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Abstract 26 

Viral co-infections occur in COVID-19 patients, potentially impacting disease progression and 27 

severity. However, there is currently no dedicated method to identify viral co-infections in 28 

patient RNA-seq data. We developed PACIFIC, a deep-learning algorithm that accurately 29 

detects SARS-CoV-2 and other common RNA respiratory viruses from RNA-seq data. Using 30 

in silico data, PACIFIC recovers the presence and relative concentrations of viruses with 31 

>99% precision and recall. PACIFIC accurately detects SARS-CoV-2 and other viral 32 

infections in 63 independent in vitro cell culture and patient datasets. PACIFIC is an end-to-33 

end tool that enables the systematic monitoring of viral infections in the current global 34 

pandemic. 35 
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Background 48 

Acute respiratory tract infections are the third largest global cause of death, infecting 545 49 

million people and claiming 4 million lives every year (133). RNA viruses such as influenza, 50 

parainfluenza virus, respiratory syncytial virus, metapneumovirus, 51 

rhinovirus, and coronavirus are amongst the top pathogens causing respiratory infections and 52 

disease (4,5). Novel respiratory diseases, including coronaviruses, cross species boundaries 53 

repeatedly. Since December 2019, millions of people have been affected by COVID-19, an 54 

infectious zoonotic disease caused by severe acute respiratory syndrome coronavirus 2 55 

(SARS-CoV-2, NCBI Taxonomy ID: 2697049). Novel zoonotic coronaviruses also caused the 56 

2002-2003 outbreak of SARS-CoV respiratory disease with at least 8,098 known cases and the 57 

ongoing 2012-2020 outbreaks of Middle East respiratory syndrome coronavirus (MERS-58 

CoV) with at least 2,519 known cases (538). This recurrent emergence of respiratory viruses 59 

warrants increased surveillance and highlights the need for rapid, accurate, and timely 60 

diagnostic tests. 61 

Diagnostic testing, treatment, and disease severity are complicated by the occurrence of 62 

respiratory co-infections. Up to 40% of individuals infected with respiratory viruses test 63 

positive for co-infections with up to three different pathogens (9,10), and recent studies have 64 

reported that ~20% of SARS-CoV-2 positive individuals had a co-infection with other 65 

respiratory viruses (11). Viral co-infections can alter the severity of disease and modify 66 

survival rates, and while COVID-19 remains poorly understood, early studies indicate a 67 

potential for increased mortality associated with influenza co-infections (12). Further studies 68 

are required to investigate the relationship between SARS-CoV-2 co-infections with prognosis 69 

and mortality rate (12,13). 70 

Current diagnostic tests for respiratory infections are often limited in their capacity to detect 71 

co-infections. The current standard of viral detection for COVID-19 is based on polymerase 72 
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chain reaction (PCR) assays directed towards SARS-CoV-2 (14), which do not detect co-73 

infecting viruses. Multiple virus identification in clinical settings is typically performed by 74 

using multiplexed PCR assays with primers specifically designed to target known respiratory 75 

pathogens (15). However, this approach is generally used only with pathogens that are 76 

expected a priori and the range of pathogen detection is limited by the probe design. 77 

Additionally, these protocols must be updated as new species or strains are identified as 78 

clinically relevant.   79 

High-throughput RNA sequencing (RNA-seq) provides an unbiased measurement of the RNA 80 

molecules present in a sample and can potentially enable the systematic detection of SARS-81 

CoV-2 infections and co-infections. Multiple species identification has been effectively 82 

performed in sequence data in the context of metagenomics studies (16). Programs such as 83 

Kraken (17319) use k-mers to taxonomically classify sequencing reads into species from 84 

metagenomic samples. However, these tools use large databases of species sequences to 85 

compare against, resulting in considerable storage and computing requirements. In contrast, 86 

machine learning based tools have the advantage of extracting required features and 87 

encapsulating the necessary information for sequence classification in a computationally 88 

efficient model. This approach has been successfully used in the past for sequence 89 

classification problems (20). For example, DeepMicrobes (21) uses deep learning for genus 90 

and species level classification of metagenomic DNA sequencing reads from human gut 91 

bacteria. Similarly, ViraMiner (22) uses a deep learning binary classifier to identify DNA 92 

viruses from human microbiome metagenomic reads. Despite these advances, there is currently 93 

no equivalent deep learning classifier for the detection of SARS-CoV-2 and possible co-94 

infections by RNA viruses. 95 

To address this limitation, we have developed PACIFIC, a deep learning model to detect the 96 

presence of SARS-CoV-2 and other common respiratory RNA viruses in RNA-seq data from 97 
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patient samples. PACIFIC is an easy-to-use, streamlined tool useful for clinical and 98 

epidemiological applications in the context of the COVID-19 pandemic. Our tool accurately 99 

identifies and discriminates reads into five distinct classes: SARS-CoV-2, influenza 100 

(representing H1N1, H2N2, H3N2, H5N1, H7N9, H9N2, and Influenza B), metapneumovirus 101 

(representing 5 distinct assemblies), rhinoviruses (representing rhinovirus A and A1, B, C1, 102 

C2, C10 and other enteroviruses) and other coronaviruses (representing alpha, 103 

beta, gamma, and other unclassified coronaviruses). Extensive in silico tests show that 104 

PACIFIC achieves >99% precision, accuracy and recall. In addition, predictions in 63 infected 105 

human cell-lines and human primary samples demonstrate greater performance using PACIFIC 106 

for the detection of each virus class in comparison with alignment (BWA-MEM) and k-mer 107 

(Kraken2) based methods.  108 

To the best of our knowledge, PACIFIC is the first software that uses deep learning to classify 109 

different RNA viruses from RNA-seq reads. By enabling the systematic identification of co-110 

infections, we anticipate that PACIFIC can aid the clinical management of COVID-19 patients 111 

during the current pandemic and the surveillance of respiratory infections in future 112 

epidemiological studies. 113 

 114 

Results 115 

PACIFIC model 116 

PACIFIC is a deep learning method designed to classify RNA-seq reads into five distinct 117 

respiratory virus classes and a human class (Figure 1a). The model architecture for PACIFIC 118 

is composed of an embedding layer, a convolutional neural network, and a bi-directional long 119 

short-term memory (BiLSTM) network that ends in a fully connected layer (Figure 1b). One 120 

of the main advantages of deep neural networks compared to other machine learning models 121 
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in the context of sequence classification is the ability to extract relevant complex classification 122 

features from DNA or RNA sequences without having to explicitly define them a priori. 123 

However, the strategy to encode nucleotide sequences must be carefully considered, as it can 124 

dramatically affect the performance of the classifier (23). PACIFIC implements an embedding 125 

layer, which boosts the performance of the model in comparison with other encoding 126 

approaches (24).  PACIFIC first converts nucleotide sequences into k-mers, assigns them to 127 

numerical tokens and converts these tokens into dense representations using a continuous 128 

vector space.  129 

The use of a convolutional neural network adds several advantageous properties to the model. 130 

One advantage is location invariance (25), which allows the model to identify combinations of 131 

features with predictive value regardless of their relative position along the sequence. In 132 

addition, each filter used in the convolution layers can capture the predictive value of specific 133 

regions or combinations of k-mers.  134 

After the convolution layers, PACIFIC uses a pooling layer to decrease the dimensionality of 135 

the feature space while maintaining essential information. PACIFIC uses a BiLSTM to model 136 

long-range dependencies in nucleotides, which provides the capacity to incorporate complex 137 

relationships in the input sequence that are sometimes ignored by single LSTMs (26). PACIFIC 138 

then implements a dense layer to estimate posterior probabilities for each of the five classes 139 

considered: Coronaviridae, Influenza, Metapneumovirus, Rhinovirus, and SARS-CoV-2. We 140 

included a sixth class in the model (Human) to classify RNA-seq reads derived from the human 141 

host. Finally, PACIFIC takes the reverse-complement of each predicted read, and only assigns 142 

the read to a particular class if the posterior probabilities of both the forward and reverse-143 

complemented versions of the read for that class are g 0.95.   144 
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 145 

Figure 1. Overview of PACIFIC and its model architecture. a)  PACIFIC uses FASTQ or 146 

FASTA files as inputs to make read-level predictions and report the relative percentage of 147 

RNA virus and human reads in a sample. b)  Schematic view of PACIFIC deep neuronal 148 

network architecture. PACIFIC uses embedding, convolutional neural network and 149 

BiLSTM layers. The model is trained using in silico generated sequences from RNA virus 150 

genomes and the human transcriptome. 151 

 152 

Properties of PACIFIC training data 153 

PACIFIC was trained using 7.9 million 150nt long random fragments from 362 viral genome 154 

assemblies belonging to one of five viral classes (SARS-CoV-2, Influenza, Metapneumovirus, 155 
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Rhinovirus and Coronaviridae) and the human transcriptome (Additional file 1: Table S1) 156 

(Methods).  In silico fragments from both strands were generated without errors to 157 

accommodate paired-end sequenced reads and to retain the natural variation between genomes 158 

in each class. We used 90% of the data for training and 10% to tune the hyperparameters and 159 

network architecture. 160 

The selection and grouping of virus classes were based on several considerations. First, we 161 

wanted PACIFIC to accurately detect SARS-CoV-2 as an independent class and to discriminate 162 

it from other coronaviruses. Second, we selected viruses that have been recently reported to 163 

appear as co-infections with SARS-CoV-2 (11). Third, we restricted our selection to viruses 164 

for which humans have been defined as one of the host species in NCBI Taxonomy database 165 

(27). Fourth, as the majority of reads in a sample are expected to be derived from human RNAs, 166 

we included an independent human class representing the human transcriptome to avoid the 167 

misclassification of human reads as viral origin. 168 

K-mer length selection and sequence divergence 169 

As input reads are divided into k-mers within the model, we investigated appropriate virus and 170 

human k-mer properties. A k-mer length of 9 was previously reported to be the optimal k-mer 171 

length for the phylogenetic separation of viral genomes (28). However, 9-mer profiles of 172 

SARS-CoV-2 and the human transcriptome have not been previously explored. We computed 173 

all-vs-all Jensen-Shannon divergence (JSD) scores using 9-mers to confirm that k=9 is the 174 

effective k-length to distinguish between the six PACIFIC classes. JSD is a symmetric measure 175 

of (dis)similarity that accounts for shared k-mer frequency distributions between a pair of 176 

sequences (29). JSD values range between 0 for identical sequences and 1 for two sequences 177 

that do not share any k-mer.  Overall, inter-class JSD values were higher compared to the intra-178 

class JSD values for 9-mers, which confirm that 9-mers are effective at separating sequences 179 
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belonging to different viral classes and human transcripts (Additional file 2: Figure S1). 180 

Specifically, the average JSD between the SARS-CoV-2 class and the Coronaviridae class was 181 

0.786, which was greater than 0.767 intra-class JSD for the Coronaviridae and 0.002 for the 182 

SARS-CoV-2 class, thus indicating sufficient divergence for their separation into distinct 183 

classes. Given these results, we decided to encode input sequences as 9-mers with a stride of 184 

1. 185 

 186 

PACIFIC testing shows high precision and recall for simulated data 187 

Performance metrics (false positive rates (FPRs), false negative rates (FNRs), precision, recall, 188 

and accuracy) were calculated using in silico generated reads that modelled sequencing-189 

induced substitution and indel errors from sample mixtures with known class labels. We 190 

generated 100 independent datasets of 150nt single end reads with Illumina HiSeq2500 errors 191 

using ART (30). Each dataset contained ~700,000 reads and was comprised of approximately 192 

100,000 reads from each of the 6 classes in the PACIFIC model, plus ~100,000 reads from 193 

unrelated viral genomes (Methods).  194 

First, we compared the performance metrics between predictions using only the forward strand 195 

of a read (single prediction) and predictions using both the forward and reverse-complemented 196 

strands (double prediction) (Figure 2). In single prediction, a read was assigned the class label 197 

with the highest posterior probability for the forward sequence if the posterior probability for 198 

a class was g 0.95. For double prediction, the read was predicted to be of a given class if the 199 

posterior probability of the predicted forward and reverse-complemented read was g0.95 and 200 

predictions agreed on the same class. The average FNR across 100 datasets in double prediction 201 

relative to single prediction increased by 1.45´ for Coronaviridae, 1.49´ for Influenza, 1.41´ 202 

for Metapneumovirus, 1.40´ for Rhinovirus and 1.62´ for SARS-CoV-2 (Figure 2). However, 203 
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we observed a large decrease in the FPR in double prediction. The average FPR in the 100 204 

datasets decreased by 4.60´ for Coronaviridae, 11.02´ for Influenza, 16.55´ for 205 

Metapneumovirus, 3.92´ for Rhinovirus and 16.47´ for SARS-CoV-2 class in double 206 

prediction relative to single prediction (Figure 2). Concomitantly, the average precision for all 207 

viral classes increased and the average recall decreased by a small margin. Due to these 208 

observations, double prediction was implemented as the standard classification approach in 209 

PACIFIC.  210 

Overall, PACIFIC achieved high precision (average g 0.9995), recall (average g 0.9966) and 211 

accuracy (average g 0.9995) for each of the virus classes (Table 1). For the human class, the 212 

average precision was lower at 0.50140 compared to the viral classes; this is attributed to the 213 

large number of reads (>99%) from unrelated viral genomes being assigned to the human class. 214 

As a result, sequences that do not belong to any of the viruses in the model are unlikely to be 215 

mislabelled as one of the virus classes. 216 

  217 

Figure 2. Comparison of false positive and false negative rates between single and double 218 

predictions. Single prediction (red) results in relatively higher false positives and lower false 219 

negatives compared to double prediction (green) where predictions are made on the forward 220 

strand of a sequence and its reverse complement. 221 

 222 

 223 

 224 
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Table 1. PACIFIC performance metrics for each class in 100 independent simulated datasets. 225 

Class 
Average FNR 

(±95% CI) 

Average FPR 

(±95% CI) 

Average Precision 

(±95% CI) 

Average Recall 

(±95% CI) 

Average Accuracy 

(±95% CI) 

Coronaviridae 
0.001162 

(2.14e-05) 

8.16e-05 

(2.38e-06) 

0.999518 

(1.41e-05) 

0.9988 

(2.14e-05) 

0.9998 

(3.67e-06) 

Influenza 
0.001530 

(2.65e-05) 

1.91e-06 

(3.18e-07) 

0.999988 

(1.95e-06) 

0.9985 

(2.65e-05) 

0.9998 

(3.80e-06) 

Metapneumovirus 
0.003397 

(3.62e-05) 

1.83e-07 

(1.04e-07) 

0.999999 

(6.23e-07) 

0.9966 

(3.62e-05) 

0.9995 

(5.20e-06) 

Rhinovirus 
0.001209 

(1.90e-05) 

3.55e-05 

(1.41e-06) 

0.999788 

(8.44e-06) 

0.9988 

(1.90e-05) 

0.9998 

(2.79e-06) 

SARS-CoV-2 
0.002220 

(3.27e-05) 

2.49e-07 

(1.43e-07) 

0.999999 

(8.63e-07) 

0.9978 

(3.27e-05) 

0.9997 

(4.64e-06) 

Human 
0.000366 

(1.32e-05) 

1.66e-01 

(1.03e-05) 

0.501400 

(1.45e-05) 

0.9996 

(1.32e-05) 

0.8581 

(8.94e-06) 

CI = confidence interval, FPR = False positive rate, FNR = False negative rate 226 

 227 

Using the same in silico datasets, we then assessed the effect of mismatches on FPR and FNR. 228 

All 100 controlled datasets contained ~22% of reads with substitutions and indel errors relative 229 

to the reference genomes. FNRs were higher for mismatch-containing reads relative to exact 230 

reads for all viral classes, increasing 5 to 64-fold (Figure 3). In contrast, FPRs increased 0.98 231 

to 2-fold for mismatch-containing reads for all classes. These results suggest that FPRs are 232 

relatively less affected by the presence of mismatches compared to FNRs for viral classes. 233 

Despite relative differences of FPR and FNR in mismatch-containing reads compared to exact 234 

reads, PACIFIC achieved high precision (0.9994), high recall (0.9909) and high accuracy 235 

(0.9982) for mismatch-containing reads for all five viral classes (Additional file 1: Table S2). 236 
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 237 

Figure 3. False positive (left panel) and false negative (right panel) rates for reads identical to 238 

the corresponding reference genome (Exact, green), and for reads with mismatches with respect 239 

to their reference genome (Mismatch, red). 240 

 241 

Reads derived from unrelated virus genomes contributed most of the false positives for all 242 

predicted classes (Figure 4). Of note, there was negligible cross contamination between viral 243 

class labels. The largest inter-viral class misclassification was from SARS-CoV-2 to 244 

Coronaviridae, where out of 100,000 SARS-CoV-2 reads, ~2.9 were misclassified as 245 

Coronaviridae. Other inter-viral class misclassifications were between 0-0.2 reads. The 246 

majority of false negatives for each viral class were either discarded because of the double 247 

prediction criteria (rc_discarded in Figure 4), or because they did not meet the minimum 0.95 248 

posterior probability criteria (pDiscarded in Figure 4). Taken together, our results demonstrate 249 

that PACIFIC is highly specific and sensitive for all five viral classes, with negligible false 250 

positive and false negative rates. 251 
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 252 

 253 

Figure 4. False positive and false negative assignments for 100 independently simulated 254 

datasets. Left panel - Average number of false positives (y axis). True labels are indicated by 255 

colour for each class and predicted labels are given in the x-axis. Right panel - Average number 256 

of false negatives (y axis). Predicted labels are indicated by colour for each class and true labels 257 

as indicated in the x-axis. pDiscarded - reads that do not reach the 0.95 posterior probability 258 

cut-off; rc_discarded - reads that were discordantly predicted using double prediction.  259 

 260 

Establishing virus detection thresholds 261 

In the previous section, we showed that PACIFIC displayed low FPR in balanced datasets with 262 

similar proportions of reads from each class. However, incorrect predictions about the presence 263 

or absence of a virus in a sample could lead to misguided follow-ups and the unnecessary use 264 

of valuable clinical resources. Therefore, we decided to establish the minimum percentage of 265 

reads for each viral class required to confidently predict the presence of a virus in a sample.   266 

In practice, RNA-seq data will be unbalanced with almost all reads originating from the human 267 

transcriptome mixed with variable proportions of viral reads. To model this imbalance in class 268 

proportions, we simulated 500 independent datasets (100 for each class), each containing 269 

500,000 150nt long reads using ART (30) with Illumina HiSeq2500 error profiles. Each dataset 270 

contained variable proportions of simulated reads for 4 of the 5 viral classes, plus human and 271 
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unrelated viral genomes. One of the five viral classes was intentionally excluded, and the 272 

excluded class was considered to be the test class. All reads assigned to this test class were 273 

counted as false positives. PACIFIC achieved similar average FPRs to the benchmarking 274 

experiments using balanced datasets (Table 2).   275 

Assessment of the distribution of false positive rates for each viral class and skewness-kurtosis 276 

plots indicated that the percentage of false positives observed in unbalanced datasets followed 277 

a Beta distribution. Therefore, we used moment matching to estimate the shape parameters for 278 

the quantile function of the Beta distribution and determined the numeric threshold above 279 

which 99% of false positive samples were excluded. Using these thresholds, a sample would 280 

be classified as positive for Coronaviridae if >0.0405% reads were labelled as Coronaviridae 281 

by PACIFIC. Similarly, these limits were >0.000807% for Influenza, >0.000154% for 282 

Metapneumovirus, >0.0418% for the Rhinovirus, and >0.000213% for the SARS-CoV-2 class 283 

(Table 2). 284 

Table 2. Average false positive reads across 100 experiments for each viral class. 285 

Class Average FP% 

(Balanced) 

Average FP% 

(Unbalanced) 
FP % threshold* 

Coronaviridae 0.00816 0.006664 0.0405 

Influenza 0.000191 0.000062 0.000807 

Metapneumovirus 0.0000183 0.000006 0.000154 

Rhinovirus 0.00355 0.005392 0.0418 

SARS-CoV-2 0.0000249 0.000010 0.000213 

FP = False positive, Balanced = 100 experiments with equal proportion of reads from each 286 

class, Unbalanced = Variable proportion of reads from all classes and no reads from the test 287 

class. * These thresholds represent 0.99 quantile for FP% for that class. 288 
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PACIFIC accurately detects viruses in human RNA-seq samples  289 

Next, we assessed PACIFIC9s performance in classifying viral reads in RNA-seq data derived 290 

from human biological samples and compared its output with alignment-based (BWA-MEM) 291 

and k-mer based (Kraken2) approaches. To reduce bias in the comparisons, we built the BWA-292 

MEM index and Kraken2 database using the same virus genome assemblies and the human 293 

transcriptome that were used for PACIFIC training (Additional file 1: Table S1). Additionally, 294 

we used the same percentage thresholds determined in the previous section (Table 2) for all 295 

three methods to assign the presence of a virus in a sample. All three methods were applied to 296 

63 human RNA-seq datasets from independent research studies, with five of them known to 297 

contain SARS-CoV-2 (31,32). Four RNA-seq datasets were derived from primary human lung 298 

epithelium cells (NHBE) infected with SARS-CoV-2 in vitro (NCBI SRA accession: 299 

SRX7990869) (31) and one dataset was from a patient bronchoalveolar lavage fluid sample 300 

(NCBI SRA accession: SRR10971381) that was positive for SARS-CoV-2 (32). In addition, 301 

we analysed RNA-seq datasets for 48 airway epithelial cell samples from the GALA II cohort 302 

study, of which 22 were reported to contain respiratory infection viruses (33,34), and 10 were 303 

reportedly devoid of infections by the viral classes studied here, as indicated by the sample 304 

metadata and the corresponding publications (Additional file 1: Table S3).  305 

For the five samples that were positive for SARS-CoV-2, PACIFIC assigned 0.047%-0.048% 306 

of all reads to the SARS-CoV-2 class for the in vitro infected cells and 0.19% of all reads in 307 

the patient sample; all five samples were above the established detection threshold for that class 308 

(>0.000213%) (Figure 5). Similarly, BWA-MEM and Kraken2 successfully identified SARS-309 

CoV-2 reads above the detection threshold in these five samples (Figure 5a). All three methods 310 

accurately predicted the presence of SARS-CoV-2 and the absence of other virus classes in 311 

these samples as per class specific detection thresholds.  312 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.24.219097doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219097
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

16 

We subsequently tested the 48 samples from the GALA II cohort (33,34). Of these, 22 were 313 

reported to contain between 4 and 164,870 reads from respiratory viruses (human rhinovirus, 314 

respiratory syncytial virus, human metapneumovirus or human parainfluenza viruses I, II and 315 

III). PACIFIC, BWA-MEM and Kraken2 identified 9 samples as positive for one of the five 316 

virus classes considered, and 39 samples as negative for the same viral classes (Figure 5a; 317 

Additional file 2: Figure S2, Additional file 1: Table S3). The discrepancy between these results 318 

and the original study (34) could be partly explained by the exclusion of the Respiratory 319 

Syncytial Virus class in our analyses. However, further verifications could not be performed 320 

because sample labels provided in the manuscript were mismatched with the submitted 321 

sequence data (see correction (35)). 322 

From the 9 positive samples, six were concordantly labelled positive for the same virus class 323 

by all three methods: three samples were positive for Rhinovirus, and one for Coronaviridae, 324 

Influenza, and Metapneumovirus, respectively (Figure 5a). In contrast, the other three samples 325 

were discordantly labelled by one of the three methods. One sample (SRR4427279) was 326 

classified as positive for Metapneumovirus by BWA-MEM and Kraken2 but not by PACIFIC. 327 

BWA-MEM and Kraken2 collectively assigned 28 reads to the Metapneumovirus class as 328 

opposed to 0 reads by PACIFIC. To investigate the origin of these reads, we used BLASTN 329 

searches against the NCBI nucleotide (nt) database encompassing sequences from all domains 330 

of life and extracted the best hit for each read (Methods). All 28 reads had their best hits to 331 

human respiratory syncytial virus A sequences (E-values f 4.07e-68; bit-scores g 267). Further 332 

analysis showed that metapneumovirus was not identified in any of the top 10 significant hits 333 

(Additional file 2: Extension of BLAST analysis). Another discordant sample (SRR4427270) 334 

was positive for the Rhinovirus class by PACIFIC (1,065 reads) and BWA-MEM (2,338 reads) 335 

but not by Kraken2 (3 reads). BLASTN searches showed that best hits (3,145/3,150 total 336 

BLAST alignments) were sequences from one of Enterovirus C105, Enterovirus C or Human 337 
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enterovirus C105 (E-values f 9.46e-41, bit-scores g178). Rhinoviruses and other enteroviruses 338 

are taxonomically part of the Enterovirus genus (36,37). The final discordant sample 339 

(SRR4427280) was labelled positive for the Rhinovirus class by PACIFIC (355 reads) and 340 

Kraken2 (387 reads) but not by BWA-MEM (29 reads) using our thresholds (Figure 5a). 341 

BLASTN searches revealed that the majority of reads (385/390 collectively between PACIFIC 342 

and Kraken2) had their best hits to Rhinovirus C (E-values f 4.47e-53; bit-scores g 219). 343 

BWA-MEM therefore failed to assign most Rhinovirus reads classified by the other two 344 

methods. 345 

 346 
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Figure 5. PACIFIC, BWA-MEM and Kraken2 virus predictions in RNA-seq data. 348 

Transparent grey filled circles represent detection thresholds for each class, overlaid with black 349 

filled circles representing the percentage of predicted reads using PACIFIC (left panel), BWA-350 

MEM (centre panel) and Kraken2 (right panel). Circles are filled blue when the percentage of 351 

reads for a class are above detection thresholds described in Table 2. RNA-seq samples (y-352 

axis) are labelled with NCBI SRA run accessions and abbreviations for sample type. (a) RNA-353 

seq samples predicted to be positive for at least one viral class by PACIFIC, BWA-MEM, or 354 

Kraken2. Samples include a SARS-CoV-2-infected human patient bronchoalveolar lavage 355 

fluid sample (.pat), four in vitro SARS-CoV-2-infected NHBE cell lines (.scc) and 9 samples 356 

from the GALA II cohort (.gala). (b) Human RNA-seq samples without expected viral 357 

infections (.neg; n=10). Samples were selected from the NCBI SRA database without any 358 

evidence of any infection. 359 

 360 

In addition to the 53 samples tested above, we analysed 10 publicly available human RNA-seq 361 

datasets without expected viral infections using all three methods. In particular, all ten samples 362 

were registered in the NCBI SRA database on or before 17 October 2019 and therefore were 363 

unlikely to contain SARS-CoV-2 (Additional file 1: Table S3). Of note, two samples 364 

(SRR8927151 and SRR8928257) were published in February 2020 (Additional file 1: Table 365 

S3) (38). However, the two NCBI BioProjects for these samples were registered on 18 April 366 

2019.  367 

PACIFIC accurately predicted all 10 samples as negative for viral infections using our 368 

detection thresholds. In contrast, Kraken2 assigned one sample (SRR5515378) as positive for 369 

SARS-CoV-2 with 256 reads assigned (Figure 5b). Further verification with BLASTN searches 370 

confirmed that 242 out of the 256 reads mislabelled by Kraken2 aligned to the Mycoplasma 371 

bacterial genus (E-values f2.76e-23, bit-scores g121), indicating false positive assignments by 372 

Kraken2 for these reads.  373 

BWA-MEM performed relatively worse in these 10 datasets, with 8 samples classified as 374 

positive for SARS-CoV-2 (Figure 5b). A total of 15,395 reads were aligned to SARS-CoV-2 375 

genomes from these 8 samples, ranging from 86 to 6,901 reads in any given sample. BLASTN 376 

searches of these SARS-CoV-2 assigned reads showed Homo sapiens as the best hit (E-values 377 

f 5.78e-07, bit-scores g 65.8) for 4,352 (28%) reads. Further examination revealed that 53% 378 
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of all 9-mers in these reads were poly-A or poly-T derived, suggesting low-complexity 379 

sequences. In addition, SRR4895842 was also assigned as co-positive for the Rhinovirus class 380 

in addition to SARS-CoV-2 by BWA-MEM (Figure 5b). BLASTN searches of 406 reads 381 

assigned to Rhinovirus within this sample revealed that 303 reads had best hits to Homo 382 

sapiens, and 48 reads had their best hits to Pan paniscus (E-value f 6.06e-10; bit-scores g 383 

76.8). These reads had 19% of their 9-mers derived from poly-A or poly-T sequences, 384 

suggesting low-complexity sequences.  385 

Overall, these results show that PACIFIC can accurately identify viral reads and the use of our 386 

detection thresholds assisted in correctly establishing the presence or absence of viral classes 387 

in RNA-seq data from biological samples with better accuracy than existing methods. 388 

 389 

Discussion 390 

We have developed PACIFIC, a deep learning-based tool for the detection of SARS-CoV-2 391 

and other common respiratory viruses from RNA-seq data. To the best of our knowledge, 392 

PACIFIC is the first deep learning model that performs detection of SARS-CoV-2 and different 393 

RNA virus groups using short-read sequence data with >0.99 precision, recall and accuracy. A 394 

recent analysis of 4,909 scientific articles identified 47 models for detecting COVID-19, 34 of 395 

which were based on medical images (39). This study concluded that these predictive models 396 

were, in general, poorly described and contained multiple biases, likely resulting in unreliable 397 

predictions when applied in practice. To overcome these potential limitations, we used multiple 398 

diverse and independent simulated datasets reflecting realistic scenarios to validate the 399 

performance of PACIFIC. Importantly, PACIFIC was successfully applied to 63 RNA-seq 400 

datasets derived from infected cell cultures and patient samples for the detection of viral 401 
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infections, demonstrating that PACIFIC can be applied to human-derived RNA-seq datasets 402 

and assist in clinical settings. 403 

In 2013, the World Health Organisation launched the Battle against Respiratory Viruses 404 

(BRaVe) initiative, which identified six research strategies to tackle and mitigate risks of death 405 

due to respiratory tract infections. One of the proposed strategies was to <improve severe acute 406 

respiratory infection diagnosis and diagnostic tests amongst others= (40). High-throughput 407 

sequencing-based approaches can provide immense diagnostic potential and facilitate 408 

molecular epidemiological studies, thereby contributing towards the BRaVe initiative9s goals 409 

(41,42). It is more important than ever to explore and determine the diagnostic potential of 410 

RNA-seq for the SARS-CoV-2 pandemic.  411 

A comprehensive study using multiplex RT-PCR and a sequencing-based metagenomic 412 

approach revealed that RNA-seq has sufficient sensitivity and specificity to be applicable in the 413 

clinic for respiratory viruses (42). However, the use of RNA-seq in diagnostic settings is often 414 

complicated due to complex analytical workflows (34,42). A typical workflow for virus 415 

detection in high-throughput sequencing data involves quality assessment and filtering of raw 416 

data, removal of host sequences, de novo assembly of remaining reads, and lastly, the alignment 417 

and annotation of the generated contigs (43). Implementation of these workflows require expert 418 

knowledge of bioinformatics software and databases and often dedicated computing facilities. 419 

PACIFIC overcomes these limitations by modelling the differences in k-mer content of 420 

respiratory viruses and human sequences in a model that is efficient in compute and storage 421 

requirements, easy to use, and therefore applicable in contexts with minimal resources. 422 

Specifically, we have designed PACIFIC to be run as a single command using raw RNA-seq 423 

data as the only required input to obtain quantified predictions about viral classes within a 424 

sample.  425 
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Despite the higher costs of sequencing compared to PCR-based experiments, multiplexing, 426 

block-testing or pooling strategies (44) could be implemented for unbiased cost-effective 427 

testing. For example, sequencing with Illumina platforms could be done with 96 samples per 428 

lane using multiplexing, reducing the sequencing cost per sample. In this scenario, the number 429 

of reads obtained per sample could be approximately 200,000 or higher. We have demonstrated 430 

the accuracy of PACIFIC in a variety of sample sizes, which suggests the potential value of 431 

this approach.  432 

One of the major challenges in the identification of virus classes is the high rate of natural 433 

sequence variation for RNA viruses (45,46), in addition to high-throughput sequencing induced 434 

errors and artefacts, and the presence of low-complexity A-rich sequences common to the host 435 

transcriptome. We showed that 22% of reads containing mismatches and indel errors were 436 

accurately assigned to a virus class by PACIFIC with negligible loss in sensitivity at a sample 437 

level. Given the ability of PACIFIC to accurately assign error-containing reads, we speculate 438 

that PACIFIC is applicable to cases where viruses present natural sequence variation. In such 439 

cases, or when new species are required to be added to the model, strategies like transfer 440 

learning can be used to update the model without the need to retrain the entire model, with low 441 

computational cost (47). Future versions of PACIFIC could focus on training a model that 442 

incorporates class specific mutation rates and sequence diversity to reduce the need for regular 443 

updates as new viral mutations emerge.  444 

PACIFIC is intentionally focused on the identification of viral classes reported to be co-445 

infecting along with SARS-CoV-2 (12). Therefore, samples containing other viruses and 446 

bacterial infections may require additional analysis. Future versions of PACIFIC could include 447 

the classification of a broader range of virus and bacterial classes at a species level, and variable 448 

input read lengths to increase PACIFIC9s utility in other contexts. 449 

 450 
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Conclusions 451 

PACIFIC is a powerful end-to-end and easy to use tool that predicts the presence of SARS-452 

CoV-2, Influenza, Metapneumovirus, Rhinovirus and other Coronavirus class-derived 453 

sequences directly from RNA-seq data with high sensitivity and specificity. PACIFIC will 454 

enable effective monitoring and tracking of viral infections and co-infections in the population 455 

in the context of the COVID-19 global pandemic and allow for the development of new 456 

strategies in molecular epidemiology of co-infections to understand variable host responses 457 

and improve the management of infectious diseases caused by viruses. 458 

 459 

Methods 460 

PACIFIC and other associated software written for this manuscript is available at 461 

https://github.com/pacific-2020/pacific. We have used Python (version 3), scipy (v1.4.1), 462 

numpy (v1.18.1), scikit (v0.23.1), pandas (v1.0.1), tensorflow (v2.2.0), keras (v2.3.1), R (v3.6), 463 

tidyverse (v1.3.0), Biobase (v2.46.0) and Perl (v5.26) in our analysis. 464 

Training data 465 

We downloaded 362 virus genomes from the NCBI assembly database corresponding to five 466 

classes of single stranded RNA viruses (Table 4, Additional file 1: Table S1). GenBank 467 

assembly identifiers and assembly versions with other metadata are listed in Additional file 1: 468 

Table S1. Since our focus was to detect co-infections with SARS-CoV-2, we made a separate 469 

class for SARS-CoV-2 containing 87 different assemblies (Table 4). The Coronaviridae class 470 

contained 12 genomes of alpha, beta, gamma and unclassified coronaviruses. The Influenza 471 

class contained assemblies of influenza A (H1N1, H2N2, H3N2, H5N1, H7N9, and H9N2 472 

strains) and influenza B viruses. For the Rhinovirus class, assemblies of rhinovirus A 473 

(including A1 strain), B, C (including C1, C2, and C10 strains), and unlabelled enterovirus 474 
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were grouped together. There were five distinct assemblies for metapneumovirus which were 475 

grouped into a single class. We included Human GENCODE (48) canonical transcript 476 

sequences (downloaded from Ensembl v99 database (49)) as an additional class to distinguish 477 

sequencing reads derived from the human transcriptome. We generated between 0.44 and 3.5 478 

million 150nt-long fragments in silico for each class using a custom Perl script available at 479 

https://github.com/pacific-2020/pacific (generatetestdata.pl, Table 4). These training 480 

sequences were randomly sampled without any base substitutions and were derived from both 481 

strands of the genome assemblies.  482 

Table 4. Summary of training classes used for PACIFIC. 483 

Class  Total reads  
Number of genome 

assemblies  
Number of 

taxonomic units  
Included species/genus groups 

Coronaviridae 
[ssRNA(+)]  

644,483  12 12 
Alpha, beta, gamma and 
unclassified coronaviruses  

Influenza 
[ssRNA(-)]   

1,073,237  128 125 
Influenza A (H1N1, H2N2, H3N2, 
H5N1, H7N9, H9N2), Influenza B  

Metapneumovirus 

[ssRNA(-)]  
443,974  5 1 Metapneumovirus  

Rhinovirus 

[ssRNA(+)]  
1,339,435  130 107 

Rhinovirus A and A1, B, C (C1, 

C2, C10), other enterovirus  

SARS-CoV-2 
[ssRNA(+)]  

865,303  
87 

  
1 SARS-CoV-2  

Human  3,531,425  1* 1  Human transcriptome 

Total  7,897,857  363   247   

 484 

<*=: GENCODE canonical transcripts were used to represent human reads in RNA-seq data. 485 

 486 

Model architecture 487 

PACIFIC was implemented using the Keras API with a TensorFlow backend. Input reads were 488 

converted into 9-mers with a stride of 1, forming a vocabulary size of 49 = 262,144 k-mers. 489 

Each of these k-mers is assigned a number using the Tokenize API from Keras (50) from 1 490 

to 262,144. The first index position of 0 is reserved to denote zero-padding for variable length 491 

sequences. Tokens are fed into the first hidden layer of the neural network and 492 

transformed into continuous vectors of length 100. After the embedding, a convolutional layer 493 

takes the previous numerical vectors and uses 128 convolution filters with a kernel size of 3. 494 
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A pooling layer is used after the convolution, using max pooling with a kernel size of 3. A 495 

bidirectional long-short term memory (BiLSTM) layer then follows, which uses two traditional 496 

LSTMs; one starts 8reading9 the input sequence from one of the two flanks, and the other from 497 

the opposite end. The output of the two LSTMs is then combined and passed to the next 498 

layer. Finally, PACIFIC has a fully connected layer using a softmax function 499 

to calculate posterior probabilities for each of the six classes. To reduce overfitting, we used 500 

20% dropout at each hidden layer. 501 

Cross-entropy was used as the loss function and ADAM (51) was used as the optimizer. The 502 

final configuration of the network, hyperparameter tuning and the number and configurations 503 

of layers was obtained after several iterations between training and validation data.   The final 504 

model is implemented as double prediction on both strands of the input sequence, whereby the 505 

forward and reverse-complement of the input sequence are predicted for class assignment. 506 

Classes for both predictions were required to match. The threshold of posterior probability for 507 

the assigned class was g0.95. 508 

PACIFIC training   509 

NVIDIA GeForce RTX2080Ti was used to accelerate training. We trained two LSTM 510 

implementations, one using the fast LSTM implementation backed by CuDNN, supported only 511 

with NVIDIA Graphical Processing Unit (GPU). The other model was built using the regular 512 

implementation of LSTM. Both models achieved the same results. We started the training by 513 

shuffling the training sequences, using chunks of 200,000 reads to avoid loading all reads into 514 

memory. 90% of the data was used for training and 10% for optimization of parameters. After 515 

15 chunks, the model converged on the validation set and training was halted.  During training, 516 

we used binary accuracy (1), categorical accuracy (2) and cross-entropy loss from the 517 

optimization set to monitor the training. 518 
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1. �����������	�������� =
#	#$%%&#'	(%&)*#'*$+,

#	'$'-.	(%&)*#'*$+,
 519 

2. ������	�������� =
#	#$%%&#'	(%&)*#'*$+,

#	'$'-.	(%&)*#'*$+,
 if highest output probability > 0.5 520 

Training was completed when the model converged, obtaining final categorical and binary 521 

accuracy values of 0.99, and 0.003 for optimization loss. 522 

PACIFIC test datasets  523 

We generated 100 independent test datasets using the ART sequence simulation software 524 

(version 2.5.8, (30)) with default error models for substitutions, insertions and deletions using 525 

the Illumina® HiSeq 2500 sequencing platform. For each dataset, we set seeds starting from 526 

2021 to 2120 using a random number generator for reproducibility. Synthetic data contained 527 

150nt single end reads derived from seven classes; the five model virus classes, a human class, 528 

and an <unrelated= class composed of 32,550 distinct virus genomes downloaded from the 529 

NCBI Assembly database. We sampled ~100,000 reads per class using a class-specific fold-530 

coverage parameter to generate ~700,000 reads per test data (Table 5). Approximately 22% of 531 

reads contained mismatches, insertions or deletions relative to their respective reference 532 

sequences, reflecting error profiles of the Illumina sequencing platform. This process was 533 

automated using a custom script (generatebenchmarkdata.pl). 534 

 535 

 536 

 537 

 538 

 539 

 540 
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Table 5. Summary of benchmark datasets 541 

Sequence class  Total bases 
Fold 

coverage 
Number of reads 

Reads with 

mismatches or indels 

Coronaviridae  323274 47.5 102076 22295-22865 

Human  75434059 0.227 100208-100209 21768-22425 

Influenza  1684539 9.65 100038-100290 21825-22570 

Metapneumovirus  66596 228 100548 21890-22559 

Rhinovirus  925412 16.7 101940-101953 22196-22919 

SARS-CoV-2  2599395 5.8 100337-100349 21831-22507 

Unrelated viruses 1038794620 0.01738 100175-100196 21890-22479 

  542 

PACIFIC performance tests 543 

PACIFIC was used to assign class labels to reads in the test data, and performance metrics were 544 

calculated by comparing known and predicted labels for each read. A read was assigned a class 545 

if the maximum posterior probability score for a class was g0.95. A true positive (TP) was 546 

defined when the true label and the predicted label were the same for a read. A true negative 547 

(TN) was defined when a read that did not belong to the true class was correctly predicted as a 548 

class different from the true class. False positives (FP) were reads which were predicted to be 549 

as the true class, although they originated from a different class. False negatives (FN) were all 550 

reads belonging to the true class but were predicted as a different class. An example confusion 551 

matrix for SARS-CoV-2 is described in Table 6. Precision, recall, accuracy, false positive rate 552 

and false negative rate were calculated using equations 3-7 below. 553 

 554 

 555 

 556 
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Table 6. Confusion matrix using SARS-CoV-2 as an example of a positive class.  557 

 True/ Actual condition 

 

 

Predicted condition 

 Positive 

SARS-CoV-2 + 

Negative  

All other classes 

SARS-CoV-2 + True positive (TP) False positive (FP) 

All other classes False negative 

(FN) 

True negative (TN) 

 558 

3. ��������� = 	
/0

/0120
	559 

4. ������ = 	
/0

/0123
	560 

5. �������� = 	
/01/3

/01/3120123
 561 

6. ��� =
20

201/3
 562 

7. ��� = 	
23

231/0
 563 

where TP = True positive, FP = False positive, TN = True negative, FN = False negative, FPR 564 

= False positive rate, FNR = False negative rate. 565 

Establishing false positive rate thresholds for each class  566 

This experiment was performed to quantify the impact of variable proportions of reads from 567 

each class on the percentage of false positives and to establish the detection threshold for each 568 

virus class in RNA-seq data. For each viral class in PACIFIC, we generated 100 datasets 569 

containing 500,000 reads derived from 4 out of the 5 viral classes, the human transcriptome 570 

and unrelated viral genomes in variable proportions. Reads were simulated using the ART 571 

software (30) with Illumina® HiSeq2500 error profiles that were 150nt long and modelled 572 

single end experiments. One of the five viral classes that was excluded was considered as the 573 

test class. This process was automated using a custom script (generatefprdata.pl). 574 
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Subsequently, PACIFIC was run in double prediction to assign classes to each read. To 575 

calculate the percentage of false positives in each experiment, we counted the number of reads 576 

predicted as the absent test class and divided by the total number of reads. 577 

Detecting viruses in human datasets and comparison with other tools 578 

We downloaded 63 RNA-seq experiments from NCBI SRA database. Run accessions and other 579 

metadata details are supplied in Additional file 1: Table S2. All data were downloaded from 580 

the NCBI database using the SRA Toolkit prefetch and fastq-dump commands and applying 581 

the --gzip and --fasta options (52). For the GALA II cohort study with 48 RNA-seq datasets 582 

and read lengths 18-390nt, we discarded reads <150nt long. We then used PACIFIC to assign 583 

the presence/absence of each virus class in all 63 samples using the detection thresholds 584 

established in the previous section. We compared PACIFIC9s predictions with two alternative 585 

methods for virus detection: an alignment-based approach using BWA-MEM (53), and a k-586 

mer based approach using Kraken2 (19), described below.  587 

For BWA-MEM (53), all reads were mapped using default parameters to a combined reference 588 

containing assembly sequences for the five viral classes and the human transcriptome used for 589 

training PACIFIC (Table 4). Reads were assigned to a virus class based on the class 590 

membership of the genome assembly as described in Table 4 and Additional file 1: Table S1. 591 

For Kraken2, we first downloaded the Kraken taxonomy database and built a k-mer database 592 

using the same genomes used to train PACIFIC (Table 4).  Kraken2 was then run using the 3593 

use-names flag, and output reads were parsed using species scientific names and reads were 594 

assigned a class based on the class membership of the genome assembly (Additional file 1: 595 

Table S1, Table 4). To fairly compare all three methods, we applied class detection thresholds 596 

as determined for and used in PACIFIC (Table 2) for the presence or absence of a virus class 597 

within a sample.  598 
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To investigate the origin of reads for all reads in samples that were discordantly predicted for 599 

the presence of a virus class by PACIFIC, BWA-MEM or Kraken2, we used the BLAST suite 600 

(v2.10.1+) (54,55) to align reads to the NCBI nucleotide (nt) database, which includes 601 

sequences from all domains of life. We took the best hit from the pairwise alignment for each 602 

read, filtering for alignments with an E-value <1e-6. BLASTN was used with the following 603 

parameters: -task 8megablast9 -max_target_seqs 1 -max_hsps 1 -evalue 1e-6 to query 604 

discordant viral class assignments between PACIFIC, BWA-MEM and Kraken2. 605 
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