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Abstract

Mathematical models of metabolic networks utilize simulation to study system-level
mechanisms and functions. Various approaches have been used to model the steady
state behavior of metabolic networks using genome-scale reconstructions, but
formulating dynamic models from such reconstructions continues to be a key challenge.
Here, we present the Mass Action Stoichiometric Simulation Python (MASSpy) package,
an open-source computational framework for dynamic modeling of metabolism.
MASSpy utilizes mass action kinetics and detailed chemical mechanisms to build
dynamic models of complex biological processes. MASSpy adds dynamic modeling tools
to the COnstraint-Based Reconstruction and Analysis Python (COBRApy) package to
provide an unified framework for constraint-based and kinetic modeling of metabolic
networks. MASSpy supports high-performance dynamic simulation through its
implementation of libRoadRunner; the Systems Biology Markup Language (SBML)
simulation engine. Three case studies demonstrate how to use MASSpy: 1) to simulate
dynamics of detailed mechanisms of enzyme regulation; 2) to generate an ensemble of
kinetic models using Monte Carlo sampling to approximate missing numerical values of
parameters and to quantify uncertainty, and 3) to overcome issues that arise when
integrating experimental data with the computation of functional states of detailed
biological mechanisms. MASSpy represents a powerful tool to address challenge that
arise in dynamic modeling of metabolic networks, both at a small and large scale.

Author Summary

Genome-scale reconstructions of metabolism appeared shortly after the first genome
sequences became available. Constraint-based models are widely used to compute
steady state properties of such reconstructions, but the attainment of dynamic models
has remained elusive. We thus developed the MASSpy software package, a framework
that enables the construction, simulation, and visualization of dynamic metabolic
models. MASSpy is based on the mass action kinetics for each elementary step in an
enzymatic reaction mechanism. MASSpy seamlessly unites existing software packages
within its framework to provide the user with various modeling tools in one package.
MASSpy integrates community standards to facilitate the exchange of models, giving
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modelers the freedom to use the software for different aspects of their own modeling
workflows. Furthermore, MASSpy contains methods for generating and simulating
ensembles of models, and for explicitly accounting for biological uncertainty. MASSpy
has already demonstrated success in a classroom setting. We anticipate that the suite of
modeling tools incorporated into MASSpy will enhance the ability of the modeling
community to construct and interrogate complex dynamic models of metabolism.

Introduction

The availability of genome sequences and omic data sets has led to significant advances
in metabolic modeling at the genome scale, resulting in the rapid expansion of available
genome-scale metabolic reconstructions [1]. COnstraint-Based Reconstruction and
Analysis (COBRA) methods [2] have been shown to be a scalable framework that is
invaluable for the contextualization and analysis of multi-omic data, as well as for
understanding, predicting, and engineering metabolism [3-12]. While several methods
have been developed that allow COBRA models to integrate certain data types to
model long timescale dynamics [13-15], COBRA models are inherently limited by the
flux-balance assumption.

Kinetic modeling methods use detailed mechanistic information to model dynamic
states of a network [16]. The inclusion of multiple detailed enzymatic mechanisms

presents challenges in formulating and parameterizing stable large-scale kinetic models.

Further, additional issues arise when integrating incomplete experimental data into
metabolic reconstructions, necessitating the need for approximation methods to gap fill
missing values that satisfy the thermodynamic constraints imposed by the system
[17,18].

Various efforts have been made to bridge the gap between constraint-based and
kinetic modeling methods in order to address the challenges associated with dynamic
modeling [17-20]. One such methodology is the Mass Action Stoichiometric Simulation
(MASS) approach, in which mass action kinetics are used to construct condition-specific
dynamic models [20-23]. The MASS modeling approach provides an algorithmic,
data-driven workflow for generating in vivo kinetic models in a scalable fashion [24].
The MASS methodology can be used in tandem with COBRA methods for both
steady-state and dynamic analyses of a metabolic reconstruction in a single workflow.
MASS models can incorporate the stoichiometric description of enzyme kinetic
mechanisms and have been used to explicitly compute fractional states of enzymes,
providing insight into regulation mechanisms at a network-level [21]. The MASS
modeling framework has been implemented in the MASS Toolbox [25], but is limited
by its reliance on a commercial software platform (Mathematica).

Here, we detail the Mass Action Stoichiometric Simulation Python (MASSpy)
package, a versatile computational framework for dynamic modeling of metabolism.
MASSpy expands the modeling framework of the COnstraint-Based Reconstruction and
Analysis Python (COBRApy) [26] package by integrating dynamic simulation and
analysis tools to facilitate dynamic modeling. Further, MASSpy contains various
algorithms designed to address and overcome the issues that arise when incorporating
experimental data and biological variation into dynamic models with detailed
mechanistic information. By addressing the issues associated with integrating
physiological measurements and biological mechanisms in dynamic modeling approaches,
we anticipate that MASSpy will become a powerful modeling tool for modeling dynamic
behavior in metabolic networks.
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Design and implementation

Developing in Python

The MASSpy software package (S1 File) is written entirely in Python 3, an interpreted
object-oriented high-level programming language with a clean syntax that has become
widely adopted in the scientific community due to its unique features (e.g., a flexible

interface to compiled languages such as C++ [27]). The open-source nature of Python

avoids the inherent limitations associated with costly commercial software [28].
Consequently, developing in Python provides access to a growing variety of open-source

scientific software libraries [29,30], several of which are integrated into the MASSpy
package and utilized for various purposes (Table 1).

Table 1. Overview of external dependencies and their relevance to MASSpy functionality.

Package Version | MASSpy Relevance Reference
COBRApy 0.15.0 | Reconstruction and simulation of genome-scale flux states [26]
Escher 1.7.2 Visualization of pathway and node maps [31]
libRoadRunner* 1501 313;23;11(:1\] Lsg)lgllritelsﬁ()dznd steady state determination [32]
libSBML* 5.18.0 1 | A Python interface for reading and writing models in SBML 33
Matplotlib* 3.2.0 Visualization of simulation results 34
Fundamental package for numerical computation in Python.
Numpy 1.13.0 Provides efficient afray/matrix data types and opera}‘;ions. [35]
Formulation of optimization problems using symbolic ex-
OptLang 1.4.2 pressions and native Python algebra syntax. Provides a [36]
common interface for various optimization solver backends.
Pandas 0.17.0 High—p.erformance data structures and analysis tools for [37]
data science
A collection of scientific algorithms. Primarily used for in-
SciPy* 1.2.0 terpolation of dynamic simulation results and linear algebra [38]
operations.
Generation and manipulation of symbolic mathematical
SymPy 1.0.0 expressions, including ordinary differential equations, rate [39]
laws, and optimization problems.
A Python interface to the GNU Linear Programming Kit
swiglpk 1.4.3 used for optimization. Utilized by OptLang to provide LP [40]
and MILP support.
A Python interface to the CPLEX Optimizer used for IBM
cplex™* 12.8.8.0 | optimization. Utilized by OptLang to provide LP, MILP, ’
Armonk, NY
and QP support.
A Python interface to the Gurobi Optimizer used for opti- Gurobi
gurobi** 5.0.2 mization. Utilized by OptLang to provide LP, MILP, and | Optimization,
QP support. Houston, TX

* Additional packages required to enable all MASSpy features; all other packages are strict or optional dependencies of

COBRApy.

** Commercial optimization solvers with Python APIs with free academic licenses. Abbreviations: Linear Programming (LP);

Mixed Integer Linear Programming (MILP); Quadratic Programming (QP); Systems Biology Markup Language (SBML);

Building on the COBRApy framework

To facilitate the integration of constraint-based and dynamic modeling frameworks,
MASSpy utilizes the COBRApy package [26] as a foundation to build upon and extend
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in order to support dynamic simulation and analysis capabilities. MASSpy derives
several benefits from building on the COBRApy framework, including exploiting the
direct inclusion of various COBRA methods already implemented in Python. The
inclusion of COBRA methods is made simple using Python inheritance behavior; the
three core COBRApy classes (Metabolite, Reaction, and Model) serve as the base
classes for three core MASSpy classes (MassMetabolite, MassReaction, and MassModel)
as described in the MASSpy documentation (https://masspy.readthedocs.io/ and S2
File). Consequently, all methods for COBRApy objects readily accept the analogous
MASSpy objects as valid input, preserving the commands and conventions familiar to
current COBRApy users. COBRApy is a popular software platform preferred by many
in the COBRA community [41]; therefore, preserving COBRApy conventions aids in
the adoption of MASSpy among those users. Inheriting from the COBRApy classes
additionally allows for easy conversion between COBRApy and MASSpy objects
without loss of relevant biochemical and numerical information. These two features of
Python inheritance are critical in maintaining functionality for COBRApy
implementations of various flux-balance analysis (FBA) algorithms in MASSpy.

Adding dynamic simulation capabilities

The creation and simulation of dynamic models requires deriving a set of ordinary
differential equations (ODEs) from the stoichiometry of a reconstructed network and
assigning kinetic rate laws to each reaction in the network [17]. MASSpy utilizes
SymPy [39] to represent reaction rates and differential equations as symbolic
expressions. All MassReaction objects automatically generate their own rate laws using
mass action kinetics, unless a suitable rate law is available from literature and assigned
to the reaction. All MassMetabolite objects generate their associated differential
equation by combining the rates of reactions in which they participate and contain the
initial conditions necessary to solve the system of ODEs.

To solve the system of ODEs, the MASSpy Simulation class employs libRoadRunner
[32], a high-performance Systems Biology Markup Language (SBML) [42] simulation
engine that is capable of supporting most SBML Level 3 specifications. The
libRoadRunner utilizes a Just-In-Time (JIT) compiler with an LLVM JIT compiler
framework to compile SBML-specified models into machine code, making the
libRoadRunner simulation engine appropriate for solving large models effectively.
Although libRoadRunner has a large suite of capabilities, it is currently used for two
purposes in MASSpy: the steady-state determination via NLEQ1 and NLEQ2 global
newton methods [43], and dynamic simulation via integration of ODEs through
deterministic integrators, including CVODE solver from the Sundials suite [44].
Because libRoadRunner requires models to be in SBML format, the Simulation object
exports models into SBML format before compiling them into machine code via
libRoadRunner.

Model import, export, and network visualization

MASSpy utilizes two primary formats for the import and export of models: SBML
format and JavaScript Object Notation (JSON). MASSpy currently supports SBML L3
core specifications [45] along with the FBC [46] and Groups [47] packages, providing
support for both constraint-based and dynamic modeling formats. Although SBML is
necessary to utilize libRoadRunner, there are a number of additional benefits obtained
by supporting SBML. In addition to being a standard format among the general
systems biology community [42], SBML is a widely used model format specifically
among members of the COBRA modeling community [41].
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MASSpy also provides support for importing and exporting models via JSON, a
text-based syntax that is useful for exchanging structured data between programming
languages [48]. The MASSpy JSON schema is designed for interoperability with Escher
[31], a pathway visualization tool designed to visualize various -omic data sets mapped
onto COBRA models. The interoperability with Escher is exploited by MASSpy to
provide various pathway and node map visualization capabilities.

Mechanistic modeling of enzyme regulation

The reconstruction of all microscopic steps performed by an enzyme (an “enzyme
module”) represents the full stoichiometric description of an enzyme using mass action
kinetics [22]. MASSpy facilitates the construction of enzyme modules through the
EnzymeModule, EnzymeModuleForm, and EnzymeModuleReaction classes, which
inherit from the MassModel, MassMetabolite, and MassReaction classes, respectively.
The EnzymeModule class contains methods and attribute fields to aid in the
construction of EnzymeModules based on the steps outlined for constructing enzyme
modules in Du et al. [22]. Given the number and complexity of possible enzymatic
mechanisms [49], MASSpy also provides the ability to group relevant objects into
different user-defined categories, such as active/inactive states and different enzyme
complexes. The EnzymeModuleDict objects are used to represent enzyme modules once
merged into a larger model, preserving user-defined categories and other information

relevant to the construction of the EnzymeModule, such as total enzyme concentration.

More details can be found in the MASSpy documentation (S2 File).

Ensemble sampling, assembly, and modeling

Ensemble approaches are used to address various issues concerning parameter
uncertainty and experimental error in metabolic models [18]. Ensemble modeling refers
to the assembly of dynamic models that span the feasible kinetic solution space and is
useful when parameterization is incomplete or unknown, as is often the case with kinetic
models. MASSpy enables ensemble modeling approaches through the use of Markov
chain Monte Carlo (MCMC) sampling of fluxes and concentrations [50,51]. The flux
sampling capabilities can be derived from the COBRApy package and employ two
different hit-and-run sampling methods: one with a low memory footprint [52] and
another with multiprocessing support [53]. To sample metabolite concentrations,
MASSpy employs a ConcSolver object to populate the optimization solver with
constraints for thermodynamically feasible concentration ranges [23,54,55] and two
hit-and-run sampling methods for concentrations were implemented in MASSpy with
algorithms analogous to those for flux sampling. MASSpy provides several built-in
methods for ensemble generation from sampling data. Once generated, the ensemble of
models can be loaded into the MASSpy Simulation object, simulated, and visualized
using built-in ensemble visualization and analysis methods. Additional details can be
found in the MASSpy documentation (S2 File).

Results

We conducted three different case studies that exemplified how MASSpy features
combined to facilitate dynamic modeling of metabolism (Fig 1). In Case Study 1, we
validated MASSpy as a modeling tool by describing mechanisms of enzyme regulation
using enzymes modules [20]. We demonstrated the utility of the software in Case Study
2, generating an ensemble of stable kinetic models through MCMC sampling to examine
biological variability while satisfying thermodynamic constraints imposed by the
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network. In Case Study 3, we integrated COBRA and MASS modeling methodologies
to create a kinetic model of E. coli glycolysis from a metabolic reconstruction, providing
novel insight into functional states of the proteome and activities of different isozymes.
See Table 2 for a comparison of explicitly supported MASSpy features with those of
other dynamic modeling tools.

Fig 1. Overview of MASSpy features. (A) MASSpy expands COBRApy to
provide constraint-based methods for obtaining flux states. (B) Thermodynamic
principles are utilized by MASSpy to sample concentration solution spaces and to
evaluate how thermodynamic driving forces shift under different metabolic conditions.
(C) MASSpy enables dynamic simulation of models to characterize transient dynamic
behavior and contains ensemble modeling methods to represent biological uncertainty.
(D) Network properties such as relevant timescales and system stability are characterized
by MASSpy using various linear algebra and analytical methods. (E) MASSpy contains
built-in functions that enable the visualization of dynamic simulation results. (F)
Mechanisms of enzymatic regulation are explicitly modeled in MASSpy through enzyme
modules, enabling computation of catalytic activities and functional states of enzymes.

Case Study 1: Enzyme regulation in M ASS models

Here, we demonstrated MASSpy as a modeling tool and the MASSpy implementation of
enzyme modules by replicating the results produced by Yurkovich et al. [20]. The
authors used the MASS Toolbox [25] to elucidate the systems-level effects of allosteric
regulation. We used MASSpy to reconstruct enzyme modules for hexokinase,
phosphofructokinase, and pyruvate kinase in RBC glycolysis using the same mechanisms
as previously described [20]. We provided several in-depth tutorials for constructing
MASS models and enzyme modules in MASSpy, which can be found in the
documentation (S2 File).

We integrated the reconstructed enzyme modules into the glycolytic model to
introduce varying levels of regulation. Because enzyme modules were constructed and
parameterized for the steady-state conditions of the MASS model, addition of an
enzyme module to a MASS model was a straightforward and scalable process. The
overall reaction representation for the enzyme in the MASS model was removed and
replaced with the set of reactions that comprise the microscopic steps of the enzyme
module (Fig 2) We performed dynamic simulations, subject to physiologically relevant
perturbations, to provide a fine-grained view of the concentration and flux solution
profiles for individual enzyme signals and qualitatively represent the systemic effects of
additional regulatory mechanisms. We then used MASSpy visualization methods to
replicate key results [20] (S3 File). Through this case study, we have demonstrated how
enzyme modules were constructed from enzymatic mechanisms in MASSpy, and we
validated MASSpy as a dynamic modeling tool by exploring previously reported
systems-level effects of regulation [20]. See S3 File for all data and scripts associated
with this case study, including kinetic parameters for all three enzyme modules.

Case Study 2: Ensemble sampling, assembly, and modeling

Many ensemble modeling approaches utilize sampling methods to approximate missing
values and quantify uncertainty in metabolic models [17,18,23,51,56,57]. To
demonstrate the sampling and ensemble handling capabilities of MASSpy, we utilized
MCMC sampling with an ensemble modeling approach to assess the dynamics for a
range of pyruvate kinase enzyme modules (Fig 3). Using RBC glycolysis and hemoglobin
as the reference model [20] we used MCMC sampling to generate 25 candidate flux
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Table 2. Comparison of explicitly supported features for dynamic modeling tools.

MASS . PySCeS
Software MASSpy Toolbox Tellurium PySB (CMBPy) COPASI
. 0.9.7
Version 0.1.0 1.2.0 2.1.5 1.11.0 (0.7.25) 4.27.217
Environment Python Mathematica| Python Python Python gﬁdt]nj;d
3.6+ 9.0+ 2.7, 3.4+ 2.7, 3.6+ 2.7, 3.5+ ’ ’
Python
Model merging + + + + +
Model Automated rate law (+) only (+) only (+) only +
construction construction mass action | mass action mass action
Enzyme modules + + (+)
monomers
g - -
ymboh.c expression n n
manipulation
GPR handling + + + +
Sampling Flux sampling + +
and Concentration
. . . +
estimation sampling
Parameter (+) PERCs | (+) PERCs +
estimation
Simulation ODE * + + + * +
Stochastic + + +
Steady state + + + () via + +
simulation
Stoichiometric + + + + +
Analvsis Sensitivity + + + +
y Metabolic control + + +
Stability + + + + +
Gene knockouts + + +
Flux balance / flux
- + + +
variability
Visualization Time proflle.sr + * * + *
Phase portraits + + + + +
(+) via (+) via (+) via (+) via
Pathway maps Escher + Graphviz Graphviz FAME +
Quality Elemental balancing =+ + +
control and Thermodynamic
oo + +
assurance feasibility
Assistance w/
undefined values + +
SBML + + + + + +
Standards SED-ML + (+) export | (+) export
COMBINE + (+) export +

“4+7 denotes explicit support for the feature. “(+)” denotes explicit support via an interface, or with some limitations.
Explicit support is determined based on whether clear methods and documentation demonstrating feature support are
available from the listed software. For example, although MASSpy could utilize the stochastic simulation capabilities of
libRoadRunner, no MASSpy methods or documentation providing explicit support for stochastic simulation in MASSpy exist
currently.
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Fig 2. Enzyme modules are explicit representations of enzymatic
regulatory mechanisms. (A) The reaction catalyzed by pyruvate kinase is replaced
with the stoichiometric description of the enzymatic mechanism. The steady state
values obtained after simulating a 50% increase of ATP utilization are mapped onto a
metabolic pathway map drawn using Escher [31]. The colors represent flux values and
range from red to purple to gray, with red indicating higher flux values and gray
indicating lower flux values. (B) Enzyme modules provide a network-level perspective of
regulation mechanisms by plotting systemic quantities against fractional states of
enzymes as described in Yurkovich et al. [20]. (C) The different signals of the enzyme
module can be observed to provide enzyme-level resolution of the regulatory response.

states and 25 candidate thermodynamically feasible concentration states, allowing for
variables to deviate from their reference state by up to 80 percent. This procedure
resulted in 625 models that represent all possible combinations of flux and concentration
states. We calculated pseudo-elementary rate constants (PERCs) and steady-state for
each model. We simulated a 50% increase in ATP utilization to mimic a physiologically
relevant disturbance, such as increased shear stress due to arterial constriction [58].
Out of 625 models, 15 were discarded due to an inability to reach a steady state.

Fig 3. A workflow for ensemble creation and modeling using MCMC
sampling. The general process for generating and assembling an ensemble of models
for dynamic simulation and analysis. (A) The solution spaces for fluxes and
concentrations are sampled using MCMC sampling to generate data for ensemble
creation. Rate constants are obtained through parameter fitting for elementary rate
constants and computation of PERCs in addition to MCMC sampling. (B) Sampling
data is integrated into models, producing an assembly of models with variations in flux
and concentration states. After models are created, ensembles of models can be studied
through (C) dynamic simulation and (D) analysis.

We then reconstructed enzyme modules for pyruvate kinase [20] for the remaining
610 models. Numerical values of rate constants for each enzyme were determined using
the SciPy implementation of a trust-region method for nonlinear convex optimization
[59]. Without knowledge of physiological constraints, the numerical solutions for rate
constants produced by optimization routine were not guaranteed to be physiologically
feasible. Therefore, we integrated these enzyme modules into their MASS models and
simulated with and without the ATP utilization increase to filter out infeasible models
based on whether they could reach a stable steady state. Out of 610 models, 446 could
not reach a steady state and 92 could not reach a steady state with the perturbation,
leaving 72 stable models for ensemble simulation and analysis.

The time-course results for the ensemble energy charge deviation were plotted with a
95% confidence interval. From these results, it can be seen that the mean energy charge
decreased at most about 40% from its baseline value (Fig 3C). Steady state analysis of
the pyruvate kinase enzyme modules after the disturbance revealed a strong preference

for the enzyme to remain in an active state, with a median value of approximately 77%.

The differences in candidate flux and concentration states resulted in an interquartile
range between 62-86% of total pyruvate kinase, with nearly all variations of pyruvate
kinase in the ensemble maintaining a steady state value of at least 30% active.
Furthermore, examination of the relative flux load through the R; ap forms showed that
most of the flux load was carried by the Ro ap and Rs ap reaction steps while a
miniscule fraction was carried by the Rg ap reaction step, regardless of variation.
However, the variations had an effect on whether Ry op carried more flux than Rs ap,
and whether the remaining flux was predominantly distributed through the Ry ap or
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the Ry ap reaction step. Through this case study, we have demonstrated how MASSpy
sampling facilitated the assembly and simulation of an ensemble to characterize the
dynamic response of a key regulatory enzyme and quantify its functional states after a
physiologically relevant disturbance. See S3 File for all data and scripts associated with
this case study.

Case Study 3: Computing functional states of the FE. coli
proteome

Here, we illustrated unique features of MASSpy in a workflow to compute the functional
states of the proteome, providing insight into distribution of catalytic activities of
enzymes for different metabolic states. We utilized COBRA and MASS modeling
methodologies to incorporate omics data into a metabolic reconstruction of E. coli,
formulating a kinetic model containing all microscopic steps for each enzymatic reaction
mechanism of the glycolytic subnetwork. Once formulated, we interrogated the model to
examine the shift in thermodynamic driving force for E. coli on different carbon sources

and to compare the activities of different isozymes, exemplifying the utility of MASSpy.

To construct a kinetic model of the glycolytic subnetwork, we integrated steady-state
data for growth on glucose and pyruvate carbon sources from Luca et. al [60] into the
iML1515 genome-scale metabolic reconstruction of E. coli K-12 MG1655 [61]. For each
carbon source, we fixed the growth rate for iML1515 and performed FBA using a
quadratic programming objective to compute a flux state that minimized the error
between known and computed fluxes. For the irreversible enzyme pairs of
phosphofructokinase/fructose 1,6-bisphosphatase (PFK/FBP) and pyruvate
kinase/phosphoenolpyruvate synthase (PYK/PPS), individual flux measurements were
each increased by 10% of the net flux for the enzyme pair without changing the overall
net flux value to ensure presence of the enzyme as seen in proteomic data [62].

Once the flux state was obtained for each carbon source, the glycolytic subnetwork
was extracted from iML1515. Flux units were converted into molar units using
volumetric measurements of E. coli obtained from Volkmer and Heinemann [63], and
equilibrium constants obtained from eQuilibrator [63] through component contribution
[64] were set for each reaction. Concentration growth data from Luca et. al [60] was
integrated into the model and minimally adjusted for thermodynamic feasibility; for
metabolites missing concentration data, an initial value of 0.001 M was provided before
adjustments through sampling. Concentrations were sampled within an order of
magnitude of their current value to produce an ensemble of 100 candidate models for
each growth condition. Metabolite sinks were added to the model to account for
metabolite exchanges between the modeled subnetwork and the global metabolic
network outside of the scope of the model.

For each model in the ensemble, enzyme modules were constructed for each reaction
using a nonlinear parameter fitting package (https://github.com/opencobra/MASSef)
and kinetic data extracted from the literature. Additional isozymes of
phosphofructokinase (PFK), fructose 1,6-bisphosphatase (FBP), fructose
1,6-bisphosphate aldolase (FBA), phosphoglycerate mutase (PGM), and pyruvate kinase
(PYK) were also constructed, bringing the total amount of enzyme modules to 17.
Fluxes through individual isozymes were set by splitting the steady state flux between
the major and minor isozyme forms. After integrating all enzyme modules into the
network, each model was simulated to steady state and exported for analysis.

The Gibbs free energy for each enzyme-catalyzed reaction and fractional abundance
of each enzyme form were calculated. Sensitivity analysis of the flux split between the
isozyme forms revealed that the Gibbs free energy and fractional abundance of enzyme
forms did not show significant variation for either carbon source (S1 Fig); therefore,
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remaining analyses were done with 75% and 25% of the flux assigned to major and
minor isozyme forms, respectively.

Comparison of the glucose and pyruvate growth conditions revealed that the free
energy of the reversible reactions remained close to equilibrium, changing from one
metabolic state to another as the thermodynamic driving force shifts according to the
carbon source, as seen in reversible reactions phosphoglucoisomerase (PGI), triose
phosphate isomerase (TPI), glucose 6-phosphate dehydrogenase (GAPD),

phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGM), and enolase (ENO).

(Fig 4A) The reaction pairs, PFK/FBP and PYK/PPS, maintained their flux directions
to form a futile cycle across conditions

Fig 4. Comparison of free energy and isozyme fractional abundances for
carbon sources. (A) The Gibbs free energy represents the thermodynamic driving
force, shifting the metabolic state depending on the carbon source. (B) The glycolytic
subnetwork extracted from E. coli iML1515 consists of 12 reactions represented by the
17 enzyme modules. (C) The fractional abundance for each enzyme form can be
computed and compared for the different isozyme pairs, providing insight into how the
catalytic activity is distributed across the isozymes in glucose and pyruvate growth

conditions. The fractional abundances for all enzymes can be found in the supplement
(S2 Fig)

Steady state analysis of the isozyme fractional abundances elucidated a preference
for a specific enzyme state conserved among growth conditions for PFK1, FBA2, and
PYK1 (Fig 4C). Steady state analysis also revealed that the isozyme pairs of PFK, FBP,
and PYK primarily existed in their product-bound form, a reflection of the metabolite
concentration levels found in S4 File. Specifically, the relatively high concentrations of
fructose 1,6-diphosphate (FDP) observed for glucose growth conditions and of adenosine
triphosphate (ATP) observed for pyruvate growth conditions contributed to significant
differences between enzyme product and reactant concentration levels, creating the
conditions favorable to the product-bound enzyme forms. Both the major and minor
PGM isozymes have a similar distribution in their enzyme forms. The fractional
abundance of all enzyme states in the glycolytic subnetwork can be found in S2 Fig.
Through this case study, we have demonstrated that MASSpy can be used to gain
insight into the distribution of functional states for the glycolytic proteome in E. coli
without prior knowledge of enzyme concentrations. See S3 File for all data and scripts
associated with this case study, including microscopic steps and kinetic parameters for
all enzyme modules

Discussion

We describe MASSpy, a free and open-source software implementation for dynamic
modeling of biological systems. MASSpy expands the COBRApy framework, leveraging
existing methods familiar to COBRA users combined with kinetic modeling methods to
form a single, intuitive framework for constructing and interrogating dynamic models.
In addition to enabling dynamic simulation, MASSpy contains tools for facilitating the
reconstruction and analysis of enzyme modules, MCMC sampling and ensemble
modeling capabilities, interfacing with packages for pathway visualization (Escher, [31]),
and exchanging models in SBML format (libSBML [33]). Taken together, the
presentation of the MASSpy software package has several important implications for
practitioners of dynamic metabolic simulation.

MASSpy provides several benefits over existing modeling packages (Table 2). While
MASS models provide an algorithmic approach for generating dynamic models that has
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already proven useful in several metabolic studies [20-24], a formal implementation of
the MASS framework has only existed on a commercial software platform
(Mathematica). MASSpy’s seamless integration with COBRApy offers a vast array of
constraint-based and dynamic modeling tools within a single open-source framework.
MASSpy primarily utilizes the MASS approach and therefore integrates a suite of tools
into its framework for addressing issues specific to MASS modeling. Unlike other
packages for traditional kinetic modeling, MASSpy incorporates both COBRA methods
and MCMC sampling methods for estimating missing values for several data types.
Furthermore, MASSpy contains unique capabilities to facilitate the construction and
analysis of detailed enzyme modules (i.e., microscopic steps), which allow for the
dynamics of transient responses to be observed in situations in which the quasi-steady
state and quasi-equilibrium assumptions cannot be applied. By directly expanding the
COBRApy framework for MASSpy, current COBRApy users will find that MASSpy
provides procedures and protocols that they may be familiar with, and allows members
of the COBRA community to directly integrate new tools into their existing workflows.

MASSpy is primarily built for deterministic simulations of a metabolic model and
thus may face limitations for other uses. For example, a package like PySCeS [65] could
be utilized to perform stochastic simulations. Users who often analyze sensitivity may
prefer Tellurium and its implementation of libRoadRunner [32,66] for explicit support
of metabolic control analysis (MCA) workflows; however, MASSpy does contain similar
MCA methods through its own implementation of libRoadRunner. Other dynamic
modeling packages offer certain features not available in MASSpy, such as a graphical
user interface (COPASI [67]) or a rule-based modeling approach (PySB [29]): see
Table 2 for a comparison of MASSpy’s software features with other existing dynamic
modeling packages. MASSpy’s use of SBML facilitates the transfer of models to other
software environments if desired [45].

Taken together, we have described MASSpy, a Python-based software package for
the reconstruction, simulation, and visualization of dynamic metabolic models. MASSpy
provides a suite of dynamic modeling tools while leveraging existing implementations of
constraint-based modeling tools within a single, unified framework. The case studies
presented here validate MASSpy as a modeling tool and demonstrate how the
combination of constraint-based and kinetic modeling features support data-driven
solutions for various dynamic modeling applications. We anticipate that the community
will find MASSpy to be a useful tool for dynamic modeling of metabolism.

Availability and future directions

Software availability and requirements

MASSpy version 0.1.0 is available as a Python package hosted on the Python Package
Index (https://pypi.org/project/masspy/), licensed under GNU General Public License,
version 3.0 (GPL-3.0). All external dependencies integrated and utilized by MASSpy
are also available on the Python Package Index (https://pypi.org/) and are licensed
under their respective licensing terms. Both the Gurobi Optimizer (Gurobi
Optimization, Houston, TX) and the CPLEX Optimizer (IBM, Armonk, NY) are freely
available for academic use, with solvers and installation instructions found at their
respective websites. The latest source code for MASSpy is currently available on
GitHub (https://github.com/SBRG/MASSpy) and is compatible with Mac OS X,
Linux, and Windows operating systems. Instructions for MASSpy installation can be
found in the repository README or in the documentation (S2 File). The data, scripts,
and instructions needed to reproduce the results of the case studies can be found in the
S3 File.
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Documentation

The documentation for MASSpy is available online (https://masspy.readthedocs.io/).
Good documentation is vital to the adoption and success of a software package; it
should teach new users how to get started while showing more experienced users how to
fully capitalize on the software’s features [41,68]. For new users, MASSpy provides
several simple tutorials demonstrating the usage of MASSpy’s features and its
capabilities. The MASSpy documentation also contains a growing collection of examples
that demonstrate the use of MASSpy, including examples of workflows, advanced
visualization tutorials, and in-depth textbook [24] examples that teach the
fundamentals for dynamic modeling of mass action kinetics (S2 File).

Improvements and community outreach

The MASSpy package is designed to provide various dynamic modeling tools for the
openCOBRA community; therefore a substantial portion of future development for
MASSpy will be tailored toward fulfilling the needs of the COBRA community based on
user feedback and feature requests. New MASSpy releases will utilize GitHub for
version control and adhere to Semantic Versioning guidelines (https://semver.org/) in
order to inform the community about the compatibility and scope of improvements.
Examples of potential improvements for future releases of MASSpy include bug fixes,
additional SBML compatibility, new import/export formats, support for additional
modeling standards, explicit support for additional libRoadRunner simulation
capabilities, and implementation of additional algorithms relevant to MASS modeling
approaches. As the systems biology field continues to address challenges in dynamic
models of metabolism, MASSpy will continue to expand its collection of modeling tools
to support data-driven reconstruction and analysis of mechanistic models.

Supporting information

S1 Fig. Sensitivity analysis on flux split through isozymes in the E. coli
glycolytic subnetwork. The Gibbs free energy of enzyme-catalyzed reactions and the
fractional abundance for isozyme states for all isozyme pairs for (A) glucose growth
conditions and (B) pyruvate growth conditions when computing the functional states of
the E. coli proteome in Case study 3.

S2 Fig. Fractional abundance of all enzyme states in the E. coli glycolytic
subnetwork. The fractional abundance for all enzymes states of all enzyme modules
when computing the functional states of the E. coli proteome in Case Study 3.

S1 File. The source code for MASSpy version 0.1.0. The latest version of the
MASSpy software can be found at https://github.com/SBRG/MASSpy. (ZIP)

S2 File. The documentation for M ASSpy version 0.1.0 The latest version of
the MASSpy documentation can be found at https://masspy.readthedocs.io. (ZIP).

S3 File. Data and Jupyter notebooks for case studies. All files necessary to
repeat each case study. Each folder contains the relevant data, scripts, and Jupyter
notebooks for that case study. Alternatively, these files can be found at
https://github.com/SBRG/MASSpy-publication (ZIP)
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S4 File. Steady state concentration data in the E. coli glycolytic
subnetwork. Includes the steady state concentration data for all metabolites and
enzymes in the E. coli glycolytic subnetwork in Case Study 3. (XLSX)
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