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Abstract

Viral co-infections occur in COVID-19 patients, potentially impacting disease progression and
severity. However, there is currently no dedicated method to identify viral co-infections in
patient RNA-seq data. We developed PACIFIC, a deep-learning algorithm that accurately
detects SARS-CoV-2 and other common RNA respiratory viruses from RNA-seq data. Using
in silico data, PACIFIC recovers the presence and relative concentrations of viruses with
>99% precision and recall. PACIFIC accurately detects SARS-CoV-2 and other viral
infections in 63 independent in vitro cell culture and patient datasets. PACIFIC is an end-to-
end tool that enables the systematic monitoring of viral infections in the current global

pandemic.

Keywords

SARS-CoV-2; sequence classification; co-infection; deep learning; respiratory virus; machine

learning; Rhinovirus; Metapneumovirus; Influenza; COVID-19
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Background

Acute respiratory tract infections are the third largest global cause of death, infecting 545
million people and claiming 4 million lives every year (1-3). RNA viruses such as influenza,
parainfluenza virus, respiratory syncytial virus, metapneumovirus,
rhinovirus, and coronavirus are amongst the top pathogens causing respiratory infections and
disease (4,5). Novel respiratory diseases, including coronaviruses, cross species boundaries
repeatedly. Since December 2019, millions of people have been affected by COVID-19, an
infectious zoonotic disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2, NCBI Taxonomy ID: 2697049). Novel zoonotic coronaviruses also caused the
2002-2003 outbreak of SARS-CoV respiratory disease with at least 8,098 known cases and the
ongoing 2012-2020 outbreaks of Middle East respiratory syndrome coronavirus (MERS-
CoV) with at least 2,519 known cases (5-8). This recurrent emergence of respiratory viruses
warrants increased surveillance and highlights the need for rapid, accurate, and timely

diagnostic tests.

Diagnostic testing, treatment, and disease severity are complicated by the occurrence of
respiratory co-infections. Up to 40% of individuals infected with respiratory viruses test
positive for co-infections with up to three different pathogens (9,10), and recent studies have
reported that ~20% of SARS-CoV-2 positive individuals had a co-infection with other
respiratory viruses (11). Viral co-infections can alter the severity of disease and modify
survival rates, and while COVID-19 remains poorly understood, early studies indicate a
potential for increased mortality associated with influenza co-infections (12). Further studies
are required to investigate the relationship between SARS-CoV-2 co-infections with prognosis

and mortality rate (12,13).

Current diagnostic tests for respiratory infections are often limited in their capacity to detect

co-infections. The current standard of viral detection for COVID-19 is based on polymerase

3
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chain reaction (PCR) assays directed towards SARS-CoV-2 (14), which do not detect co-
infecting viruses. Multiple virus identification in clinical settings is typically performed by
using multiplexed PCR assays with primers specifically designed to target known respiratory
pathogens (15). However, this approach is generally used only with pathogens that are
expected a priori and the range of pathogen detection is limited by the probe design.
Additionally, these protocols must be updated as new species or strains are identified as

clinically relevant.

High-throughput RNA sequencing (RNA-seq) provides an unbiased measurement of the RNA
molecules present in a sample and can potentially enable the systematic detection of SARS-
CoV-2 infections and co-infections. Multiple species identification has been effectively
performed in sequence data in the context of metagenomics studies (16). Programs such as
Kraken (17-19) use k-mers to taxonomically classify sequencing reads into species from
metagenomic samples. However, these tools use large databases of species sequences to
compare against, resulting in considerable storage and computing requirements. In contrast,
machine learning based tools have the advantage of extracting required features and
encapsulating the necessary information for sequence classification in a computationally
efficient model. This approach has been successfully used in the past for sequence
classification problems (20). For example, DeepMicrobes (21) uses deep learning for genus
and species level classification of metagenomic DNA sequencing reads from human gut
bacteria. Similarly, ViraMiner (22) uses a deep learning binary classifier to identify DNA
viruses from human microbiome metagenomic reads. Despite these advances, there is currently
no equivalent deep learning classifier for the detection of SARS-CoV-2 and possible co-

infections by RNA viruses.

To address this limitation, we have developed PACIFIC, a deep learning model to detect the

presence of SARS-CoV-2 and other common respiratory RNA viruses in RNA-seq data from
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98 patient samples. PACIFIC is an easy-to-use, streamlined tool useful for clinical and

99 epidemiological applications in the context of the COVID-19 pandemic. Our tool accurately
100 identifies and discriminates reads into five distinct classes: SARS-CoV-2, influenza
101  (representing HIN1, H2N2, H3N2, HSN1, H7N9, HON2, and Influenza B), metapneumovirus
102  (representing 5 distinct assemblies), rhinoviruses (representing rhinovirus A and Al, B, C1,
103 C2, CI10 and other enteroviruses) and other coronaviruses (representing alpha,
104  beta, gamma, and other unclassified coronaviruses). Extensive in silico tests show that
105  PACIFIC achieves >99% precision, accuracy and recall. In addition, predictions in 63 infected
106  human cell-lines and human primary samples demonstrate greater performance using PACIFIC
107  for the detection of each virus class in comparison with alignment (BWA-MEM) and k-mer

108  (Kraken2) based methods.

109  To the best of our knowledge, PACIFIC is the first software that uses deep learning to classify
110  different RNA viruses from RNA-seq reads. By enabling the systematic identification of co-
111  infections, we anticipate that PACIFIC can aid the clinical management of COVID-19 patients
112 during the current pandemic and the surveillance of respiratory infections in future

113 epidemiological studies.

114

115 Results

116 PACIFIC model

117  PACIFIC is a deep learning method designed to classify RNA-seq reads into five distinct
118  respiratory virus classes and a human class (Figure 1a). The model architecture for PACIFIC
119  is composed of an embedding layer, a convolutional neural network, and a bi-directional long
120  short-term memory (BiLSTM) network that ends in a fully connected layer (Figure 1b). One

121  of the main advantages of deep neural networks compared to other machine learning models
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122 in the context of sequence classification is the ability to extract relevant complex classification
123 features from DNA or RNA sequences without having to explicitly define them a priori.
124  However, the strategy to encode nucleotide sequences must be carefully considered, as it can
125  dramatically affect the performance of the classifier (23). PACIFIC implements an embedding
126  layer, which boosts the performance of the model in comparison with other encoding
127  approaches (24). PACIFIC first converts nucleotide sequences into k-mers, assigns them to
128 numerical tokens and converts these tokens into dense representations using a continuous

129  vector space.

130  The use of a convolutional neural network adds several advantageous properties to the model.
131  One advantage is location invariance (25), which allows the model to identify combinations of
132 features with predictive value regardless of their relative position along the sequence. In
133 addition, each filter used in the convolution layers can capture the predictive value of specific

134  regions or combinations of k-mers.

135  After the convolution layers, PACIFIC uses a pooling layer to decrease the dimensionality of
136  the feature space while maintaining essential information. PACIFIC uses a BiLSTM to model
137  long-range dependencies in nucleotides, which provides the capacity to incorporate complex
138  relationships in the input sequence that are sometimes ignored by single LSTMs (26). PACIFIC
139  then implements a dense layer to estimate posterior probabilities for each of the five classes
140  considered: Coronaviridae, Influenza, Metapneumovirus, Rhinovirus, and SARS-CoV-2. We
141  included a sixth class in the model (Human) to classify RNA-seq reads derived from the human
142 host. Finally, PACIFIC takes the reverse-complement of each predicted read, and only assigns
143  the read to a particular class if the posterior probabilities of both the forward and reverse-

144  complemented versions of the read for that class are > 0.95.
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146  Figure 1. Overview of PACIFIC and its model architecture. a) PACIFIC uses FASTQ or
147  FASTA files as inputs to make read-level predictions and report the relative percentage of
148  RNA virus and human reads in a sample. b) Schematic view of PACIFIC deep neuronal
149  network architecture. PACIFIC uses embedding, convolutional neural network and
150 BILSTM layers. The model is trained using in silico generated sequences from RNA virus
151  genomes and the human transcriptome.

152

153  Properties of PACIFIC training data

154  PACIFIC was trained using 7.9 million 150nt long random fragments from 362 viral genome

155  assemblies belonging to one of five viral classes (SARS-CoV-2, Influenza, Metapneumovirus,
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156  Rhinovirus and Coronaviridae) and the human transcriptome (Additional file 1: Table S1)
157 (Methods). In silico fragments from both strands were generated without errors to
158 accommodate paired-end sequenced reads and to retain the natural variation between genomes
159  in each class. We used 90% of the data for training and 10% to tune the hyperparameters and

160 network architecture.

161  The selection and grouping of virus classes were based on several considerations. First, we
162  wanted PACIFIC to accurately detect SARS-CoV-2 as an independent class and to discriminate
163 it from other coronaviruses. Second, we selected viruses that have been recently reported to
164  appear as co-infections with SARS-CoV-2 (11). Third, we restricted our selection to viruses
165  for which humans have been defined as one of the host species in NCBI Taxonomy database
166  (27). Fourth, as the majority of reads in a sample are expected to be derived from human RNAs,
167  we included an independent human class representing the human transcriptome to avoid the

168  misclassification of human reads as viral origin.

169  K-mer length selection and sequence divergence

170  Asinput reads are divided into k-mers within the model, we investigated appropriate virus and
171  human k-mer properties. A k-mer length of 9 was previously reported to be the optimal k-mer
172 length for the phylogenetic separation of viral genomes (28). However, 9-mer profiles of
173 SARS-CoV-2 and the human transcriptome have not been previously explored. We computed
174  all-vs-all Jensen-Shannon divergence (JSD) scores using 9-mers to confirm that k=9 is the
175  effective k-length to distinguish between the six PACIFIC classes. JSD is a symmetric measure
176  of (dis)similarity that accounts for shared k-mer frequency distributions between a pair of
177  sequences (29). JSD values range between 0 for identical sequences and 1 for two sequences
178  that do not share any k-mer. Overall, inter-class JSD values were higher compared to the intra-

179  class JSD values for 9-mers, which confirm that 9-mers are effective at separating sequences
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180  belonging to different viral classes and human transcripts (Additional file 2: Figure S1).
181  Specifically, the average JSD between the SARS-CoV-2 class and the Coronaviridae class was
182  0.786, which was greater than 0.767 intra-class JSD for the Coronaviridae and 0.002 for the
183  SARS-CoV-2 class, thus indicating sufficient divergence for their separation into distinct
184  classes. Given these results, we decided to encode input sequences as 9-mers with a stride of

185 1.

186
187  PACIFIC testing shows high precision and recall for simulated data

188  Performance metrics (false positive rates (FPRs), false negative rates (FNRs), precision, recall,
189 and accuracy) were calculated using in silico generated reads that modelled sequencing-
190 induced substitution and indel errors from sample mixtures with known class labels. We
191  generated 100 independent datasets of 150nt single end reads with Illumina HiSeq2500 errors
192  using ART (30). Each dataset contained ~700,000 reads and was comprised of approximately
193 100,000 reads from each of the 6 classes in the PACIFIC model, plus ~100,000 reads from

194  unrelated viral genomes (Methods).

195  First, we compared the performance metrics between predictions using only the forward strand
196 ofaread (single prediction) and predictions using both the forward and reverse-complemented
197  strands (double prediction) (Figure 2). In single prediction, a read was assigned the class label
198  with the highest posterior probability for the forward sequence if the posterior probability for
199 aclass was > 0.95. For double prediction, the read was predicted to be of a given class if the
200  posterior probability of the predicted forward and reverse-complemented read was >0.95 and
201  predictions agreed on the same class. The average FNR across 100 datasets in double prediction

202  relative to single prediction increased by 1.45x for Coronaviridae, 1.49x for Influenza, 1.41x

203  for Metapneumovirus, 1.40x for Rhinovirus and 1.62x for SARS-CoV-2 (Figure 2). However,
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204  we observed a large decrease in the FPR in double prediction. The average FPR in the 100
205 datasets decreased by 4.60x for Coronaviridae, 11.02x for Influenza, 16.55x for
206  Metapneumovirus, 3.92x for Rhinovirus and 16.47x for SARS-CoV-2 class in double
207  prediction relative to single prediction (Figure 2). Concomitantly, the average precision for all
208  viral classes increased and the average recall decreased by a small margin. Due to these

209  observations, double prediction was implemented as the standard classification approach in

210 PACIFIC.

211 Overall, PACIFIC achieved high precision (average > 0.9995), recall (average > 0.9966) and
212 accuracy (average > 0.9995) for each of the virus classes (Table 1). For the human class, the
213 average precision was lower at 0.50140 compared to the viral classes; this is attributed to the
214  large number of reads (>99%) from unrelated viral genomes being assigned to the human class.
215  As aresult, sequences that do not belong to any of the viruses in the model are unlikely to be

216  mislabelled as one of the virus classes.
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218  Figure 2. Comparison of false positive and false negative rates between single and double
219  predictions. Single prediction (red) results in relatively higher false positives and lower false
220 negatives compared to double prediction (green) where predictions are made on the forward
221  strand of a sequence and its reverse complement.
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Table 1. PACIFIC performance metrics for each class in 100 independent simulated datasets.

Class Average FNR Average FPR | Average Precision | Average Recall | Average Accuracy

(95% CI) #95% CI) 95% CI) 95% CI) 95% CI)

Coronaviridae 0.001162 8.16e-05 0.999518 0.9988 0.9998

(2.14e-05) (2.38e-06) (1.41e-05) (2.14e-05) (3.67e-06)

Influenza 0.001530 1.91e-06 0.999988 0.9985 0.9998

(2.65e-05) (3.18e-07) (1.95e-06) (2.65e-05) (3.80e-06)

Metapneumovirus 0.003397 1.83e-07 0.999999 0.9966 0.9995

(3.62e-05) (1.04e-07) (6.23e-07) (3.62e-05) (5.20e-06)

o 0.001209 3.55e-05 0.999788 0.9988 0.9998
Rhinovirus

(1.90e-05) (1.41e-06) (8.44¢-06) (1.90e-05) (2.79e-06)

SARS-CoV-2 0.002220 2.49e-07 0.999999 0.9978 0.9997

(3.27¢-05) (1.43e-07) (8.63e-07) (3.27e-05) (4.64e-06)

Human 0.000366 1.66e-01 0.501400 0.9996 0.8581

(1.32e-05) (1.03e-05) (1.45e-05) (1.32e-05) (8.94e-06)

CI = confidence interval, FPR = False positive rate, FNR = False negative rate

Using the same in silico datasets, we then assessed the effect of mismatches on FPR and FNR.

All 100 controlled datasets contained ~22% of reads with substitutions and indel errors relative

to the reference genomes. FNRs were higher for mismatch-containing reads relative to exact

reads for all viral classes, increasing 5 to 64-fold (Figure 3). In contrast, FPRs increased 0.98

to 2-fold for mismatch-containing reads for all classes. These results suggest that FPRs are

relatively less affected by the presence of mismatches compared to FNRs for viral classes.

Despite relative differences of FPR and FNR in mismatch-containing reads compared to exact

reads, PACIFIC achieved high precision (0.9994), high recall (0.9909) and high accuracy

(0.9982) for mismatch-containing reads for all five viral classes (Additional file 1: Table S2).

11
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238  Figure 3. False positive (left panel) and false negative (right panel) rates for reads identical to
239  the corresponding reference genome (Exact, green), and for reads with mismatches with respect
240  to their reference genome (Mismatch, red).

241

242 Reads derived from unrelated virus genomes contributed most of the false positives for all
243 predicted classes (Figure 4). Of note, there was negligible cross contamination between viral
244  class labels. The largest inter-viral class misclassification was from SARS-CoV-2 to
245  Coronaviridae, where out of 100,000 SARS-CoV-2 reads, ~2.9 were misclassified as
246 Coronaviridae. Other inter-viral class misclassifications were between 0-0.2 reads. The
247  majority of false negatives for each viral class were either discarded because of the double
248  prediction criteria (rc_discarded in Figure 4), or because they did not meet the minimum 0.95
249  posterior probability criteria (pDiscarded in Figure 4). Taken together, our results demonstrate
250 that PACIFIC is highly specific and sensitive for all five viral classes, with negligible false

251  positive and false negative rates.

12
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254  Figure 4. False positive and false negative assignments for 100 independently simulated
255  datasets. Left panel - Average number of false positives (y axis). True labels are indicated by
256  colour for each class and predicted labels are given in the x-axis. Right panel - Average number
257  offalse negatives (y axis). Predicted labels are indicated by colour for each class and true labels
258  as indicated in the x-axis. pDiscarded - reads that do not reach the 0.95 posterior probability
259  cut-off; rc_discarded - reads that were discordantly predicted using double prediction.

260
261  Establishing virus detection thresholds

262  Inthe previous section, we showed that PACIFIC displayed low FPR in balanced datasets with
263  similar proportions of reads from each class. However, incorrect predictions about the presence
264  or absence of a virus in a sample could lead to misguided follow-ups and the unnecessary use
265  of valuable clinical resources. Therefore, we decided to establish the minimum percentage of

266  reads for each viral class required to confidently predict the presence of a virus in a sample.

267  Inpractice, RNA-seq data will be unbalanced with almost all reads originating from the human
268 transcriptome mixed with variable proportions of viral reads. To model this imbalance in class
269  proportions, we simulated 500 independent datasets (100 for each class), each containing
270 500,000 150nt long reads using ART (30) with Illumina HiSeq2500 error profiles. Each dataset

271  contained variable proportions of simulated reads for 4 of the 5 viral classes, plus human and

13
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272  unrelated viral genomes. One of the five viral classes was intentionally excluded, and the
273 excluded class was considered to be the test class. All reads assigned to this test class were
274  counted as false positives. PACIFIC achieved similar average FPRs to the benchmarking

275  experiments using balanced datasets (Table 2).

276  Assessment of the distribution of false positive rates for each viral class and skewness-kurtosis
277  plots indicated that the percentage of false positives observed in unbalanced datasets followed
278  a Beta distribution. Therefore, we used moment matching to estimate the shape parameters for
279  the quantile function of the Beta distribution and determined the numeric threshold above
280  which 99% of false positive samples were excluded. Using these thresholds, a sample would
281  be classified as positive for Coronaviridae if >0.0405% reads were labelled as Coronaviridae
282 by PACIFIC. Similarly, these limits were >0.000807% for Influenza, >0.000154% for
283  Metapneumovirus, >0.0418% for the Rhinovirus, and >0.000213% for the SARS-CoV-2 class

284  (Table 2).

285  Table 2. Average false positive reads across 100 experiments for each viral class.

° °
Class Ave(‘l’;‘fl:lfcl; g‘; ‘t‘tvjflr;‘flzfi (f; FP % threshold*
Coronaviridae 0.00816 0.006664 0.0405
Influenza 0.000191 0.000062 0.000807
Metapneumovirus 0.0000183 0.000006 0.000154
Rhinovirus 0.00355 0.005392 0.0418
SARS-CoV-2 0.0000249 0.000010 0.000213

286  FP = False positive, Balanced = 100 experiments with equal proportion of reads from each

287  class, Unbalanced = Variable proportion of reads from all classes and no reads from the test

288  class. * These thresholds represent 0.99 quantile for FP% for that class.
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289  PACIFIC accurately detects viruses in human RNA-seq samples

290  Next, we assessed PACIFIC’s performance in classifying viral reads in RNA-seq data derived
291  from human biological samples and compared its output with alignment-based (BWA-MEM)
292  and k-mer based (Kraken2) approaches. To reduce bias in the comparisons, we built the BWA-
293  MEM index and Kraken2 database using the same virus genome assemblies and the human
294  transcriptome that were used for PACIFIC training (Additional file 1: Table S1). Additionally,
295  we used the same percentage thresholds determined in the previous section (Table 2) for all
296  three methods to assign the presence of a virus in a sample. All three methods were applied to
297 63 human RNA-seq datasets from independent research studies, with five of them known to
298  contain SARS-CoV-2 (31,32). Four RNA-seq datasets were derived from primary human lung
299  epithelium cells (NHBE) infected with SARS-CoV-2 in vitro (NCBI SRA accession:
300 SRX7990869) (31) and one dataset was from a patient bronchoalveolar lavage fluid sample
301 (NCBI SRA accession: SRR10971381) that was positive for SARS-CoV-2 (32). In addition,
302  we analysed RNA-seq datasets for 48 airway epithelial cell samples from the GALA II cohort
303  study, of which 22 were reported to contain respiratory infection viruses (33,34), and 10 were
304 reportedly devoid of infections by the viral classes studied here, as indicated by the sample

305 metadata and the corresponding publications (Additional file 1: Table S3).

306 For the five samples that were positive for SARS-CoV-2, PACIFIC assigned 0.047%-0.048%
307 of all reads to the SARS-CoV-2 class for the in vitro infected cells and 0.19% of all reads in
308 the patient sample; all five samples were above the established detection threshold for that class
309 (>0.000213%) (Figure 5). Similarly, BWA-MEM and Kraken2 successfully identified SARS-
310 CoV-2reads above the detection threshold in these five samples (Figure 5a). All three methods
311  accurately predicted the presence of SARS-CoV-2 and the absence of other virus classes in

312 these samples as per class specific detection thresholds.
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313  We subsequently tested the 48 samples from the GALA 1I cohort (33,34). Of these, 22 were
314  reported to contain between 4 and 164,870 reads from respiratory viruses (human rhinovirus,
315 respiratory syncytial virus, human metapneumovirus or human parainfluenza viruses I, II and
316 II). PACIFIC, BWA-MEM and Kraken?2 identified 9 samples as positive for one of the five
317  virus classes considered, and 39 samples as negative for the same viral classes (Figure 5a;
318  Additional file 2: Figure S2, Additional file 1: Table S3). The discrepancy between these results
319 and the original study (34) could be partly explained by the exclusion of the Respiratory
320 Syncytial Virus class in our analyses. However, further verifications could not be performed
321  because sample labels provided in the manuscript were mismatched with the submitted

322 sequence data (see correction (35)).

323  From the 9 positive samples, six were concordantly labelled positive for the same virus class
324 by all three methods: three samples were positive for Rhinovirus, and one for Coronaviridae,
325 Influenza, and Metapneumovirus, respectively (Figure 5a). In contrast, the other three samples
326  were discordantly labelled by one of the three methods. One sample (SRR4427279) was
327  classified as positive for Metapneumovirus by BWA-MEM and Kraken2 but not by PACIFIC.
328 BWA-MEM and Kraken2 collectively assigned 28 reads to the Metapneumovirus class as
329  opposed to 0 reads by PACIFIC. To investigate the origin of these reads, we used BLASTN
330 searches against the NCBI nucleotide (n#) database encompassing sequences from all domains
331  of life and extracted the best hit for each read (Methods). All 28 reads had their best hits to
332  human respiratory syncytial virus A sequences (E-values <4.07e-68; bit-scores > 267). Further
333  analysis showed that metapneumovirus was not identified in any of the top 10 significant hits
334  (Additional file 2: Extension of BLAST analysis). Another discordant sample (SRR4427270)
335  was positive for the Rhinovirus class by PACIFIC (1,065 reads) and BWA-MEM (2,338 reads)
336  but not by Kraken2 (3 reads). BLASTN searches showed that best hits (3,145/3,150 total

337 BLAST alignments) were sequences from one of Enterovirus C105, Enterovirus C or Human

16


https://doi.org/10.1101/2020.07.24.219097
http://creativecommons.org/licenses/by/4.0/

338

339

340

341

342

343

344

345

346

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.219097; this version posted July 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

enterovirus C105 (E-values <9.46e-41, bit-scores >178). Rhinoviruses and other enteroviruses
are taxonomically part of the Enterovirus genus (36,37). The final discordant sample
(SRR4427280) was labelled positive for the Rhinovirus class by PACIFIC (355 reads) and
Kraken2 (387 reads) but not by BWA-MEM (29 reads) using our thresholds (Figure 5a).
BLASTN searches revealed that the majority of reads (385/390 collectively between PACIFIC
and Kraken2) had their best hits to Rhinovirus C (E-values < 4.47e-53; bit-scores > 219).
BWA-MEM therefore failed to assign most Rhinovirus reads classified by the other two

methods.
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348 Figure 5. PACIFIC, BWA-MEM and Kraken2 virus predictions in RNA-seq data.
349  Transparent grey filled circles represent detection thresholds for each class, overlaid with black
350 filled circles representing the percentage of predicted reads using PACIFIC (left panel), BWA-
351 MEM (centre panel) and Kraken2 (right panel). Circles are filled blue when the percentage of
352 reads for a class are above detection thresholds described in Table 2. RNA-seq samples (y-
353  axis) are labelled with NCBI SRA run accessions and abbreviations for sample type. (a) RNA-
354  seq samples predicted to be positive for at least one viral class by PACIFIC, BWA-MEM, or
355  Kraken2. Samples include a SARS-CoV-2-infected human patient bronchoalveolar lavage
356  fluid sample (.pat), four in vitro SARS-CoV-2-infected NHBE cell lines (.scc) and 9 samples
357  from the GALA II cohort (.gala). (b) Human RNA-seq samples without expected viral
358 infections (.neg; n=10). Samples were selected from the NCBI SRA database without any
359 evidence of any infection.

360
361 In addition to the 53 samples tested above, we analysed 10 publicly available human RNA-seq

362  datasets without expected viral infections using all three methods. In particular, all ten samples
363  were registered in the NCBI SRA database on or before 17 October 2019 and therefore were
364 unlikely to contain SARS-CoV-2 (Additional file 1: Table S3). Of note, two samples
365 (SRR8927151 and SRR8928257) were published in February 2020 (Additional file 1: Table
366  S3) (38). However, the two NCBI BioProjects for these samples were registered on 18 April

367  2019.

368 PACIFIC accurately predicted all 10 samples as negative for viral infections using our
369  detection thresholds. In contrast, Kraken2 assigned one sample (SRR5515378) as positive for
370 SARS-CoV-2 with 256 reads assigned (Figure 5b). Further verification with BLASTN searches
371  confirmed that 242 out of the 256 reads mislabelled by Kraken2 aligned to the Mycoplasma
372 bacterial genus (E-values <2.76e-23, bit-scores >121), indicating false positive assignments by

373  Kraken2 for these reads.

374 BWA-MEM performed relatively worse in these 10 datasets, with 8 samples classified as
375  positive for SARS-CoV-2 (Figure 5b). A total of 15,395 reads were aligned to SARS-CoV-2
376  genomes from these 8 samples, ranging from 86 to 6,901 reads in any given sample. BLASTN
377  searches of these SARS-CoV-2 assigned reads showed Homo sapiens as the best hit (E-values

378 < 5.78e-07, bit-scores > 65.8) for 4,352 (28%) reads. Further examination revealed that 53%
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379  of all 9-mers in these reads were poly-A or poly-T derived, suggesting low-complexity
380 sequences. In addition, SRR4895842 was also assigned as co-positive for the Rhinovirus class
381 in addition to SARS-CoV-2 by BWA-MEM (Figure 5b). BLASTN searches of 406 reads
382  assigned to Rhinovirus within this sample revealed that 303 reads had best hits to Homo
383  sapiens, and 48 reads had their best hits to Pan paniscus (E-value < 6.06e-10; bit-scores >
384  76.8). These reads had 19% of their 9-mers derived from poly-A or poly-T sequences,

385  suggesting low-complexity sequences.

386  Overall, these results show that PACIFIC can accurately identify viral reads and the use of our
387  detection thresholds assisted in correctly establishing the presence or absence of viral classes

388 in RNA-seq data from biological samples with better accuracy than existing methods.

389

390 Discussion

391  We have developed PACIFIC, a deep learning-based tool for the detection of SARS-CoV-2
392  and other common respiratory viruses from RNA-seq data. To the best of our knowledge,
393  PACIFIC is the first deep learning model that performs detection of SARS-CoV-2 and different
394  RNA virus groups using short-read sequence data with >0.99 precision, recall and accuracy. A
395 recent analysis of 4,909 scientific articles identified 47 models for detecting COVID-19, 34 of
396  which were based on medical images (39). This study concluded that these predictive models
397  were, in general, poorly described and contained multiple biases, likely resulting in unreliable
398 predictions when applied in practice. To overcome these potential limitations, we used multiple
399 diverse and independent simulated datasets reflecting realistic scenarios to validate the
400 performance of PACIFIC. Importantly, PACIFIC was successfully applied to 63 RNA-seq

401  datasets derived from infected cell cultures and patient samples for the detection of viral
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402  infections, demonstrating that PACIFIC can be applied to human-derived RNA-seq datasets

403  and assist in clinical settings.

404 In 2013, the World Health Organisation launched the Battle against Respiratory Viruses
405 (BRaVe) initiative, which identified six research strategies to tackle and mitigate risks of death
406  due to respiratory tract infections. One of the proposed strategies was to “improve severe acute
407  respiratory infection diagnosis and diagnostic tests amongst others” (40). High-throughput
408 sequencing-based approaches can provide immense diagnostic potential and facilitate
409 molecular epidemiological studies, thereby contributing towards the BRaVe initiative’s goals
410 (41,42). It is more important than ever to explore and determine the diagnostic potential of

411  RNA-seq for the SARS-CoV-2 pandemic.

412 A comprehensive study using multiplex RT-PCR and a sequencing-based metagenomic
413  approach revealed that RNA-seq has sufficient sensitivity and specificity to be applicable in the
414  clinic for respiratory viruses (42). However, the use of RNA-seq in diagnostic settings is often
415  complicated due to complex analytical workflows (34,42). A typical workflow for virus
416  detection in high-throughput sequencing data involves quality assessment and filtering of raw
417  data, removal of host sequences, de novo assembly of remaining reads, and lastly, the alignment
418 and annotation of the generated contigs (43). Implementation of these workflows require expert
419  knowledge of bioinformatics software and databases and often dedicated computing facilities.
420 PACIFIC overcomes these limitations by modelling the differences in k-mer content of
421  respiratory viruses and human sequences in a model that is efficient in compute and storage
422  requirements, easy to use, and therefore applicable in contexts with minimal resources.
423  Specifically, we have designed PACIFIC to be run as a single command using raw RNA-seq
424  data as the only required input to obtain quantified predictions about viral classes within a

425  sample.
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426  Despite the higher costs of sequencing compared to PCR-based experiments, multiplexing,
427  block-testing or pooling strategies (44) could be implemented for unbiased cost-effective
428  testing. For example, sequencing with Illumina platforms could be done with 96 samples per
429 lane using multiplexing, reducing the sequencing cost per sample. In this scenario, the number
430 of'reads obtained per sample could be approximately 200,000 or higher. We have demonstrated
431  the accuracy of PACIFIC in a variety of sample sizes, which suggests the potential value of

432  this approach.

433  One of the major challenges in the identification of virus classes is the high rate of natural
434  sequence variation for RNA viruses (45,46), in addition to high-throughput sequencing induced
435  errors and artefacts, and the presence of low-complexity A-rich sequences common to the host
436 transcriptome. We showed that 22% of reads containing mismatches and indel errors were
437  accurately assigned to a virus class by PACIFIC with negligible loss in sensitivity at a sample
438 level. Given the ability of PACIFIC to accurately assign error-containing reads, we speculate
439  that PACIFIC is applicable to cases where viruses present natural sequence variation. In such
440 cases, or when new species are required to be added to the model, strategies like transfer
441  learning can be used to update the model without the need to retrain the entire model, with low
442  computational cost (47). Future versions of PACIFIC could focus on training a model that
443  incorporates class specific mutation rates and sequence diversity to reduce the need for regular

444  updates as new viral mutations emerge.

445  PACIFIC is intentionally focused on the identification of viral classes reported to be co-
446  infecting along with SARS-CoV-2 (12). Therefore, samples containing other viruses and
447  bacterial infections may require additional analysis. Future versions of PACIFIC could include
448  the classification of a broader range of virus and bacterial classes at a species level, and variable

449  input read lengths to increase PACIFIC’s utility in other contexts.

450
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451 Conclusions

452  PACIFIC is a powerful end-to-end and easy to use tool that predicts the presence of SARS-
453  CoV-2, Influenza, Metapneumovirus, Rhinovirus and other Coronavirus class-derived
454  sequences directly from RNA-seq data with high sensitivity and specificity. PACIFIC will
455  enable effective monitoring and tracking of viral infections and co-infections in the population
456  in the context of the COVID-19 global pandemic and allow for the development of new
457  strategies in molecular epidemiology of co-infections to understand variable host responses

458  and improve the management of infectious diseases caused by viruses.
459
460 Methods

461 PACIFIC and other associated software written for this manuscript is available at
462  https://github.com/pacific-2020/pacific. We have used Python (version 3), scipy (v1.4.1),
463  numpy (v1.18.1), scikit (v0.23.1), pandas (v1.0.1), tensorflow (v2.2.0), keras (v2.3.1), R (v3.6),

464  tidyverse (v1.3.0), Biobase (v2.46.0) and Perl (v5.26) in our analysis.
465  Training data

466  We downloaded 362 virus genomes from the NCBI assembly database corresponding to five
467  classes of single stranded RNA viruses (Table 4, Additional file 1: Table S1). GenBank
468  assembly identifiers and assembly versions with other metadata are listed in Additional file 1:
469  Table S1. Since our focus was to detect co-infections with SARS-CoV-2, we made a separate
470  class for SARS-CoV-2 containing 87 different assemblies (Table 4). The Coronaviridae class
471  contained 12 genomes of alpha, beta, gamma and unclassified coronaviruses. The Influenza
472  class contained assemblies of influenza A (HIN1, H2N2, H3N2, H5N1, H7N9, and HON2
473  strains) and influenza B viruses. For the Rhinovirus class, assemblies of rhinovirus A

474  (including Al strain), B, C (including C1, C2, and C10 strains), and unlabelled enterovirus
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475  were grouped together. There were five distinct assemblies for metapneumovirus which were
476  grouped into a single class. We included Human GENCODE (48) canonical transcript
477  sequences (downloaded from Ensembl v99 database (49)) as an additional class to distinguish
478  sequencing reads derived from the human transcriptome. We generated between 0.44 and 3.5
479  million 150nt-long fragments in silico for each class using a custom Perl script available at
480  https://github.com/pacific-2020/pacific  (generatetestdata.pl, Table 4). These training
481  sequences were randomly sampled without any base substitutions and were derived from both
482  strands of the genome assemblies.
483  Table 4. Summary of training classes used for PACIFIC.
Class Total reads Numbe;:;g;gcl)ir:se taxonoNr:iT?J?wl;th Included species/genus groups
Coronaviridae Alpha, beta, gamma and
[sSRNA(+)] 644,483 12 12 unclassified coronaviruses
Influenza Influenza A (H1N1, H2N2, H3N2,
[ssRNA(-)] 1,073,237 128 125 | 15N1, H7N9, HIN2), Influenza B
?;Iggﬁzz(ejrowrus 443,974 5 1 | Metapneumovirus
Rhinovirus Rhinovirus A and A1, B, C (C1,
[sSRNA(+)] 1,339,435 130 107 | c2 C10), other enterovirus
SARS-CoV-2 87
[SSRNA()] 865,303 1 | SARS-CoV-2
Human 3,531,425 1* 1 Human transcriptome
Total 7,897,857 363 247
484
485  “*”: GENCODE canonical transcripts were used to represent human reads in RNA-seq data.
486
487  Model architecture
488  PACIFIC was implemented using the Keras API with a TensorFlow backend. Input reads were
489  converted into 9-mers with a stride of 1, forming a vocabulary size of 4° =262,144 k-mers.
490  Each of these k-mers is assigned a number using the Tokenize API from Keras (50) from 1
491  to 262,144. The first index position of 0 is reserved to denote zero-padding for variable length
492  sequences. Tokens arefed into the firsthidden layer of the neural network and
493  transformed into continuous vectors of length 100. After the embedding, a convolutional layer
494  takes the previous numerical vectors and uses 128 convolution filters with a kernel size of 3.
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495 A pooling layer is used after the convolution, using max pooling with a kernel size of 3. A
496  bidirectional long-short term memory (BiLSTM) layer then follows, which uses two traditional
497  LSTMs; one starts ‘reading’ the input sequence from one of the two flanks, and the other from
498  the opposite end. The output of the two LSTMs is then combined and passed to the next
499 layer. Finally, PACIFIC has a fully connected layer using a soffmax function
500 to calculate posterior probabilities for each of the six classes. To reduce overfitting, we used

501  20% dropout at each hidden layer.

502  Cross-entropy was used as the loss function and ADAM (51) was used as the optimizer. The
503 final configuration of the network, hyperparameter tuning and the number and configurations
504  of layers was obtained after several iterations between training and validation data. The final
505 model is implemented as double prediction on both strands of the input sequence, whereby the
506 forward and reverse-complement of the input sequence are predicted for class assignment.
507  Classes for both predictions were required to match. The threshold of posterior probability for

508 the assigned class was >0.95.
509  PACIFIC training

510 NVIDIA GeForce RTX2080Ti was used to accelerate training. We trained two LSTM
511 implementations, one using the fast LSTM implementation backed by CuDNN, supported only
512 with NVIDIA Graphical Processing Unit (GPU). The other model was built using the regular
513  implementation of LSTM. Both models achieved the same results. We started the training by
514  shuffling the training sequences, using chunks of 200,000 reads to avoid loading all reads into
515 memory. 90% of the data was used for training and 10% for optimization of parameters. After
516 15 chunks, the model converged on the validation set and training was halted. During training,
517 we used binary accuracy (1), categorical accuracy (2) and cross-entropy loss from the

518  optimization set to monitor the training.

25


https://doi.org/10.1101/2020.07.24.219097
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.219097; this version posted July 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

# correct predictions

519 1. Categorical accuracy = —
# total predictions

# correct predictions

520 2. Binary accuracy = if highest output probability > 0.5

# total predictions

521  Training was completed when the model converged, obtaining final categorical and binary

522  accuracy values of 0.99, and 0.003 for optimization loss.

523  PACIFIC test datasets

524  We generated 100 independent test datasets using the ART sequence simulation software
525  (version 2.5.8, (30)) with default error models for substitutions, insertions and deletions using
526  the [llumina® HiSeq 2500 sequencing platform. For each dataset, we set seeds starting from
527 2021 to 2120 using a random number generator for reproducibility. Synthetic data contained
528  150nt single end reads derived from seven classes; the five model virus classes, a human class,
529  and an “unrelated” class composed of 32,550 distinct virus genomes downloaded from the
530 NCBI Assembly database. We sampled ~100,000 reads per class using a class-specific fold-
531 coverage parameter to generate ~700,000 reads per test data (Table 5). Approximately 22% of
532 reads contained mismatches, insertions or deletions relative to their respective reference
533  sequences, reflecting error profiles of the Illumina sequencing platform. This process was

534  automated using a custom script (generatebenchmarkdata.pl).
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Table 5. Summary of benchmark datasets
Sequence class Total bases covel:::; Number of reads misma tch(Ie{se(z:f:nV:lietll;
Coronaviridae 323274 47.5 102076 22295-22865
Human 75434059 0.227 100208-100209 21768-22425
Influenza 1684539 9.65 100038-100290 21825-22570
Metapneumovirus 66596 228 100548 21890-22559
Rhinovirus 925412 16.7 101940-101953 22196-22919
SARS-CoV-2 2599395 5.8 100337-100349 21831-22507
Unrelated viruses 1038794620 0.01738 100175-100196 21890-22479

PACIFIC performance tests

PACIFIC was used to assign class labels to reads in the test data, and performance metrics were

calculated by comparing known and predicted labels for each read. A read was assigned a class

if the maximum posterior probability score for a class was >0.95. A true positive (TP) was

defined when the true label and the predicted label were the same for a read. A true negative

(TN) was defined when a read that did not belong to the true class was correctly predicted as a

class different from the true class. False positives (FP) were reads which were predicted to be

as the true class, although they originated from a different class. False negatives (FN) were all

reads belonging to the true class but were predicted as a different class. An example confusion

matrix for SARS-CoV-2 is described in Table 6. Precision, recall, accuracy, false positive rate

and false negative rate were calculated using equations 3-7 below.
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557  Table 6. Confusion matrix using SARS-CoV-2 as an example of a positive class.

True/ Actual condition

Positive Negative
SARS-CoV-2 + All other classes

Predicted condition

SARS-CoV-2 + True positive (TP) | False positive (FP)
All other classes False negative | True negative (TN)
(FN)
558
559 3. Precision = ——
TP+FP
560 4. Recall = ——
TP+FN
561 5. Accuracy = Mk —
TP+TN+FP+FN
562 6. FPR=—="
FP+TN
563 7. FNR = —2
FN+TP

564  where TP = True positive, FP = False positive, TN = True negative, FN = False negative, FPR

565 = False positive rate, FNR = False negative rate.

566  Establishing false positive rate thresholds for each class

567  This experiment was performed to quantify the impact of variable proportions of reads from
568  each class on the percentage of false positives and to establish the detection threshold for each
569  virus class in RNA-seq data. For each viral class in PACIFIC, we generated 100 datasets
570  containing 500,000 reads derived from 4 out of the 5 viral classes, the human transcriptome
571 and unrelated viral genomes in variable proportions. Reads were simulated using the ART
572  software (30) with Illumina® HiSeq2500 error profiles that were 150nt long and modelled
573  single end experiments. One of the five viral classes that was excluded was considered as the
574  test class. This process was automated using a custom script (generatefprdata.pl).
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575  Subsequently, PACIFIC was run in double prediction to assign classes to each read. To
576  calculate the percentage of false positives in each experiment, we counted the number of reads

577  predicted as the absent test class and divided by the total number of reads.

578  Detecting viruses in human datasets and comparison with other tools

579  Wedownloaded 63 RNA-seq experiments from NCBI SRA database. Run accessions and other
580 metadata details are supplied in Additional file 1: Table S2. All data were downloaded from
581 the NCBI database using the SRA Toolkit prefetch and fastq-dump commands and applying
582  the --gzip and --fasta options (52). For the GALA II cohort study with 48 RNA-seq datasets
583  and read lengths 18-390nt, we discarded reads <150nt long. We then used PACIFIC to assign
584  the presence/absence of each virus class in all 63 samples using the detection thresholds
585  established in the previous section. We compared PACIFIC’s predictions with two alternative
586  methods for virus detection: an alignment-based approach using BWA-MEM (53), and a k-

587  mer based approach using Kraken2 (19), described below.

588 For BWA-MEM (53), all reads were mapped using default parameters to a combined reference
589  containing assembly sequences for the five viral classes and the human transcriptome used for
590 training PACIFIC (Table 4). Reads were assigned to a virus class based on the class
591 membership of the genome assembly as described in Table 4 and Additional file 1: Table S1.
592  For Kraken2, we first downloaded the Kraken taxonomy database and built a k-mer database
593  using the same genomes used to train PACIFIC (Table 4). Kraken2 was then run using the —
594  use-names flag, and output reads were parsed using species scientific names and reads were
595 assigned a class based on the class membership of the genome assembly (Additional file 1:
596  Table S1, Table 4). To fairly compare all three methods, we applied class detection thresholds
597  as determined for and used in PACIFIC (Table 2) for the presence or absence of a virus class

598  within a sample.
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To investigate the origin of reads for all reads in samples that were discordantly predicted for
the presence of a virus class by PACIFIC, BWA-MEM or Kraken2, we used the BLAST suite
(v2.10.1+) (54,55) to align reads to the NCBI nucleotide (nf) database, which includes
sequences from all domains of life. We took the best hit from the pairwise alignment for each
read, filtering for alignments with an E-value <le-6. BLASTN was used with the following
parameters: -task ‘megablast’ -max_target seqs 1 -max_hsps 1 -evalue le-6 to query

discordant viral class assignments between PACIFIC, BWA-MEM and Kraken?2.
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Supplementary Information

Additional file 1. Supplementary Tables S1, S2, and S3.

e Supplementary Table S1: Summary table of genomes and assemblies used to train
PACIFIC.

e Supplementary Table S2: PACIFIC testing metrics.
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812 e Supplementary Table S3. Publicly available samples used to run PACIFIC, BWA

813 and Kraken?2.

814  Additional file 2. Supplementary Figures S1 and S2, Details of the BLAST analysis.
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