

1 Original Article

2 **Incongruent phylogenies and its implications for the study of diversification, taxonomy and**
3 **genome size evolution of *Rhododendron* (Ericaceae)**

4

5

6

7 GULZAR KHAN¹, JENNIFER NOLZEN¹, HARTWIG SCHEPKER² and DIRK C. ALBACH^{1*}

8

9

10

11 ¹*Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl*
12 *von Ossietzky Strasse 9-11, 26111 Oldenburg, Germany*

13 ²*Stiftung Bremer Rhododendronpark, Deliusweg 40, 28359 Bremen, Germany*

14 *Email: schepker@rhododendronpark-bremen.de*

15

16

17

18 **Email for correspondence: dirk.albach@uni-oldenburg.de*

19

20 **Total words: 8294**

21 **PREMISE:** *Rhododendron* L. (Ericaceae Juss.), is the most species-rich genus of woody flowering
22 plants with > 1000 species. Despite the interest in the genus and numerous previous phylogenetic
23 analysis, the infrageneric classification for the genus is still debated, partly due to its huge
24 diversity, partly due to homoplasy in key characters and partly due to incongruence between
25 phylogenetic markers. Here, we provide a broad coverage of representative species of all
26 *Rhododendron* subgenera, sections, and most subsections to resolve its infrageneric phylogeny or
27 highlight areas of incongruence, support previous analyses of diversification patterns and establish
28 a relationship between genome size evolution and its diversification.

29 **METHODS:** We generated sequences of two plastid (*trnK* and *trnL-F*) and two nuclear (ITS and
30 *rpb2-i*) markers for a total of 259 *Rhododendron* species, and used likelihood and Bayesian
31 statistics to analyze the data. We analyzed the markers separately to discuss and understand
32 incongruence among the data sets and among previous studies.

33 **RESULTS:** We found that the larger a subgenus, the more strongly it is supported as
34 monophyletic. However, the smaller subgenera pose several problems, e.g., *R.* subgen.
35 *Azaleastrum* consists of two sections inferred to be polyphyletic. The main shift to higher
36 diversification in the genus occurred in the Himalayan/SE Asian clade of *R.* subgen.
37 *Hymenanthes*. We found that polyploidy occurs in almost all subgenera but most polyploid species
38 are within *R.* subgen. *Rhododendron* sections *Rhododendron* and *Schistanthe*.

39 **CONCLUSION:** Whereas previous reports stated that genome sizes of tropical plants are lower
40 than those of colder and temperate regions in angiosperms in general, our study provides
41 evidence for such a shift to small genome-tropical species within a genus. Taken together, we see
42 the merit in the recognition of the five major clades at the sub generic level but given the amount of
43 incongruence a large amount of species cannot be confidently assigned to one of these five
44 clades. Further, genome-wide data will be necessary to assess whether these currently
45 unassignable taxa are independent taxa, assignable to one of the five major clades or whether
46 they are inter-subgeneric hybrids.

47 **KEYWORDS:** genome size evolution; incongruence; phylogeny; polyploidy; *Rhododendron*

48 *Rhododendron* L. (Ericaceae Juss.) is the most species-rich genus of woody flowering plants,
49 placed among the twenty largest plant genera >1000 species (Frodin, 2004). The genus has a
50 worldwide distribution (except limited distribution in Central & South America and Africa) with a
51 center of diversity in China (GBIF; Fang and Ming, 1995; Wu and Raven, 2005; Brown et al.,
52 2006). However, many of these species have a limited distribution and are, thus, threatened.
53 According to Gibbs et al. (2011), about 70% of the species of *Rhododendron* are classified as
54 vulnerable, threatened, endangered or critically endangered. Many of the species in the genus are
55 used as ornamentals and/or used as medicinal plants, with abundant literature on their ethno-

56 medicinal use as anti-inflammatory agents, pain killers, in gastro-intestinal disorders, common
57 cold, asthma, skin diseases, and toxic agents (used in the form of insecticide or poison; see
58 Popescu and Kopp, 2013 for a review). Innocenti et al. (2010) suggested that some species of
59 *Rhododendron* have antibacterial activities. Rezk et al. (2015) extended this work and
60 demonstrated that there is a higher susceptibility of Gram-positive bacteria (e.g., *Bacillus subtilis*
61 Ehrenberg) and lesser susceptibility of Gram-negative bacteria (e.g., *Escherichia coli* (Migula)
62 Castellani and Chalmers) towards *Rhododendron* leaf extracts.

63 This interest in the genus as ornamental and medicinal plant has led to a long list of studies
64 investigating its diversification and classification. Linnaeus (1753) classified the species in two
65 genera, *Azalea* (species with five stamens) and *Rhododendron* (species with ten stamens). Over
66 the next century, as the number and diversity of known species increased, additional genera such
67 as *Rhodora* L. (Linnaeus, 1762), *Vireya* Blume (Blume, 1826) and *Anthodendron* Rchb.
68 (Reichenbach, 1827) were proposed. Especially, in the second half of the nineteenth century
69 *Rhododendron* enjoyed an increase of species number based on the botanical exploration of the
70 Himalayas and China (e.g., Hooker, 1849) and starting a rhododendronmania in Europe
71 (Musgrave et al., 1998). Sleumer (1949, 1966) proposed a detailed classification for the genus that
72 proved highly influential until today. He classified all known *Rhododendron* species at that time into
73 five subgenera and 13 sections. Chamberlain et al. (1996), based on a number of more narrowly
74 focused morphological taxonomic studies, refined previous classifications for the genus grouping
75 the species into eight subgenera and 12 sections (Sleumer, 1966; Cullen, 1980; Chamberlain,
76 1982; Philipson and Philipson, 1986; Judd and Kron, 1995; Chamberlain et al., 1996). One notable
77 difference between both classifications is the inclusion of *R.* sect. *Therorhodion* Maxim. In
78 Chamberlain et al. (1996) as a subgenus of *Rhododendron*, whereas Sleumer (1966), following
79 Small (1914) considered it separate from *Rhododendron*. The classification of Chamberlain et al.
80 (1996) is still widely used by specialists and gardeners (Cox and Cox 1997; Goetsch et al., 2005).
81 Phylogenetic analyses started to have an influence on the classification of *Rhododendron* in the
82 last 30 years. The most important changes are the inclusion of three genera, *Ledum* (Kron and
83 Judd, 1990), *Diplarche* Hook.f. & Thomson and *Menziesia* Sm. (Craven, 2011). With respect to the
84 intrageneric classification, Goetsch et al. (2005), based on DNA-based phylogenetic analyses,
85 suggested a reduction to five subgenera, *R.* subgen. *Therorhodion*, *R.* subgen. *Rhododendron*, *R.*
86 subgen. *Hymenanthes* (including *R.* subgen. *Pentanthera* sect. *Pentanthera*), *R.* subgen.
87 *Choniastrum* (=*R.* subgen. *Azaleastrum* sect. *Choniastrum*) and *R.* subgen. *Azaleastrum* (incl. *R.*
88 subgen. *Pentanthera* sect. *Sciadorrhodion*, *R.* subgen. *Mumeazalea*, *R.* subgen. *Candidastrum*, *R.*
89 subgen. *Tsutsusi*; see details in Table S1).

90 Establishing relationships in *Rhododendron* based on morphological characteristics but also
91 molecular markers has been difficult because of frequent convergence and hybridization between
92 species. Hybridization is considered to have played an important role in the evolution and

93 speciation of *Rhododendron* through homoploid or allopolyploid speciation (Milne et al., 1999 and
94 2003; Milne and Abbott, 2008). This is reflected clearly by the large number of horticultural hybrids
95 in *Rhododendron* (over 28,000; Leslie, 2004) as well as the occurrence of natural hybridization
96 indicating weak reproductive barriers (Kron et al., 1993; Milne and Abbott, 2008; Milne et al., 1999
97 and 2003; Zha et al., 2008 and 2010; Zhang et al., 2007). Besides homoploid hybridization,
98 polyploidy, the occurrence of three or more sets of homologous chromosomes in the genome also
99 occurs naturally in *Rhododendron*, ranging from triploids to dodecaploids (Ammal, 1950) and even
100 more extensively exploited in horticulture (Jones et al., 2007). In *Rhododendron* the basic
101 chromosome number is 13 (with exception of *R. camtschaticum* Pall. with $n = 12$) with more than
102 70% of the species counted (~15% total) being diploid ($2n = 26$; Ammal et al., 1950; Väinölä, 2000;
103 and Rice et al., 2015), but little is known about the importance of polyploidization in the
104 diversification of the genus. Though hybridization can play diverse roles in promoting speciation
105 (Abbott et al., 2013; and Milne et al., 2010), in *Rhododendron*, hybrid populations have often been
106 found to show higher fitness than their parents only in mosaic habitats created along altitudinal,
107 radiation (Milne et al., 2003) or soil pH (Milne and Abbott, 2008) gradients.

108 The large number of species has stirred interest in investigating the underlying reasons for its
109 diversification. Milne et al. (2010) demonstrated that *R. subgen. Hymenanthes* (Blume) K. Koch
110 within South East (SE) Asia has been the clade to diversify fastest. Similarly, Schwery et al. (2015)
111 supported that the greatest diversity within *Rhododendron* occurs in the Himalayas and Malesia,
112 detected a nested Himalayan *Rhododendron* radiation of species of *R. subgen. Hymenanthes*, and
113 a separate diversification of *R. section Schistanthe* Schltr. (= *Vireya*) accompanied by an
114 eastwards dispersal, as predicted by (Brown et al., 2006) and Goetsch et al. (2011). However,
115 hybridization or polyploidy have not been considered by these studies are, until now, insufficiently
116 considered in the analyses trying to understand the diversification of the genus, in contrast to
117 biogeographic processes (Shrestha et al., 2018). A phylogenetic study analyzing the importance of
118 hybridization and establishing a robust infrageneric classification requires as many species as
119 possible representing all subgenera, sections, and subsections. Till to date about 400 species of
120 the more than 1000 *Rhododendron* species known to date have been studied in different
121 phylogenetic studies. However, these studies mostly focused on some specific subgenera and/or
122 sections. Only few studies considered the phylogeny of the whole genus *Rhododendron* and
123 mostly using a single DNA region, e.g., plastid *matK* - 51 species (Kurashige et al., 2001); nuclear
124 ITS - 21 species (Gao et al., 2002); nuclear *rpb2* - 88 species (Goetsch et al., 2005) or *trnK*, *trnL-F*
125 & ITS – 87 species (Grimbs et al., 2017). Shrestha et al. (2018) investigated the global distribution
126 and molecular phylogeny of *Rhododendron* in a biogeographical context, using 423 species with a
127 concatenated dataset of nine plastid genes, nuclear ribosomal ITS data and six introns of one
128 nuclear gene (RPB). However, neither did they report how much missing data was included nor
129 did they discuss whether and where incongruence between different data sets occurred. In
130 addition, Shrestha et al. (2018) depicted relationships without support values, which does not allow

131 evaluation of the robustness of relationships. Differences between these phylogenies and previous
132 classifications have raised doubts regarding the validity of the morphology-based *Rhododendron*
133 classification and prompted Goetsch et al. (2005) to propose a new classification. However, the
134 differences between analyses based on different DNA regions at the subgeneric and sectional
135 level prevented widespread support for this alternative classification for *Rhododendron*. To this
136 end, here our objective is to reconstruct the phylogeny of *Rhododendron* using representative
137 species of all subgenera, sections, and subsections for discussing support for alternative
138 classifications, especially the DNA-based classification of Goetsch et al. (2005). We used both
139 plastid and nuclear markers for phylogeny reconstruction. Based on this phylogeny, we analyzed
140 the importance of hybridization and polyploidization in diversification of *Rhododendron* in a
141 phylogenetic context. We provide here a critical evaluation of phylogenetic studies and results
142 from different markers in the genus. We, further, use the results to infer patterns of diversification
143 in the genus focusing on the importance of polyploidy and genome size evolution. Our main
144 questions were: (1) Does expansion of the sampling resolve the phylogenetic relationships within
145 *Rhododendron* and support the monophyly of major clades; (2) Do different DNA markers similarly
146 show and support previous diversification patterns? And (3): Are polyploidy and genome size
147 evolution related to the diversification of the genus? To follow these questions, we generated
148 sequences of two plastid (*trnK* and *trnL-F*) and two nuclear (ITS and *rpb2-i*) markers for a total of
149 307 individuals from 259 *Rhododendron* species. We analyzed all four datasets separately and
150 discuss the incongruences among these markers and previous studies. In addition, we used
151 BAMM (Bayesian Analyses of Macroevolutionary Mixtures; Rabosky, 2014) to investigate the
152 pattern of diversification in *Rhododendron*.

153 MATERIAL AND METHODS

154 Sampling

155 We based our sampling strategy on two criteria, first to include as many species as possible and
156 second to represent all subgenera, sections, and subsections of *Rhododendron* following
157 Chamberlain et al. 1996 (Table S1), which we managed with the exception of two subsections of
158 *R. subgen. Hymenanthes* (subsectt. *Barbata*, *Lanata*), the monotypic *R. subgen. Pentanthera*
159 subsect. *Sinensis*, and four monotypic subsections in *R. subgen. Rhododendron* (subsect.
160 *Afghanica*, *Campylopogon*, *Camelliflorum*, *Virgata*). We collected fresh leaves of 307 individuals
161 from 259 species at Rhododendron-Park Bremen and downloaded the available sequences of
162 other species from GenBank (Table S2). To root the phylogeny of *Rhododendron*, we used
163 *Calluna vulgaris* (L.) Hull, *Empetrum nigrum* L., *Kalmia angustifolia* L., *Kalmia procumbens* (L.)
164 Desvaux, *Vaccinium x intermedium* Ruthe, and *Vaccinium myrtilloides* Michx. as outgroups. The
165 outgroup species belong to the same family, covering the main lineages of family Ericaceae and
166 cultivated in the Botanical Garden of the Carl von Ossietzky-University (Oldenburg, Germany)

167 except *Phyllodoce empetriformis* (Sm.) D.D, collected in Botanical Garden Bochum (Bochum,
168 Germany) with permission. For DNA extraction the leaves were silica gel dried, while for flow
169 cytometry, we used fresh leaves. Vouchers for all species are stored in the herbarium of Carl von
170 Ossietzky-University (OLD).

171 **Genome size estimation, DNA extraction and PCR amplification**

172 To estimate nuclear genome sizes of *Rhododendron* species, we used flow cytometry following
173 the basic protocol of Galbraith et al. (1983). We used *Zea mays* L. 'CE-777' (2C = 5.430 pg),
174 *Hedychium gardnerianum* (2C = 4.02 pg) or *Solanum pseudocapsicum* (2C = 2.60) as an internal
175 standard (Temsch et al., 2010, Meudt et al., 2015; Table S2). Briefly, we prepared intact nuclei
176 suspensions by chopping 0.5 - 1 cm² of fresh leaf tissue of *Rhododendron* and the internal
177 standard together with 1100µl of nuclei extraction buffer (OTTO I buffer: 100mM citric acid;
178 0.5 % (v/v) Tween 20 (pH approx. 2.3) after Otto (1990)). The intact nuclei suspension was filtered
179 through a 30µm CellTrics® nylon mesh filter (Partec). The filtered solution was then incubated at
180 37 °C for 30 min and stained with 2 ml propidium iodide buffer for 1 hour at 4 °C. This staining step
181 also involved a treatment with RNase. Lastly, we ran the suspension on the flow cytometer
182 (CyFlow SL, Partec, Munster, Germany), measuring 5000 particles and at least 1000 nuclei of
183 sample and standard. We repeated this process three times on different days. The genome sizes
184 (2C-value in pg DNA) were determined by comparing the mean relative fluorescence of each
185 sample with the standard. The relationship between ploidy levels and genome sizes (monoploid
186 1Cx- value in pg DNA) was determined with documented chromosome numbers and ploidy levels
187 in the literature.

188 We extracted total genomic DNA from silica gel-dried leaves (Chase and Hills, 1991), with
189 minor modifications (100 µl elution buffer, centrifuge at 6.000 x g for 5 min) using the innuPREP
190 Plant DNA Kit (Analytik Jena, Jena, Germany). Following upon the completion of DNA extraction,
191 we amplified two plastid gene regions, *trnK* (*matK* and the 3' end *trnK*) & *trnL-F* (*trnL* intron, *trnL* 3'
192 exon, *trnL-trnF* spacer); and two nuclear gene regions, the *rpb2-i* (segment 2, 3, and 5) and the
193 ribosomal Internal Transcribed Spacer (ITS) through polymerase chain reaction (PCR, Table S3).
194 To amplify *trnK*, we designed two new internal primers based on the existing *trnK* of
195 *Rhododendron setosum* D.Don (OLD00775) using the program PRIMER3 (Rozen and Skaletsky,
196 1999), i.e. MK1538F (TAT GGG TGT TTA AAG AGC) and MK1785R (TCT ATC ATT TGA CTC
197 CGT ACC A). For other regions, we used the available primers (White et al., 1990; Taberlet et al.,
198 1991; Liu et al., 1999). All amplification reactions of target regions were carried out in 25 µl with
199 2.5 µl 10x PCR buffer, 1 µl MgCl₂ (50 mM), 0.5 µl dNTPs (10 mM), 1 µl of each primer
200 (10 pmol/µl), 1 µl DMSO (only in case of nuclear regions), 1 µl BSA, 0.2 µl Taq polymerase
201 (5 units), and 10-20 ng genomic DNA. The amplification of ITS and *trnL-F* regions were performed
202 on a TProfessional Standard Thermocycler (Biometra GmbH, Goettingen, Germany) and those of

203 the *trnK* and *rpb2-i* on a Mastercycler® gradient (Eppendorf AG, Hamburg, Germany; details of
204 PCR reactions profile in Table S3). Sequencing was conducted by GATC Biotech (Konstanz,
205 Germany) on an ABI 3730xl (PE Applied Biosystem) automated sequencers. To check the quality
206 of all sequences, we used GENEIOUS PRO v5.4.6 (Kearse et al., 2012). Lastly, we used MAFFT
207 algorithm (Katoh et al., 2002) to align the sequences and visually inspected the alignment.

208 **Phylogenetic reconstruction and divergence time**

209 We analyzed the data considering them as four separate data sets (*trnK*, *trnL-F*, ITS, and *rpb2-i*)
210 using the Maximum Likelihood and Bayesian inference approaches. Maximum Likelihood (ML)
211 analyses were conducted in RAxML v.7.9.5 (Stamatakis, 2006) with the substitution model
212 (GTR+Γ with four rate categories for ITS, *rpb2* and *trnK*; and HKY for *trnL-F*). The selection of best
213 substitution models was implemented in jMODELTEST v.3.7 (Posada, 2008) using the Akaike
214 Information Criterion (AIC). We used non-parametric bootstraps (1000 replicates) to determine
215 support for each node (BS up to 70 was considered as weak, BS 70 – 90 as medium, and BS > 90
216 as strong). Similarly, the Bayesian trees were analyzed in MRBAYES v.3.2.2 (Ronquist and
217 Huelsenbeck, 2003) using the same substitution model with two independent runs, each consisted
218 of four Markov chains. All runs were allowed to proceed for ten million generations, sampled every
219 1000 generations. A consensus tree was generated with a 50 percent majority rule consensus
220 after discarding the first 10 percent generations as burn-in.

221 Similarly, we estimated time-calibrated phylogenetic trees in BEAST v.2.3 (Bouckaert et al.,
222 2014) for which, the input file was generated in BEAUTi v.2.3 (Bouckaert et al., 2014) using an
223 uncorrelated lognormal relaxed clock (Drummond et al., 2006) with a birth-death prior and GTR
224 substitution model. Since fossils of *Rhododendron* are scarce and difficult to use for each branch,
225 we used the oldest *Rhododendron* fossil as a first calibration point. According to Schwery et al.,
226 2015, the estimated fossil age of *Rhododendron* (without *R. camtschaticum*) is 58 mya with a
227 standard deviation of 2 my, based on the oldest fossil of *Rhododendron* and 17 other fossils from
228 Ericaceae. As second calibration point, we used 28.10 mya as leaf fossil age of *R. subgen.*
229 *Hymenanthes* from the late Oligocene (Axelrod, 1998) with normally distributed prior and the
230 corresponding standard deviation.. The actual analysis was run for 100 million MCMC each,
231 sampling the results after every 10.000 chains. We used the program Tracer v.1.5 (Rambaut and
232 Drummond, 2009) to check upon the convergence of the chains and estimated sample sizes (ESS
233 > 200). To compute the maximum clade credibility tree, we used TreeAnnotator v.2.3 (Drummond
234 et al., 2012) with node heights being the median of the age estimates deleting the first 10 %
235 generations as burn-in. Finally, we investigated if there were any influence of the priors on the
236 analyses and information content of the data by repeating the analyses with the same settings
237 without data.

238 **Genome size evolution and diversification**

239 To investigate whether the continuous traits related to genome size (2C genome size, 1Cx
240 monoploid genome size, ploidy level) have any significant phylogenetic signal, we estimated the
241 phylogenetic signal of these characters with the function `phylosig` in the R-package ‘`phytools`’
242 (Revell, 2012) using two different methods: Blomberg’s K statistic (Blomberg et al., 2003) and
243 Pagel’s λ (Pagel, 1999). A bar plot of the trait ‘ploidy level’ was visualized using ‘`phytools`’ by
244 mapping it on the side of the BEAST tree. To calculate and map the ancestral character states for
245 continuous characters 2C- and 1Cx-values on the BEAST tree for the data sets, we used the
246 function `contMap` in ‘`phytools`’ by estimating the maximum likelihood ancestral character states for
247 continuous traits with `fastAnc`.

248 The net diversification rate and the number and location of monoploid genome size rate shifts
249 in *Rhododendron* were determined using BAMM (Rabosky, 2014) as employed in the R-package
250 ‘`BAMMtools`’ (Rabosky et al., 2014). Though BAMM has been criticized by Moore et al. (2016),
251 simulation studies suggested robustness of diversification analyses by BAMM (Rabosky et al.,
252 2017; see also in Mitchel et al., 2019). The most important critique of BAMM is an error in the rate
253 of extinction in the absence of fossil records (Rabosky, 2010; Marshall, 2017; and Rabosky, 2018).
254 However, we here used BAMM only for diversification/speciation analysis. Additionally, since
255 *Rhododendron* is monophyletic (details in results section), we only accounted for incomplete
256 sampling to improve the robustness of BAMM based results. In *Rhododendron*, we estimated the
257 `globalSamplingFraction` as number of species used in the dataset/total number of *Rhododendron*
258 species (for example 0.235 for *trnK* as 259/1100 total *Rhododendron* species) following Igéa and
259 Tanentzap (2020; also see in Spriggs et al., 2015). For the actual analysis, we used the BEAST
260 trees as input for running both the trait (1Cx-value) and speciation rate. Three replicates were run
261 in BAMM for 30 million generations and saved after every 5,000th generation. ‘`BAMMtools`’ was
262 used to plot the likelihoods of sampled generations after discarding the first 10% of chains. To
263 assess convergence, effective sample size was checked for each prior to be >200. Furthermore,
264 we calculated Bayes factors (BFs), plotted the best shift rate configurations and estimated rates of
265 speciation (diversification analysis) and evolution of monoploid genome size (trait analysis).

266 RESULTS

267 Molecular phylogenetic reconstruction

268 Details of variables sites, number of informative sites, and species used in each dataset are given
269 in Table 1. The results from phylogenetic analyses of the four DNA regions (Figs. 1-2, S1-6) agree
270 in several aspects. These are the monophyly of *Rhododendron*, the sister-group relationship of *R.*
271 subgen. *Therorhodion* to the rest of the genus, the monophyly of *R.* subgen. *Rhododendron* (the
272 former *Ledum* excluded) and *R.* subgen. *Tsutsusi* (except in *trnLF*), as well as the polyphyly of *R.*
273 subgen. *Azaleastrum* and *R.* subgen. *Pentanthera*, within the latter, *R.* sect. *Pentanthera* is
274 monophyletic if *R. canadense* is included (except in *rpb2*). In *R.* subgen. *Azaleastrum*, the two

275 sections *R. sect. Azaleastrum* and *R. sect. Choniastrum* are monophyletic. Finally, the analyses
276 agree that in *R. subgen. Tsutsusi*, *R. sect. Tsutsusi* (excl. *R. tashiroi*) and *R. sect. Brachycalyx*
277 (including *R. tashiroi*) are monophyletic. In the following, we will only mention the points, in which
278 the single region analyses differ from the rest.

279 Our results based on the plastid markers, the *trnK* phylogeny (259 species, CI = 0.736, RI =
280 0.917; Table 1; Fig. 1 and S1) and *trnL-F* region (169 species, CI = 0.697, RI = 0.883; Table 1; Fig.
281 S2-3), are highly congruent. Results from the *trnK* dataset suggest that within *R. subgen.*
282 *Hymenanthes*, species of subsections *Argyrophylla* (*R. insigne*, *R. rirei*), *Fortunea* (*R. calophytum*,
283 *R. praevernum*), *Irrorata* (*R. annae*), and all included species of *Pontica* (except *R. degronianum*
284 and *R. smirnowii*) form a group, which includes almost all species from outside SE Asia (South-
285 West Eurasia = Turkey and Caucasus; North-East Asia = Japan, Korea and Manchuria to East
286 Siberia; western North America and eastern North America) and is sister to the remaining
287 subsections of *R. subgen. Hymenanthes* (SE Asian clade = mainly southern China, Himalaya
288 Mountains and Taiwan). *Rhododendron* subgen. *Rhododendron* is divided into two clades of which
289 one encompasses the sections *Rhododendron* (excluding subsection *Glauca*) and *Pogonanthum*,
290 and the second contains the vireyas (section *Schistanthe*). The monotypic *R. subgen.*
291 *Candidastrum* is sister to the combined *R. subgen. Tsutsusi* and *R. section Azaleastrum*, but the
292 clade was weakly supported (BS/PP ≤ 70). The monotypic *R. subgen. Mumeazalea* is sister to *R.*
293 *sect. Choniastrum*.

294 Our results based on the *trnL-F* region showed only some, slight differences and was generally
295 less well resolved. The *trnL-F*-based tree recovered *R. subgen. Azaleastrum* section *Choniastrum*
296 (with *Mumeazalea*) as sister to *Tsutsusi* section *Tsutsusi*. In addition, *R. section Azaleastrum* is
297 sister to the clade of *R. subgen. Choniastrum* and *R. subgen. Tsutsusi* with strong support (Fig.
298 S2). *Rhododendron vaseyi* (*R. section Rhodora*) and *R. pilosum* (*R. section Sciadorhodion*, former
299 *Menziesia*) clustered closer to *R. subgen. Rhododendron* (Fig. S2). *Rhododendron* subgen.
300 *Hymenanthes* is divided into the same two clades as above and within *R. subgen. Rhododendron*
301 section *Schistanthe* (including *R. section Rhododendron* subsections *Genestieriana*, *Glauca*, and
302 *Micrantha*) is sister to section *Pogonanthum* and the remaining subsections of section
303 *Rhododendron*.

304 In the phylogeny based on the nuclear ITS region (197 species, CI = 0.662, RI = 0.908; Table
305 1; Fig. 2 and S4) reveals *R. subgen. Mumeazalea* clusters with section *Azaleastrum* and with *R.*
306 section *Choniastrum*. In addition, *R. sections Rhodora* and *Sciadorhodion* show a sister group
307 relationship to the clade of *R. section Azaleastrum*, *Mumeazalea*, and *Tsutsusi*, but this
308 relationship is weakly supported. Within *R. section Rhododendron* the subsections *Ledum*,
309 *Micrantha*, and *Rhododendron* form a clade (Fig. 2) which is sister to the clade including *R. section*

310 *Pogonanthum*, the remaining subsections of *R.* section *Rhododendron*, and *R.* section
311 *Schistanthe*.

312 In the phylogeny based on *rpb2-i* sequences (170 species, CI = 0.674, RI = 0.864; Table 1;
313 Fig. S5-6) all *Rhododendron* species (except *R. camtschaticum*) fall into three large clades (Fig.
314 S6). The first clade comprises *R.* subgenera *Hymenanthes* and *Pentanthera*, in which *R.* subgen.
315 *Pentanthera* is not monophyletic. The second clade contains *R.* subgenera *Azaleastrum* section
316 *Azaleastrum*, *Candidastrum*, *Mumeazalea*, *Pentanthera* section *Sciadorhodion*, *R. nipponicum*
317 (section *Viscidula*) and *R. vaseyi* (section *Rhodora*), and *R.* subgen. *Tsutsusi*. The remaining clade
318 encompasses *R.* subgen. *Azaleastrum* section *Choniastrum* and *R.* subgen. *Rhododendron*.

319 **Diversification regime shifts**

320 All three runs of diversification analysis in BAMM showed similar results (including log likelihoods
321 and number of shifts; data not shown). For the *trnK* species tree the frequent shift configuration of
322 the 95 % credible set of shift configurations ($f = 0.15$) shows two ‘core shifts’ to higher
323 diversification rates (red and orange circles and branches) and one ‘core shift’ to slower
324 diversification rate (light blue circle and branches; Fig. 3). The first shift to diversification rate
325 acceleration (red clade) includes species of *R.* subgen. *Hymenanthes* from the SE Asian clade.
326 The second clade with higher diversification rate (orange clade) is within *R.* subgen.
327 *Rhododendron*. This clade contains species from section *Rhododendron* in part (excluding species
328 from *R.* subsect. *Baileya*, *Boothia*, *Edgeworthia*, *Laponica*, *Maddenia*, and *Tephropepla*) and the
329 two species included from *R.* section *Pogonanthum*. This diversification shift with rate acceleration
330 is also found in the diversification analysis with only 105 taxa matching those included in the trait
331 analysis ($f = 0.35$; Supplementary Material, Fig. S7A). The second shift within *R.* subgen.
332 *Rhododendron* shows a diversification rate slowdown (light blue clade). The mean speciation rate
333 in *Rhododendron* as calculated by BAMM was 0.429 speciation events per million years (Myr) and
334 has increased over time (Fig. 3, inset).

335 However, the diversification analysis of the *rpb2-i* species tree ($f = 0.14$) shows one ‘core shift’
336 to a higher diversification rate in *R.* subgen. *Hymenanthes* for the SE Asian clade (Fig. S8A) and a
337 second ‘core shift’ with diversification rate slowdown for *R.* subgen. *Rhododendron* (excluding
338 subsection *Ledum* (L.) K.A.Kron & W.S.Judd). Both shifts are not seen in the diversification
339 analysis with only 56 taxa matching those for the trait analysis, despite a generally similar pattern
340 (Fig. S8B). The diversification analysis of the ITS species tree shows only one ‘core shift’ from *R.*
341 *camtschaticum* ssp. *camtschaticum* Pall. to a higher diversification rate for all remaining species of
342 *Rhododendron* (Fig. S9A). In the diversification analysis with only 90 taxa a ‘core shift’ to a slower
343 diversification rate for deciduous species (*R.* subgen. *Azaleastrum* section *Azaleastrum*, *R.*
344 subgen. *Mumeazalea*, *R.* subgen. *Pentanthera* section *Sciadorhodion*, and *R.* subgen. *Tsutsusi*
345 (Fig. S9B) has been revealed.

346 **Genome size evolution**

347 The genome sizes for 125 *Rhododendron* species are listed in Table S2. The 1C-values range
348 from 0.677 pg to 2.182 pg for *R.* subgen. *Hymenanthes*, from 0.543 pg to 1.914 pg for *R.* subgen.
349 *Pentanthera*, from 0.483 pg to 2.777 pg for *R.* subgen. *Rhododendron* and from 0.571 pg to 0.776
350 pg for *R.* subgen. *Tsutsusi*. For *R.* subgen. *Azaleastrum* the genomes size is 0.583 pg and 1.406
351 pg, for *R.* subgen. *Mumeazalea* 0.540 pg and for *R.* subgen. *Therorhodion* it is 0.583 pg. Most
352 (87%) species of *R.* subgenera *Hymenanthes*, *Pentanthera*, and *Tsutsusi* are diploid. In contrast,
353 polyploid species (tetra-, hexa- and octoploids) constitute roughly half (53%) of all investigated
354 species of *R.* subgen. *Rhododendron* sections *Rhododendron* and *Schistanthe*.

355 Among the three continuous traits (2C-value, 1Cx-value, and ploidy level), only the 1Cx-value
356 had a significant phylogenetic signal (Blomberg's $K = 0.248$, $P < 0.005$; Pagel's $\lambda = 0.929$, $P <$
357 0.005). Similarly, the ancestral character state reconstruction analysis using continuous color
358 gradients with 2C-values (Fig. 4A) indicates that the ancestors of *Rhododendron* had small
359 genomes but there have been several increases (yellow to green/blue) of 2C-value along the tree
360 (Fig. 4A). The species with larger genome sizes (green to blue) are mainly species of *R.* subgen.
361 *Rhododendron* sections *Rhododendron* (in part) plus section *Pogonanthum* and section
362 *Schistanthe*. In these two groups almost all polyploid species (87%) are included. The ancestral
363 character state estimation of 1Cx-values indicates genome upsizing for species of *R.* subgen.
364 *Pentanthera* section *Pentanthera*, *R.* subgen. *Hymenanthes*, and *R.* subgen. *Rhododendron*
365 section *Rhododendron* subsect. *Baileya*, *Boothia*, *Edgeworthia*, *Maddenia*, and *Tephropepla*
366 (green to blue). In contrast, species of *R.* subgen. *Rhododendron* section *Schistanthe* show a
367 smaller monoploid genome size (red to yellow) which indicates genome downsizing for this group.

368 In the BAMM trait analysis of monoploid genome size (1Cx-value) the mean rate of monoploid
369 genome size evolution in *Rhododendron* is 0.0005 and has not varied much over time (Fig. S10B,
370 inset). Based on the *trnK* BEAST phylogeny three 'core shifts' are indicated in the trait analysis
371 (Fig. S7B). Two of them are shifts to increased rates, i.e. in *R.* subgen. *Tsutsusi* section *Tsutsusi*
372 and *R.* subgen. *Rhododendron* section *Malayovireya*, whereas a third shift to a decreased rate is
373 shown for *R.* subgen. *Rhododendron* sections *Rhododendron* and *Pogonanthum*. Species of
374 section *Rhododendron* subsect. *Baileya*, *Boothia*, *Edgeworthia*, *Maddenia*, and *Tephropepla* are
375 excluded from this decrease.

376 The trait analysis based on the phylogeny of *rpb2-i* shows only one shift to an increased rate
377 for *R.* subgen. *Tsutsusi* section *Tsutsusi* (Supplementary Material, Fig. S8C) and based on ITS
378 only one 'core shift' to an increased rate for species of *R.* subgen. *Rhododendron* sections
379 *Rhododendron* and *Pogonanthum* (except species of subsections *Micrantha* and *Rhododendron*;
380 Fig. S9C) are indicated.

381 **DISCUSSION**

382 Our results agree in a well-supported monophyly of *Rhododendron* (Figs. 1-2), which is in line with
383 previous studies e.g., Shrestha et al., 2018; and Schwery et al., 2015), and when species of
384 *Ledum* and *Menziesia* are included (Craven (2011), Goetsch et al. (2005), Kron and Judd (1990)
385 and Kurashige et al. (2001). *Rhododendron camtschaticum*, representing *R.* subgen. *Therorhodion*
386 is sister to the rest of the genus in all analyses. This agrees with other analyses and allows
387 recognition of *R. camtschaticum* and *R. redowskianum* as separate genus (e.g., Judd and Kron,
388 2009). However, we continue recognizing them within *Rhododendron*.

389 In contrast, we found a marked difference concerning the internal relationships beyond the
390 sectional level. Overall, the results revealed the larger a subgenus, the stronger is the support for
391 its monophyly. The smaller subgenera pose several problems, for example *R.* subgen.
392 *Azaleastrum* is inferred to be polyphyletic, as previously indicated (Goetsch et al., 2005; Kurashige
393 et al., 2001; Schwery et al., 2015; and Yan et al., 2015). However, both sections are monophyletic
394 in all analyses (inclusion of *R. charitopes* in the ITS analysis is dubious). However, several
395 incongruent placements of species among analyses complicate a new classification of the genus.
396 Shrestha et al. (2018) provided the most comprehensive phylogenetic analysis to date with
397 multiple plastid and nuclear markers, but did not reflect incongruent placements among datasets
398 (Table 2).

399 **Phylogeny of *Rhododendron***

400 Goetsch et al. (2005) grouped the species in five subgenera, *R.* subgen. *Therorhodion* with two
401 species and *R.* subgen. *Rhododendron*, *Hymenanthes*, *Azaleastrum* and *Choniastrum* (Table 2).
402 The largest of these subgenera is *R.* subgen. *Rhododendron* with more than 500 species (Table
403 S1). There have been debates on whether to recognize the vireyas as separate subgenus or
404 section (Craven et al., 2008; Argent and Twyford, 2012). Recognition of a separate subgenus in
405 the traditional sense would lead to recognition of a diphyletic clade since *R.* subsection
406 *Discovireya* is separate from the rest in most analyses as found earlier by Goetsch et al. (2011).
407 The phylogeny presented by Shrestha et al. (2018) would allow recognition of three subclades,
408 one containing most of the members of *R.* sect. *Schistanthe*. However, these clades are
409 inconsistent among studies and markers and we refrain from suggesting a new sectional
410 classification. The only question regarding the circumscription of this subgenus is the inclusion of
411 the former genus *Ledum*, which appears as sister to *R.* subgen. *Rhododendron* in all nuclear DNA-
412 based analyses (Fig. 2 and S1; Gao et al., 2002; and Goetsch et al., 2005) but as sister to *R.*
413 *albrechtii* (Fig. 1 and S5; Kurashige et al., 2001) or sister to *R.* subgen. *Hymenanthes* and *R.* sect.
414 *Pentanthera* (Schwery et al., 2015) and distant to *R.* subgen. *Rhododendron* in the plastid DNA-
415 based analyses. Shrestha et al. (2018) has some species as sister to *R.* subgen. *Rhododendron*
416 and some as sister to *R. albrechtii* in his combined analysis of plastid and nuclear DNA, which
417 suggests that missing data in their dataset causes different accessions of species from this group

418 to end up in different positions. In Grimbs et al. (2017) the plastid DNA signal apparently overruled
419 the nuclear signal.

420 The second largest group in *Rhododendron* is *R.* subgen. *Hymenanthes*. Whereas there is
421 mostly strong support for the morphologically well-circumscribed subgenus in the traditional sense
422 (except in *rpb2*; Fig. S5-6; Goetsch et al., 2005), Shrestha et al. (2018) enlarged the subgenus to
423 include *R.* sect. *Pentanthera*. This relationship is strongly supported by *rpb2* (Fig. S5-6; Goetsch et
424 al., 2005) and shown without support by *trnK* (Fig. 1; Kurashige et al., 2001; Schwery et al., 2015).
425 The relationship is not shown but also not strongly refuted by analyses of ITS (Fig. 2 and S4; Gao
426 et al., 2002). The two groups differ in leaves being either deciduous or evergreen, a character
427 traditionally in taxonomy and horticulture important in the distinction between rhododendrons and
428 azaleas. We, therefore, prefer to keep *R.* sect. *Pentanthera* separate from *R.* subg. *Hymenanthes*.

429 The second-smallest subgenus in the classification of Goetsch et al. (2005) is *R.* subg.
430 *Choniastrum* with 15 species. The signal in Shrestha et al. (2018) depicting it as sister to *R.*
431 subgen. *Rhododendron* is largely derived from the *rpb2*-dataset (Fig. S5-6; Goetsch et al. 2005).
432 However, ITS puts the group in a position as sister to *R.* subg. *Azaleastrum* sensu Goetsch et al.
433 (2005; Fig. 2) or in unresolved position in one clade with this subgenus (Gao et al., 2002).
434 Schwery et al. (2015) resolves the section including former genus *Diplarche* based on *matK* and
435 *rbcL* as sister to this clade, as well. Other studies based on plastid DNA markers even group the
436 section among the members of *R.* subgen. *Azaleastrum* sensu Goetsch et al. (2005). We,
437 therefore, consider it premature to recognize this clade at the subgeneric level.

438 The morphologically most heterogeneous subgenus of Goetsch et al. (2005) is *R.* subgen.
439 *Azaleastrum*, which includes *R.* sect. *Azaleastrum*, three sections formerly assigned to *R.* subgen.
440 *Pentanthera* (*R.* sect. *Rhodora*, *R.* sect. *Sciadorhodion* (incl. *Menziesia*), *R.* sect. *Viscidula*), the
441 monotypic *R.* subgen. *Mumeazalea* (*R. semibarbatum*) and *R.* subgen. *Candidastrum* (*R.*
442 *albiflorum*) and the large (66 species) *R.* subgen. *Tsutsusi*. The signal for the monophyly of this
443 clade is derived mostly from *rpb2* (Fig. S5-6; Goetsch et al., 2005) with ITS supporting it with
444 inclusion of *R.* sect. *Choniastrum* (Fig. 2 and S4; Gao et al., 2002). Plastid DNA does not support
445 the group as monophyletic. The core of the group is constituted by *R.* subgen. *Azaleastrum* and *R.*
446 subgen. *Tsutsusi*. The monotypic *R.* subgen. *Candidastrum* (*R. albiflorum*) clusters with these two
447 based on *trnK* (Fig. 1 and S1; Kurashige et al., 2001), is unresolved together with these based on
448 ITS (Gao et al., 2002) and strongly supported sister to *R. albrechtii* based on *rpb2* (Goetsch et al.,
449 2005) and in Shrestha et al. (2018). The case is the other way around for the monotypic *R.*
450 subgen. *Mumeazalea* (*R. semibarbatum*), which is sister to *R.* subgen. *Tsutsusi* in Shrestha et al.
451 (2018) or *R.* subgen. *Azaleastrum* with ITS (Fig. 2 and S4; Gao et al., 2002) or in one clade with
452 these two and *R.* sect. *Viscidula* in *rpb2* (Fig. S2-3; Goetsch et al., 2005) but distantly to those and
453 strongly supported sister to *R.* sect. *Choniastrum* in the plastid DNA-based phylogenies (Fig. 1 and

454 S2-3; Kurashige et al., 2001). A third species (group) related to this core group is mono- or ditypic
455 *R. sect. Viscidula* (*R. nipponicum*), which clusters with this core in *rpb2* (Fig. S5-6; Goetsch et al.,
456 2005) and in Shrestha et al. (2018) but not using *trnK* (Fig. 1; Kurashige et al., 2001) with weak
457 support. A fourth species changing positions in different analyses is *R. vaseyi*, the second species
458 of *R. sect. Rhodora* apart from *R. canadense*, which clusters with *R. sect. Pentanthera*.
459 *Rhododendron vaseyi* is related to *R. schlippenbachii* of *R. sect. Sciadorhodion* and the species of
460 former genus *Menziesia* with medium to strong support based on *rpb2* (Fig. S5-6; Goetsch et al.,
461 2005) and is found there in Shrestha et al. (2018), too. However, ITS and the plastid DNA markers
462 retrieve it in different positions (Fig. 1-2 and S1-6; Kurashige et al., 2001; Grimbs et al., 2017). The
463 former genus *Menziesia* has been found to be nested in *Rhododendron* since the studies of Kron
464 (1997) and Kurashige et al. (2001). Goetsch et al. (2005) found strong support for a clade
465 consisting of *Menziesia* with *R. schlippenbachii* and *R. vaseyi* and a relationship with either holds
466 in all analyses but not always with both but almost always with *R. schlippenbachii*. In turn, *R.*
467 *schlippenbachii* (and *Menziesia*) have different positions, but always close to the Azaleastrum-
468 Tsutsusi-group. It is, however, noteworthy that other members of *R. sect. Sciadorhodion* rarely
469 form a monophyletic group with these. For example, *R. albrechtii*, which takes only a distant
470 relationship with *R. schlippenbachii* in the plastid DNA-based analyses (Fig. 1 and S1-3; Kurashige
471 et al., 2001; Grimbs et al., 2017).

472 Taken together, we consider it premature to group all species of *Rhododendron* in five
473 subgenera. We see the merit in the recognition of the five major clades at the subgeneric level but
474 given the amount of incongruence a large number of species cannot be confidently assigned to
475 one of these five clades. Further, genome-wide data will be necessary to assess whether these
476 currently unassignable taxa are independent taxa, assignable to one of the five major clades or
477 whether they are inter-subgeneric hybrids.

478 Diversification regime shifts

479 Based on this incongruence, we considered it necessary to conduct diversification analyses
480 separate for each DNA marker, although the *trnLF*-region did not have enough variation to allow a
481 reliable analysis. Diversification analyses demonstrated nearly the same speciation shifts for the
482 plastid *trnK* and nuclear *rpb2-i* regions (Fig. 3 and Fig. S8). The main shift to higher diversification
483 was found for species of *R. subgen. Hymenanthes* from the Himalayan/SE Asian clade, although
484 the exact species included is not consistent. Most species of subsection *Pontica* with a distribution
485 outside SE Asia (e.g., SW Eurasia, NE Asia, and N America) show no shift in diversification rate.
486 This pattern is consistent with the findings of other analyses. For example, Milne et al. (2010)
487 hypothesized, based on divergence time estimations, a slow diversification outside SE Asia
488 followed by more rapid diversification of one lineage within SE Asia, followed by immigration of at
489 least one additional lineage to the region. Additional support for a nested Himalayan radiation is

490 given by Schwery et al. (2015) using a BAMM analysis similar to ours but with much smaller taxon
491 sampling. The Himalayan-Southwest China region is known as a species-rich area of
492 *Rhododendron* since Joseph D. Hooker famous travels to India and the Himalayas (1847 – 1851)
493 but the region is also well known for other highly diverse groups of plants (Qiu et al., 2011). Most
494 intriguing is the parallel increase in diversification in shrubby *Viburnum* of the region, which has
495 been dated to the Eocene (Spriggs et al., 2015), similar to *Rhododendron*. Suggested reasons for
496 the high diversity that may apply to *Rhododendron* are the climatic and physiographic
497 heterogeneity, a complex geological history and the absence of major Quaternary glaciations (Qiu
498 et al., 2011) coupled with an increase in precipitation (Wang et al., 2012). These factors may have
499 spurned a diversification by causing barriers to plant migration (Zhao et al., 2013) and providing
500 opportunities for frequent niche shifts between temperate and tropical biomes with limited vertical
501 migration (Spriggs et al., 2015).

502 Similar to *R. subgen. Hymenanthes*, a significant rate increase was found in most
503 diversification analyses in *R. subgen. Rhododendron* (Figs. 3 and Fig. S7) and comprises most
504 species of sections *Pogonanthum* and *Rhododendron*. In contrast, a clade within section
505 *Rhododendron* containing species of section *Rhododendron* subsections *Baileya*, *Boothia*,
506 *Edgeworthia*, *Maddenia*, and *Tephropepla* shows no change in diversification rate. All members of
507 this clade without rate shift occur in the Himalayan Mountains above 1500 meters with many at
508 least facultative epiphytic species and in an ecological diverse array of habitats such as conifer
509 forests, grassy hillsides, among rocks, steep slopes, or cliffs. In contrast to our expectations, no
510 shift in diversification rate was found within the species-rich group of tropical *Rhododendron*
511 (vireyas, section *Schistanthe*) for subsection *Euvireya* (Fig. 3; Figs. S7-8) which includes almost all
512 species endemic to the Philippines, Borneo, New Guinea, Sulawesi, and the Solomon Islands.
513 Nevertheless, here we only included 22% species of *Rhododendron* out of their total 587 species
514 (Table S1). *Euvireya* species exhibit considerable variation in their ecology, being epiphytic or
515 terrestrial and occurring from sea level to over 4000 m. Within *Euvireya*, the molecular-
516 phylogenetic clustering follows geography more closely than traditional taxonomy based upon
517 morphology, which is similar to the results from (Goetsch et al., 2011). The geographical pattern of
518 the group was intensively discussed by Brown et al. (2006b). It is considered a classic example of
519 Malayan radiation (Brown et al., 2006b; and Goetsch et al., 2011). An adaptive radiation can be
520 accompanied by a diversification rate slowdown, which may sound counter-intuitive at first.
521 However, since speciation rates usually decrease after an initial rapid diversification either due to
522 increased competition for resources or niche filling, diversity- or time-dependent factors must be
523 considered as potential drivers for observed decreases in the rates of diversification (Soulebeau et
524 al., 2015). Our results are in contradiction with Shrestha et al. (2018), who suggested that tropical
525 and subtropical mountains are not only the biodiversity and endemism hotspots for the genus
526 *Rhododendron*, but also function as cradles of *Rhododendron* diversification.

527 While support for a diversification increase in *R. subgen. Hymenanthes* is more or less
528 unambiguous, we have found here a discordance of results from different DNA regions but cannot
529 really distinguish between diversification rate shifts depending on species sampling, evolutionary
530 rate or topology (Fig. 3; and Figs. S7 and S9). Based on the similarity of our analysis using *trnK*
531 with 260 taxa and that of Schwery et al. (2015) with 60 taxa but also using *trnK* (and *rbcL*),
532 topology seems to be the most important. Therefore, more complete taxon sampling and,
533 especially, resolving incongruences between markers in the future seems to be required for more
534 conclusive diversification analyses.

535 **Genome size evolution**

536 Our analysis is the first to analyze genome sizes in a larger number of species of *Rhododendron*
537 (Table S2). Previous genome size estimations had been generated using Feulgen densitometry
538 (Ammal, 1950; Ammal et al., 1950) or flow cytometry using DAPI staining (Jones et al., 2007).
539 Ammal et al. (1950) completed an extensive survey of chromosome numbers and ploidy levels in
540 *Rhododendron* and found the elepidote rhododendrons (*R. subgen. Hymenanthes*), evergreen
541 azaleas (*R. subgen. Tsutsusi*), and the deciduous azaleas (*R. subgen. Pentanthera*) to be
542 predominantly diploid. However, they also demonstrated the occurrence of triploids, hexaploids,
543 octoploids, and dodecaploids ($2n = 12x = 156$) within *R. subgen. Rhododendron* and natural
544 tetraploids in other subgenera as well, e.g. in *R. subgen. Pentanthera* (*R. canadense* and *R.*
545 *calendulaceum*; Ammal, 1950; Ammal et al., 1950; and Jones et al., 2007). Our results confirm
546 and expand the pattern that polyploidy occurs in almost all subgenera but most polyploid species
547 are within *R. subgen. Rhododendron* sections *Rhododendron* and *Schistanthe* (Fig. 4A). This is
548 rather surprising given the high frequency of polyploids among garden cultivars belonging to *R.*
549 *subgen. Hymenanthes* (Perkins et al., 2012). Within *R. section Schistanthe*, the polyploid species
550 are restricted to *R. subsections Euvireya* and *Malayovireya*, which occur in Indonesia and New
551 Guinea and most of them are endemic to these islands while the species of the Asian mainland
552 are diploid based on our data. There seems to be no correlation of genome size with habit
553 (epiphytic, terrestrial or both) in this group of vireyas but the monoploid genome sizes are smaller
554 ($1Cx\text{-values} = 0.483$ up to 0.618 pg ; light green/yellow to red; Fig. 4B). This genome downsizing
555 has been inferred to be accompanied by a slow-down in the evolution of genome size. Thus, the
556 group seems to have stabilized on a lower level of genome size. Such a pattern has also been
557 shown in the New Zealand radiation of *Veronica*, in which genome downsizing and a slow-down of
558 rate in genome size evolution are associated with a radiation on the polyploid level (Meudt et al.,
559 2015). While previous studies have shown that genome sizes of tropical angiosperms in general
560 are lower than those of colder, temperate regions (Levin and Funderburg, 1979; Ohri, 2005), our
561 study seems to be the first to indicate such a shift to small genome-tropical clade within a specific
562 genus. It remains to be studied whether genome downsizing in this clade is functionally related
563 with the higher frequency of polyploidy and/or its species richness.

564 Within section *Rhododendron*, almost all polyploid species form a monophyletic clade and
565 seem to be restricted to subsections *Heliolepidia* and *Triflora*. In contrast to the former group, here
566 polyploidy is not associated with genome downsizing. Diploid species from the latter subsection do
567 not cluster with the monophyletic clade of polyploids but with other diploid species from different
568 subsections based on plastid DNA markers (Fig. 4A; *trnK* gene region). In the same analysis using
569 ITS (Fig. S10) diploids are nested among polyploids suggesting an origin of at least four polyploid
570 clades involving the same unknown diploid species. Hybridization and polyploidization, often
571 referred to as whole genome duplication, are both potential speciation mechanism. Genome
572 doubling creates instantaneously lineages reproductively isolated from its diploid progenitors and
573 must overcome competition with their parents for abiotic resources (Soltis et al., 2010).
574 Diversification analyses have demonstrated that polyploids have higher extinction rate and lower
575 diversification rate than diploid lineages (Mayrose et al., 2011) but nevertheless have given rise to
576 major radiations in angiosperms (Tank et al., 2015). In line with this pattern, we did not detect a
577 change in diversification in polyploids. Thus, polyploidy did not increase speciation rate in
578 *Rhododendron* but may however be associated with evolutionary novelties. Our hypothesis is that
579 in this *Heliolepidia*/*Triflora*-group species have a higher chance to produce unreduced gametes,
580 thus the repeated origins of polyploids from similar ancestors, but the lack of genome downsizing
581 prevents diversification on the polyploid level.

582 Hybridization facilitates the transfer of traits between species, which has been shown to
583 promote adaptive evolutionary change in *Rhododendron* (Milne and Abbott, 2000) and other
584 species. Such introgressed traits may affect various stages of life history including resistance to
585 herbivores and pathogens (Whitney et al., 2015). Recent reviews suggest that resistance is an
586 important component of hybrid survival (Orians, 2000) and that hybridization and polyploidy may
587 be important evolutionary mechanisms for generating novel secondary chemicals important in the
588 diversification of plant-animal interactions (Soltis et al., 2014). Oswald and Nuismer (2007)
589 explored the possibility that new polyploids are initially more resistant to pathogens than their
590 diploid progenitors by using mathematical models and confirmed that polyploids are significantly
591 more resistant. *Rhododendron* may prove to be a living example for the evolution of novel
592 chemicals in polyploids since four of the ten species shown to exhibit the highest antibacterial
593 effects against Gram-positive bacteria by Rezk et al. (2015) are shown here to be polyploid (*R.*
594 *ambiguum*, *R. cinnabarinum*, *R. concinnum* and *R. rubiginosum*). It remains to be shown that the
595 high antimicrobial activity is due to the origin of novel gene combinations in polyploids.

596 CONCLUSIONS

597 Given the large numbers of species, including many rare species with restricted range sizes, there
598 are inherent difficulties in the analyses of phylogenetic relationships, diversification, and trait
599 evolution. Here, we included only 25-30% of the total species from the genus in the study and
600 analyzed all data sets separately. However, by using state of the art analytical tools, relying on

601 strong support in terms of bootstraps and posterior probabilities, and discussing thoroughly and
602 critically the results, we provide the most up-to-date knowledge of *Rhododendron* phylogeny,
603 diversification and genome size evolution. We compared our results with the DNA-based
604 classification by Goetsch et al. (2005) and warn of adopting this classification uncritically (Table 2).
605 Our results agree in a well-supported monophyly of *Rhododendron*, with *R.* subgen. *Therorhodion*
606 sister to all other taxa of *Rhododendron*. The results recovered marked incongruences between
607 markers in retrieval of internal relationships but also finding many results common across DNA
608 markers and morphology-based classifications. Our results demonstrate that the definition of
609 enlarged *R.* subgen. *Azaleastrum* and *R.* section *Sciadorhodion* by Goetsch et al. (2005) including
610 *R.* subgen. *Candidastrum*, *R.* subgen. *Mumeazalea*, *R.* *vaseyi* and other species of *R.* sect.
611 *Sciadorhodion* may be premature. Similarly, our results do not consistently support the placement
612 of *R.* subsect. *Ledum* in *R.* subgen. *Rhododendron* and the inclusion of *R.* sect. *Pentanthera* in *R.*
613 subgen. *Hymenanthes*. The diversification analysis revealed that a major rate shift in
614 *Rhododendron* occurred in the Himalayan Mountains above 1500 meters with many at least
615 facultative epiphytic species and in an ecologically diverse array of habitats such as conifer
616 forests, grassy hillsides, among rocks, steep slopes, or cliffs. These results are in contradiction to
617 Shrestha et al. (2018), who suggested tropical and subtropical mountains to be not just the
618 biodiversity and endemism hotspot for the genus but also a cradle of its diversification. However,
619 the topology of the phylogeny is indicated to influence largely the results. Therefore, more
620 complete taxon sampling, especially, resolving incongruences between markers in the future
621 seems to be required for more conclusive diversification analyses. Lastly, we confirm and expand
622 that polyploidy occurs in almost all subgenera but most polyploid species are within *R.* subgen.
623 *Rhododendron* sections *Rhododendron* and *Schistanthe*. The two groups differ, however, in their
624 pattern with the polyploids in *R.* sect. *Rhododendron* originating frequently but not diversifying on
625 the polyploid level and not exhibiting genome downsizing. In contrast, *R.* sect. *Schistanthe* seems
626 to be another example for a polyploid radiating after genome downsizing. It further can serve as an
627 example for the frequently cited reduction in genome size of tropical plants versus their temperate
628 relatives.

629 **ACKNOWLEDGEMENTS AND FUNDING INFORMATION**

630 This study was financially supported by the Stiftung Bremer Rhododendronpark, Germany. The
631 authors would like to thank Silvia Kempen and Eike Mayland-Quellhorst for assistance in the lab,
632 Nikolai Kuhnert, Klaudia Brix and Matthias Ullrich for support of this project.

633 **DATA ACCESSIBILITY**

634 Postprocess data will be available on Dryad.

636 AUTHOR CONTRIBUTIONS

637 Conceived the idea: DCA, JN, HS and KG; Performed experiments: JN; Contributed
638 reagents/materials/analysis tools: DCA, and HS; Analyzed data and authored the drafts of the
639 paper: KG, DCA. All authors contributed, made multiple revisions, and approved the final draft.

640 LITERATURE CITED

641 Abbott, R., D. Albach, S. Ansell, J. W. Arntzen, S. J. E. Baird, N. Bierne, J. Boughman, A. Brelsford, C. A. Buerkle, R.
642 Buggs, R. K. Butlin, U. Dieckmann, F. Eroukhmanoff, A. Grill, S. H. Cahan, J. S. Hermansen, G. Hewitt, A. G.
643 Hudson, C. Jiggins, J. Jones, B. Keller, T. Marczewski, J. Mallet, P. Martinez-Rodriguez, M. Möst, S. Mullen, R.
644 Nichols, A. W. Nolte, C. Parisod, K. Pfennig, A. M. Rice, M. G. Ritchie, B. Seifert, C. M. Smadja, R. Stelkens, J. M.
645 Szymura, R. Väinölä, J. B. W. Wolf, D. Zinner. 2013. Hybridization and speciation. *Journal of Evolutionary Biology*
646 26: 229–246.

647 Ammal, E. 1950. Polyploidy in the genus Rhododendron. *Rhododendron Year B* 5: 92–98.

648 Ammal, E., I. Enoch, and M. Bridgwater. 1950. Chromosome numbers in species of *Rhododendron*. *Rhododendron Year*
649 *B* 5: 78–91.

650 Argent, G. C. G., and A. D. Twyford. 2012. In defense of *Rhododendron* subgenus *Vireya*. *Journal of the American*
651 *Rhododendron Society* 142–143.

652 Argent, G. C. G., and D. Mitchell. 2006. Rhododendrons of subgenus *Vireya*. *Royal Horticultural Society London*.

653 Axelrod, D. 1998. The Oligocene Haynes creek flora of eastern Idaho.

654 Blomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits
655 are more labile. *Evolution* 57: 717–745.

656 Blume, C. L. 1826. *Bijdragen tot de flora van Nederlandsch Indië*. Batavia: Ter Lands drukkerij.

657 Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C. H. Wu, D. Xie, M. A. Suchard, A. Rambaut, A. J. Drummond. 2014.
658 BEAST 2: a software platform for Bayesian evolutionary analysis. *PLoS Computational Biology* 10: e1003537.

659 Brown, G. K., G. Nelson, and P. Y. Ladiges. 2006b. Historical biogeography of *Rhododendron* section *Vireya* and the
660 Malesian Archipelago. *Journal of Biogeography* 33: 1929–1944.

661 Brown, G. K., L. Craven, F. Udovicic, and P. Landiges. 2006. Phylogeny of *Rhododendron* section *Vireya* (Ericaceae)
662 based on two non-coding regions of cpDNA. *Plant Systematics and Evolution* 257: 57–93.

663 Chamberlain, D. F. 1982. A revision of Rhododendron: II. Subgenus Hymenanthes. *Notes from Royal Botanical Garden*
664 *Edinburgh* 39: 209–486.

665 Chamberlain, D. F., R. Hyam, G. Argent, G. Fairweather, and K. S. Walter. 1996. The genus Rhododendron: its
666 classification and synonymy. *Royal Botanical Garden, Edinburgh*.

667 Chase, M. W. and H. H. Hills. 1991. Silica gel: an ideal material for field preservation of leaf samples for DNA studies.
668 *Taxon* 40: 215–220.

669 Cox, P., and K. Cox. 1997. Encyclopedia of rhododendron species. *Glendoick Publishing, Perth*.

670 Craven, L. A. 2011. Diplarche and Menziesia transferred to *Rhododendron* (Ericaceae). *Blumea* 56: 33–35.

671 Craven, L. A., L. A. Goetsch, B. D. Hall, and G. K. Brown. 2008. Classification of the *Vireya* group of Rhododendron
672 (Ericaceae). *Blumea - Biodiversity, Evolution and Biogeography of Plants* 53:435–442.

673 Cullen, J. 1980. Revision of *Rhododendron*. 1. Subgenus *Rhododendron* sections *Rhododendron* and *Pogonanthum*.
674 *Notes from Royal Botanical Garden Edinburgh* 39: 1–207.

675 Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut. 2012. Bayesian phylogenetics with BEAUti and the BEAST
676 1.7. *Molecular Biology and Evolution* 29: 1969–1973.

677 Drummond, A. J., S. Y. W. Ho, M. J. Phillips, and A. Rambaut. 2006. Relaxed phylogenetics and dating with confidence.
678 *PLoS Biology* 4: e88.

679 Fang, R., and T. Ming. 1995. The floristic study on the genus *Rhododendron*. *Acta Botanica Yunnanica* 17: 359–379.

680 Frodin, D. 2004. History and Concepts of Big Plant Genera. *Taxon* 53(3): 753–776.

681 Galbraith, D., K. Harkins, J. Maddox, N. Ayres, D. Sharma, and E. Firoozabady. 1983. Rapid flow cytometric analysis of
682 the cell cycle in intact plant tissues. *Science* 220: 1049–1051.

683 Gao, L. M., D. Z. Li, C. Q. Zhang, and J. B. Yang. 2002. Infrageneric and sectional relationships in the genus
684 *Rhododendron* (Ericaceae) inferred from ITS sequence data. *Acta Botanica Sinica* 44: 1351–1356.

685 Gibbs D, Chamberlain D, Argent G. 2011. The Red List of Rhododendrons. Richmond, UK: Botanic Gardens
686 Conservation International.

687 Goetsch, L. A., A. J. Eckert, and B. D. Hall. 2005. The molecular systematics of *Rhododendron* (Ericaceae): a phylogeny
688 based upon RPB2 gene sequences. *Systematic Botany* 30: 616–626.

689 Goetsch, L. A., L. A. Craven, and B. D. Hall. 2011. Major speciation accompanied the dispersal of *Vireya*
690 *Rhododendrons* (Ericaceae, *Rhododendron* sect. *Schistanthus*) through the Malayan archipelago: evidence from
691 nuclear gene sequences. *Taxon* 60: 1015–1028.

692 Grimbs, A., A. Shrestha, A. Rezk, S. Grimbs, S. I. Hakeem, H. Schepker, M. T. Hütt, D. C. Albach, K. Brix, N. Kuhnert,
693 and M. S. Ullrich. 2017. Bioactivity in *Rhododendron*: A Systemic Analysis of Antimicrobial and Cytotoxic Activities
694 and Their Phylogenetic and Phytochemical Origins. *Frontiers in plant science* 8: 551.

695 Hooker, J. D. 1849. The Rhododendrons of Sikkim-Himalaya. Dehra Dun: Bishen Singh Mahendra Pal Singh.

696 Igea, J., and A. J. Tanentzap. 2020. Angiosperm speciation cools down in the tropics. *Ecology Letters* 23: 692–700.

697 Innocenti, G., S. Dall'Acqua, G. Scialino, E. Banfi, S. Sosa, K. Gurung, M. Barbera, M. Carrara. 2010. Chemical
698 composition and biological properties of *Rhododendron anthopogon* essential oil. *Molecules* 15: 2326–2338.
699 Jones, J. R., T. G. Ranney, N. P. Lynch, and S. L. Krebs. 2007. Ploidy levels and relative genome sizes of diverse
700 species, hybrids, and cultivars of *Rhododendron*. *Journal of American Rhododendron Society* 61: 220–227.
701 Judd, W., and K. Kron. 1995. A revision of *Rhododendron* VI. subgenus *Pentanthera* (sections *Sciadorhodion*, *Rhodora*
702 and *Viscidula*). *Edinburgh Journal of Botany* 52: 1–54.
703 Judd, W. S. & Kron, K. A. 2009. *Rhododendron* in: Flora of North America North of Mexico Vol. 8 (ed Flora of North
704 American Editorial Committee), Pp. 455–473, Oxford University Press.
705 Katoh, K., K. Misawa, K. Kuma, and T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment
706 based on fast Fourier transform. *Nucleic Acids Research* 30: 3059–3066.
707 Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C.
708 Duran, T. Thierer, B. Ashton, P. Meintjes, and A. Drummond. 2012. Geneious Basic: an integrated and extendable
709 desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28(12): 1647–1649.
710 Kron, K. A. 1997. Phylogenetic relationships of Rhododendroideae (Ericaceae). *American Journal of Botany* 84: 973–
711 980
712 Kron, K. A., and W. S. Judd. 1990. Phylogenetic relationships within the Rhodoreae (Ericaceae) with specific comments
713 on the placement of *Ledum*. *Systematics Botany* 15: 57–68.
714 Kron, K. A., L. M. Gawen, and M. W. Chase. 1993. Evidence for introgression in Azaleas (*Rhododendron*; Ericaceae):
715 Chloroplast DNA and morphological variation in a hybrid swarm on Stone Mountain, Georgia. *American Journal of
716 Botany* 80: 1095–1099.
717 Kurashige, Y., J. I. Etoh, T. Handa, K. Takayanagi, and T. Yukawa. 2001. Sectional relationships in the genus
718 *Rhododendron* (Ericaceae): evidence from matK and trnK intron sequences. *Plant Systematics and Evolution* 228:
719 1–14.
720 Leslie, A. 2004. The International Rhododendron Register and Checklist, 2nd ed. *Royal Horticultural Society, London*.
721 Levin, A. D., and S. W. Funderburg. 1979. Genome Size in Angiosperms: Temperate Versus Tropical Species. *The
722 American naturalist* 114: 784–795.
723 Linnaeus, C. 1753. Species Plantarum, 1st ed. *Salvius, L, Stockholm*.
724 Linnaeus, C. 1762. Vol. 1. Species Plantarum. ed. 2. *Stockholm.: i-xvi, 1-784*.
725 Liu, Y. J., S. Whelen, and B. D. Hall. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA
726 polymerase II subunit. *Molecular Biology and Evolution* 1799–1808.
727 Marshall, C. R. 2017. Five palaeobiological laws needed to understand the evolution of the living biota. *Nature Ecology
728 and Evolution* 1: 0165.
729 Mayrose, I., S. H. Zhan, C. J. Rothfels, K. Magnuson-Ford, M. S. Barker, L. H. Rieseberg, S. P. Otto. 2011. Recently
730 Formed Polyploid Plants Diversify at Lower Rates. *Science* 333: 1257–1257.
731 Meudt, H. M., B. M. Rojas-Andrés, J. M. Prebble, E. Low, P. J. Garnock-Jones, and D. C. Albach. 2015. Is genome
732 downsizing associated with diversification in polyploid lineages of *Veronica*? *Botanical Journal of the Linnean
733 Society* 178: 243–266.
734 Milne, R. I., and R. J. Abbott. 2000. Origin and evolution of invasive naturalized material of *Rhododendron ponticum* L. in
735 the British Isles. *Molecular Ecology* 9: 541–556.
736 Milne, R. I., and R. J. Abbott. 2008. Reproductive isolation among two interfertile *Rhododendron* species: low frequency
737 of post-F1 hybrid genotypes in alpine hybrid zones. *Molecular Ecology* 17: 1108–1121.
738 Milne, R. I., C. Davies, R. Prickett, L. H. Inns, and D. F. Chamberlain. 2010. Phylogeny of *Rhododendron* subgenus
739 *Hymenanthes* based on chloroplast DNA markers: between-lineage hybridisation during adaptive radiation? *Plant
740 Systematics and Evolution* 285: 233–244.
741 Milne, R. I., R. J. Abbott, K. Wolff, and D. F. Chamberlain. 1999. Hybridization among sympatric species of
742 *Rhododendron* (Ericaceae) in Turkey: morphological and molecular evidence. *American Journal of Botany* 86:
743 1776–1785.
744 Milne, R. I., S. Terzioglu, and R. J. Abbott. 2003. A hybrid zone dominated by fertile F1s: maintenance of species
745 barriers in *Rhododendron*. *Molecular Ecology* 12: 2719–2729.
746 Mitchell, J.S., R. S. Etienne, and D. L. Rabosky. 2019. Inferring diversification rate variation from phylogenies with
747 fossils. *Systematic Biology* 68: 1–18.
748 Moore, B.R., S. Höhna, M. R. May, B. Rannala, and J. P. Huelsenbeck. 2016. Critically evaluating the theory and
749 performance of Bayesian analysis of macroevolutionary mixtures. *Proceeding of national academy of sciences
750* 113: 9569–9574.
751 Musgrave, T., C. Gardner, and W. Musgrave. 1998. The plant hunters: two hundred years of adventure and discovery
752 around the world. *Cassell Illustrated*.
753 Ohri, D. 2005. Climate and growth form: The consequences for genome size in plants. *Plant Biology* 7: 449–458.
754 Orians, C. 2000. The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution
755 of plant-herbivore interactions. *American Journal of Botany* 87: 1749–1756.
756 Oswald, B. P., and S. L. Nuismer. 2007. Neopolyploidy and pathogen resistance. *Proceeding of Biological Sciences* 274:
757 2393–2397.
758 Otto, F. J. 1990. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA In: Z Darzynkiewicz, HA
759 Crissman, eds. *Methods in cell biology* 33: 105–110.
760 Pagel, M. 1999. The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete
761 Characters on Phylogenies. *Systematics Biology* 48: 612–622.
762 Perkins, S., J. Perkins, J. M. Oliveira, M. de Castro, S. Castro, J. Loureiro. 2012. Weighing in: Discovering the ploidy of
763 hybrid elepidote rhododendrons, in: Maughan, S. (Ed.), *Rhododendrons, Camellias and Magnolias*. *Royal
764 Horticultural Society* 34–48.
765 Philipson, W., and M. Philipson. 1986. A revision of *Rhododendron*: 3. Subgenera *Azaleastrum*, *Mumeazalea*,
766 *Candidastrum* and *Therorhodion*. *Notes from Royal Botanical Garden Edinburgh* 44: 1–23.

767 Popescu, R., and B. Kopp. 2013. The genus *Rhododendron*: An ethnopharmacological and toxicological review. *Journal*
768 *of Ethnopharmacology* 147: 42–62.

769 Posada, D. 2008. JModelTest: phylogenetic model averaging. *Molecular Biology and Evolution* 25: 1253–1256.

770 Qiu, Y. X., C. X. Fu, and H. P. Comes. 2011. Plant molecular phylogeography in China and adjacent regions: Tracing
771 the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora.
Molecular Phylogenetics and Evolution 59: 225–244.

772 Rabosky, D. L. 2010. Extinction rates should not be estimated from molecular phylogenies. *Evolution* 64: 1816–1824.

773 Rabosky, D. L. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic
774 trees. *PLoS One* 9: e89543.

775 Rabosky, D. L., J. Chang, P. O. Title, P. F. Cowman, L. Sallan, and M. Friedman, K. Kaschner, C. Garilao, T. J. Near, M.
776 Coll, and M. E. Alfaro. 2018. An inverse latitudinal gradient in speciation rate for marine fishes. *Nature* 559: 392–
777 395.

778 Rabosky, D. L., M. Grundler, C. Anderson, P. Title, J. J. Shi, J. W. Brown, H. Huang, and J. G. Larson. 2014.
779 BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. *Methods in Ecology*
780 and Evolution

781 5: 701–707.

782 Rabosky, D. L., J. S. Mitchell, and J. Chang. 2017. Is BAMM flawed? Theoretical and practical concerns in the analysis of
783 multi-rate diversification models. *Systematic Biology* 66: 477–498.

784 Rambaut, A., and A. Drummond. 2009. Tracer version 1.5. 0. <http://tree.bio.ed.ac.uk/software/tracer/>.

785 Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). *Methods in Ecology*
786 and Evolution

787 3: 217–223.

788 Rezk, A., J. Nolzen, H. Schepker, D. C. Albach, K. Brix, and M. S. Ullrich. 2015. Phylogenetic spectrum and analysis of
789 antibacterial activities of leaf extracts from plants of the genus *Rhododendron*. *BMC complementary and*
alternative medicine 15: 67–76.

790 Rice, A., L. Glick, S. Abadi, M. Einhorn, and N. M. Kopelman, et al. 2015. The Chromosome Counts Database (CCDB) –
791 a community resource of plant chromosome numbers. *New Phytologist* 206: 19–26.

792 Ronquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models.
Bioinformatics 19: 1572–1574.

793 Rozen, S., and H. Skaletsky. 1999. Primer3 on the WWW for general users and for biologist programmers.
Bioinformatics Methods and Protocols.

794 Schwery, O., R. E. Onstein, Y. Bouchenak-Khelladi, Y. Xing, R. J. Carter, and H. P. Linder. 2015. As old as the
795 mountains: the radiations of the Ericaceae. *New Phytologist* 207: 355–367.

796 Shrestha, N., Z. Wang, X. Su, X. Xu, L. Lyu, Y. Liu, D. Dimitrov, J. D. Kennedy, Q. Wang, Z. Tang, and X. Feng. 2018.
797 Global patterns of *Rhododendron* diversity: The role of evolutionary time and diversification rates. *Global Ecology*
798 and Biogeography

799 27: 913–924.

800 Sleumer, H. 1949. Ein system der gattung *Rhododendron* L. *Botanische Jahrbücher für Systematik* 74: 511–553.

801 Sleumer, H. 1966. *Rhododendron*, in: Flora Malesiana. Ser. I, Seed Plants. *Noordhoff, Groningen*, pp. 474–668.

802 Small, J. 1914. Ericaceae. *North American Flora* 29:33–102.

803 Soltis, D. E., R. Buggs, J. Doyle, P. Soltis. 2010. What we still don't know about polyploidy. *Taxon* 59: 1387–1403.

804 Soltis, P. S., X. Liu, D. B. Marchant, C. J. Visger, and D. E. Soltis. 2014. Polyploidy and novelty: Gottlieb's legacy.
805 *Philosophical Transactions of the Royal Society B: Biological Sciences* 369: 20130351.

806 Soulebeau, A., X. Aubriot, M. Gaudeul, G. Rouhan, S. Hennequin, T. Haevermans, J. Y. Dubuisson, and F. Jabbour.
807 2015. The hypothesis of adaptive radiation in evolutionary biology: hard facts about a hazy concept. *Organisms*
808 and Evolution

809 15: 747–761.

810 Spriggs, E. L., W. L. Clement, P. W. Sweeney, S. Madrin, E. J. Edwards, and M. J. Donoghue. 2015. Temperate
811 radiations and dying embers of a tropical past: The diversification of *Viburnum*. *New Phytologist* 207: 340–354.

812 Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and
813 mixed models. *Bioinformatics* 22: 2688–2690.

814 Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of
815 chloroplast DNA. *Plant Molecular Biology* 17: 1105–1109.

816 Tank, D. C., J. M. Eastman, M. W. Pennell, P. S. Soltis, D. E. Soltis, C. E. Hinchliff, J. W. Brown, E. B. Sessa, and L. J.
817 Harmon. 2015. Nested radiations and the pulse of angiosperm diversification: Increased diversification rates often
818 follow whole genome duplications. *New Phytologist* 207: 454–467.

819 Temsch, E. M., J. Greilhuber, and R. Krisai. 2010. Genome size in liverworts. *Preslia* 82: 63–80.

820 Väinölä, A. 2000. Polyploidization and early screening of *Rhododendron* hybrids. *Euphytica* 112: 239–244.

821 Wang, L., H. Schneider, X. C. Zhang, and Q. P. Xiang. 2012. The rise of the Himalaya enforced the diversification of SE
822 Asian ferns by altering the monsoon regimes. *BMC Plant Biology* 12: 210.

823 White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes
824 for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols. *Academic Press, San Diego*
825 315–322.

826 Whitney, K. D., K. W. Broman, N. C. Kane, S. M. Hovick, R. A. Randell, and L. H. Rieseberg. 2015. Quantitative trait
827 locus mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild
828 sunflower. *Molecular Ecology* 24: 2194–2211.

829 Wu, Z., and P. Raven. 2005. Apiaceae through Ericaceae, in: Flora of China. *Science Press, Beijing*.

830 Yan, L. J., J. Liu, M. Möller, L. Zhang, X. M. Zhang, D. Z. Li, and L. M. Gao. 2015. DNA barcoding of *Rhododendron*
831 (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains.
Molecular Ecology Resources 15: 932–944.

832 Zha, H. G., R. I. Milne, and H. Sun. 2008. Morphological and molecular evidence of natural hybridization between two
833 distantly related *Rhododendron* species from the Sino-Himalaya. *Botanical Journal of Linnean Society* 156: 119–
834 129.

835

836 Zha, H. G., R. I. Milne, and H. Sun. 2010. Asymmetric hybridization in *Rhododendron agastum*: a hybrid taxon
837 comprising mainly F1s in Yunnan, China. *Annals of Botany* 105: 89–100.
838 Zhang, J. L., C. Q. Zhang, L. M. Gao, J. B. Yang, H. A. T. Li. 2007. Natural hybridization origin of *Rhododendron*
839 *agastum* (Ericaceae) in Yunnan, China: inferred from morphological and molecular evidence. *Journal of Plant*
840 *Research* 120: 457–463.
841 Zhao, J. L., L. Zhang, S. Dayanandan, S. Nagaraju, D. M. Liu, and Q. M. Li. 2013. Tertiary Origin and Pleistocene
842 Diversification of Dragon Blood Tree (*Dracaena cambodiana*-Asparagaceae) Populations in the Asian Tropical
843 Forests. *PLoS One* 8: 0060102.

844

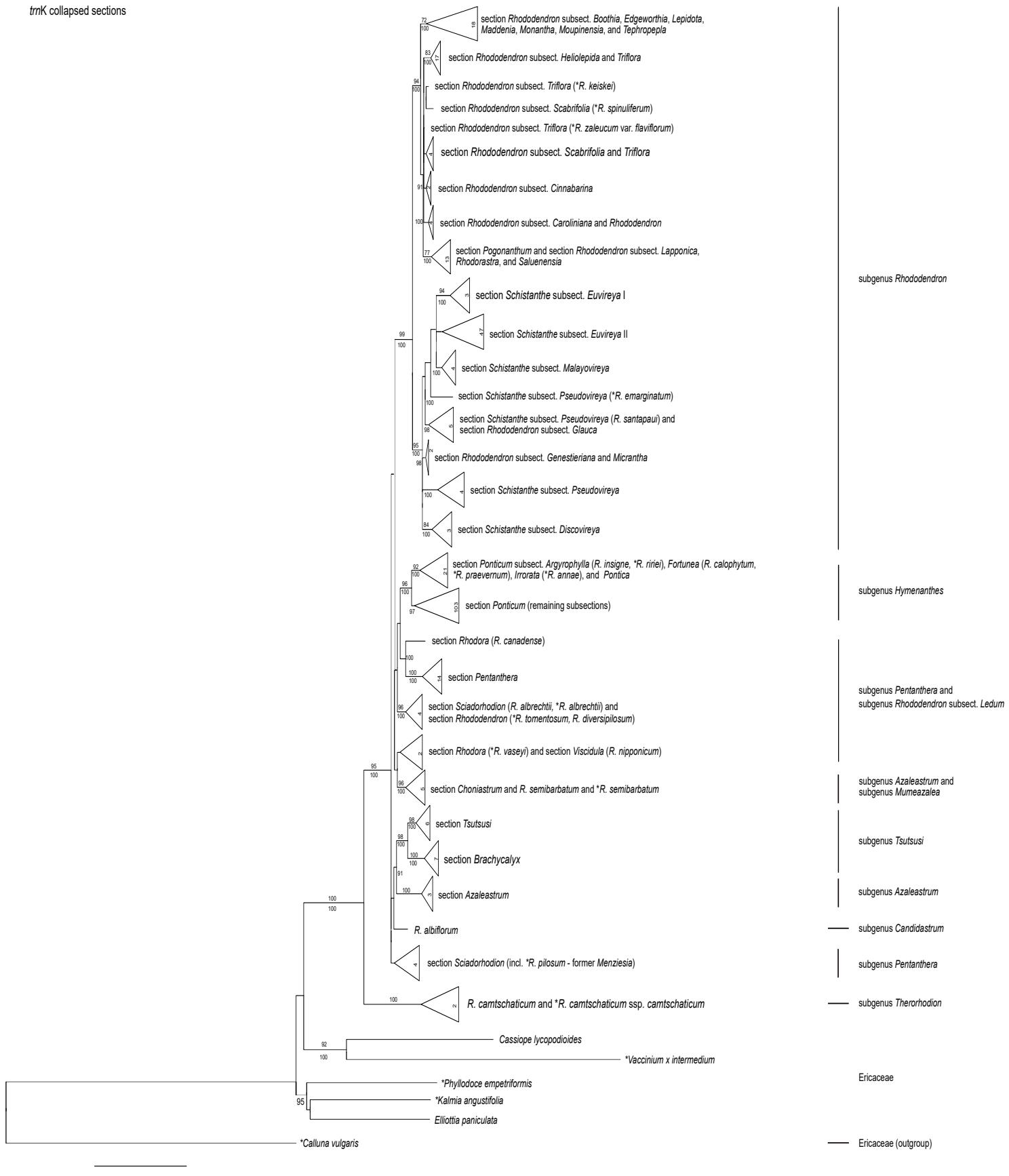
845

TABLE 1. Numerical attributes of the four likelihood phylogenetic trees.

Data set	trnK	trnL-F	ITS	rpb2-i
No. individuals (Species)	307(259)	199(169)	237(197)	170(148)
Newly generated sequences	204	119	162	82
Aligned sequence length (bps)	1750	983	660	3306
No. of variable sites	285 (16.30%)	130 (13.20%)	173 (26.20%)	574 (17.30%)
No. of informative sites	399 (22.80%)	277 (28.10%)	252 (38.10%)	572 17.30%)
Consistency Index (CI)	0.736	0.697	0.662	0.674
Retention Index (RI)	0.917	0.883	0.908	0.864

846

847


848

849

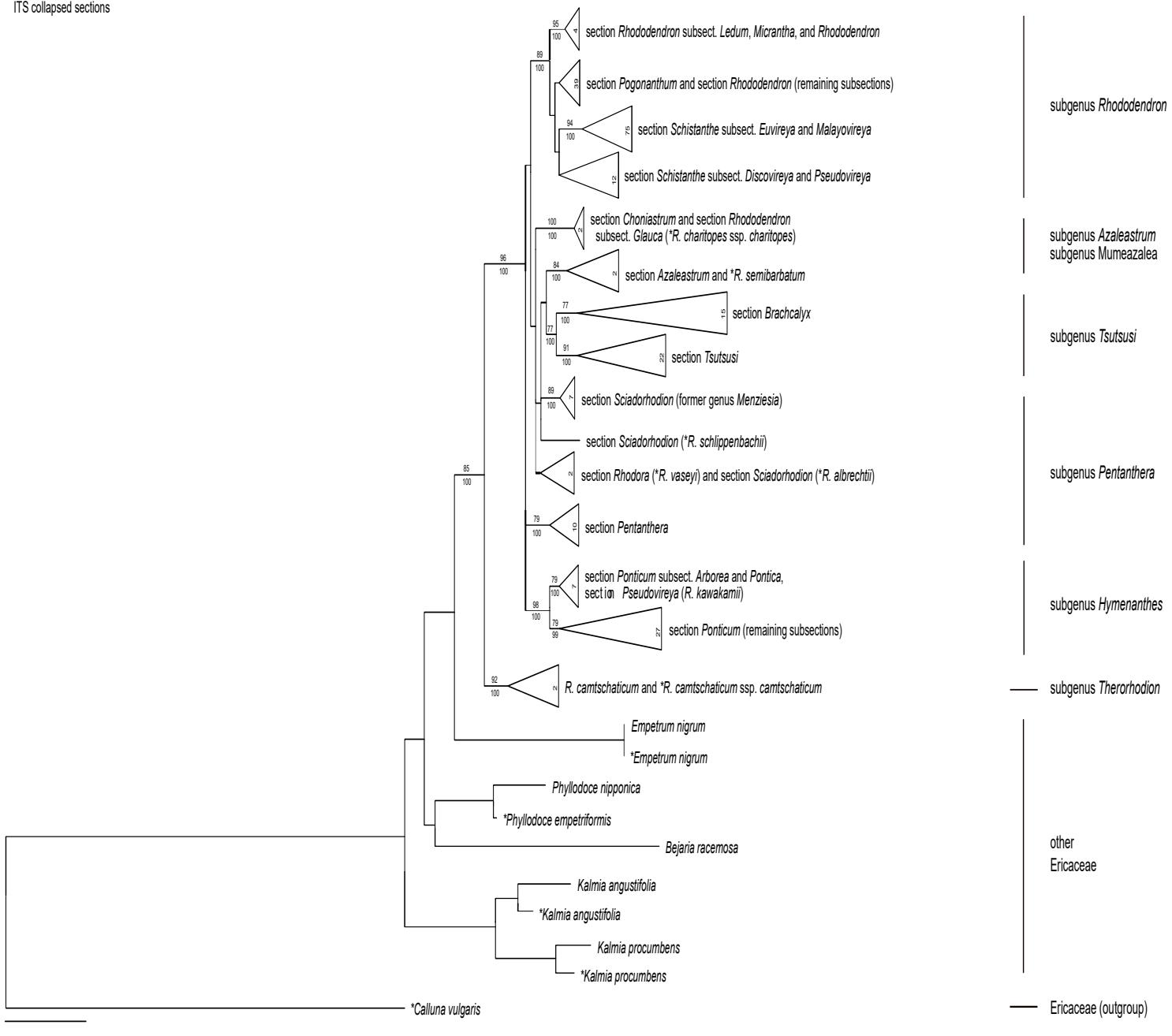

850

TABLE 2. Comparison of different molecular phylogenetic analyses with the results of this particular study. The abbreviated letters showed in the table represents, R – R. subgen. *Rhododendron*; A – R. sect. *Azaleastrum*; T – R. subgen. *Tsutsusi*; M – R. subgen. *Mumaezalea*; C – R. sect. *Choniastrum*; S – R. sect. *Sciadophodion* and P – R. sect. *Pentanthera*; H – R. subgen. *Hymenanthes*; L – R. sect. *Ledum*; V – R. sect. *Viscidula*.

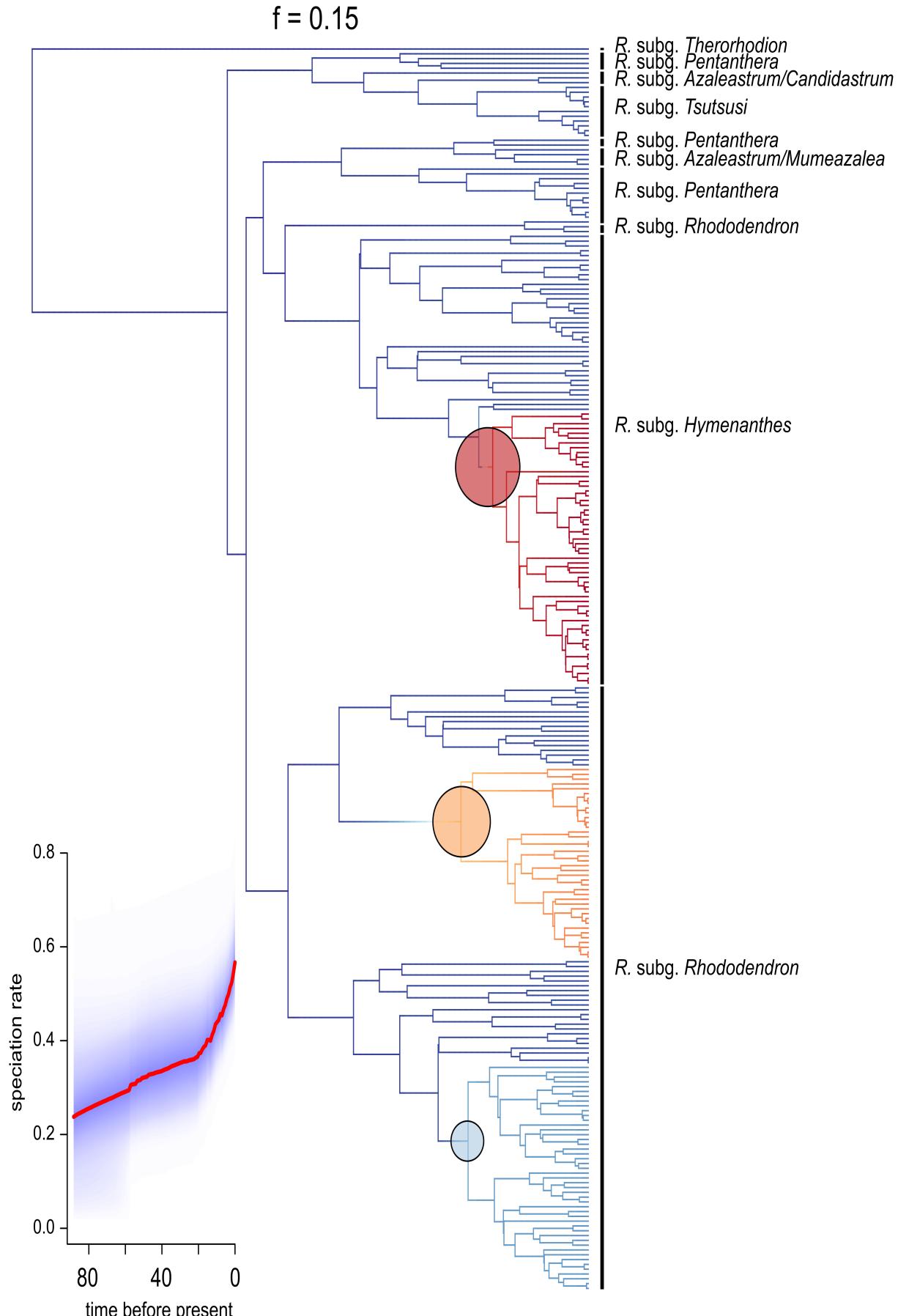

	Kurashige et al. (2001) – <i>matK</i>	This study – <i>trnK</i>	This study – <i>trnLF</i>	Grimbs et al. (2017) – <i>trnK</i> , <i>trnLF</i> , <i>ITS</i>	Gao et al. (2002) – <i>ITS</i>	This study – <i>ITS</i>	Goetsch et al. (2005) – <i>rpB2</i>	This study – <i>rbB2</i>	Shrestha et al. (2018) – multiple regions
Sect. Schistanthe	Triphyletic (subsect. <i>Discovireya</i> / <i>R. santapaui</i> /rest) nested in R	unresolved within R	unresolved in R	-	single species nested in R	monophyletic nested in R	monophyletic <i>Discovireya</i> not sampled	diphyletic (Subsect. <i>Discovireya</i> /rest) nested in R	Diphyletic (subsect. <i>Discovireya</i> /rest) nested in R
Ledum	<i>R. hypoleucum</i> sister to <i>R. albrechtii</i>	<i>R. tomentosum</i> , <i>R. diversipilosum</i> sister to <i>R. albrechtii</i>	<i>R. tomentosum</i> close to <i>R. albrechtii</i> but sister to P	<i>R. tomentosum</i> sister to <i>R. albrechtii</i>	<i>R. tomentosum</i> sister to R	<i>R. tomentosum</i> sister to R	<i>R. hypoleucum</i> , <i>R. tomentosum</i> sister to R	<i>R. hypoleucum</i> , <i>R. tomentosum</i> sister to R	<i>R. hypoleucum</i> , <i>R. tomentosum</i> sister to R except <i>R. diversipilosum</i> sister to <i>R. albrechtii</i>
Sect. Pentanthera	sister to <i>R. canadense</i> , together sister to H	Sister to <i>R. canadense</i> , together sister to V, M, C, R. <i>vaseyi</i>	sister to <i>R. canadense</i> , together sister to L	sister to H (<i>R. canadense</i> not sampled)	sister to <i>R. canadense</i> in unresolved position	basally branching (<i>R. canadense</i> not sampled)	incl. <i>R. canadense</i> sister to H	together with <i>R. canadense</i> in H	incl. <i>R. canadense</i> ; sister to H
Sect. Choniastrum	sister to M	sister to M	sister to M	sister to T, A	unresolved with A, T, <i>R. albiflorum</i> , <i>R. schlippenbachii</i>	sister to A, T, S, M, R. <i>vaseyi</i>	sister to R, L	sister to R, L	sister to R, L
R. subgen. Tsutsusi	sister to A	sister to A	paraphyletic sister to A+M	sister to A	sister to A+M	sister to A+M	unresolved with A, M, V	sister to V, together sister to M, together sister to A	sister to A+M
R. sect. Azaleastrum R. albiflorum (R. subgen. <i>Candidastrum</i>)	sister to T	sister to T	<i>sister to T, C, M</i>	sister to T	Sister to M	sister to M	unresolved with T, M, V	unresolved with T, M, V	sister to T, M
	unresolved with T, A, R. sect. <i>Sciadophodion</i>	sister to T, A	-	-	Unresolved with T, A, C, R. sect. <i>Sciadophodion</i>	-	sister to <i>R. albrechtii</i>	-	sister to <i>R. albrechtii</i> + <i>R. diversipilosum</i>
R. semibarbatum (R. subgen. <i>Mumaezalea</i>)	sister to C	sister to C	sister to C	-	sister to A	sister to A	sister to V	sister to V, T, together sister to A	sister to T
R. nipponicum (R. sect. Viscidula)	sister to M, C	sister to R. <i>vaseyi</i>	-	-	-	-	sister to M	sister to T	Sister to <i>R. quinquefolium</i> (sect. <i>Sciadophodion</i>), together sister to A, T, M
R. <i>vaseyi</i> (R. sect. Rhodora)	-	sister to V	sister to R	sister to R, H	-	sister to <i>R. albrechtii</i>	sister to Menziesia, together sister to <i>R. schlippenbachii</i>	sister to <i>R. schlippenbachii</i> , together sister to Menziesia	with <i>R. pentaphyllum</i> sister to Menziesia, together sister to <i>R. schlippenbachii</i>
Menziesia	Unresolved with A, T, C, R. sect. <i>Sciadophodion</i>	<i>R. pilosum</i> incl. in R. sect. <i>Sciadophodion</i>	<i>R. pilosum</i> with R. <i>vaseyi</i> sister to R	-	-	5 spp. sister to <i>R. vaseyi</i> , together sister to <i>R. schlippenbachii</i>	2 spp. sister to <i>R. vaseyi</i> , together sister to <i>R. schlippenbachii</i>	-	9 spp. sister to <i>R. vaseyi</i> and <i>R. pentaphyllum</i> , together sister to <i>R. schlippenbachii</i>
R. <i>schlippenbachii</i> (R. sect. <i>Sciadophodion</i>)	unresolved with Menziesia, A, T, <i>R. pentaphyllum</i> , <i>R. quinquefolium</i>	together with Menziesia and <i>R. pentaphyllum</i> , <i>R. quinquefolium</i> , close to A, T, V, <i>albiflorum</i>	unresolved	basally branching	unresolved with T, A, <i>R. albiflorum</i>	sister to Menziesia, together sister to T, A, M	sister to R. <i>vaseyi</i> + Menziesia, then to <i>R. albiflorum</i> , then to A, T, M, V	sister to R. <i>vaseyi</i> , together sister to Menziesia, sister to A, T, M, V	sister to Menziesia + R. <i>vaseyi</i>
R. <i>albrechtii</i> (R. sect. <i>Sciadophodion</i>)	sister to R. <i>hypoleucum</i> (L), together unresolved	<i>R. albrechtii</i> sister to L, together sister to H	unresolved	sister to L, together sister to P, H	-	sister to R. <i>vaseyi</i> , together sister to C	<i>R. albrechtii</i> sister to <i>R. albiflorum</i>	sister to R. <i>vaseyi</i> , <i>R. schlippenbachii</i> + Menziesia	sister to <i>R. diversipilosum</i> (L), together sister to <i>R. albiflorum</i>

Figure 1. Phylogenetic tree of *Rhododendron* inferred from the plastid *trnK* gene region, showing species arranged by subgenus and section. Numbers above branches are bootstrap values, numbers below branches are posterior probabilities (in percent). Numbers in triangles are the number of the included individuals (species list in Table S2). Newly generated sequences are marked with a star (*).

Figure 2. Phylogenetic tree of *Rhododendron* inferred from the nuclear Internal Transcribed Spacer (ITS) gene region, showing species arranged by subgenus and section. *Calluna vulgaris* (Ericaceae) was used as root. Numbers above branches are bootstrap values, numbers below branches are posterior probabilities (in percent). Numbers in triangles are the number of the represented individuals (species list in Table S2). Newly generated sequences are marked with a star (*).

Figure 3. Result from the Bayesian Analysis of Macroevolutionary Mixtures (BAMM) diversification analysis of *Rhododendron trnK*. Colors of phylogeny refer to decrease (blue) or increase (red) in diversification rates. The size of the circles shows rate of diversification shift i.e., larger circle higher rate shift and smaller circle lowers rate shift. Inset shows the rate vs. time plot from the diversification analysis, where the 'speciation rate' (speciation events) is given per million years, and 'time before present' is in millions of years.

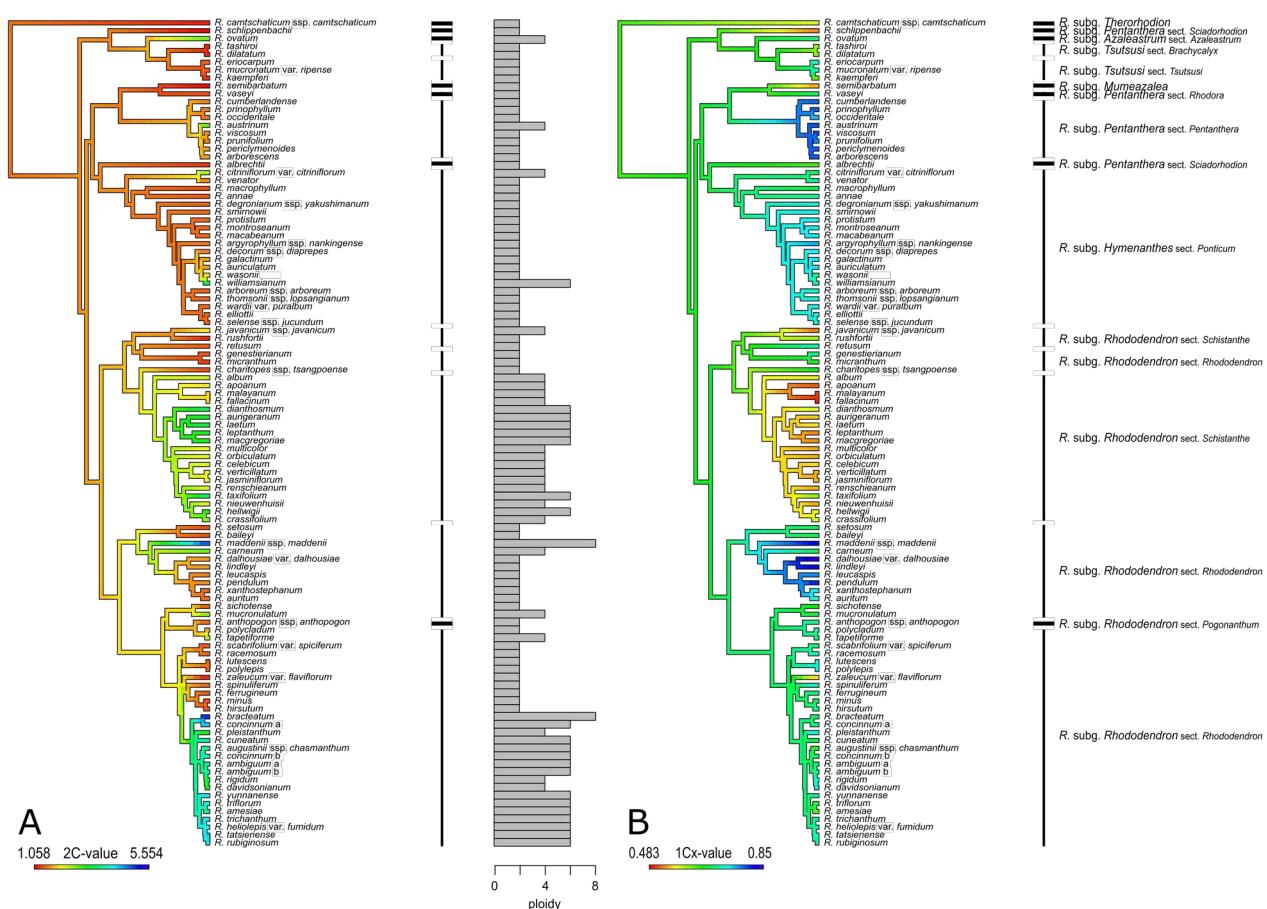


Figure 4. Ancestral genome size values mapped using a continuous color gradient on a BEAST tree of 105 Rhododendron species based on the trnK gene region. A, 2C-values and ploidy levels indicated as bar plot; B, 1Cx-values.