium (DMEM) (Life

428  Technologies, Paisley, UK) and supplemented with 20% foetal bovine serum (FBS)(Life Technologies,
429  Paisley, UK), L-glutamine (2mM)(Life Technologies, Paisley, UK), penicillin (100 units/ml) (Life

430  Technologies, Paisley, UK), streptomycin (100 ug/ml) (Life Technologies, Paisley, UK) and insulin (0.2
431  units/ml) (Sigma-Aldrich, Poole, UK). Cells were mycoplasma tested (Mycoalert Plus mycoplasma
432  detection kit; Lonza Group, Basal, Switzerland) and experiments performed within 10 passages.

433 Aspirin (Sigma-Aldrich) was dissolved in fresh growth medium and diluted to form concentrations of

434 2mM and 4mM.

435  Generation of proteomic data - SILAC approach

436 A stable isotope labelling with amino acids in cell culture (SILAC) approach was carried out on RG/C2
437 cells treated with OmM, 2mM and 4mM aspirin for 24 hours. Control cells (OmM aspirin) were

438 cultured with an L-arginine and L-lysine (light labelling), 2mM were cultured with 2H4—Iysine and 13Cs-
439  arginine (medium labelling) and 4mM were cultured with >N,**C¢-lysine and °N,**Cg-arginine (heavy
440  labelling) (Cambridge Isotope Laboratory, Massachusetts, United States). These methods were based

441  on the SILAC-based mass spectrometry approach by Trinkle-Mulcahy et. al (2008) (28).

442 Cells were cultured with aspirin and the isotopes for 24 hours before extracting protein lysates. This
443  experiment was carried out in duplicate. Lysates from the three conditions were pooled ina 1:1:1
444  ratio, separated by SDS-PAGE and then subjected to in-gel tryptic digestion. The resulting peptides
445  were analysed by liquid chromatography mass spectrometry using an LTQ Orbitrap Velos mass

446  spectrometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and the mass spectral data
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447 analysed using Proteome Discoverer software v1.4 (Thermo). Details of SILAC labelling and

448  proteomics have been previously published (29). To determine proteins whose expression is altered
449  due to aspirin treatment, we applied a threshold of a 1.4 fold change between 4mM/control and
450  2mM/control, as suggested previously (30). Results were also limited to a variability of <100% and a

451  peptide count of at least 2.

452  Statistical analyses

453  Two-sample MR

454  To assess the effect of protein/mRNA expression of aspirin targets on risk of CRC, we used a two-
455  sample MR approach. Firstly, SNPs were identified to proxy for protein/mRNA expression of the
456  proteins shown to be altered in cell culture. Genetic association estimates with protein/mRNA

457 expression levels (pQTLs/eQTLs) (sample 1) were integrated with genetic association estimates with

458  CRCrisk (sample 2).

459  Genetic predictors for protein and gene expression

460  Protein quantitative trait loci (pQTLs) were obtained from the INTERVAL study which comprises

461  about 50,000 individuals within a randomised trial evaluating the effect of varying intervals between
462  blood donations and how this affects outcomes such as quality of life (31). Relative protein

463 measurements were taken using SOMAscan assays for 3,622 plasma proteins in a subset of 3,301
464 participants, randomly chosen. Genotyping and imputation (using a combined 1000 Genomes Phase
465  3-UK1O0K as the reference panel) of these individuals provided measures for 10,572,814 variants that
466  passed quality control and were taken forward in a GWAS analysis to identify pQTLs for the

467  measured proteins (details of quality control are mentioned elsewhere (19)). pQTLs identified

468 represent a standard deviation (SD) change in protein expression (19).To adjust for multiple testing,
469  aBonferroni correction (0.05/10,572,814=4.72x10"°) was applied and pQTLs below this P-value

470  threshold were used to proxy for protein expression in our analysis (32).

471  Inthe absence of a relevant pQTL for the protein of interest, an equivalent mRNA expression GWAS

472  was used instead. Expression quantitative trait loci (eQLTs) were extracted from the eQTLGEN
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473  consortium consisting of 31,684 individuals from 37 datasets, of which 26,886 samples were from
474 blood and 4798 from peripheral blood mononuclear cells (PBMCs). Due to the differing methods for
475  genotyping between the studies, variants for each transcript ranged between 2,337-31,684 variants
476  (20). For this reason, a Bonferroni correction threshold was adjusted depending on the number of
477  variants measured for each transcript (0.05/number of variants) (32). eQTLs were standardized and
478  meta-analysed through a Z-transformation, therefore eQTL effect sizes are reported as standard

479  deviation (SD) changes (20).

480 Inthis analysis, both cis (within 1 Mb of the gene transcription start sit) and trans QTLs were used to
481  proxy for expression. Once suitable pQTLs/eQTLs were identified, linkage disequilibiurm (LD)

482  clumping at an R” of 0.001 was carried out to remove SNPs that are inherited together and so that
483  only the SNP most strongly associated with the mRNA/protein expression within a 10,000kb window

484 was used.

485  Genetic association for colorectal cancer

486 Genetic association summary statistics for CRC, comprising 55,168 colorectal cancer cases and

487 65,160 controls, were obtained from the Colon Cancer Family Registry (CCFR), Colorectal

488  Transdisciplinary (CORECT) and Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia
489  and UK Biobank (33—35). Quality control procedures have been described elsewhere (33). Ethics

490  were approved by respective institutional review boards.

491  Evaluating the association of mRNA/protein expression on colorectal cancer

492  Analyses were carried out in R version 3.2.3 using the MR-Base TwoSampleMR R package

493 (github.com/MRCIEU/TwoSampleMR) (36), which allows the formatting, harmonisation and analysis
494 of summary statistics. The package reassigns alleles so that the effect allele has a positive association
495  with the exposure and so represents an increase in protein/mRNA expression. In turn, allele

496 harmonization ensures that the same allele (that predicts increased expression) is the effect allele in
497  the outcome dataset as well. In the case of palindromic SNPs (represented by either A/T or G/C on

498 both the forward and reverse alleles) these were also harmonized where possible based on allele
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499 frequencies. If allele frequencies for the effect allele and the other allele were similar, thus making

500  harmonization difficult, these SNPs were dropped from the analysis (36).

501  Separate MR analyses were carried for cis and trans pQTLs as well as cis and trans eQTLs. For

502 proteins with just one pQTL or eQTL, Wald ratios (SNP-outcome estimate + SNP-exposure estimate)
503  were calculated to give a causal estimate for risk of CRC per SD increase in mRNA/protein

504  expression. Where more than one QTL was available as a proxy for the exposure (mMRNA/protein
505 levels), a weighted mean of the ratio estimates weighted by the inverse variance of the ratio

506 estimates (inverse-variance weighted (IVW) method) was used (37).

507  When one genetic variant used to proxy for an exposure is invalid e.g. due to horizontal pleiotropy
508 (where a genetic variant affects the outcome through an alternative exposure/pathway of interest)
509  (17), then the estimator from the IVW method becomes biased (38). As a sensitivity analysis,

510 alternative MR methods were used when more than 2 SNPs were available as instruments for

511  mRNA/protein expression (MR Egger, simple mode, weighted mode, and weighted median)

512 (36,39,40). Unlike the IVW method, the MR Egger method is not constrained to pass through an

513  effect size of 0, thereby allowing the assessment of horizontal pleiotropy through the y intercept.
514  (38,41). The weighted median approach is useful as it allows a consistent estimate even if 50% of the
515  SNPs proxying protein/mRNA expression are invalid instruments (40) and the mode estimate also
516  provides a consistent causal effect estimate even if the majority of the instruments are invalid, as

517  the estimate depends on the largest number of similar instruments (39).

518  Results

519 Mendelian randomization of gene/protein expression and risk of colorectal cancer
520 identified in aspirin treated human adenoma cells

521  In order to investigate the early changes that could reduce cancer risk, we investigated the

522 proteome of aspirin treated adenoma derived cells to identify new targets of aspirin that may alter
523  therisk of CRC by combining these proteomic results with an MR analysis. After applying a filtering

524  threshold based on fold change and variability in expression, we identified 125 proteins whose
22
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525  expression appeared to be regulated by aspirin treatment (Figure 1) (S1 Table), although 5 were

526  uncharacterised from mass spectrometry and therefore excluded from the analysis.

527 Of the 120 proteins, expression of 28 proteins was measured in the INTERVAL study, of which 12
528  proteins had pQTLs that were below the Bonferroni significance threshold (0.05/10,572,814 = 4.73
529  x10°). From these 12 proteins, cis pQTLs were available for 3 proteins and trans pQTLs for 10

530  proteins (S2 Table). In the absence of available pQTLs, eQTLs for the transcripts of the identified
531  proteins were used instead. Of the 108 proteins with no pQTLs available, expression of 89 mRNAs
532  were measured in the eQTLGen consortium, of which 77 proteins had eQTLs that were below the
533 Bonferroni significance threshold. From these 77 proteins, cis eQTLs were available for 71 proteins
534 and trans eQTLs were available for 37 proteins (S3 Table). In total, there were 318 unique SNPs

535  proxying for protein and mRNA expression, of which outcome summary statistics were available for

536 305 SNPs to test for association between 99 mRNA/proteins against risk of CRC.

537  Two-sample MR analysis using the Wald ratio or IVW method was conducted to test the effect of
538 increased mRNA/protein expression on the risk of CRC incidence using cis and trans pQTLs (54 Table)
539 as well as cis and trans eQTLs (S5 Table). In total, 99 proteins were tested for association with CRC
540 incidence. To correct for multiple testing, a Bonferroni adjusted threshold of significance was applied
541  (0.05/99= 5.05x10™) but we also considered associations of a nominal significance (P value<0.05).
542 Overall, 1 protein with cis eQTLs and 2 with trans eQTLs were associated with CRC incidence at P<
543  5.05x10*and a further 3 proteins with cis eQTLs, 1 with a trans eQTL and 1 instrumented by a trans

544  pQTL were associated with CRC incidence at a P value < 0.05.

545 Increased mRNA expression of Human Leukocyte Antigen A (HLA-A) and mini chromosome

546 maintenance 6 (MCM&6) instrumented by cis eQTLs was found to be associated with an increased risk
547 of CRC incidence (OR 1.28, 95% Cl:1.04-1.58, P value: 0.02 and OR 1.08, 95% Cl: 1.03-1.13, P value:
548 9.23x10™ per SD increase in mRNA expression, respectively). An SD increase in mRNA expression of
549  fatty acid desaturase 2 (FADS2) and DNA polymerase delta subunit 2 (POLD2) instrumented by cis

550 eQTLs was associated with a decrease in risk of CRC incidence (OR 0.94, 95% Cl: 0.90-0.97, P value:
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551 2.50x10 and OR 0.84, 95% Cl: 0.75-0.94, P value: 1.17x107, respectively) (Figure 2, Table 1). For
552  FADS2 and POLD2, results were consistent using other MR methods (weighted median, weighted
553  mode and simple mode) and the MR Egger test shows no evidence of pleiotropy (S6 Table,

554  Supplementary Figure 1). From the cis eQTL analysis, only results for FADS2 survived the Bonferroni

555  significance threshold.

556  Proteinsinstrumented by trans eQTLs include ribonucleoside-diphosphate reductase subunit M2
557 (RRM2), stathmin-1 (STMN1) and lipin 1 (LPIN1). Anincrease in RRM2 was estimated to increase the
558 risk of cancer incidence (OR 3.33, 95% Cl: 2.46-4.50, P value: 6.25x10™* per SD increase in mRNA
559 expression) whereas an increase in STMN1 and LPINI was associated with decreases in the risk of
560 CRC incidence (OR 0.72, 95% Cl: 0.54-0.97, P value: 0.03 and OR 0.40, 95% Cl: 0.32-0.50, P value:
561  5.50x10™° per SD increase in mRNA expression, respectively). From the trans eQTL analysis, results

562  for RRM2 and LPIN1 both survived the Bonferroni significance threshold.

563  For proteins instrumented by pQTLs, ADP ribosylation factor interacting protein 2 (ARFIP2) proxied
564 using a trans pQTL conferred an increased risk of CRC incidence (OR 1.15, 95% Cl: 1.01-1.29, P value:

565  0.03 per SDincrease in protein expression).

566 Overall, the directions of effects between HLA-A, MCM6, RRM2 and ARFIP2 and CRC risk obtained
567  from our MR analysis concur with those anticipated given the protective role of aspirin on CRC and
568 the effect of aspirin treatment on expression of these proteins. Aspirin reduces the protein

569  expression of HLA-A, MCM6, RRM2 and ARFIP2 (fold change in protein expression with 4mM aspirin
570 treatment compared to control: 0.55, 0.65, 0.36 and 0.69, respectively, Table 1) and aspirin intake is
571  associated with a decreased risk of CRC (2—4). Our MR analysis shows that increased expression of
572 these proteins is associated with an increased risk of CRC incidence. Taken together, our results

573 indicate that a possible mechanism through which aspirin decreases the risk of CRC incidence is

574 through the downregulation of HLA-A, MCM6, RRM2 and ARFIP2. The direction of effect was less
575  consistent for the other 4 proteins (FADS2, POLD2, STMN1 and LPIN1) showing opposite results to

576  what we would expect based on the proteomic results (Table 1).
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5886 proteins identified from mass spectrometry
and SILAC approach
Proteome filtering:
-1.4 fold change in protein expression between
s 4 M /cOnNtrol and 2mM/control
-<100% variability between 4mM/control
-A count of at least 2 or more
A 4
125 proteins identified with change in
expression
— 5 Uncharacterised proteins excluded
w
120 proteins
28 proteins quantified 89/108 mRNAs quantified
in the INTERVAL study in the eQTLGen Consortium
16 proteins had pQTLs 12 mRNA had eQTLs
that did not survive the that did not survive the
Bonferroni significance Bonferroni significance
threshold (0.05/number threshold (0.05/number
of SNPs measured) of SNPs measured)
12 proteins with 77 proteins with
pQTLs eQTLs
3 proteins with 10 proteins with 71 proteins with 37 proteins with
cis pQTLs trans pQTLs cis eQTL trans eQTLs
(total cis pATLs=6) | [(total trans pQTLs= 21) (total cis eQTLs=201)| |(total trans eQTLs = 125)
\ y J
Total = 353 pQTLs
and eQTLs
(318 unique rsids)
13 SNPs not
found in CCFR,
CORECT and GECCO
305 SWPs available
with outcome
summary statistcs
578

579 Figure 1- Flow diagram of SNP selection. 5886 proteins were identified using the SILAC proteomic approach. After applying
580 a threshold, 125 proteins appear to be regulated by aspirin treatment, of which 5 were uncharacterised proteins and were
581 therefore excluded from the analysis. In total, 12 proteins and 77 mRNAs had been quantified and had pQTLs/eQTLs below
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582 the Bonferroni significance threshold. Overall, summary statistics for 353 pQTLs and eQTLs were available, of which
583 summary statistics for 305 of the SNPs was also present in the CCFR, CORECT and GECCO consortia.

584
N SNP OR(95%Cl) Method Pvalue
HLA-A e 1 1.28(1.04-1.58)  WR 0.02
MCME - e - 2 1.08(1.03-1.13)  WW  923x10*
: -
. 3
FADS2 4 . 6 0.94(0.90-097)  WW 250x10*
POLDZ { g 3 0,84 (0.75-094) VW  1.17x10°
RRAMZ | . . 1 3.33(246-4500 WR  g25x107¢
STMNT —! E 1 072(054-087) WR 003
LPINT { - E 1 040(032-050) WR s550x10"
: g
ARFIP2 4 - = 1 1.15(1.02-1.29)  WR 0.03
i =
0 1 2 3 4
OR (859 C1)
585

586 Figure 2- Forest plot of mMRNA/protein associations with CRC incidence at a P value of <0.05. The upper box presents results
587 using cis eQTLs, followed by trans eQTLs and finally trans pQTLs. Each dot on the plot represents the change in OR of CRC

588 incidence per SD increase in mRNA/protein expression and the horizontal lines either side of the dot represent the 95%
589 confidence intervals. The dotted line represents a null association between expression and cancer incidence. The number
590 of SNPs used as instruments as well as the OR, the method and P value of association are also reported. Abbreviations: N

591 SNP, number of SNPs; OR, odds ratio; Cl, confidence intervals; IVW, inverse-variance weighted; WR, Wald ratio.
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3 Table 1- MR results of the 8 proteins associated with CRC incidence

Fold change of protein expression in
Association of predicted expression with CRC risk
response to aspirin

Variance

2mM vs 4mM vs o
Gene Instrument N SNP explained R® Method OR LCI ua P value Effect Effect i
Control Control g
(%)
Q.
@
FADS2 cis eQTL 6 2.29 IVW 0.94 0.90 0.97 2.5x10™ 0 0.61 0.26 ] 9(:)
o
= -4 [vs]
MCM6 cis eQTL 2 3.85 VW 1.08 1.03 1.13 9.23x10 0 0.59 0.65 0 ;
Q
P
POLD2 cis eQTL 3 0.05 VW 0.84 0.75 0.94 1.73x10° 0 0.54 0.35 0 _E
o
HLA-A cis eQTL 1 5.95 WR 1.28 1.04 1.58 0.02 0 0.55 0.64 0 é
>
QD
LPIN1 trans eQTL 1 0.08 WR 0.40 0.32 0.50 5.50x107° O 0.65 0.64 0 S
D
RRM2  transeQTL 1 0.19 WR 3.33 246 450  6.52x107° i 0.33 0.36 i 8
7]
@

STMN1 trans eQTL 1 0.04 WR 0.72 0.54 0.97 0.03 0 0.47 0.61 0

ARFIP2 trans pQTL 1 0.09 WR 1.15 1.01 1.29 0.03 0 0.67 0.69 0

4 The table shows the inverse-variance weighted (IVW) or Wald ratio (WR) results for the 7 proteins associated with CRC incidence. The results indicate the change in OR of CRC incidence per
5 unit increase in mRNA or protein expression (z-score or standard deviation, respectively). Results that are consistent with aspirins’ effect on protein expression are in bold font. Abbreviations:
6 N SNP, number of SNPs; OR, odds ratio; LCl, lower confidence interval; UCI, upper confidence interval; SE, standard error; IVW, inverse-variance weighted; WR, Wald ratio.
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597

so8  Discussion

599  Evidence for the use of aspirin in the prevention of CRC is increasing (2—5). However, the mechanism
600 through which it functions is still not fully understood. By combining both a proteomic-based
601  approach as well as an MR analysis, our results provide mechanistic insights into how aspirin could

602 decrease the risk of CRC.

603 Using a SILAC-based proteomics approach, 120 proteins appear to be regulated at 24 hours by 4mM
604 and 2mM aspirin treatment. Genetic variants (pQTLs and eQTLs) were identified and used to proxy
605  for protein and mRNA expression levels of the identified proteins to test for evidence of a causal

606  effect on CRC incidence. When no pQTL was available for a protein, eQTLs were used instead.

607 Overall, 4 cis eQTLs, 3 trans eQTLs and 1 trans pQTL were associated with cancer incidence at a P
608  value < 0.05. Increased expression of HLA-A and MCM6 proxied by cis eQTLs were associated with an
609 increase in the risk of CRC incidence and an increase in RRMZ2 and ARFIP2 (proxied by a trans eQTL
610 and trans pQTL, respectively) also conferred an increased risk. Therefore, suppressing the expression
611  of these four proteins could decrease the risk of CRC. As the proteomic results showed that aspirin
612  treatment decreases the expression of these proteins, this could be a potential mechanism by which
613  aspirin reduces the risk of CRC. However, only results for RRM2 survive the Bonferroni significance

614  threshold, indicating that further studies are required to verify these results.

615  The proteins MCM6 and RRM2 are both involved in repair of DNA damage. MCMG6 is part of a

616  helicase complex involved in unwinding DNA and is involved in repair of double stranded breaks

617  (DSBs) in homologous recombination through interaction with RAD51. This interaction is required for
618  chromatin localisation and formation of foci for DNA damage recovery (42). Likewise, RRM2 is part
619  of a protein complex called ribonucleotide reductase which catalyses the biosynthesis of dNTPs and

620  is therefore required for DNA replication and damage repair (43).
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621  Cancer cells commonly lose the DNA damage response, which results in the accumulation of

622  mutations that may be oncogenic (44). Because of this, tumour cells end up relying on a reduced

623  number of repair pathways and are therefore more sensitive to inhibition of DNA damage repair

624  pathways when compared to normal cells which have full capability of DNA repair (45). Drugs that
625  target these other pathways have been shown to selectively kill the cancer cells which is known as
626  synthetic lethality (46,47). It may be that by reducing the expression of DNA repair proteins, which
627  combined with DNA damage response proteins that are already mutated during tumour progression,

628 aspirin can induce cell death in the developing tumour cells reducing the risk of developing cancer.

629  The MR results for the proteins ARFIP2 and HLA-A also concur with our SILAC proteomic results.
630  ARFIP2 is a protein previously shown to play a role in membrane ruffling and actin polymerization,
631  therefore regulating the actin cytoskeleton (48). The remodelling of the actin cytoskeleton is known
632  to be involved in cancer metastasis (49). This is of particular interest as aspirin reduces the odds of
633  colorectal adenocarcinoma metastasis by 64% (OR:0.36 (95% Cl: 0.18-0.74)) (50) and this may be
634  through the reduction in ARFIP2 expression. With regards to HLA-A expression and cancer risk,

635  results from a cohort study showed that aspirin was more chemopreventative in tumours that

636  expressed HLA class | antigen (which includes HLA-A, HLA-B and HLA-C) (rate ratio (RR) 0.53, 95% ClI:
637  0.38-0.74) and this association was no longer apparent in tumours that lacked expression of this
638  protein (15). Our MR analysis showed that an increase in HLA-A was associated with increased CRC
639  risk, and that aspirin may reduce this risk through a reduction in HLA-A expression, however further

640 investigation is required before any conclusions can be drawn.

641 Our MR analysis results also showed that increased mRNA expression of FADS2, POLD2, LPIN1 and
642  STMN1 all decreased the risk of CRC, indicating that decreased expression increases the risk of

643  cancer. Our proteomic results showed that aspirin decreases the expression of these proteins and
644  aspirin is known to decrease cancer risk. The exact meaning behind the inconsistencies in direction
645  of effect is unclear but may be related to the dosage used in this study. A randomized trial of aspirin
646  to prevent adenomas showed that lower doses reduced adenoma risk more than higher doses,

647  suggesting that lower doses of aspirin may affect mRNA/protein expression differently than higher
29
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648  doses (51,52). Furthermore, the genetic instruments used to proxy for POLD2, LPIN1 and STMN1
649  explain little of the variance in mRNA expression (0.05, 0.08 and 0.04%, respectively) indicating that

650  SNPS that explain more of the variance are required before any conclusions can be made.

651 Further limitations also exist in our analysis. Firstly, the exact correlation between eQTLs and pQTLs
652 has not been fully determined. Secondly, it is difficult to interpret results using trans eQTLs and

653  pQTLs without clear confirmation that these SNPs directly influence the gene/protein expression. It
654  may be that they indirectly influence expression, for example, trans eQTLs may regulate gene

655  expression by affecting expression of a nearby cis gene which is in fact a transcription factor that is
656  regulating the expression of the trans gene (53). Thirdly, both the pQTL and eQTL associations were
657 carried out using blood samples or PBMCs (19,20), therefore these SNPs estimate changes in gene
658  and protein expression in circulating immune cells only. As found by the Genotype-Tissue Expression
659  (GTEXx) study, cis eQTLs are either shared across tissues or are specific to a small number of tissues
660  (54). Therefore, the use of these eQTLs and pQTLs measured in the blood may not be fully suitable
661  as proxies for mRNA and protein expression in the epithelium of the colon and rectum. Furthermore,
662  the units for the eQTLs and pQTLs represent SD changes in expression, making interpretation of the
663 results difficult. However, we can interpret the direction of effect as well as the statistical

664  significance of the association (P values) for these analyses. Moreover, pQTLs and eQTLs could not
665  be identified for 20 of the proteins found to be regulated by aspirin in our proteomic approach,

666  therefore we could not test the association of their expression with CRC risk. Finally, apart from the
667  association of FADS2 with CRC incidence, the other associations proxied by cis eQTLs found by our

668  study are not below the Bonferroni threshold of significance (P value < 4.63x10™).

669  MRis commonly used to proxy for a drug’s effect on risk of various outcomes after identification of
670 its target. Genetic variants that predict lower function of 3-hydroxy-3-methylglutaryl coenzyme A
671  (HMG-CoA) reductase are commonly used to investigate the effect of lowering LDL cholesterol via
672 the use of statins on outcomes such as ovarian cancer, Alzheimer’s disease or coronary heart disease
673  (55-57). These studies involve investigation of a drug’s effect via a known target on an outcome.

674  However, this approach would be difficult to apply in the case of drugs with pleiotropic targets such
30
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675  asaspirin. Therefore, in order to identify all possible targets of aspirin, a proteomic approach was
676 firstly applied and targets that may affect risk of cancer were identified through using MR. To our
677  knowledge, this is the first study that combines basic science and MR to generate hypotheses of a

678  drug’s mechanism of action in cancer.

679  Further experiments need to be conducted to confirm the effect of aspirin on gene and protein

680  expression and the consequent effect this may have on hypothesised pathways such as DNA repair
681  before definitive conclusions can be made. However, the potential of this unbiased approach to gain
682  mechanistic insight is clear, allowing hypothesis driven research will better inform the clinical use of

683  aspirin for the prevention of CRC.
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