bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.068882; this version posted July 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

10

11
12

13
14

15
16

17
18

19

20
21

22

23
24

25

made available under aCC-BY-NC-ND 4.0 International license.

The architecture of the centriole cartwheel-containing rgion

revealed by cryo-electron tomography

Nikolai Klendt, Maeva Le Guennég AnneMarie Tassid, Hugo van den Hoék
Philipp S. Erdmanh Miroslava Schafféy Stefan Geimér Gabriel Aeschlimarfh
Lubomir KovaciK, Kenneth N. Goldi& Henning Stahlberg Benjamin D. Engét*”,

Virginie Hametl" and Paul Guichatd

Affiliations:
Department of Cell Biology, University of Geneva, Sciences khé&vaSwitzerland.

?Institute for Integrative Biology of the Cell (12BC), CEA, &S, Univ. Paris Sud,
Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Givstte, France.

3Helmholtz Pioneer Campus, Helmholtz Zentrum Miinchen, Ingolstadter trafel4,
85764 Neuherberg, Germany.

“Department of Molecular Structural Biology, Max Planck Instift@iochemistry,
Am Klopferspitz 18, 82152 Martinsried, Germany.

SDepartment of Cell Biology and Electron Microscopy, Univerdgayreuth, 95440
Bayreuth, Germany.

6 Ribosome Studio Aeschlimann, Einsiedlerstrasse 6, 8942 Oberriedze/Swid

‘Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozenty University of
Basel, Basel CHI058, Switzerland.

These authors contributed equally to this work.

*Correspondence toben.engel@helmholtz-muenchen.derginie.hamel@unige.ch
andpaul.guichard@unige.ch



https://doi.org/10.1101/2020.07.21.068882
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.068882; this version posted July 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Centrioles are evolutionarily conserved barrels of microtulapletsthat form the
core of the centrosome and the base of the cilium. In the proxagan of the
centriole, nine microtubule triplets attach to each other via l&kers and encircle a
central cartwheel structure, which directs the early evergsridfiole assembly. While

the crucial role of the proximal region in centriole biogenesdkean well documented

in many species, its native architecture and evolutionary conservatamy relatively
unexplored. Here, using cryo-electron tomography of centrioles from four
evolutionarily distant species, including humans, we report on theteotral
diversity of the centri@r proximal cartwheel-bearing region. Our work reveals that the
cartwheel central hub, previously reported to have an 8.5 nm periodircity
Trichonymphajs constructed from a stack of paired rings with an average peétyodic
of ~4 nm. In all four examined species, cartwheel inner dessite found inside the
hub’s ring-pairs. In botlParameciumand Chlamydomonasthe repeating structural
unit of the cartwheel has a periodicity of 25 nm and consistged ting-pairs with 6
radial spokes emanating and merging into a single bundle that conndustiplet
microtubule via the pinhead. Finally, we identified that the camvige indirectly
connected to the A-C linker through a flexible triplet-base stracutending from the
pinhead. Together, our work provides unprecedented evolutionary insights into the

architecture of the centriole proximal region, which underlies icdmtoiogensis.

Keywords

Cryo-electron tomography, centriole, cartwheel, microtubuthlamydomonas

reinhardtii, Paramecium tetraurelidNaegleria gruberi human.
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Introduction

Centrioles and basal bodies (hereafter referred to as cestioolsimplicity)
are cytoskeletal organelles, typically 450 to 550 nm in length and ~25h router
diameter, which are present in most eukaryotic cells and play oggamnaes in the
assembly of cilia, flagella and centrosomes (Goénczy, 2012; Nigg affd Z09;
Winey and O’'Toole, 2014). Centrioles are characterized by a nearsalivene-fold
radial arrangement of triplet microtubules that contain a comp8&teotofilament A-
microtubule and incomplete B- and C-microtubulesach composed of 10
protofilaments (Guichard et al., 2013). Centrioles are polarioed) dheir proximal to
distal axis, with distinct structural features along theagta. The proximal region is
defined by the presence of the cartwheel structure, which ses\aeseed for centriole
formation and is thought to impart nine-fold symmetry to the entgaralle (Gonczy,
2012; Hilbert et al., 2016; Hirono, 2014; Nakazawa et al., 2007; Samad>0nczy,
2008). In most of the species, the cartwheel stays within theatergfter maturation,
however, it is no longer present in mature human centrioles (Adehzand Bornens,
2007). The native architecture of the proximal region, and in panticitlae cartwheel,
was revealed by cryo-electron tomography (cryo-ET) ofTthehonymphacentriole.
Owing to its exceptionally long proximal region, many structural repeatild be
sampled for subtomogram averaging, revealing the overall 3D structutheof
cartwheel for the first time (Guichard et al., 2013, 2012). Tiehonymphacartwheel
was observed to be built from a hub of stacked rings spaced every 8Fadral
spokes, emanating from two adjacent rings, merged at the pinhedadeneacrotubule
triplet to form a repeating structural unit with a periogi@f 17 nm. Moreover, this
study demonstrated that eadhichonymphahub ring could accommodate nine

homodimers of SAS-6, a protein that is essential for cartwasstmbly across
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eukaryotes (Kitagawa et al., 2011; van Breugel et al., 2014, 2011). dteiyea

CID, for Cartwheel Inner Densities,awalso identified at the center of the hub ring.
This CID contacts the hub ring at nine locations and has been hypothesized to be
Trichonymphaspecific, as it has never been observed in other species, possility due
lack of resolution. In this respect, tk#D has been proposed to facilitate TaSAS-6
oligomerization or confer additional mechanical stability to thesemional long
centrioles, which are subjected to strong forces inside thaingex the host termite

(Guichard et al., 2018, 2013)

In the proximal region, the cartwheel is connected to the pinhdach Wridges
the cartwheel to the A-microtubule of the microtubule triplapgell, 1968; Hirono,
2014). This connection is thought to be partially composed of Bld10p/Cep135 proteins,
which can interact both with SAS-6 and tubulin (Carvalho-Santos @04l2; Guichard
et al.,, 2017; Hiraki et al., 2007a; Kraatz et al., 2016). In mhdito the
cartwheel/pinhead ensemble, adjacent microtubule triplets in ¢tixénal region are
also connected by the A-C linker. Cryo-ET combined with subtomogramgavgtzas
revealed distinct structures of the A-C linkerTinchonymphaand Chlamydomonas
reinhardtii (Guichard et al., 2013; Li et al., 2019). Tmichonympha the structure
consists of the A-link, which is laterally inclined and contdlces A-tubule at the A8
protofilament, and the C-link, which connects to the C-tubule at®hprotofilament.
Overall, theTrichonymphaA-C linker displays a longitudinal periodicity of 8.5 nm. In
contrast, the A-C linker i€. reinhardtii is a crisscross-shaped structure composed of
a central trunk region from which two arms and two legs extemodmtact the A- and
C-tubules (Li et al., 2019). Whereas these two studies provigle advances in our
understanding of A-C linker organization, they also clearly highlight straict

divergence betweehrichonymphandC. reinhardtii centrioles.
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The question thus arises as to the evolutionary conservation of thieleant
proximal region, including characteristic structures such as tkeliaker and the
cartwheek hub, CID and radial spokes. In particular, the structure of trevlozel
remains unexplored beyon@richonympha A more universal description of the
proximal region is important for understanding of how these struatinexs centriole
biogenesis. Here, we use cryo-ET to tackle this fundamental queasting four
evolutionary distant specie€hlamydomonas reinhardtiParamecium tetraurelia

Naegleria gruberiand humans.

Results

In situ structural features of the cartwheel inChlamydomonas centrioles.

The power of biodiversity proved extremely useful for resolvingfitiseé 3D
architecture of the cartwheel within the exceptionally long prolxinegion of
Trichonymphacentrioles (Guichard et al., 2012). This study identified the ClDedls
as an 8.5 nm longitudinal periodicity along the central hub of the castwiether
these structural features hold true in other species is angopstion that we address
here by analyzing the cartwheel of the green aljyaeinhardtii,a canonical model for
centriole biology with similar centriole structure and protein contjposio humans
(Hamel et al., 2017; Keller et al., 2005; Keller and Marsi2008; Li et al., 2011)
However, extracting centrioles from cells can limit the anslyd these fragile
structures, as exemplified by the loss of the cartwheel duritgds sf isolatedC.
reinhardtii centrioles (Li et al., 2011). In addition, the >300 nm thick vitreices
surrounding uncompressed centrioles on an EM grid reduces the signah&nadtoof

cryoET (Kudryashev et al., 2012), making it difficult to resolve fine deten the
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relatively small cartwheel structure (Guichard et al., 2008). therefore decided to
analyze theC. reinhardtii cartwheeln situ using a cryo-focused ion beam (criytB)
milling approach, which creates thin 100-150 nm sections of the native rcellula
environment in a vitreous state (Schaffer et al., 2017). Combihiagpproach with
new direct electron detector cameras (Grigorieff, 2013), it passible for us to
visualize the centriole and cartwheel with unprecedented clanty structural

preservation.

As shown in Figure 1A, in situ cryo-ET clearly revealed both mature
centrioles and procentrioles, providing the first observation of the@erd cartwheel-
bearing region in its native environment. The cartwheel's structaedlires were
analyzed in both types of centrioles (Figures 1C-H, S1 and S&in§ty, we found
that the cartwheel's central hub has an average longitudinal peyooficd.0 nm in
both mature centrioles and procentrioles, distinct from the 8.5 nodp#ty originally
described inTrichonympha(Guichard et al., 2012) (Figures 1H and S1A, D, G).
Moreover, we noticed pronounced densities inside the central hub thaewenescent
of the CID originally described ifirichonymphasuggesting that this structure is not
Trichonymphaspecific but rather is a conserved feature of the cartwkeglre 1).
Several CIDs irC. reinhardtiiarespaced along the lumen of the central hub, forming
an 8.7 nm periodicity on average, in mature centrioles and procentftotpges 1H

and S1B, E)similar toTrichonympha

To investigate whether the discrepancy we observed in central hodipiéy
was accompanied by other differences in cartwheel structure easuned features of
the cartwheel such as the central hub diameter as well dstaeces from the hub to
D1 and D2, two densities previously described on the cartwheel spdReeathardtii

centrioles (Guichard et al., 2017) in both mature centrioles evamrioles (Figure
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S3A-F). Similar to previous measurements, we found that theatéob is ~21 nm in
diameter (peake-peak from the intensity plot profile through the hub), and the D1 and
D2 densities are positioned ~ 36 nm and ~ 47 nm from the extetgal & the
cartwheel hub, respectively. These measurements suggest thahehbngitudinal
periodicity of the central hub differs in tivesitu C. reinhardtiicentrioles (Figure S3A-

F).

While most of the cartwheel's structural features, including Ghe, are
conserved betweelrichonymphandC. reinhardtii the periodicity of the central hub
appears to diverge. This discrepancy poses the important question of h@wedns
the architecture of the cartwheel-containing region is betweenespéoreover, as
cartwheel periodicity was previously only measured in isolatetrioes, this raises

the possibility that cartwheel periodicity may be affected durindigation.

Conservation of the cartwheel’s structural features irParamecium, Naegleria and

humans

To address these questions, we analyzed the proximal region of dsolate
centrioles from three different species. Centrioles wereiedrifomP. tetraurelig N.
gruberiand human KE37 leukemia acute lymphoblastic T cells, vitreouslyrfrozie
EM grids, and then imaged by cryo-ET (Figure 2A-1). Despitehigh level of noise
expected in cryo-ET of isolated centrioles and the previously olusestreng
compression oN. gruberiand human centrioles (Greenan et al., 2018; Guichard et al.
2010; Le Guennec et al., 2020) that affects cartwheel integvitycould reliably
measure the central hub periodicity in each of these specidésn@yri we found that

the longitudinal periodicity of the central hub is similar to @ereinhardtiiin situ
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173  cartwheel, with average periodicities of 4.3 +/- 0.38 nm, 4.983 nm and 4.2 +/-

174  0.68 nm inP. tetraurelig N. gruberi and human, respectively (Figure 2J). Moreover,
175 we observed that CID structurase present in every species, forming a periodicity
176  along the central hub of 8.4 +/- 1.25 nm, 8.3 +/- 1.83 nm and/82.46 nm (Figure

177 2A-J and Figure S3G-0O). These results indicate that strudemalres of theC.

178  reinhardtii cartwheel seem to be conserved, including the central hub’'s ~4.2 nm
179  periodicity, as well as the presence of CIDs every ~8.4 nm. Maredhese

180 measurements demonstrate that the discrepancy betigamonymphaand C.

181 reinhardtii is possibly not due to purification artifacts, as the other isolatediclest

182  also display ~4 nm periodicities along their central hubs.

183 Interestingly, in tomograms of both situ and isolated centrioles, we observed
184  that the position of the cartwheel did not fully correlate with position of the
185  microtubule triplets. In all four species, the cartwheelsrpdatd proximally 10-40 nm
186 beyond the microtubule wall (Figures 1A, B and 2K, L).Gnreinhardtii which
187  enabled observations of assembling and mature centrioles within tleecstim the
188 cartwheel extension was more prominent in procentrioles, wih @&7the cartwheel
189  protruding in contrast to 34% in mature centrioles (Figure 2K). datil, this proximal
190 extension of the cartwheel has only been reported in isol@edeinhardtii
191 procentrioles (Geimer and Melkonian, 2004; Guichard et al., 2017)inCsitu C.
192  reinhardtii tomograms demonstrate that the cartwheel extension is notifactast
193  purifying centrioles, but rather occurs within the native cell@avironment. We
194  further corroborated this conclusion with serial sections of #&sibeddedN. gruberi
195 cells, which show the cartwheel protruding beyond the proximal end ofithetubule
196 triplets in both assembling and mature centrioles (Fig. 3¥8.cartwheel extension is

197  consistent with fluorescence microscopy localization of cartwloeeponents CrSAS-
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6 and Bld10p, which extend from the centriole’s proximal region@0® nm below the
proximal-most acetylated tubulin signal in mat@ereinhardtii centrioles(Hamel et
al., 2017). Additionally, this proximal extension corroboratesS3M-FRAP analysis
of SAS-6-GFP irDrosophila showing that the cartwheel may grow from its proximal
end (Aydogan et al., 2018). Taking these data together, we conclutleeticattwheel
protrusion is not a consequence of biochemical isolation but ratheei®hrionarily

conserved structural feature that may relate to early evergsinate assembly.

3D architecture of the cartwheel inParamecium and Chlamydomonas

Given the intriguing 4.0 nm periodicity of the central hub revealediirstudy,
which differs from the previously reported periodicityTinchonympha Guichard et
al., 2012), we decided to take a closer look at the cartwinelgtecture in bothP.
tetraureliaand C. reinhardtii centrioles. As explained above, resolving the cartwheel
structure in these species represents a major challentie, @gtwheel length is about
40-times shorter than the exceptionally lohigchonymphacartwheel, limiting the
number of repeat units available for subtomogram averaging. Nevestheles
undertook this task with a low number of subvolumes, increasing the stootréne
central hub and emanating radial spokes. From. &etraurelia tomograms, we
performed subtomogram averaging on 235 boxes and symmetrized the obtamed
A projection of the reconstruct®ld tetraureliacartwheel is shown in Figure 3A, where
the CID, the central hub, and its emanating radial spokes eadyclisible. Careful
inspection of a longitudinal section through the averaged volume confirnged t
presence of CIDs every 8.6 nm inside the central hub (Figarasd 3C). Intriguingly,

we found that the central hub is constructed from pairs of rings @F8RHC, light blue
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arrowheads). These ring-pairs have an inter-ring distance of 3ahdrstack on each
other with 5.5 nm between adjacent ring-pairs, resulting in thagegreriodicity of
~4.2 nm along the central hub (Figures 2J and 3C). We observed thamalo
densities (Figure 3D, red arrows) emanate from each ringgarc{rcles) and fuse
into one radial spoke (white arrows) that in turn merges with tiver dised spokes to
form a single structure ~37 nm from the central hub surfacetamdesthat corresponds
to the D1 density (Figure 3D, blue arrow; Figure S5A, blue arrols).three ring-
pairs that share fused spokes are repeated three to fouakimgshe cartwheel length,
with a longitudinal distance of ~25 nm between merged spokes (FiguardBigure
S5A, blue arrows), suggesting that this represents the repeatinguist unit of the
catwheel. We also noted that the emanating spokes are slighgly titigure 3D, 3J
and Figure S5A, green dotted lines), possibly reflecting a twishenntolecular
interaction underlying spoke fusion. Interestingly, we found that thes Gl
positioned at the center of each ring-pair (Figure 3C), suggestinghéyatould be
important for the ring-pair’s formation or stability. Importgntall these features can
also be seen within the raw data (Figure S6A, B), indicatingthiegtare not a result

of the averaging procedure.

Next, we performed a similar analysis @n reinhardtii mature centrioles
(Figure 3E), using 102 subvolumes fromirb situ tomograms and then applied
symmetrization. Interestingly, we found that the cartwheel’s teestructural unit is
also composed of three ring-pairs, with 3.5 nm inter-ring spacing anthdspacing
between ring-pairs (Figure 3E-G, blue arrowhead in G), leaditigetobserved ~4.2
nm periodicity along the central hub. Each repeating unit also hathsirating spokes
(Figure 3H and Figure S5B red arrows); however, these spokes wgarized

differently than inP. tetraureliacartwheels, merging into two spokes ~14 nm from the

10
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central hub (Figure 3H and Figure S5B white arrows) and furtlsgmg into a single
unit ~34 nm from the hub (Figure 3H and Figure S5B blue arrows). $itila.
tetraurelia the repeating unit of the central hub has a periodicity of ~ 28Fmure
3F and Figure S5B blue arrows).@ reinhardtiicartwheels, CIB arepositioned 8.8
nm apart, inside ring-pairs (Figure 3G). As Rartetraurelig we confirmed that these
C. reinhardtii features could be seen in the raw data (Figure S6C, D) andhateae
result of the averaging. We also noticed in raw tomograms that sEgiens were
devoid of CIDs, suggesting that their positioning might be stochastcr@iS6D,

white arrowhead).

Together, these results demonstrate that both species have ah sowvela
cartwheel organization, with some species-specific differendbe radial spokes that
possibly reflect either a different modality of assembly or somergénce at the
molecular level. Moreover, we also noticed that the repeatmgtural unit described
here displays a polarity from proximal to distal that is definedheyangle of the
emanating spokes, which is strikingly apparent irtheetraureliaaverage (Figure 3I-

J).

Next, we investigated how the observed discrepancy in central hub piyiodi
could arise betwee@. reinhardtii/ P. tetraureliaandTrichonymphaWe hypothesized
that the resolution improvement from using a direct electron detagbt have helped
reveal features that were not visible in the previous studyicionymphacentrioles.

To test this idea, we applied a bandpass filter to decreasegbhkition of theP.
tetraureliasubtomogram average to that of Tiehonymphanap (38 A) (Figure S5C,
D). At this resolution, th@. tetraureliaring-pairs appear to be single rings, leading to
a global 8.6 nm periodicity along the central hub as originally descrihe

TrichonymphaThis result suggests that tlhechonymphacartwheel most likely also

11
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exhibits the same ~4 nm ring-pair periodicityPagetraureliaand C. reinhardtii but
this could not be retrieved in earlier studies primarily due goluéion limitations of
the detectors used for imaging. However, we also noticed that the smzikazation
appears different betwed@michonymphaandC. reinhardtii/ P. tetraurdia cartwheels,

suggesting variability of molecular organization between species.

Defining the structural features of the proximal region

We next focused on charting the overall organization present in tinheat-
containing region oP. tetraureliaand C. reinhardtii centrioles to better understand
how the cartwheel is connected to the microtubules, as wall @seck whether the
structural features are conserved between species (Figure 4julbismogram
averaging might average out non-periodic structures, we first adalymee raw
tomograms by systematically extracting cross sections of cestfiol@ both species
at different positions along the proxintakdistal axis and then applying nine-fold
symmetrization to improve the contrast using celgdi@Guichard et al., 2013) (Figure
4B, H). Starting from the proximal side, several previously desdrstructural features
could be resolved, including the cartwheel (blue arrow), the pinheage(raaarrow),
the A-C linker (turquoise arrow) and the beginning of the inner scaféohnge arrow)
that defines the central core region of the centriole (Figur&€4ihd H, I, F). We also
noticed a linker between the pinhead structure and the A-C linkeréHigLi panels
(tn, 1vV) and 41 panels (Ill, 1V), light green arrow). Thigaker is reminiscent of the
triplet base structure originally described in human, mouse, and €hiraaster
centrioles (Vorobjev and Chentsov, 1980) and also detecta@cchonymphacentrioles

(Gibbons and Grimstone, 1960)Ve terefore conclude that the triplet base is an
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296  evolutionarily conserved structural feature of the centriole’s telvbearing region.
297 Interestingly, in contrast to the A-C linker (Figure 4C, panel @rigl 41, panel (V1)),
298 the pinhead structure does not co-exist with the inner scaftajdesting that the later
299 replaces the former (Figure 4D, E, J-N and Figure S7 A, D)alt noticed in the
300 most distal part of the proximal region that the pinhead strutymesent without the
301 cartwheel inP. tetraureliacentrioles (Figure 4B, C panel (IV), D, E, and Figure S7A,
302 S7D). Finally, we observed in tio in situ C. reinhardtii procentrioles that the &-
303 linker covers the entire length of the growing microtubule tripletsle the pinhead

304 and cartwheeseemto display variable lengths (Figure S7G).

305 On the basis of these observations, we measured the distancédremdtof
306 the pinhead region to the end of the cartwheel region and to thefs$ker inner scaffold
307 in 5in situC. reinhardtiicentrioles and 17 isolatdd tetraureliacentrioles. We found
308 that the distances between these structural features is ~bnnaverage inC.
309 reinhardtii, which is close to the size of a tubulin monomer, indicating ecdir
310 transition from one structure to the other (Figure S7 E, Fpnirast, this gap distance
311 is longer and more variable ih tetraureliacentrioles, suggesting more stochasticity
312 inthe transitions between structures (Figure S7E, F). We alsd astrong correlation
313 between the lengths of the A-C linker and the pinheaRB.itetraurelia centrioles
314  (Figure S7B), suggesting that these two structures might have coecdasgembly.
315 Conversely, there is no clear correlation between the lengths aatheheel and

316 pinhead inP. tetraureia centrioles (Figure S7C).

317 To better understand the relationship between the A-C linker acdrivéheel,
318 we mapped their respective boundaries in the centriolRestefraurelig C. reinhardtii
319 N. gruberiand humans (Figure 40). We found that the cartwheel length extends 111

320 +/- 20 nm 75 +/- 17 nm, 300 +/- 65 nm and 189 +/- 9 nmGnreinhardtii P.
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tetraurelia N. gruberiand humans, respectively (Figure 40). Note that, as expected,
mature human centrioles lacked cartwheels (Guichard et al., 20#0ye found 4
procentriole cartwheels to include in our analysis. In parallel,awalyzed the
boundaries of the & linker and found that it spans 199 +/- 17 nm, 160 +/- 28 nm, 330
+/- 81 nm and 270 +/- 26 nm of the proximal regioinreinhardtii P. tetraurelig N.
gruberi and humans, respectively (Figure 40). As previously reported (Le Guennec
al., 2020), this represents approximately 40% of the total cenleiodgh. Comparing

the measurements of these two structures reveals that tvdegrspans 56% of the
A-C linker length inC. reinhardtii 47% inP. tetraurelig 66% inN. gruberiand 70%

in humans.

The triplet base bridges the pinhead with the AC linker

Our analysis of raw tomograms revealed that the triplet basea¢@ssgrom the
pinhead and binds the A-C linker, thereby indirectly connecting the caglttadie A-
C linker (Figure 4). However, this analysis did not allow usrézigely detect where
the triplet base connects to the A-C linker. Moreover, this céiomelsas never been
observed in previous subtomogram averaging analysis (Guichard et al., 261.3].Li
2019). Consequently, we undertook a subtomogram averaging approach focused on
revealing the triplet base connection and the A-C linker structurgy i tomograms
of uncompresse®. tetraureliacentrioles. We succeeded in resolving the triplet base
in our average; however, it had very low map density, suggesting thatrtiature is
flexible or not stoichiometrically occupied (Figure 5A) and explainuly it has not

been observed before in cryo-ET. It is also important to noteatttedugh both the

14


https://doi.org/10.1101/2020.07.21.068882
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.068882; this version posted July 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

made available under aCC-BY-NC-ND 4.0 International license.

triplet base and the pinhead are clearly visible, we could noblseliatrieve their

longitudinal periodicities.

Next, we focused on the A-C linker and found that it can be subdividetiiato
major regions previously observedTnichonymphathe A-link that contacts the A-
tubule and the C-link that contacts the C-tubule. PhéetraureliaA-C linker has a
longitudinal periodicity of 8.4 +/- 0.2 nm, consistent with previouasneements from
TrichonymphaandC. reinhardtii (Guichard et al., 2013; Li et al., 2019) (Figure S8A,
B and Figure S8F-H). With the obtained resolution of 31.5A (Figurev@9)vere able
to identify that the C-link is composed of two main densities: ArmvAich contacts
the C-tubule protofilaments C8 and C9, and ArmB, which decorates etupule
protofilament C9 (Figures 5 and S8). On the A-link side, we idedti& single
connection between the A-link’s trunk and A-tubule protofilament 8, amaictien
originally described irC. reinhardtii (Li et al., 2019) (Figure S8F, G). In addition to
the A-C linker, we identified a large density between protofilam8rdand 9 of the A-
tubule that we termed the A-tusk (Figures 5 and S8C-E). btiegéy, we observed
that the triplet base connects to the A-C linker directly on tiheBAdensity, reinforcing
our conclusion that the entire proximal region forms an intercorshesttectural
network from the central hub of the cartwheel, through the radial sptileepinhead

and the triplet base to the A-C linker.

To check whether the connection between the pinhead and the A-C linker is
maintained throughout the proximal region, we split the dataset an haves
corresponding to the more proximal and more distal parts of this régguré 5E, F).

The nine-fold symmetrized model of each map was reconstructecedtimigty, as
previously observed (Figure 4 B, C), we noticed that the pinhead demsitynost

completely absent in the average from the more distal part gfréx@mal region,
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whereas the A-C linker is still present and has an extraitgemn ArmB seemingly
replacing the triplet base position (Figure 5E, F, red circlés$.observation indicates
that although the pinhead and A-C linker are connected through the bagke, the
presence of the A-C linker is independent of the pinhead and triglet e also
noticed a difference in the microtubule triplet and A-C linker angktween the two
maps (Figure 5F), with an angle decrease of 6° for the tripled‘afwd the A-C linker.
As this difference was previously observedirreinhardtii (Li et al., 2019), the slight
twist we measured in the proximal region appears to be evolutypnanserved. This
proximal twist suggests that the A-C linker is able to adafitealifference in angles

between the microtubule triplets and thus remain connected to them.

Discussion

In this study, we used cryo-ET to analyze the proximal region ofickstfrom
four evolutionarily distant species. We describe the structaedlifes of this region
including the cartwheel, the pinhead, the triplet base and theiAkér I(Figure 6)
Interestingly, we found that the cartwheel structure protrudesrpatlyi beyond the
microtubule triplets in all species that we investigated, ésihem the assembling.
reinhardtii procentrioles. This observation supports the notion that the cartwheel
assembles independently of the microtubule triplets, which are codrisctee AC
linker, and that the two structures, cartwheel and A-C linkiegly play a role in
defining the nine-fold symmetry of the organelle (Hilbert et al., 28k&kazawa et al.,
2007) as well as its cohesion at the proximal region (Le Gueni¢ 2020; Yoshiba
et al., 2019). The cartwheel's proximal extension is also densiwith the proximal-

directed growth of the cartwheel protein SAS-6 observddrasophila(Aydogan et
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al., 2018). It is currently not known whether the cartwheel structumegrow from its

proximal end and whether such a mechanism is evolutionary conserved.

Our cryo-ET analysis revealed that the cartwheel’s centraliQbreinhardtii
andP. tetraureliais organized in ring-pairs (Figure 6). Furthermore, in all foudist
species, we observed densities inside the lumen of the central ithula gimilar
periodicity formed by theCIDs in Trichonympha We therefore conclude that CID
structures are present in every species studied to dateeaadcanserved element of
the cartwheel. Moreover, o@D is positioned between the two rings of the ring-pair,
suggesting that might be involved in ring-pair assembly by helping build a cohesive
unit. Whether the ring-pair is composed of only SAS-6, or whether anptbein
participates in forming this structure, is an open questionttigaresolution of our
current dataset cannot answer. Therefore, an important futudengelwill be to

determine the molecular composition of the ring-pair and the CID.

At the outer margin of the central hub’s ring-pairs, we obsetlat the
cartwheel spokes are clearly organized differently thafrichonymphawhich turns
out to be the biggest structural difference between the cartwbeele different
species. InTrichonympha we could observe only two spokes merging, forming a
longitudinal periodicity of 17 nm (Guichard et al., 2013). Here, we havedstrated
that the resolution obtained in thieichonymphastudy is not sufficient to see certain
details. Nevertheless, even by artificially lowering the rgsmh of ourP. tetraurelia
cartwheel map, the spoke organization remains distinct, witeral@eriodicity of ~25
nm. In bothC. reinhardtiiandP. tetraureliacartwheels, this 25 nm periodicity results
from the merge of spokes emanating from 3 adjacent ring-pairs (F6yutewever,
we could also distinguish that the spoke organization differed betwesngpecies. In

P. tetraurelig one spoke is made of 3 substructures that each emanate franof pa
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rings, whereas i€. reinhardtii the final spoke tip is made from only two substructures
(Figure 3J). As the coiled-coil domain of SAS-6 is part of ekes (Gonczy, 2012)
the difference in radial spoke organization could potentially be iegalaoy the low
homology between SAS-6 coiled coils (Leidel et al., 2005). It isilples® imagine
that coiled coils of neighboring SAS-6 proteins merge to form a caoiétundle or a
tetramer/hexamer. Another possibility is that a different pratgeracts with the SAS-

6 coiled coil and is responsible for this bundling. To date, SASehesof the most
likely candidates for this role. Indeed, it has been shown inaes@gcies that SAS-
interacts with the SAS-6 coiled coil where the bundle is fdrg@ottee et al., 2013;
Qiao et al., 2012; Shimanovskaya et al., 2013). In addition, it hasshe&n that the
Ana2 (SAS-5 inDrosophilg coiled coil forms a tetramer (Cottee et al., 2013) and that
C. elegansSAS5 forms higher-order protein assemblies up to hexamers in solution
(Rogala et al., 2015). It is therefore possible that diffesgmithiometries of SAS-

6:SAS-5 can modify the architecture of the spoke bundling.

Our study also highlights the triplet base structure (Figure &ginally
described in conventional electron microscopy of resin-embedded mammali
centrioles (Vorobjev and Chentsov, 1980). We found that the tripletdmamects the
pinhead to the A-C linker, thus forming a continuous structure that britthges
cartwheel with the A-C linker. The triplet base might enhd@he&ohesion and stalyli
of the entire proximal region. Although its molecular nature is not kndw apparent
flexibility, length and low map density, similar to the cartehgpokes, would suggest
that the triplet base is made by a long coiled coil protein.thasefore tempting to
speculate that this structure might consist of the coiled coil ipr&ie10p/Cepl135.
Indeed, based on its immuno-localization as well as its knowraatien with the C-

terminus of SAS-6 and microtubules, current models place this pragepart of the
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pinhead (Hiraki et al., 2007b; Hirono, 2014; Kraatz et al., 2016). dihedacoil length
prediction for Cep135 is ~900 of its 1140 total amino acids, whakidwield a coiled
coil that is 133 nm long (900 residues x 0.1485[axmal rise per residue]= 133 nm,
formula from (Kitagawa et al., 2011)). Considering that the pinf®a@0 nm long
(Guichard et al., 2013), it is likely that a large portion of Bld1@/L35 extends from
it. Therefore, we propose that a part of the predicted 133 nnd @mleconstitutes the
35 nm long triplet base connecting to the A-C linker (Figure 5A). This hgpist is
consistent with the phenotypes ©f reinhardtii and TetrahymenaBld10p mutants
which not only lose the connection of the cartwheel to the microtwiailebut also
lose the microtubule triplets themselves, suggesting that the eoleiveen triplets
is partially lost (Bayless et al., 2012; Matsuura et al., 20Bdjure studies on the
precise location of the different regions of Cep135 would be needmtsteer these

guestions.

An important structural feature revealed in our study is thieant polarity of
the cartwheel structure along its proximal-distal axis. Prewiauk had observed such
polarity in the pinhead and A-C linker structure (Guichard eR@l3; Li et al., 2019)
Our work now reveals that polarity also exists within the daeglitself, which might
play a critical role in centriole biogenesis. Such polaritykislyi important to define
the directionality of structural features that assemble a#idwheel formation. For
instance, microtubule triplets, which are also polarized strest only grow in the
distal direction. Although it is possible that the triplets lengthightyy on the proximal
side, it is clear that the plus ends of the microtubules alvemgsthe distal end of the
centriole. It is therefore possible that the polarity of théwdseel defines the growth
directionality of the procentriole from the very beginning of assgnibis interesting

to note that the only known example of microtubule triplet polarity inversias
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observed in &etrahymendld10p mutant (Bayless et al., 2012). As Bld10p constitutes
part of the cartwheel spoke-tip/pinhead, this reinforces the ide¢ahteacartwheel

defines the direction of centriole growth.

Combining our present study with previous work on the structure of the
centriole proximal region from different species offers a glimasesvolutionary
conservation and divergence at the level of molecular architeCtueedata presented
here suggest that the cartwheel-containing region has a conserved aganattation
with defined structural characteristics (Figure 6). Howewer work also demonstrates
that the specific layout of the centriole and the finer structlexhents may differ
considerably between species. These observations correlate tivéheviact that many
centriolar proteins are conserved between species, yet they casigraficantly in
their size or amino acid composition, as exemplified by the lowesece homology of
the cartwheel protein SAS-5/Ana2/STIL (Stevens et al., 2010).wouk therefore

shows that there may be different routes to build a centriole.
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510 Figure 1.In situ cryo-ET reveals the native cartwheel structure inC. reinhardtii

511 centrioles (A, B) In situ cryo-electron tomogram displaying the proximal region of a
512 mature mother centriole (A) and procentriole (B). Mature oaletriMC; procentriole,
513 PC; mitochondria, mito; vacuole, vac; white dashed line, laredti@. Scale bars, 100

514 nm. (C, E) Side view z-projection of cartwheels containing theaemib and several
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CIDs from a mature centriole (C) and a procentriole (E). Cehtrla) CH; cartwheel
inner desities CID. Scale bars20 nm. (D, F) Cross sections of the cartwheel-
containing regions from a mature centriole (D) and a procentrigleMi€rotubule
triplet, MTT; spokes, SP. Scale bars, 200 nm. (G) Nine-fold sstmred cross sections
of the cartwheel-containing region from a mature centriole (e) nd a procentriole
(right side). Dashed white circle, central hub. Scale bars,nt0(H) Longitudinal
periodicity measurements of the central hub and CIDs. Central hub,QiDered.
Mean values are displayed above the data range. (I, J) Nine-fotdetyimed central
hub z-projections, starting at the proximal end of the cartwheelantohging distally
along the cartwheel by 5.4 nm steps in a mature centrioledq @rocentriole (J). Red

arrow, CID; blue arrow; central hub.
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527

528 Figure 2. Cryo-ET of isolated centrioles fromP. tetraurelia, N. gruberi, and H.
529 sapiensreveals novel cartwheel periodicities(A, B, C) Cryo-electron tomograms of
530 the proximal regions of B. tetraureliacentriole (A), aN. grubericentriole (B) and a
531 H. sapiengrocentriole (C). White arrows denote a broken cartwheel; procent?iC
532 mature centrioleMC; Scale bar, 100 nm. Note tiditgruberiandH. sapiensentrioles
533 were heavily compressed during the cryo-EM preparation, as previously lokbcri
534 (Guichard et al., 2010). The periodicitiesNngruberiandH. sapiensentrioleswere

535 measured only on parts that were not damaged. (D, F, H) Crossnsefrom
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cartwheel-containing regions Bf tetraurelia(D), N. gruberi(F), andH. sapiengH)
centrioles. Scale bar, 50 nm. (E, G, 1) Zoomed side viewsadivheels fromP.
tetraurelia(E), N. gruberi(G), andH. sapiengl), displaying the central hub (CH) and
several cartwheel inner densg (CIDs), white arrow. Scale bar, 25 nm. (J)
Longitudinal periodicity of the central hub a@tDs inP. tetraurelig N. gruberi and

H. sapiens Mean value displayed above range. (K, L) Proximal protrusion of the
cartwheel beyond the microtubule tripletsdnreinhardtii P. tetraurelig N. gruberi

and H. sapiens Internal cartwheel inside the microtubule barrel, dark blue INT
external cartwheel beyond the microtubule wall, light blue (EX19an values are
displayed above the range (K). Start of the microtubule wall isetgled by dashed

white line (L). Scale bar, 50 nm.
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548

549  Figure 3. Subtomogram averaging oP. tetraurelia and C. reinhardtii cartwheels
550 reveals novel cartwheel structural organization.(A, E) Top views of cartwheel
551 reconstructions fronP. tetraurelia (A) and C. reinhardtii (E). Scale bars, 50 nm.

552  Dashed yellow line with arrows denotes the central hub-focuseckersbiown in panels

26


https://doi.org/10.1101/2020.07.21.068882
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.068882; this version posted July 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

made available under aCC-BY-NC-ND 4.0 International license.

B and F; dashed red box with arrows denotes the spoke-focusedsiesliaein panels

D and H. (B, F) Reslice of central hub-containing region with spiwkBs tetraurelia

(B) andC. reinhardtii (F). Scale bars, 50 nm. Dashed light yellow line denotes the
zoomed view shown in panels C and G, blue line with arrows iredidghe ~25 nm
repeat distance between merged spokes. (C, G) Zoomed view displayiodjicpe
repeats of the central hub (CH) and several cartwheel innertidsif€iIDs) in P.
tetraurelia (C) andC. reinhardtii (G). CID, red arrowheads and red plot profile; CH,
blue arrowheads and blue plot profile. Overlay between CIDs and CHH pledted on
the right in red and blue. Mean distance between CIDs peaks, 1®d&EHA. Distances
between CH peaks split into two distinct populations: smallehifva ring-pair), green
+/- S.E.M; larger (between ring-pairs), blue +/- S.E.M; agerperiodicity; black +/-
S.E.M. (D, H) Serial fprojections of ~4 nm thickness from one cartwheel repeat unit
of P. tetraurelia(D) andC. reinhardtii(H). Left-most z-projections display the central
hub, right-most projection shows the microtubule wall. Red cidd¢iseate one ring-
pair. Red arrows mark individual spokes. White arrows mark mengekes. Blue
arrow indicates the final merged spoke (D1 density). Scale banpb(Ql) Three-
dimensional rendering of the cartwheel reconstruction firortetraurelia Left side,
cartwheel oriented along the correct proximal-distal axis; reyhe, 180 inverted
proximal-distal axis, showing the asymmetry of spoke inclinatioshBa yellow box,
inset of one spoke unit, with the major and minor tilt angles ofpibkes relative to
the central hub. White asterisks denote subunits of ring-pairsMddel of P.
tetraurelia (left side) andC. reinhardtii (right side) cartwheel structures. Dashed grey
box denotes one repeat unit of the cartwheel, dashed black linlesxasddisplay cross

sections of spokes.

27


https://doi.org/10.1101/2020.07.21.068882
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.068882; this version posted July 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Proximal to
Towards distal

Lumen of the | F
centriale §

- cartwheel

- pinhead
triplet base

 AC-linker

< inner scaffold

Proximal
Towards distal

Lumen of the |
centriole |

cw
330 +/- 81 nm
300 +/- 65 nm
800 ] ]
200
150 — 700
100 H
600—
50
- = 500 160 +/- 28 nm
L E 199 +/-17 nm 75 +/-17 nm
E; 111 +/- 20 nm M o 270 +/- 26 nm
. o £ 189 +/-9 nm
N C. reinhardtii g 40
200 300 -
150+
200 —
LUt Pty - et o
50 100
o— I
C. reinharatii P. tetraurelia N. gruberi H. sapiens
5 7 8 Mature centriole Procentriole

579  Figure 4. Structural features of the centriole’s proximal region in P. tetraurelia
580 and C. reinhardtii. (A, G) Cryo-electron tomograms &. tetraurelia (A) and C.

581 reinhardtii (G) centrioles. Blue arrow denotes cartwheel, orange arrow ceinoier
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scaffold, red line with arrows denotes the proximal side of thiioke. Scale bar, 100
nm. (B, H) Nine-fold symmetrizations of serial cross seitaken along the proximal
to distal axis irP. tetraurelia(B) andC. reinhardtii(H). Each section is a z-projection
of 20.7 nm. White dashed circles delineate the structures highligh® and. Scale
bar, 60 nm. (C, 1) Zoomed images of proximal centriole substriecftmen nine-fold
symmetrizations oP. tetraurelia(C) andC. reinhardtii (I) along the proximal-distal
axis. Each panel corresponds to the above image from panel BRarple arrow,
pinhead; light green arrow, triplet base; turquoise arrow, A-C linkk@nge arrow,
inner scaffold(D, J, K) Side view showing the transition from pinhead to inner scaffold
in P. tetraurelia(D) andC. reinhardtii (J, K). (E) Cartoon representation of panel D.
(F) Representative model of a cross section of a centriole’snpbregion. Colored
arrows indicate the different structural features identif{eyl.Cartoon representation
combining the z-projections in panels J and K. (M, N) Positioninthe different
structures along the proximal length from representé@veetraurelia (M) and C.
reinhardtii (N) centrioles. Distance between the ends of the pinhead an¢healt
regionsis denoted by zone 1 (for quantification, see Figure S7E). Distancedretmd

of the pinhead region and start of the inner scaffold reigidenoted by zone 2 (for
guantification, see Figure S7F). (O) Cartwheel and A-C linkegth inC. reinhardtii

P. tetraurelia N. gruberj andH. sapiensMeans and standard deviations of the mean
are displayed above the range. A-C linker, turquoise; cartwheel, migeptubule

triplets, grey.
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604

605 Figure 5. Subtomogram averaging of the proximal triplet fromP. tetraurelia. (A)
606  Microtubule triplet reconstruction from the beginning of the proxiragian, displayed
607  with a low contour threshold value to show the triplet base densitynjgceanected
608 to the pinhead (blue) and the A-C linker (turquoise). (B) Two adjddplets from the
609 beginning of proximal region, displayed with a higher contour thresholdihanTihe
610 A-C linker is segmented into different substructures (patternegldige colors)
611 according to nomenclature (Li et al., 2019). The green dasheddiicates the putative
612  position of the triplet base. Non-tubulin densities are coloraédnand purple. The
613 pinhead has been hidden in this view, as its reconstruction is nottabresto the 8.5

614 nm initial subvolume picking that imposes this periodicity on the strugtG)er hree-
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dimensional side view of the A-C linker from the lumen of thergaet (D) Three-
dimensional side view of the A-C linker from outside the centriatafed 180from
C). (E) Top views of independent averages from the more proxinel)(gnd more
distal (blue) parts of thE. tetraureliaproximal region. (F) Focus on the A-C linker
from the beginning of the proximal region (left, grey), the end optb&imal region

(middle, blue), and the superimposition of both structures (right).
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623

624  Figure 6. Model of the architecture of the proximal region of the cetriole. The

625 colors corresponding to each structure are indicated in the legenel.tiNdt the
626  cartwheel structure protrudes proximally from the microtubule \walle, one unit has
627 been depicted that corresponds to an external cartwheel of aboutl2Encartwheel’s
628  structural unit consists of 3 ring-pairs, from which emanat&l spokes that merge
629 into one density before contacting the pinhead structure. The pinhead aneCthe A
630 linker are connected through the triplet base. The A-C linker extaeods distal than

631 the cartwheel and co-exists with the inner scaffold structure.

632

32


https://doi.org/10.1101/2020.07.21.068882
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.068882; this version posted July 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

CH CID A-C linker

~ D E F
?E- 3534 47 96 | 108 6.8 86 | 84 | 85
>
(2]
2 \/\/v\f\ / \/\/\/\ \/ \/\/\/\
£
g
o O 9 13 16 21 0O 8 18 2834 0 10 19 27 36 Distance (nm)

mean: 4.1 + 0.66 mean: 8.7 + 1.6 mean: 8.5+ 0.4

G Trichonympha

EMD-2329

central
hub spoke

633

634 Figure S1. Periodicity along the central hub, cartwheel iner densities, and A€
635 linker in C. reinhardtii in situ centrioles. (A, B, C) Cryo-ET sections depicting
636 representative central hyBH) (A), several cartwheel inner densg(CIDs) (B), and
637 A-C linker (C). Dashed white line denotes region from which plotilpofwere
638 generated. (D, E, F) Plot profiles with their associatednmesiodicity displayed
639 below. Scale bar, 20 nn(G) Top and side views ofrichonymphacartwheel and

640 associated periodicities from (Guichard et al., 2013)

641
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Figure S2. The cartwheel-containing region in matureC. reinhardtii centrioles.
From four tomogramghree regions were extracted every 35 nm along the proximal
region corresponding to the Proximal-Start, Proximal-Middle, and ifAedEnd
regions. Each image corresponds to a projection of about 27 nm. Tovenp
visualization, we applied a nine-fold symmetrization of the imagsplayed to the
right of the raw image, separated by a dashed grey line and a biaek@ad). Scale

bar, 100 nm.
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652 Figure S3. In dtu spoke architecture of the C. reinhardtii cartwheel, and
653 conservation of the cartwheel inner densitiegA, D) Nine-fold symmetrized cross
654  sections of cartwheel-containing regions from a mature centriplen@a procentriole
655 (D), both fromin situ tomograms ofC. reinhardtii The dashed blue line indicates

656 central hub diameter. Dashed black and orange lines indicate dsstaooe the
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external edge the central hub to D1 and D2 densities of the radial spsectively.
(B, E) Measurements of cartwheel features: mean diametéeafentral hub (blue),
distance from the central hub to D1 (black) and D2 (orange) ttb=sn&n mature
centrioles (B, n = 4) and procentrioles (E, n = 2). Mean valteedisplayed above data
range. (C, F) Models of cartwheel organization and distancetfrerventral hub to D1
and D2 in mature centrioles (C) and procentrioles (E). Centraldhuds, spoke, grey;
D1, black circle; D2, orange circle. (G, J, M) Cryoetten tomogram cross sections
depicting top views of the proximal regionsRoftetraurelia(G), N. gruberi(J), andH.
sapiengM). Yellow dashed box indicates central hub with the correspondma nn
the right. Scale bar, 40 nm. (H, K, N) Nine-fold symmetrizedges corresponding to
the panels in A, J and M. (I, L, O) Symmetrized 4 nm se@ri@jections through one

central hub oP. tetraurelia(l), N. gruberi(L), andH. sapiengO). Scale bar, 40 nm.
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Figure S4. Resinembedded N. gruberi cells display the proximal cartwheel
protrusion in both mature centrioles and procentrioles (A) Serial sections through
a procentriole in a resin-embeddedgrubericell, moving from proximal (left) to dtal
(right). White-dashed box denotes the zoomed region in the bottom pdntd.anvow
denotes the cartwheel extending beyond the proximal microtubule taglenhr Scale
bar, 50nm. (B) Serial sections through a mature centriole esia-embeddedN.
gruberi cell, moving from proximal (left) to more distal (right). \ihiarrow denotes
the cartwheel extending beyond the proximal microtubule triplet re§oale bar,

100nm
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Figure S5. Cartwheel spoke organization irP. tetraurelia and C. reinhardtii from
the central hub through the pinhead.(A, B) Serial zprojections of approximately 4
nm thickness from subtomogram averageB.aktraurelia(A) andC. reinhardtii (B)
cartwheels. The left-most z-projections display the central o, right-most
projections show the pinhead. Orange dashed lines delineate one repedttiai
cartwheel. Red arrows mark individual spokes, white arrows mariadespokes, and
blue arrows with a line mark the final merged spoke (D1 dg@risigitudinally spaced
every 25 nm. Scale bars, 50 nm. (C) Bandpass filter applied Ro tatraurelia
subtomogram average projection with a cutoff at 38 A. Purplékmdarrows denote
the central hub and position of the associated plot profiles. Theeoedilprojection

displays a mean periodicity of 4.0 +/- 1.3 nm (SEM), while tiogeption filtered to 38
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694 A displays a mean periodicity of 8.6 +/- 0.4 nm (SEM). Scale 2@mm. (D) Plot
695 profile along the previously publishedrichonymphacentral hub (EMD-2329)

696 displaying a longitudinal periodicity of 8.2 nm. Scale bar, 20nm.

697
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699 Figure S6. Raw and symmetrized cartwheels frorR. tetraurelia and C. reinhardtii.
700 (A, C) Cryo-electron tomogram sections displaying the cartwheélstetraurelia(A)
701 andC. reinhardtii (C) from top view (left panels) and side views (middle and right

702  panels). Scale bars, 50 nm. (B, D) Corresponding nine-fold symstktimage
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displaying the cartwheelsf P. tetraurelia(B) andC. reinhardtii (D) from top view

(left panels) and side views (middle and right panels). Scale3tansn. Dashed yellow
lines and arrows indicate the position and direction of the reslizisualize the radial
spokes (1), Dashed blue line and arrows indicate the position andodir@idhe reslice
to visualize the central hub (2). Red arrows indicate the positioreged spokes (1).

Red asterisks denote positions of central hub ring subunits (2).
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Figure S7. Boundaries of the proximal region’s structural fatures inP. tetraurelia
and C. reinhardtii centrioles. (A) Position of the different structures along the
proximal to distal axis of 15 differem. tetraureliacentrioles. Dark blue, cartwheel
(CW); magenta, pinhead (PH); turquoise, A-C linker (AC); oramgesr scaffold (1S);
dark grey, microtubules wall. (B) Correlation plot depicting Aiktker length versus
pinhead length fronk. tetraureliacentrioles. N = 16, Pearson correlation coefficient
0.89. (C) Correlation plot depicting cartwheel length versus pinteagth fromP.
tetraureliacentrioles. N = 16, Pearson correlation coefficient 0.36 P@jtion of the
different structures along the proximal to distal axis of 4 &ffeC. reinhardtiimature
centrioles. Same color code as panel A. (E) Distance bettheeand of the pinhead
region and the end of the cartwheel region. (n P16&traurelig n = 5,C. reinhardtij).

(F) Distance between the end of the pinhead region and the beginning nhehe i
scaffold region (n = 15P. tetraurelig n = 5, C. reinhardti). (G) Position of the
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724  different structures along the proximal to distal axis of 2 whfieC. reinhardtii

725  procentrioles.
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Figure S8. Architectural features of theP. tetraurelia proximal region, and
evolutionary comparison of the AC linker. (A) Z-projection of the reconstructed
junction between adjacent proximal microtubule triplets. ScalesBanm. (B) Cross-
section highlighting the lateral periodicity of the trunk and its aasetiplot profile
(right) measured along the light blue dotted line. Scale bar, 50 nmTl{2e-
dimensional view of two adjacent proximal microtubule triplets $emn the outside
of the centriole. Yellow dashed lines indicate the position of thesk-of adjacent
triplets. The double headed red arrow indicates the shift alorngakie between the
position of two consecutive A-tusk®) Z-projection image of two adjacent proximal

microtubule triplets. The red line indicates the position of thesssection shown in
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(E). Scale bar, 50 nm. (E) Cross-section of two proximatatubules triplets showing

the shift along the z-axis of the A-tusk on one triplet (A-tuskoR)mared to the A-tusk

on the adjacent triplet (A-tusk 1). Scale bar, 50 nm. (F, G h#e-dimensional views

of P. tetraurelia(F), C. reinhardtii(G, EMD-9174, filtered to 45 A) an@irichonympha

(H, EMD-2330). The dotted red lines define the distance between consecutive
microtubule triplets. Note that this distance varies betweetiss. Microtubule triplets

are in grey and the A-C linker is in light blue/green. Dashed blues arand B, blue:

trunk, red: legs. Dark green: A-tusk.
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Figure S9. Resolutions of the subtomogram averages generated frotne P.
tetraurelia proximal centriole. (A, C, E, G) Zprojections of the obtained 3D maps
(left) and their corresponding resolutions estimation by FSC cugtd,(panel B, D,

F, H). Initial maps were obtained by averaging the entire nubub¢ triplet from only
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752  the most proximal region (A) or the more distal part of the iprak region (E).
753  Additional maps were made by local refinement of the A-C linkesh(@ld squared area)

754  (C, G). Scale bars, 50 nm.

755
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Materials and Methods
Paramecium tetraurelia centriole isolation and cryo-electron tomograhy

P. tetraureliacortical units were isolated from two different strains, thie wype
reference strain d4-2 and andCenBP1, as previously described (Le Guennec et al.,
2020) Briefly, isolatedP. tetraureliacentrioles were diluted with 1:1 colloidal gold in
10 mM K-PIPES buffer. Five microliters were deposited on 300 taesly carbon grid
and blotted from the backside before plunging in liquid ethane using a mamugé pl
freezing system. Tomograms were acquired with SerialENvaod (Mastronarde,
2005)on a 300 kV FEI Titan Krios equipped with a Gatan K2 summéctlielectron
detector. The tilt-series were recorded from approximately eé6660° (bidirectional,

2° steps, separated-é0°), using an object pixel size of 3.A5adefocus arounds-um

and a total dose of 70-120 electrond./A

Culture and in situ tomography of Chlamydomonas reinhardtii cells

The in situ of FIB-milling of C. reinhardtii centrioles was performed in timeat3-4

strain, as previously described (Le Guennec et al., 202bjief, 4 pl ofC. reinhardtii

cells were deposited onto 200-mesh copper EM (R2/1, Quantifoil Micats) and
vitrified using a Vitrobot Mark 4 (FEI Thermo Fisher Scienlifi€ryo-FIB sample
preparation was performed as previously described (Schaffer 20&r., 2015). The
FIB-milled EM grids were transferred into a 300-kV FEI Titanos transmission
electron microscope, equipped with a post-column energy filter (Quattatan) and
a direct detector camera (K2 Summit, Gatan). Tomogram weqeired using
SerialEM software (Mastronarde, 200%yith tilt series between60° and + 60°
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(bidirectional, 2° steps, separated -&° or —20°) and a total dose around 100
electrons/&. A subset of tilt-series were acquired with a dose-symemetheme
(Hagen et al., 2017). Individual tilts were recorded in movie mod@ &ames/s, at an

object pixel size of 3.42 A and a defocus-6fto—6 pm.

Naegleria gruberi centriole isolation and cryo-electron tomography

Centriole isolation and tomogram acquisition were performed as preyvaestribed

in (Le Guennec et al., 2020). Briefly, tNe gruberiNEG strain were differentiated into
flagellates (Fulton, 1977), and centrioles were isolated using @ssugradient.
Isolated centrioles were then deposited onto 200-mesh copper EM gried wath
holey carbon (R3.5/1, Quantifoil Micro Tools) and plunge-frozen in a liquid
ethane/propane mixturéilt-series were recorded usiSgrialEM(Mastronarde, 2005)
on a 300 kV FEI Titan Krios transmission electron microscope, equipiped direct
detector camera (K2 Summit, Gatan) and a post-column energy (fidteantum,
Gatan). Tilt-series were bidirectional (2° steps, separated0a or —20°), am
individual images were recorded in movie mode at 10 frames/s,awithbject pixel

size of 4.21 A and a defocus of -5 topx8.

Human centriole isolation and cryo-electron tomography

Human centrioles were isolated from the human lymphoblastic KE{B7iree as
previously described, (Gogendeau et al., 2015) with modification descanbige
Guennec et al., 2020). In brief, 5qilisolated centrioles diluted 1:2 with colloidal gold
in 10 mM K-PIPES buffer were deposited on 300 mesh lacey carlis) blotted from
the backside and quickly vitrified in liquid ethane using a manual plumgzifg.
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Tomogram acquisition was performed a 300 kV FEI Titan Krios equippibch Gatan
K2 summit direct electron detector. Bidirectional tilt se(@ssteps, separated-&0°)
were acquired with SerialEM (Mastronarde, 2005). Each tilt ngasrded in movie

mode at 12 frames/s with an object pixel size of 4hd a defocus of -4 to 16m.

Subtomogram averaging of the A€ linker

From 11 tomograms dP. tetraureliacentrioles, 16 centrioles contained an
intact proximal region. The positions of microtubules triplets weieked and
interpolated every 8.5 nm as described in (Le Guennec et al., 202@) the region
displaying the A-C linker structure. Using Dynamo (Castafio-Diat. e2012), 1941
subtomograms of 320 x 320 x 320 voxels were extracted, encompassing the
microtubule triplet with its associated A-C linkers. Initialthe microtubule triplets
were roughly aligned on th&richonymphareference (EMD-2330) (Guichard et al.,
2013). To discriminate between subtomograms from the most proxagiahrand from
the most distal region, a mask was created around the A-Bjumaion where either
the pinhead (a proximal marker) or the inner scaffold (a mord disteker) lies. A
multireference alignment job was launched on this region, allowing elagsify our
set into two classes: the “proximal-proximal” class (n = 104d)tae “proximal-distal”
class (n = 899). For each set, the average was generatezgfexeace for the next step.
Each set was then divided into two independent halves and alignecefoitarations
to produce two averages. The resolution was estimated using Foulieostetation
(FSC) with a cut-off at 0.143. One of the averages was bandiftassd at this
resolution and the two half-sets were aligned on this filtered mgprterate the final

map.
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The new aligned set was then split again into two halves, eacldmlbcally
aligned on the A-C linker region of the final map. After the twosésiwere aligned
and the resolution computed, they were aligned on a common filteredsipegveusly

performed for the global map.

The global map and the A-C linker map were combined together asbdescr
in (Le Guennec et al., 2020) to generate a volume displaying twceatjaarotubule
triplets connected through the A-C linker. This map was then binnedfégtor of 2
and combined with a rotated duplicate of itself to form a structuttee complete nine-

fold proximal region, as described in (Le Guennec et al., 2020).

Subtomogram averaging of the cartwheel

P. tetraurelia cartwheel:

From 7 tomograms, 10 intact cartwheels were extracted as sadyiamms with
dimensions of 420 x 420 x 420 voxels. For each cartwheel, 9 dupkeategenerated,
each of them was rotated by a multiple of 40° to produce 9 @ifferientations of the
original cartwheel. Each new volume was then shifted by -25:2%nm to position
a different unit of the cartwheel in the center of the volume.elach cartwheel, 27
subtomograms were generated (9 orientations x 3 units), resulting int#dthegrams
in total from 10 cartwheels. To reduce the noise, the subtomograradiltered using

the nonlinear anisotropic diffusion command of Bsoft (Heymann et al., 2008)

An initial reference was generated by taking a cartwheel arfl differently
oriented copies and averaging them together. The 270 subtomograms werk @ligne
this reference using SPIDER (Frank et al., 1996). After aifenations, the average
generated was used as a new reference on which the origieagdiliut not aligned,
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subtomograms were aligned. From the 270 subtomograms, 38 failedédctlgaalign
and thus were removed from the final set, resulting in 232 subtomogszudor the
averaging. Nine-fold symmetry was then applied on the generatetbrrapease the

contrast of the volume.

C. reinhardtii cartwheel:

From five bin2 tomograms, 5 cartwheels were extracted as sagtams with
dimensions of 210 x 210 x 210 voxels. For each cartwheel, 9 dupkcategenerated,
each duplicate was rotated by a multiple of 40° to generate Sedifferientations of
the original cartwheel. Each rotated volume was then shifted by;2%,+25 nm to
position different units of the cartwheel in the center of the veluRrom five
cartwheels, 9 x 3 = 27 subtomograms were generated resultir®p isubtomograms

in total. To improve the contrast, subtomograms were binned by a 2actor

The 135 subtomograms were first aligned onRheetraureliacartwheel map
previously generated. Out of the 135 subtomograms, 86 were corragtlgtehnd used
to produce an average map. This map was filtered by applyinga8ates of Gaussian
filter (with a sigma value of 2). The originally unaligned subtomogramse then
aligned on this filtered average. 102 subtomograms were corrégtigdand kept to
generate the average map. Nine-fold symmetry was then applibd garterated map

to increase the contrast of the volume.

Symmetrization

Top views of centrioles were generated using a z-projection oflfeas from
the cryo-tomogram and processed with the ImageJ plugin Centriolgdcfdarization
and symmetrization (Guichard et al., 2013)
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The symmetrization of the CID region was performed by generatizg
projection of a proximal part centered on the CID. From this ir@geiplicates were
generated by applying rotation from 0 to 360 degrees with a step of 40 degjrees
Bsoft (Heymann et al., 2008). The 9 rotated images were thergadaxagether using

SPIDER(Frank et al., 1996)

Transmission electron microscopy oNaegleria gruberi serial section

N. gruberi NEG cells were differentiated from amoebae into flagella®s
described in (Le Guennec et al., 2020), following a standard prdqteaiodbn, 1977)
Cells were fixedb0-80 minutes after the initiation of differentiation in order tceobs
both procentrioles and mature centrioles. The cells were pedleteesuspended in 60
mM HEPES, 4 mM Cag| 2.5% glutaraldehyde, pH 7.2 and fixed for 120 min at room
temp (replacing the fixative with fresh solution after 40 misut€ells were washed
2x 5 min in 60 mM HEPES, 4 mM CaClpH 7.2 and osmicated using 1 % Q8O
distilled water for 75 min at 4 °C. Cells were washed 3mirin distilled water before
en bloc staining in 1 % uranyl acetate in distilled water overaight C. After washing
3x 10 min in distilled water, the cells were embedded in Agdr noble (BD Difco,
Sparks, MD, USA). Dehydration in ethanol, infiltration with Epon 812r{&
Electrophoresis, Heidelberg, Germany) and final embedding was pedféottoaving
standard procedures. Ultrathin serial sections (nominal 60 nm tegkwere cut with
a diamond knife (type ultra 35°; Diatome, Biel, Switzerland) onEMm UC6
ultramicrotome (Leica, Wetzlar, Germany) and mounted on singlePstddform-
coated copper grids (Plano, Wetzlar, Germany). Sections wenedstaith uranyl

acetate and lead citrate (Reynolds, 1963) and viewed with a JEM-2@0ntssion
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900 electron microscope (JEOL, Tokyo, Japan) operated at 80 kV. Miptograere
901 acquired using a 4K charge-coupled device camera (UltraScan 4000; Gatan,

902 Pleasanton, CA) and Gatan Digital Micrograph software (version1B.30.

903
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