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Background: Microbiome studies have uncovered associations between microbes

vailable at the end of the article developing microbial interventions for treatment of disease and optimization of
crop yields which requires identification of microbiome features that impact the
outcome in the population of interest. That task is challenging because of the
high dimensionality of microbiome data and the confounding that results from
the complex and dynamic interactions among host, environment, and
microbiome. In the presence of such confounding, variable selection and
estimation procedures may have unsatisfactory performance in identifying

microbial features with an effect on the outcome.

Results: In this manuscript, we aim to estimate population-level effects of
individual microbiome features while controlling for confounding by a categorical
variable. Due to the high dimensionality and confounding-induced correlation
between features, we propose feature screening, selection, and estimation
conditional on each stratum of the confounder followed by a standardization
approach to estimation of population-level effects of individual features.
Comprehensive simulation studies demonstrate the advantages of our approach in
recovering relevant features. Utilizing a potential-outcomes framework, we outline
assumptions required to ascribe causal, rather than associational, interpretations
to the identified microbiome effects. We conducted an agricultural study of the
rhizosphere microbiome of sorghum in which nitrogen fertilizer application is a
confounding variable. In this study, the proposed approach identified microbial
taxa that are consistent with biological understanding of potential plant-microbe

interactions.

Conclusions: Standardization enables more accurate identification of individual
microbiome features with an effect on the outcome of interest compared to other
variable selection and estimation procedures when there is confounding by a

categorical variable.

Keywords: high-dimensional feature selection; microbiome analysis;

next-generation sequencing; standardization; causal inference

1 Introduction
Advancements in next-generation sequencing (NGS) technologies have recently al-

lowed for unprecedented examination of the community of microorganisms in a host


https://doi.org/10.1101/2020.08.09.243188
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243188; this version posted August 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Goren et al. Page 3 of 25

or site of interest, referred to as a microbiome (Lederberg and Mccray, 2001). Early
cultivation-dependent methods only allowed for detection of a small fraction of the
total microbial species present. In contrast, NGS technologies can rapidly detect
thousands of microbes in each sample by determining the nucleotide sequences of
short microbial DNA fragments. These fragments may either correspond to targets
of a specific genetic marker, commonly the 16S ribosomal RNA gene for taxonomic
identification of bacteria as in amplicon sequencing, or result from shearing all the
DNA in a sample as in shotgun metagenome sequencing (Riesenfeld et al., 2004).
For each fragment, the corresponding nucleotide sequence is referred to as a “read,”
the length of which is dependent on the specific NGS system (Liu et al., 2012).
Both amplicon-based and shotgun metagenomic approaches can enumerate the
relative abundance of thousands of microbial features per sample. Use of amplicon
sequencing for microbial enumeration is more common than shotgun metagenome
sequencing due to reduced cost and complexity. For this reason, we focus on
amplicon-based microbiome data here, and refer the reader to Sharpton (2014) for
detailed coverage of metagenomic sequencing and Knight et al. (2018) for a thor-
ough comparison of the two approaches. In order to enumerate microbes, amplicon
reads are typically clustered into operational taxonomic units (OTUs) according to
a fixed level of sequence similarity (e.g., 97%) (Westcott and Schloss, 2015), or as
advocated by Callahan et al. (2017), enumerated on the basis of denoised sequences
termed exact amplicon sequence variants (ASVs). Both OTUs and ASVs may be
classified into known taxa (Schloss and Westcott, 2011). The resulting microbiome
data for each sample are high-dimensional nonnegative integer counts across poten-
tially thousands of features (taxa, OTUs, or ASVs). These counts represent relative,
not absolute, numbers for each sample due to varying library sizes, a technical lim-
itation of NGS approaches. Consequently, microbiome data must be normalized,
rarefied, or treated as compositional in order to make comparisons across samples
and it is unresolved which method is optimal for a particular research question and
data set (Gloor et al., 2017; McMurdie and Holmes, 2014; Weiss et al., 2017).
Microbiome studies have uncovered associations between microbes and human,
animal, and plant health outcomes. Randomized clinical trials have been performed
to determine the causal effect of fecal microbiota transplantation (Camacho-Ortiz

et al., 2017), but these do not provide causal inference on the contribution of in-
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dividual microbiome features. It is important to identify individual microbiome
features with a causal effect on the outcome because such discoveries may lead to
development of microbial interventions for treatment of disease or optimization of
crop yields. A recent review highlights the importance of identifying individual taxa
with biologically relevant roles in microbiome studies (Banerjee et al., 2018).

Recently, there has been interest in causal inference in microbiome studies (Xia
and Sun, 2017). The gold standard for causal inference is to randomly assign treat-
ments (here, microbiome interventions) and estimate the causal effect. However, this
is challenging in microbiome studies since many microorganisms cannot be directly
cultured (Stewart, 2012), and random assignment of microbiomes to units is often
not possible. To date, causal inference in microbiome studies has been primarily
limited to causal mediation analysis that determines if a causal effect of treatment
is transmitted through the microbiome (Sohn et al., 2019; Wang et al., 2019; Zhang
et al., 2018). Software has been developed to apply Granger causality (Granger,
1969) to microbiome time series (Baksi et al., 2018), but the performance of such
an approach has not been thoroughly evaluated using simulation studies.

In this work, we aim to identify individual microbial features with a causal effect
on an outcome in a population of interest using causal inference. Here, the micro-
biome features are considered to be multivariate exposures, and are often of much
higher dimension than the sample size. Previous work on high-dimensional causal
inference is typically limited to settings with high-dimensional confounders rather
than exposures (e.g., Schneeweiss et al. (2009)) or directed graphical modeling
(Pearl, 2009). Recently, Nandy et al. (2017) considered directed graphical modeling
for estimation of joint simultaneous interventions. However, their approach requires
linearity and Gaussianity assumptions for high-dimensional inference, which are in-
appropriate for microbiome count data. There are proposed approaches for causal
inference for multivariate exposures or treatments using the potential-outcomes
framework, and such approaches often rely on the generalized propensity score
(Imai and Van Dyk, 2004). Siddique et al. (2018) compared inverse probability
of treatment weighting, propensity score adjustment, and targeted maximum likeli-
hood approaches for multivariate exposures. Wilson et al. (2018) proposed Bayesian
model averaging over different sets of confounders when the set of true confounding

variables is unknown. When the exposures are time-varying, Taubman et al. (2009)
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considered g-estimation and Herndn et al. (2001) proposed a marginal structural
model. However, in all of these studies with multivariate exposures, the exposure

dimensionality is smaller than the sample size.

In addition to the high dimensionality, causal inference for microbiome studies
is complicated by potentially complex interactions among host, environment, and
microbiome. For example, there could be categorical confounding variables that
affect both the outcome and some of the microbiome features. To overcome the
challenges of the high dimensionality and presence of categorical confounding vari-
ables in microbiome studies, we propose standardization on the confounder and
use the potential-outcomes framework for causal inference (Keiding and Clayton,
2014). The potential-outcomes framework (Holland, 1988; Neyman, 1923; Rubin,
1974) conceptually frames causal inference as a missing data problem: the out-
come can only be measured under the exposure actually received, making the out-
come unobservable under all other possible values of the exposure. We refer the
reader to Herndn and Robins (2019) for a more detailed introduction. To deal
with high-dimensionality of the microbiome exposure and categorical confounding
variables, we propose variable screening, selection, and estimation of microbiome
effects conditional on the confounder (i.e., stratification), followed by standardiza-
tion to obtain estimates of effects in the population of interest. Conditioning on the
confounder for microbiome feature screening, selection, and estimation avoids com-
plications due to high marginal confounder-induced correlation between features.
Further, conditional estimation naturally allows for effect modification (i.e., inter-
action between the confounder and microbiome features), affording flexibility to
capture host-environment-microbiome interactions. Standardization allows for esti-
mation and ranking of microbiome feature effects in the target population, which
has policy and epidemiological relevance. Even if conditions for causal inference do
not hold, avoiding such marginal correlation allows for superior identification of

associational microbiome effects.

In this manuscript we begin by defining the estimands of interest and outlining
conditions required for causal inference in Section 2. We then propose our estimation
approach with standardization in Section 3. Next, we demonstrate the feasibility

of our approach through simulation studies in Section 4 and present a real data
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application using an agricultural microbiome study in Section 5. This paper ends

with a discussion and conclusion.

2 Model and assumptions
2.1 Notation, microbiome effects, confounding

Consider a study with n units (indexed by ¢ = 1,...,n) aimed at identifying the
population effect 8 = (81,...,0,)" of p microbiome features (e.g., taxa, ASVs,
OTUs) A; = (Ai1,...,Aip) on an outcome Y; € R. For formulating the estimand,
we assume that A; has been appropriately normalized. Importantly, Y; represents
the observed outcome, which differs from the notion of a potential outcome (Rubin,
1974). Define the potential outcome Y;* as the value the outcome would take under
the (possibly counterfactual) microbiome value @ = (aq, ..., a,)". Assume that the
expected potential outcome is related to the population effect 8 through a linear

function of the microbiome features as

P
E(Y*) =B+ Bja;, i=1,....n (1)

j=1
where for each j, B; represents the effect of the jth microbiome feature in the
population. In terms of (1), identifying which microbiome features have a causal
effect on the response corresponds to estimation and inference for 8; (1 < j < p).
For generality, the formulation of Equation (1) ignores possible microbe-microbe

interactions and any constraints of carrying capacity.

Note that the model in (1) is defined for the potential outcomes, not the ob-
served data, and is thus a marginal structural model (Herndn et al., 2001). In
the presence of a confounding variable L; that affects both A; and Y;, this
model generally does not hold for the observed data because confounding implies
E(Y?) # E(Y; | A; = a). Consequently, specific assumptions and methodology are
required to obtain an estimator B of 3 that has causal, rather than merely associa-
tional, interpretation. In the next sub-section, we address the assumptions required
for such a causal interpretation. We restrict our attention to the case where the con-
founder L; is categorical with a finite number of levels, each represented sufficiently

in the study of n units.
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2.2 Assumptions for causal inference

Under the potential-outcomes framework, ascribing a causal interpretation to an
estimate of 3 requires three assumptions: positivity, conditional exchangeability,
and consistency (Herndn and Robins, 2019). Positivity requires positive probability
for each possible microbiome level, conditional on the confounder. To formalize
this, let A denote the set of all possible microbiome values in the population. The
positivity condition holds if Pr(A; =a|L; =1) > 0 for all a € A and all levels [
of confounder L; such that Pr(L; =) # 0 in the population of interest, henceforth
denoted by the set L. Clearly, if a given microbe is either absent or below the limit of
detection across all samples, its effect on the response cannot be determined. Hence,
this assumption requires a large enough sequencing depth in order to sufficiently
enumerate any present microbes with a causal effect. Practical considerations for

evaluating the positivity assumption are covered by Westreich and Cole (2010).

To meet the conditional exchangeability requirement, the data-generating mecha-
nism for each possible microbiome must depend only on the confounder, formalized
as Y® L A; | L; for all [ € £, where L denotes statistical independence. Con-
ditional exchangeability requires no unmeasured confounding. This assumption is
most justifiable in experiments where the confounder is randomly assigned as in our
motivating study described later in Section 5, where agricultural plots are random-

ized to either low or high nitrogen fertilizer.

The consistency criterion is met if the observed outcome for each unit is the
potential outcome under the observed microbiome, formally stated as A; = a =
Y* =Y,;. For microbiome data, this necessitates appropriate normalization. Since
NGS-based technologies enumerate based on genetic material, the resulting counts
can arise from both viable and non-viable microbes (Boers et al., 2016). In order to
met the consistency assumption, relevant microbes with the same normalized count
cannot have disparate effects due to differential viability. When there is concern
that this assumption may be violated, it is possible to restrict amplification of
RNA target genes to only viable bacterial cells (Rogers et al., 2008). We note that

even if these three conditions cannot be verified, our proposed method has utility

in estimation of associational, rather than causal, effects.
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3 Methods
3.1 Standardization

Our goal is to estimate the population microbiome effects 3 of (1) and infer which
microbiome features are relevant to the response, that is, {1 < j < p: §; # 0}.
We propose computing an estimate Bl for each stratum [ € L of the confounder,
followed by standardization to the confounder distribution, thereby obtaining a
population-level estimate ,5' Under the assumptions stated in Section 2.2, there is
no confounding within each stratum [ of the confounder. Beyond elimination of
confounding, conditioning on a stratum of the confounder avoids marginal corre-
lation between features induced by the relationship with the confounder that can
hinder feature selection performance. Figure S7 in the Supplementary Materials
shows microbiome data from an agricultural study described in Section 5 where
many features are highly correlated when considered marginally, but are relatively
uncorrelated within each level of a fertilizer confounder. Combining the assumptions

of Section 2.2 with the model in (1) and allowing for effect modification, we have

P
E(Y;|Ai=a,Li=0)=8+) Bla;, Vie{l<i<n:L =1} (2)
j=1
where 3! = (8L, ... ,Bé)’ is the corresponding stratum-specific effect. There is effect

modification if B! # 3" for some [ # I’ € L.

Standardizing the stratum-specific mean outcomes to the confounder distribution

produces the population mean outcome function

E(Y:|A) =Y B+ > Aypl | Pr(L;=1). (3)

lel j=1

By linearity, the effect in the population corresponding to a one-unit increase in
the jth microbiome feature, controlling for all others, is represented by §; =
dier B} Pr(L;=1) for j = 1,...,p. Given a suitable estimator B! of B! for all

I € L, the resulting population-standardized estimate of j3; is

B =" BLPr(L;i=1). (4)

leL
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3.2 Feature selection and estimation

In this section, we propose a feature selection and estimation procedure for stratum-
specific coefficients B!, performed independently for each confounder level [ € L.
Within each stratum, we make a sparsity assumption that few microbiome features
have an effect on the response and correspondingly most entries of B are zero,
and also assume that the outcome is normally distributed with constant variance.
Commonly, n < p for microbiome features for taxa at the level of species (and
perhaps genera), OTUs, or ASVs. Consequently, we suggest penalized least squares
estimation that induces shrinkage towards zero via a penalty function py, where A
is a tuning parameter controlling the amount of shrinkage. We suggest choosing A
using the Bayesian information criterion (BIC) (Schwarz, 1978) due to its consis-
tency property in selecting the true features in certain settings (Wang et al., 2007)
and nonconsistency of prediction accuracy criteria such as cross-validation (Leng
et al., 2006). Possible choices for penalties that perform variable selection through
shrinkage-induced sparsity include the least absolute shrinkage and selection oper-
ator (LASSO) (Tibshirani, 1996) and smoothly clipped absolute deviation (SCAD)
(Fan and Li, 2001), among others (Zhang et al., 2010).

Due to the high dimensionality of microbiome data, variable screening in con-
junction with penalized estimation may improve accuracy and algorithmic stability
(Fan and Lv, 2008). The sure independence screening (SIS) of Fan and Lv (2008)
retains features attaining the highest marginal correlation with the response, which
may lead to poor performance when irrelevant features are more highly correlated
with the response, marginally, than relevant ones. Since this is likely the case for mi-
crobiome data, we instead consider using the iterative sure independence screening
procedure proposed by Fan and Lv (2008) and implemented by Saldana and Feng
(2018) that avoids such a drawback by performing iterative feature recruitment and

deletion based on a given penalty pj.

3.3 Post-selection inference and error rate control

Inference on which microbiome features have a population-level effect, conducted
by testing the null hypothesis Hy; : §; = 0 for the jth feature (1 < j < p), is
challenging using penalized least squares estimation. For example, the asymptotic

distribution of the LASSO may not be continuous and is difficult to characterize
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in high-dimensional settings (Knight and Fu, 2000). Many approaches for error
rate control post-variable selection using penalized regression make use of data
splitting techniques (Biithlmann et al., 2014; Dezeure et al., 2015) but have low
power for the small sample sizes common to microbiome studies. Due to these
reasons, for inference we propose using the debiased, also known as desparsified,
LASSO (van de Geer et al., 2014; Zhang and Zhang, 2014) applied to the estimate
Bl obtained using the LASSO penalty with the iterative SIS procedure. To make the
computation tractable, we only apply the debiasing procedure to the features not
screened out by the iterative SIS procedure and let b! denote the resulting estimate.
Under regularity assumptions and appropriate penalization, the debiased LASSO
estimator has a limiting normal distribution (Dezeure et al., 2015).

For the jth feature, the standardized debiased iterative SIS-LASSO estimate l;j

and its standard error are given by

by = S B Pr(L = 1), se(B) = |3 [se(d) Pr(L, = )] (5)

el el

respectively, where the standard error formula follows from the independence of the
strata. To obtain an estimator of the standard error, we plug-in the estimate ééé of
se(lA)é-) given by Dezeure et al. (2017) under homoscedastic errors if the jth feature
was not removed by screening in the [th confounder stratum. We compute a p-value
for testing Ho; : 5; = 0 versus Hy; : B; # 0 according to p; = 2[1 — (I>(|lA)j|/s?ej)]
if feature j was not screened out in all confounder strata for j = 1,...,p, where
®(-) denotes the standard normal cdf. To control the false discovery rate (FDR),
we apply the Benjamini-Hochberg (BH) adjustment across all p features (Benjamini
and Hochberg, 1995) to account for multiplicity in all features, including those that

were removed from all strata.

4 Simulation Studies

Here, we evaluate our proposed standardization method using simulation studies.
The simulation settings were designed to mimic microbiome studies seen in practice.
To emulate species-level data, we consider p = 2,000 microbiome features. To reflect
data summarized at the genus level, we also consider p = 50. We consider sample
sizes of n = 50 and n = 100, and assume the confounder is a binary indicator that

takes the value one for i =1,...,n/2 and zero for i =n/2+1,...,n.
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4.1 Data-generating model for microbiome features

Conditional on the confounder L; = 0, the count data for the jth microbiome
feature were drawn independently from a negative binomial distribution with mean
Y0; and dispersion ¢; parameterized such that Var(A4;;) = yo; + ¢j(70;)%. That is,
when L; = 0, the baseline mean for feature j is 7o;. When the confounder is present
(L; = 1), the microbiome feature counts were drawn independently from a negative
binomial distribution with mean 7g;v1; and dispersion ¢;. Hence, 7v1; represents
the multiplicative change in the mean relative to when the confounder is absent.
If v1; # 1, then feature j is affected by the confounder and otherwise vi; = 1.
The first 30% of features were set to be affected by the confounder (differentially
abundant between condition L; = 0 and condition L; = 1). More specifically, we

simulated parameters 7o; and v1; from the following distributions for j =1,...,p:

ina | logN(1/2,9/4) if 5; =0

Yo; )
(5{5} if ﬁj 7& 0
i log NV (+£1/4, 9/4) if feature j is affected by L;
1~
91y otherwise

where ;) represents a point mass at x. Our rationale for setting the baseline
mean to five for relevant features (8; # 0) was to ensure that they were sufficiently
abundant for feature selection. We set the dispersions ¢; = 107! for all features
j =1,...,p and simulated the microbiome count data A; with negative binomial
distributions. In addition, we conducted a second set of simulations with ¢; = 1076,

which approximates a Poisson distribution.

4.2 Data-generating model for response

Given the confounder and microbiome features A; simulated from the above sub-
section, we draw the responses independently from a normal distribution with mean
ui(fii, L;) and variance o2, where A, represents A; after centering and scaling (to

mean zero and variance one within strata) and

. + 30 Ay if L; =0
pi(Ai, Li) = ot s ]@N (6)
BO + ﬁé + Z?:l A”(Sﬁj if Ll =1


https://doi.org/10.1101/2020.08.09.243188
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243188; this version posted August 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Goren et al. Page 12 of 25

for ¢ =1,...,n. For more intuitive comparison of effect modification size, model (6)
has an additive effect 5, for the intercept and multiplicative effect § for microbiome
feature effects when L; = 1 compared with L; = 0. In particular, 5, represents the
direct confounder effect and § is an effect modification parameter. Our simulation
considers the case when there is no effect modification (§ = 1) as well as strong effect
modification (6 = —0.9) where the relevant microbiome effects are large within each
level of the confounder but small overall in the population. The response variability
was set to 02 = 1/16 for all scenarios. A total of s = 5 features were set to be
relevant, with the non-zero elements of 3 set to (3, —3, 3, —3,3). Our motivation for
setting |G;| = 3 for all relevant j is to ensure the Smin property for model selection
consistency is met within all strata for all simulation scenarios (Bithlmann et al.,
2014). The choice of s = 5 yields sparsity such that s < n;/log(p) for most, but
not all, simulation scenarios. Three scenarios covering differing proportions of the
relevant features set to be confounded (8; # 0 and 1, # 1) were considered: either
all (100% confounded), the first three (60% confounded), or none (0% confounded).

To summarize our simulation settings, we have considered two dimensions of mi-
crobiome features: p = 2,000 and p = 50; two sample sizes: n = 50 and n = 100; two
distributions of microbiome count data: negative binomial and Poisson; inclusion
of effect modifier: none or strong effect modifier; and three different proportions of
confounded relevant features: 100%, 60%, and 0%. Hence, in total, we examined 48
different simulation settings. For each simulation setting, a total of 100 data sets

were simulated.

4.3 Screening, penalization, and comparison models
We denote our proposed approach of estimation conditional on each stratum fol-
lowed by standardization as “Conditional Std”. We investigate the performance of
variable section using the LASSO and SCAD penalties for py both with and without
screening, as well as the proposed inference procedure using the debiased LASSO
with iterative SIS described in Section 3.3.

We compare our approach with six other models applied to the pooled data set,
as opposed to conditionally on each stratum. The six comparison models are con-
structed based on three inclusion strategies for the confounder effect 5, of Equa-

tion (6) and two possibilities for modeling effect modification. The confounder effect


https://doi.org/10.1101/2020.08.09.243188
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243188; this version posted August 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Goren et al. Page 13 of 25

is either subject to screening and variable selection (“Select L"), forced to be in-
cluded without penalization (“Require L"), or removed from the model entirely
(“Ignore L”). We either model each microbiome feature effect as common across
all confounder strata (corresponding to models with the aforementioned names)
or allow for effect modification through stratum-specific microbiome feature effects
denoted with the suffix “EffMod.” For each of the six models under comparison, we
also investigate the performance of variable section using the LASSO and SCAD
penalties for py both with and without screening, as well as the proposed inference

procedure using the debiased LASSO with iterative SIS.

Table 1 presents the objective function for our proposed “Conditional Std“ ap-
proach and the other six models under comparison. For the proposed approach
“Conditional Std,” screening is based on iterative SIS recommended defaults ap-
plied to each stratum, whereas for all other approaches it is applied to the entire
data set to correspond with the assumed model, resulting in different maximum
model sizes shown in Table 2. The variables considered in the iterative SIS pro-
cedure for each model detailed in Table 2 correspond to those penalized in the
objective function in Table 1. For “Conditional Std” and models allowing effect
modification (suffix “EffMod”), the population estimates are computed according
to Equation (4). These models center and scale each microbiome feature within each
stratum, denoted by /Nlij. For models that do not allow for effect modification, the
microbiome features are centered and scaled to have mean zero and variance one

across all observations, regardless of stratum, denoted by Aij.

4.4 Results

Simulation performance was summarized across all 100 simulated data sets for each
scenario, model, and variable selection method considered using the true positive
rate (TPR) and false positive rate (FPR). Given the selected variables, TPR mea-
sures the proportion of relevant features detected, while FPR measures the propor-
tion of irrelevant features declared to be relevant, and these are computed here at

the population-level by

P I(B; # 0)I(B; #0)
S LB #£0) 7

TPR =
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P I(B; # 0)I(8; = 0)
?:1 I(/Bj =0)

FPR = (8)

for all methods except the debiased LASSO inference procedure where I (B] #0)
is replaced with the decision rule induced by the corresponding hypothesis test
with FDR control at 0.05. An ideal method would take (TPR, FPR) values (1, 0).
Supplementary Material Table S1 shows the average TPR and FPR across the 100
simulated data sets for the 12 simulation settings with Poisson distributed features
and n = 100. The table lists the results for our proposed approach “Conditional
Std” model and the other six models under comparison across different variable
selection methods. Generally, the proposed “Conditional Std” model performed
better than other models applied to the entire data set across different variable
selection methods considered. When effect modification is present, the proposed
approach has the highest mean TPR and lowest mean FPR for both the LASSO and
SCAD penalties, both with and without screening, often achieving perfect rates on
average. For the debiased LASSO applied after iterative SIS with the BH procedure
and FDR control set to 0.05 (denoted by “iterSIS-dbLASSO-BH”), the proposed
approach has the highest TPR and among the lowest FPR under strong effect
modification across variable selection methods. This is not the case only when no
effect modification is present, under high dimensionality (p = 2,000), and not all

relevant features are not confounded.

For post-selection inference based on the debiased LASSO following screening
with iterative SIS, we evaluated the area under the receiver operating characteristic
curve (AUC) using the p-values for testing Hoy; : §; = 0 as the classifiers. AUC
aggregates classification performance of TPR versus FPR across different classifica-
tion thresholds, taking the value 1 for perfect prediction, 0.5 for random guessing,
and 0 for always wrong prediction. Box plots of the AUC across 100 data sets for
each model are shown in Figure 1 for 12 simulation settings with n = 100 and
Poisson features (results for n = 50 and negative binomial features are presented in
Supplementary Material Figures S1-S3). The proposed approach has near perfect
ranking under low dimensionality (p = 50) for all settings and under high dimen-
sionality (p = 2,000) when all relevant features are impacted by the confounder.

Similar to the results in Supplementary Material Table S1, the proposed approach
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performs best out of all models considered except when effect modification is not
present and at least some relevant features are not confounded.

To evaluate false discovery rate (FDR) control for varying thresholds a =
(0.01,0.02,...,0.10) commonly used in practice, we computed the false discovery
proportion (FDP) at a given « value for debiased LASSO inference according to

251 I(g; < )I(B; =0)

FDP(a) = ST Tl <a)

9)

where ¢; is the BH-adjusted p-value (or g-value) for feature j. A well performing
model will have FDP(«) < «. For n = 100 and Poisson features, Figure 2 shows that
the proposed “Conditional Std” model appropriately controls FDR under low di-
mensionality (p = 50). For high dimensionality (p = 2,000), the proposed approach
does not control FDR when at least some relevant features are not confounded,
though the observed mean FDP does not exceed the nominal level greatly when
compared to other competing models applied to the pooled data. The FDR control
for the other six models under comparison is either very conservative or highly lib-
eral. Similar results were seen for n = 50 and negative binomial features, though lack
of FDR control was more common for the n = 50 case (Supplementary Materials

Figures S4-56).

5 Real Data Analysis

We conducted a microbiome study to investigate the effect of the rhizosphere micro-
biome of the cereal crop sorghum (Sorghum bicolor) on the phenotype 12-oxo phy-
todienoic acid (OPDA) production in the root. Sorghum root production of OPDA
is of primary interest due to OPDA having both independent plant defense func-
tions and being an important precursor to Jasmonic acid, which functions in plant
immune responses that are induced by beneficial bacteria (Van der Ent et al., 2009;
Wasternack, 2014). The study analyzed here is part of an experiment described by
Sheflin et al. (2019); we subset on n = 34 samples collected in September across high
and low nitrogen fertilizer. Rhizosphere microbiome data were collected using 16S
amplicon sequencing and clustered at 97% sequence identity. The resulting 5, 584
OTUs were rarefied to 20, 000 reads per observation and low abundance OTUs (less
than 4 non-zero observations out of 34) were excluded (Xiao et al., 2018), leaving

a total of 4,244 OTUs.
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Pairwise Spearman’s correlations for the feature counts are shown in Figure S7
in the Supplementary Materials for the 150 largest marginal correlations (pooling
samples over nitrogen fertilizer levels), which contrast to the small correlations
within nitrogen stratum. Using our proposed procedure of testing the standardized
feature effect using the debiased LASSO following iterative SIS applied to each
nitrogen level, a total of four microbiome features with an effect on root ODPA
production were identified while FDR was controlled at 0.05 with BH adjustment
(Table 3). Nitrogen stratum-specific residuals did not indicate any violation of the
assumptions of constant variance or normality (Figures S8-S9 of the Supplementary
Materials).

Each microbiome feature effect identified at the study population-level was only
identified in one nitrogen condition, though abundance did not differ greatly be-
tween the two nitrogen strata (Table 3). Specifically, only one feature was estimated
to be more abundant under low nitrogen, and this feature was classified as belong-
ing to the Rhodospirillaceae family (nonsulfur photosynthetic bacteria), of which
nearly all members have the capacity to fix molecular nitrogen (Madigan et al.,
1984). Various strains of Rhodospirillaceae have shown potential to promote plant
growth in the grass species Brachiaria brizantha (Silva et al., 2013). Consequently,
the increased levels of root OPDA content may have been the result of bacterial
synthesis (Forchetti et al., 2007). While less is known about the three additional sig-
nificant features, the overall findings are in alignment with biological understanding

of potential plant-microbe interactions.

6 Discussion

We have proposed and evaluated methodology for causal inference for individual fea-
tures in high-dimensional microbiome data using standardization. These techniques
are typically employed in epidemiology and use the potential-outcomes framework,
in contrast to graphical models, which are a more common approach for high-
dimensional causal inference but usually require Gaussian assumptions for inference
that are often violated by microbiome data (Pearl, 2009). Instead, our approach
conditions on the confounder and shows favorable results for Poisson and nega-
tive binomial microbiome features. Compared to estimation methods applied to the

entire data set, the proposed standardization approach typically demonstrated su-
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perior recovery of relevant microbiome effects accross multiple variable screening
and selection procedures.

Association and causation are not equivalent even for a one-dimensional treat-
ment or exposure, and the challenges of causal analysis are exacerbated for high-
dimensional exposures. Caution must be taken in interpreting causal effects when
the assumptions needed for causal inference, such as no unmeasured confounding
or consistency, cannot be verified. Consequently, any microbiome features identi-
fied should be either validated in experimental studies if possible, or more closely
scrutinized according to guidelines for evidence of causation. However, even if con-
ditions for causal inference do not hold, our method may provide better recovery of
associational microbiome effects as compared to models applied to the pooled data,
when there are features impacted by the confounder.

Some have advocated that microbiome data must be treated as compositional
(Gloor et al., 2017). Due to the sum to library size constraint, which is not removed
by rarefying but rather made constant across all samples, microbiome data techni-
cally lie in a simplex space (Aitchison, 1982). One goal of our funded project is to
identify microbial features that can be intervened upon to produce a favorable out-
come. Hence we analyze count data, not compositional data where it is impossible to
alter a feature without changing at least one other so as to retain the same total sum
across features. When microbiome features are high dimensional, and in particular
there is no dominating feature, the impact of this issue may be minimal. Moreover,
microbiome data often exhibit many zeros and the popular centered log-ratio ap-
proach for compositional data applies log transformation after adding an arbitrary
pseudocount, the choice of which may impact the analysis (Costea et al., 2014). In
cases when compositional analysis is preferred, such as when taxa are summarized
at the level of genus or higher typically leading to p < n with a lower prevalence
of zeros, our strategy of standardization could be altered in a straightforward way
by replacing penalized least squares with a regularized method for compositional
covariates (Lin et al., 2014; Shi et al., 2016).

Depending on the underlying biology, the taxonomic structure or phylogeny may
be important in the relationship between the microbiome and outcome. If so, higher
power may be achieved by using a different penalty that leverages such information.

The group LASSO selects groups of features (Yuan and Lin, 2006) and modifica-
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tions have been developed for microbiome applications incorporating multiple levels
of taxonomic hierarchy (Garcia et al., 2014). Other options include a phylogeny-
based penalty that penalizes coefficients along a supplied phylogenetic tree (Xian
et al., 2018) or a kernel-based penalty incorporating a desired ecological distance
(Randolph et al., 2018). To increase power and address the challenge of FDR con-
trol, the hierarchical taxonomic structure could be utilized in a multi-stage FDR
controlling approach (Hu et al., 2018). Applications of these methods require the
taxa assignments and phylogenetic tree, which may be incompletely elucidated for
novel microbial species, or measured with error (Golob et al., 2017; Lindgreen et al.,

2016).

While simulation studies showed our proposed approach had higher power and
better control of FDR at the nominal level compared to other approaches for most
scenarios considered, use of the BH procedure with the debiased LASSO and the
iterative SIS procedure failed to control FDR for some cases under high dimension-
ality. Recently, Javanmard and Javadi (2019) showed that the BH procedure may
fail to control FDR, using the debiased LASSO due to correlation between estimates,
but we found little indication of highly correlated estimates in our simulation stud-
ies. Correspondingly, applying the Benjamini-Yekutieli adjustment (Benjamini and
Yekutieli, 2001) did not result in better FDR control. Instead, it appears our sam-
ple sizes were too small to achieve a high enough probability of the sure screening
property, leading to relevant features being screened out by the iterative SIS pro-
cedure. While additional methodological advancement is needed for valid inference
following both variable screening and selection when sample sizes are small, our

method performed competitively in recovering relevant features.

7 Conclusion

We have addressed the problem of selecting microbiome features relevant to an out-
come of interest under confounding by a categorical variable. Our results indicate
that standardization enables more accurate identification of individual microbiome
features with an effect on the outcome of interest compared to other variable selec-

tion and estimation procedures.
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Figures

Tables

Table 1 Models considered in simulation studies using penalized regression (with penalty py) for a
binary confounder L; € {0, 1}. Aij denotes microbiome feature j centered and scaled within each

stratum; A;; denotes microbiome feature j centered and scaled across all observations, regardless of

stratum.
Model Objective function
Conditional Std 30, 7 3, I(Li =1) (yi B -3, Aijgg)Q + 3P (BY)
Select L = (Z/z‘ —Bo— Life — 3, Aijﬁj)Q + 32 PA(B5) + pa(Be)
Select L EffMod 5537, (yi — Bo — Life — 35, ; I(Li = Z)Azjﬁé’)Q + 3222 Pa(BY) + pa(Be)

< 10
Require L =, (yi —Bo—LiBe—>; Aijﬁj) + 22, pA(85)
- 2
Require L EffMod 57, (yi —Bo—Life— 3 ; I(Li = Z)Aijﬁé) +30, 3 pa(8Y)
Ignore L ﬁ (

. 2
yi—Bo— 3, Aijﬁj) + 325 pA(B5)

~ 2
lgnore L EffMod - yi —Bo— 2, I(Li = z)Aijﬁg.) + 33, pa(8h)

Additional Files
Additional file 1 — Supplementary Material

Additional simulation results and data analysis.

Additional file 2 — R Code

R and R markdown code for all simulation studies and data analysis.
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Figure 1 Simulation results Box plots of the area under the curve (AUC) from 100 simulation
replications for n = 100 and Poisson features using p-values based on the debiased LASSO

estimate following iterative sure independence screening.
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Figure 2 Simulation results Mean estimated false discovery proportion (FDP) for n = 100 and
Poisson features at varying nominal false discovery rate (FDR) values using Benjamini-Hotchberg
adjusted p-values based on the debiased LASSO estimate following iterative sure independence
screening (iterative SIS). The y = z line is shown in black; any values above this line indicate lack
of FDR control.
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Table 2 Variable screening and selection for models considered in simulation studies for a binary
confounder L; € {0,1}.

Model Variables screened Maximum model size
Conditional Std {5{7 . ,,le,} (independently V1) d; = [ny/log(ny)| VI
Select L {B1,...,Bp, L} d = |n/log(n)]
Select L EffMod {80, B0, 8=, B Ly d = |n/log(n)|
Require L {B1,...,Bp} (given L) d = |n/log(n)]
Require L EffMod {ﬁizo, e ,,B;L:O, 5%:17 R ﬁézl} (given L) d=|n/log(n)]
Ignore L {B1,...,Bp} d = |n/log(n)|
Ignore L EffMod {B1=°,... ,ﬁé,:O, Bg=t lefl} d = |n/log(n)]

Table 3 Sorghum study analysis results: features with a significant effect on sorghum root ODPA
production in the study population with FDR control at the 0.05 level using the Benjamini-Hochberg
(BH) procedure on the debiased LASSO estimate following sure independence screening (iterative
SIS). The corresponding conditional estimates and rarefied mean abundance (standard deviation) is

also presented.

Standardized Conditional: High N Conditional: Low N
Feature Estimate  g-value Estimate  g-value  Mean (SD) Estimate  g-value  Mean (SD)
Order
3.18 < 0.001 6.36 < 0.001 56.8 (10.6) 0.00 1.000 52.5 (10.2)
Rhodocyclales
Family
. 4.68 < 0.001 0.00 1.000 13.4 (4.0) 9.37 < 0.001 5.1 (2.2)
Rhodospirillaceae
Genus
. 3.72 < 0.001 7.45 < 0.001 6.9 (6.5) 0.00 1.000 1.6 (1.5)
Massilia
Unnamed Order
1.53 0.001 3.06 0.001 6.7 (3.5) 0.00 1.000 10.9 (5.8)
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