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Abstract

We deeply sequenced two pairs of widely used infectious clones (4
plasmids) of the bipartite begomoviruses African cassava mosaic virus
(ACMV) and East African cassava mosaic Cameroon virus
(EACMCYV). The sequences of the ACMV clones were quite divergent
from our expectations. We have made raw reads, consensus plasmid
seguences, and the infectious clones themselves publicly available.
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Main text

Infectious clones are a central tool of molecular virology. Circular
single-stranded DNA viruses such as begomoviruses are often cloned
in atwo-step process to create partial tandem dimers containing two
copies of the virus origin-of-replication hairpin. This configuration is
thought to enhance infection by facilitating release of monomer virus
segment units by the viral Replication protein (Stenger et al., 1991).
Cloned isolates of African cassava mosaic virus (ACMV) and East
African cassava mosaic Cameroon virus (EACMCV) from Cameroon
provided conclusive proof of synergy between two major clades of
cassava begomoviruses (Fondong et a., 2000), which was a defining
feature of an epidemic of mosaic disease that devastated cassava
production in sub-Saharan Africa (Mbewe et a., 2020; Pitaet al.,
2001). These clones have been used extensively for molecular genetic
analysis (Amin et al., 2011; Beyene et a., 2016; Chauhan et al., 2018;
Chellappan et al., 2004, 20053, 2005b; Chowda Reddy et al., 2008,
2009, 2012; Fondong et al., 2007; Kuriaet al., 2017; Ndunguru et al.,
2016; Petil et al., 2016; Pita et al., 2001; Reyes et al., 2013;
Vanitharani et al., 2003, 2004), including analysis of spontaneous
mutation (Aimone et al., 2020; Chen et al., 2019; Fondong and Chen,
2011). Herein we describe new sequence resources for these clones,
which essentially confirm the sequence of the EACMCYV clones and
clarify the identity of the ACMV clones.

Complete and accurate plasmid sequences considerably simplify
molecular analysis of infectious clones and design of new constructs.
To confirm the sequences of the four plasmidslisted in Table 1, we
grew transformed E. coli DH5a. cultures overnight at 37 °C with
ampicillin selection and purified each plasmid with the Qiagen
Plasmid Maxi kit. Libraries were prepared from Covaris-sheared
plasmid DNA in triplicate with the NEBNext Ultrall kit and
sequenced on the lllumina NextSeq 500 platform in the 150 bp paired-
end read configuration. Data are available as SRA BioProject
PRINAG49777.

Three of these plasmids were described by Fondong et al. (2000), and
the fourth, for EACMCV DNA-B, was described later (Chowda Reddy
et al., 2012; Fondong and Chen, 2011) dueto greater difficulty in
cloning that sequence in the partial-tandem-dimer configuration. These
plasmids had not previously been fully sequenced, so we deduced
seguence maps based on the restriction sites used, including for
partial-tandem-dimer virus segment inserts. Reads were trimmed with
CutAdapt 1.16 (Martin, 2011) and aligned to the hypothesi zed
sequences with the Burrows-Wheeler Aligner (BWA-MEM v0.7.13
(Li, 2013)). Variants relative to each reference sequence were
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identified with samtools v1.8 (Li et al., 2009) and VarScan v2.4.4
(Koboldt et a., 2012). We corrected each plasmid sequence (Table 1)
and aligned reads to it a second time.

Table 1. GenBank and Addgene identifiers for the four previously described infectious clones
and corresponding virus (monomer) sequences. Six complete sequences are described for the
first time here, whereas AF112354 and FJ826890 were previously described (Chowda Reddy et
al., 2012; Fondong and Chen, 2011; Fondong et al., 2000).

GenBank accession
Plasmid Virus Addgene ID
pBluescript 1| KS(+) ACMV DNA-A 1.4mer MT856193 | MT858793 159134
pUC19 ACMV DNA-B 1.5mer MT856194 | MT858794 159135
pBluescript I| KS(+) EACMCV DNA-A 1.6mer | MT856195 | AF112354 159136
pSL1180 EACMCV DNA-B 1.6mer MT856192 | FJ826890 159137

The EACMCV DNA-A and DNA-B clones had four and two single-
nucleotide differences relative to their corresponding GenBank
accessions (AF112354.1 and FJ826890.1). We list these differencesin
the standard coordinate system (relative to the virus nick site) in the
order new sequence-old sequence: T139A, G161R [note ambiguity
codein AF112354.1], T181TC, and A206AC for DNA-A and
T1671G, A2724AT for DNA-B. These differences may reflect errors
or they may be true differences resulting from mutations that occurred
in E. coli.

The consensus sequences of the ACMV clones, by contrast, were 3.1%
and 5.8% divergent from the sequences (AF112352.1 and
AF112353.1) originally reported by Fondong et al. (2000), as
calculated with Sequence Demarcation Tool v1.2 (Muhire et al.,

2014). This difference was not entirely unexpected, because of the
parallel history of two sets of ACMV clones: infectious partial-
tandem-dimer clones were made via restriction-digestion/ligation from
sap-inoculated Nicotiana benthamiana plants whereas the monomer-
segment-unit clones were cloned with PCR from the same original
cassavafield sample (Fondong et al., 2000). We expect these complete
infectious clone sequences will be of great utility to the community,
given that many follow-up publications (Amin et a., 2011; Beyene et
al., 2016; Chauhan et al., 2018; Chellappan et a., 2004, 2005a, 2005b;
Kuriaet al., 2017; Ndunguru et al., 2016; Patil et al., 2016; Reyes et
al., 2013; Vanitharani et al., 2003, 2004) specifically referenced the


https://doi.org/10.1101/2020.08.10.244335
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.10.244335; this version posted October 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

related but non-identical monomer sequences (AF112352.1 and
AF112353.1).

We obtained deep coverage, over 18,000-fold across all positions for
all four plasmids with an average of 157,000-fold coverage (Figure 1).
This read depth was consistent across three separate libraries for each
plasmid (see Zenodo record 4075362).

Our results underscore the value of confirming the sequence of
molecular clones. An similar example from the geminivirus literature
is the Nigerian Ogoroco clone of ACMV (Briddon et al., 1998).
Kittelmann et al. (Kittelmann et al., 2009) thoroughly documented that
the infectious DNA-A cloneis not 100% identical to the related
GenBank accession (AJ427910.1). We do not believe the large
literature on these Cameroonian ACMV isolates requires dramatic
reinterpretation, but we recommend using the revised sequences
described here for future analyses.

Data availability: Plasmids are available from Addgene and
sequences for full plasmids and ACMV segments are available in
GenBank (Table 1). Raw Illumina data are available from the NCBI
Sequence Read Archive (PRINA649777). Data processing code has
been archived as Zenodo record 4075362.
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Figure 1. Plots of llluminaread depth across the length of the four infectious clone plasmids.
One of three librariesis shown for each plasmid (SRR12354432, SRR12354427,
SRR12354424, and SRR12354421). The region in each plasmid corresponding to each virus
segment partial-tandem-dimer unit isindicated with a black line under each graph. Vertical
white lines demarcate the boundaries of the unique and duplicated regions of each concatemer.
Each virus segment monomer unit (in between two replication-origin nick sites) is shown in
blue. Canonical virus genes are indicated with gray arrows, left to right for virus sense (AV1,
AV2, BV1) and right to left for complementary sense (AC1 to AC4, BC1). Uneven read depth
for the ACMV DNA-B plasmid is due to instability (truncation), which is evident in single-cut
restriction digests (not shown). Such partial deletion of tandem duplicated regionsin E. coli is
not uncommon (Oliveiraet al., 2009).
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