

1 **The architecture of the centriole cartwheel-containing region**
2 **revealed by cryo-electron tomography**

3

4 Nikolai Klena^{1†}, Maeva Le Guennec^{1†}, Anne-Marie Tassin², Hugo van den Hoek^{3,4},
5 Philipp S. Erdmann⁴, Miroslava Schaffer⁴, Stefan Geimer⁵, Gabriel Aeschlimann⁶
6 Lubomir Kovacik⁷, Kenneth N. Goldie⁷, Henning Stahlberg⁷, Benjamin D. Engel^{3,4,*},
7 Virginie Hamel^{1,*} and Paul Guichard^{1,*}

8

9 **Affiliations:**

10 ¹Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland.

11 ²Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud,
12 Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France.

13 ³Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1,
14 85764 Neuherberg, Germany.

15 ⁴Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,
16 Am Klopferspitz 18, 82152 Martinsried, Germany.

17 ⁵Department of Cell Biology and Electron Microscopy, Universität Bayreuth, 95440
18 Bayreuth, Germany.

19 ⁶Ribosome Studio Aeschlimann, Einsiedlerstrasse 6, 8942 Oberrieden, Switzerland

20 ⁷Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of
21 Basel, Basel CH-4058, Switzerland.

22 [†]These authors contributed equally to this work.

23 *Correspondence to: ben.engel@helmholtz-muenchen.de, virginie.hamel@unige.ch
24 and paul.guichard@unige.ch

25

26 **Abstract**

27 Centrioles are evolutionarily conserved barrels of microtubule triplets that form the
28 core of the centrosome and the base of the cilium. In the proximal region of the
29 centriole, nine microtubule triplets attach to each other via A-C linkers and encircle a
30 central cartwheel structure, which directs the early events of centriole assembly. While
31 the crucial role of the proximal region in centriole biogenesis has been well documented
32 in many species, its native architecture and evolutionary conservation remain relatively
33 unexplored. Here, using cryo-electron tomography of centrioles from four
34 evolutionarily distant species, including humans, we report on the architectural
35 diversity of the centriolar proximal cartwheel-bearing region. Our work reveals that the
36 cartwheel central hub, previously reported to have an 8.5 nm periodicity in
37 *Trichonympha*, is constructed from a stack of paired rings with an average periodicity
38 of ~4 nm. In all four examined species, cartwheel inner densities are found inside the
39 hub's ring-pairs. In both *Paramecium* and *Chlamydomonas*, the repeating structural
40 unit of the cartwheel has a periodicity of 25 nm and consists of three ring-pairs with 6
41 radial spokes emanating and merging into a single bundle that connects to the triplet
42 microtubule via the pinhead. Finally, we identified that the cartwheel is indirectly
43 connected to the A-C linker through a flexible triplet-base structure extending from the
44 pinhead. Together, our work provides unprecedented evolutionary insights into the
45 architecture of the centriole proximal region, which underlies centriole biogenesis.

46

47 **Keywords**

48 Cryo-electron tomography, centriole, cartwheel, microtubule, *Chlamydomonas*
49 *reinhardtii*, *Paramecium tetraurelia*, *Naegleria gruberi*, human.

50 Introduction

51 Centrioles and basal bodies (hereafter referred to as centrioles for simplicity)
52 are cytoskeletal organelles, typically 450 to 550 nm in length and ~250 nm in outer
53 diameter, which are present in most eukaryotic cells and play organizing roles in the
54 assembly of cilia, flagella and centrosomes (Gönczy, 2012; Nigg and Raff, 2009;
55 Winey and O'Toole, 2014). Centrioles are characterized by a near-universal nine-fold
56 radial arrangement of triplet microtubules that contain a complete 13-protofilament A-
57 microtubule and incomplete B- and C-microtubules, each composed of 10
58 protofilaments (Guichard et al., 2013). Centrioles are polarized along their proximal to
59 distal axis, with distinct structural features along their length. The proximal region is
60 defined by the presence of the cartwheel structure, which serves as a seed for centriole
61 formation and is thought to impart nine-fold symmetry to the entire organelle (Gönczy,
62 2012; Hilbert et al., 2016; Hirono, 2014; Nakazawa et al., 2007; Strnad and Gönczy,
63 2008). In most of the species, the cartwheel stays within the centriole after maturation,
64 however, it is no longer present in mature human centrioles (Azimzadeh and Bornens,
65 2007). The native architecture of the proximal region, and in particular of the cartwheel,
66 was revealed by cryo-electron tomography (cryo-ET) of the *Trichonympha* centriole.
67 Owing to its exceptionally long proximal region, many structural repeats could be
68 sampled for subtomogram averaging, revealing the overall 3D structure of the
69 cartwheel for the first time (Guichard et al., 2013, 2012). The *Trichonympha* cartwheel
70 was observed to be built from a hub of stacked rings spaced every 8.5 nm. Radial
71 spokes, emanating from two adjacent rings, merged at the pinhead near the microtubule
72 triplet to form a repeating structural unit with a periodicity of 17 nm. Moreover, this
73 study demonstrated that each *Trichonympha* hub ring could accommodate nine
74 homodimers of SAS-6, a protein that is essential for cartwheel assembly across

75 eukaryotes (Kitagawa et al., 2011; van Breugel et al., 2014, 2011). Unexpectedly, a
76 CID, for Cartwheel Inner Densities, was also identified at the center of the hub ring.
77 This CID contacts the hub ring at nine locations and has been hypothesized to be
78 *Trichonympha*-specific, as it has never been observed in other species, possibly due to
79 lack of resolution. In this respect, the CID has been proposed to facilitate TaSAS-6
80 oligomerization or confer additional mechanical stability to these exceptional long
81 centrioles, which are subjected to strong forces inside the intestine of the host termite
82 (Guichard et al., 2018, 2013).

83 In the proximal region, the cartwheel is connected to the pinhead, which bridges
84 the cartwheel to the A-microtubule of the microtubule triplet (Dippell, 1968; Hirono,
85 2014). This connection is thought to be partially composed of Bld10p/Cep135 proteins,
86 which can interact both with SAS-6 and tubulin (Carvalho-Santos et al., 2012; Guichard
87 et al., 2017; Hiraki et al., 2007a; Kraatz et al., 2016). In addition to the
88 cartwheel/pinhead ensemble, adjacent microtubule triplets in the proximal region are
89 also connected by the A-C linker. Cryo-ET combined with subtomogram averaging has
90 revealed distinct structures of the A-C linker in *Trichonympha* and *Chlamydomonas*
91 *reinhardtii* (Guichard et al., 2013; Li et al., 2019). In *Trichonympha*, the structure
92 consists of the A-link, which is laterally inclined and contacts the A-tubule at the A8
93 protofilament, and the C-link, which connects to the C-tubule at the C9 protofilament.
94 Overall, the *Trichonympha* A-C linker displays a longitudinal periodicity of 8.5 nm. In
95 contrast, the A-C linker in *C. reinhardtii* is a crisscross-shaped structure composed of
96 a central trunk region from which two arms and two legs extend to contact the A- and
97 C-tubules (Li et al., 2019). Whereas these two studies provide major advances in our
98 understanding of A-C linker organization, they also clearly highlight structural
99 divergence between *Trichonympha* and *C. reinhardtii* centrioles.

100 The question thus arises as to the evolutionary conservation of the centriole's
101 proximal region, including characteristic structures such as the A-C linker and the
102 cartwheel's hub, CID and radial spokes. In particular, the structure of the cartwheel
103 remains unexplored beyond *Trichonympha*. A more universal description of the
104 proximal region is important for understanding of how these structures direct centriole
105 biogenesis. Here, we use cryo-ET to tackle this fundamental question using four
106 evolutionary distant species: *Chlamydomonas reinhardtii*, *Paramecium tetraurelia*,
107 *Naegleria gruberi*, and humans.

108

109 **Results**

110 ***In situ* structural features of the cartwheel in *Chlamydomonas* centrioles.**

111 The power of biodiversity proved extremely useful for resolving the first 3D
112 architecture of the cartwheel within the exceptionally long proximal region of
113 *Trichonympha* centrioles (Guichard et al., 2012). This study identified the CID as well
114 as an 8.5 nm longitudinal periodicity along the central hub of the cartwheel. Whether
115 these structural features hold true in other species is an open question that we address
116 here by analyzing the cartwheel of the green algae *C. reinhardtii*, a canonical model for
117 centriole biology with similar centriole structure and protein composition to humans
118 (Hamel et al., 2017; Keller et al., 2005; Keller and Marshall, 2008; Li et al., 2011).
119 However, extracting centrioles from cells can limit the analysis of these fragile
120 structures, as exemplified by the loss of the cartwheel during a study of isolated *C.*
121 *reinhardtii* centrioles (Li et al., 2011). In addition, the >300 nm thick vitreous ice
122 surrounding uncompressed centrioles on an EM grid reduces the signal and contrast of
123 cryo-ET (Kudryashev et al., 2012), making it difficult to resolve fine details in the

124 relatively small cartwheel structure (Guichard et al., 2018). We therefore decided to
125 analyze the *C. reinhardtii* cartwheel *in situ* using a cryo-focused ion beam (cryo-FIB)
126 milling approach, which creates thin 100-150 nm sections of the native cellular
127 environment in a vitreous state (Schaffer et al., 2017). Combining this approach with
128 new direct electron detector cameras (Grigorieff, 2013), it was possible for us to
129 visualize the centriole and cartwheel with unprecedented clarity and structural
130 preservation.

131 As shown in Figure 1A-B, *in situ* cryo-ET clearly revealed both mature
132 centrioles and procentrioles, providing the first observation of the centriole's cartwheel-
133 bearing region in its native environment. The cartwheel's structural features were
134 analyzed in both types of centrioles (Figures 1C-H, S1 and S2). Strikingly, we found
135 that the cartwheel's central hub has an average longitudinal periodicity of 4.0 nm in
136 both mature centrioles and procentrioles, distinct from the 8.5 nm periodicity originally
137 described in *Trichonympha* (Guichard et al., 2012) (Figures 1H and S1A, D, G).
138 Moreover, we noticed pronounced densities inside the central hub that were reminiscent
139 of the CID originally described in *Trichonympha*, suggesting that this structure is not
140 *Trichonympha*-specific but rather is a conserved feature of the cartwheel (Figure 1).
141 Several CIDs in *C. reinhardtii* are spaced along the lumen of the central hub, forming
142 an 8.7 nm periodicity on average, in mature centrioles and procentrioles (Figures 1H
143 and S1B, E), similar to *Trichonympha*.

144 To investigate whether the discrepancy we observed in central hub periodicity
145 was accompanied by other differences in cartwheel structure, we measured features of
146 the cartwheel such as the central hub diameter as well as the distances from the hub to
147 D1 and D2, two densities previously described on the cartwheel spokes of *C. reinhardtii*
148 centrioles (Guichard et al., 2017) in both mature centrioles and procentrioles (Figure

149 S3A-F). Similar to previous measurements, we found that the central hub is ~21 nm in
150 diameter (peak-to-peak from the intensity plot profile through the hub), and the D1 and
151 D2 densities are positioned ~ 36 nm and ~ 47 nm from the external edge of the
152 cartwheel hub, respectively. These measurements suggest that only the longitudinal
153 periodicity of the central hub differs in the *in situ* *C. reinhardtii* centrioles (Figure S3A-
154 F).

155 While most of the cartwheel's structural features, including the CID, are
156 conserved between *Trichonympha* and *C. reinhardtii*, the periodicity of the central hub
157 appears to diverge. This discrepancy poses the important question of how conserved
158 the architecture of the cartwheel-containing region is between species. Moreover, as
159 cartwheel periodicity was previously only measured in isolated centrioles, this raises
160 the possibility that cartwheel periodicity may be affected during purification.

161

162 **Conservation of the cartwheel's structural features in *Paramecium*, *Naegleria* and**
163 **humans**

164 To address these questions, we analyzed the proximal region of isolated
165 centrioles from three different species. Centrioles were purified from *P. tetraurelia*, *N.*
166 *gruberi* and human KE37 leukemia acute lymphoblastic T cells, vitreously frozen onto
167 EM grids, and then imaged by cryo-ET (Figure 2A-I). Despite the high level of noise
168 expected in cryo-ET of isolated centrioles and the previously observed strong
169 compression of *N. gruberi* and human centrioles (Greenan et al., 2018; Guichard et al.,
170 2010; Le Guennec et al., 2020) that affects cartwheel integrity, we could reliably
171 measure the central hub periodicity in each of these species. Strikingly, we found that
172 the longitudinal periodicity of the central hub is similar to the *C. reinhardtii* *in situ*

173 cartwheel, with average periodicities of 4.3 +/- 0.38 nm, 4.4 +/- 0.53 nm and 4.2 +/-
174 0.68 nm in *P. tetraurelia*, *N. gruberi* and human, respectively (Figure 2J). Moreover,
175 we observed that CID structures are present in every species, forming a periodicity
176 along the central hub of 8.4 +/- 1.25 nm, 8.3 +/- 1.83 nm and 8.1 +/- 2.46 nm (Figure
177 2A-J and Figure S3G-O). These results indicate that structural features of the *C.*
178 *reinhardtii* cartwheel seem to be conserved, including the central hub's ~4.2 nm
179 periodicity, as well as the presence of CIDs every ~8.4 nm. Moreover, these
180 measurements demonstrate that the discrepancy between *Trichonympha* and *C.*
181 *reinhardtii* is possibly not due to purification artifacts, as the other isolated centrioles
182 also display ~4 nm periodicities along their central hubs.

183 Interestingly, in tomograms of both *in situ* and isolated centrioles, we observed
184 that the position of the cartwheel did not fully correlate with the position of the
185 microtubule triplets. In all four species, the cartwheels protruded proximally 10-40 nm
186 beyond the microtubule wall (Figures 1A, B and 2K, L). In *C. reinhardtii*, which
187 enabled observations of assembling and mature centrioles within the same cells, the
188 cartwheel extension was more prominent in procentrioles, with 67% of the cartwheel
189 protruding in contrast to 34% in mature centrioles (Figure 2K). Until now, this proximal
190 extension of the cartwheel has only been reported in isolated *C. reinhardtii*
191 procentrioles (Geimer and Melkonian, 2004; Guichard et al., 2017). Our *in situ* *C.*
192 *reinhardtii* tomograms demonstrate that the cartwheel extension is not an artifact of
193 purifying centrioles, but rather occurs within the native cellular environment. We
194 further corroborated this conclusion with serial sections of resin-embedded *N. gruberi*
195 cells, which show the cartwheel protruding beyond the proximal end of the microtubule
196 triplets in both assembling and mature centrioles (Fig. S4). The cartwheel extension is
197 consistent with fluorescence microscopy localization of cartwheel components CrSAS-

198 6 and Bld10p, which extend from the centriole's proximal region to ~60 nm below the
199 proximal-most acetylated tubulin signal in mature *C. reinhardtii* centrioles (Hamel et
200 al., 2017). Additionally, this proximal extension corroborates 3D-SIM-FRAP analysis
201 of SAS-6-GFP in *Drosophila*, showing that the cartwheel may grow from its proximal
202 end (Aydogan et al., 2018). Taking these data together, we conclude that the cartwheel
203 protrusion is not a consequence of biochemical isolation but rather is an evolutionarily
204 conserved structural feature that may relate to early events in centriole assembly.

205

206 **3D architecture of the cartwheel in *Paramecium* and *Chlamydomonas***

207 Given the intriguing 4.0 nm periodicity of the central hub revealed in our study,
208 which differs from the previously reported periodicity in *Trichonympha* (Guichard et
209 al., 2012), we decided to take a closer look at the cartwheel architecture in both *P.*
210 *tetraurelia* and *C. reinhardtii* centrioles. As explained above, resolving the cartwheel
211 structure in these species represents a major challenge, as the cartwheel length is about
212 40-times shorter than the exceptionally long *Trichonympha* cartwheel, limiting the
213 number of repeat units available for subtomogram averaging. Nevertheless, we
214 undertook this task with a low number of subvolumes, increasing the contrast of the
215 central hub and emanating radial spokes. From 8 *P. tetraurelia* tomograms, we
216 performed subtomogram averaging on 235 boxes and symmetrized the obtained map.
217 A projection of the reconstructed *P. tetraurelia* cartwheel is shown in Figure 3A, where
218 the CID, the central hub, and its emanating radial spokes are clearly visible. Careful
219 inspection of a longitudinal section through the averaged volume confirmed the
220 presence of CIDs every 8.6 nm inside the central hub (Figures 2J and 3C). Intriguingly,
221 we found that the central hub is constructed from pairs of rings (Figure 3B-C, light blue

222 arrowheads). These ring-pairs have an inter-ring distance of 3.1 nm and stack on each
223 other with 5.5 nm between adjacent ring-pairs, resulting in the average periodicity of
224 ~4.2 nm along the central hub (Figures 2J and 3C). We observed that two small
225 densities (Figure 3D, red arrows) emanate from each ring-pair (red circles) and fuse
226 into one radial spoke (white arrows) that in turn merges with two other fused spokes to
227 form a single structure ~37 nm from the central hub surface, a distance that corresponds
228 to the D1 density (Figure 3D, blue arrow; Figure S5A, blue arrows). The three ring-
229 pairs that share fused spokes are repeated three to four times along the cartwheel length,
230 with a longitudinal distance of ~25 nm between merged spokes (Figure 3B and Figure
231 S5A, blue arrows), suggesting that this represents the repeating structural unit of the
232 cartwheel. We also noted that the emanating spokes are slightly tilted (Figure 3D, 3J
233 and Figure S5A, green dotted lines), possibly reflecting a twist in the molecular
234 interaction underlying spoke fusion. Interestingly, we found that the CIDs are
235 positioned at the center of each ring-pair (Figure 3C), suggesting that they could be
236 important for the ring-pair's formation or stability. Importantly, all these features can
237 also be seen within the raw data (Figure S6A, B), indicating that they are not a result
238 of the averaging procedure.

239 Next, we performed a similar analysis on *C. reinhardtii* mature centrioles
240 (Figure 3E), using 102 subvolumes from 5 *in situ* tomograms and then applied
241 symmetrization. Interestingly, we found that the cartwheel's repeating structural unit is
242 also composed of three ring-pairs, with 3.5 nm inter-ring spacing and 5.1 nm spacing
243 between ring-pairs (Figure 3E-G, blue arrowhead in G), leading to the observed ~4.2
244 nm periodicity along the central hub. Each repeating unit also had six emanating spokes
245 (Figure 3H and Figure S5B red arrows); however, these spokes were organized
246 differently than in *P. tetraurelia* cartwheels, merging into two spokes ~14 nm from the

247 central hub (Figure 3H and Figure S5B white arrows) and further fusing into a single
248 unit ~34 nm from the hub (Figure 3H and Figure S5B blue arrows). Similar to *P.*
249 *tetraurelia*, the repeating unit of the central hub has a periodicity of ~ 25 nm (Figure
250 3F and Figure S5B blue arrows). In *C. reinhardtii* cartwheels, CIDs are positioned 8.8
251 nm apart, inside ring-pairs (Figure 3G). As for *P. tetraurelia*, we confirmed that these
252 *C. reinhardtii* features could be seen in the raw data (Figure S6C, D) and were not a
253 result of the averaging. We also noticed in raw tomograms that some regions were
254 devoid of CIDs, suggesting that their positioning might be stochastic (Figure S6D,
255 white arrowhead).

256 Together, these results demonstrate that both species have an overall similar
257 cartwheel organization, with some species-specific differences in the radial spokes that
258 possibly reflect either a different modality of assembly or some divergence at the
259 molecular level. Moreover, we also noticed that the repeating structural unit described
260 here displays a polarity from proximal to distal that is defined by the angle of the
261 emanating spokes, which is strikingly apparent in the *P. tetraurelia* average (Figure 3I-
262 J).

263 Next, we investigated how the observed discrepancy in central hub periodicity
264 could arise between *C. reinhardtii* / *P. tetraurelia* and *Trichonympha*. We hypothesized
265 that the resolution improvement from using a direct electron detector might have helped
266 reveal features that were not visible in the previous study of *Trichonympha* centrioles.
267 To test this idea, we applied a bandpass filter to decrease the resolution of the *P.*
268 *tetraurelia* subtomogram average to that of the *Trichonympha* map (38 Å) (Figure S5C,
269 D). At this resolution, the *P. tetraurelia* ring-pairs appear to be single rings, leading to
270 a global 8.6 nm periodicity along the central hub as originally described in
271 *Trichonympha*. This result suggests that the *Trichonympha* cartwheel most likely also

272 exhibits the same ~4 nm ring-pair periodicity as *P. tetraurelia* and *C. reinhardtii*, but
273 this could not be retrieved in earlier studies primarily due to resolution limitations of
274 the detectors used for imaging. However, we also noticed that the spoke organization
275 appears different between *Trichonympha* and *C. reinhardtii* / *P. tetraurelia* cartwheels,
276 suggesting variability of molecular organization between species.

277

278 **Defining the structural features of the proximal region**

279 We next focused on charting the overall organization present in the cartwheel-
280 containing region of *P. tetraurelia* and *C. reinhardtii* centrioles to better understand
281 how the cartwheel is connected to the microtubules, as well as to check whether the
282 structural features are conserved between species (Figure 4). As subtomogram
283 averaging might average out non-periodic structures, we first analyzed the raw
284 tomograms by systematically extracting cross sections of centrioles from both species
285 at different positions along the proximal-to-distal axis and then applying nine-fold
286 symmetrization to improve the contrast using centrioleJ (Guichard et al., 2013) (Figure
287 4B, H). Starting from the proximal side, several previously described structural features
288 could be resolved, including the cartwheel (blue arrow), the pinhead (magenta arrow),
289 the A-C linker (turquoise arrow) and the beginning of the inner scaffold (orange arrow)
290 that defines the central core region of the centriole (Figure 4B, C and H, I, F). We also
291 noticed a linker between the pinhead structure and the A-C linker (Figure 4C panels
292 (III, IV) and 4I panels (III, IV), light green arrow). This linker is reminiscent of the
293 triplet base structure originally described in human, mouse, and Chinese hamster
294 centrioles (Vorobjev and Chentsov, 1980) and also detected in *Trichonympha* centrioles
295 (Gibbons and Grimstone, 1960). We therefore conclude that the triplet base is an

296 evolutionarily conserved structural feature of the centriole's cartwheel-bearing region.
297 Interestingly, in contrast to the A-C linker (Figure 4C, panel (VI) and 4I, panel (VI)),
298 the pinhead structure does not co-exist with the inner scaffold, suggesting that the later
299 replaces the former (Figure 4D, E, J-N and Figure S7 A, D). We also noticed in the
300 most distal part of the proximal region that the pinhead structure is present without the
301 cartwheel in *P. tetraurelia* centrioles (Figure 4B, C panel (IV), D, E, and Figure S7A,
302 S7D). Finally, we observed in the two *in situ* *C. reinhardtii* procentrioles that the A-C
303 linker covers the entire length of the growing microtubule triplets, while the pinhead
304 and cartwheel seem to display variable lengths (Figure S7G).

305 On the basis of these observations, we measured the distance from the end of
306 the pinhead region to the end of the cartwheel region and to the start of the inner scaffold
307 in 5 *in situ* *C. reinhardtii* centrioles and 17 isolated *P. tetraurelia* centrioles. We found
308 that the distances between these structural features is ~5 nm on average in *C.*
309 *reinhardtii*, which is close to the size of a tubulin monomer, indicating a direct
310 transition from one structure to the other (Figure S7 E, F). In contrast, this gap distance
311 is longer and more variable in *P. tetraurelia* centrioles, suggesting more stochasticity
312 in the transitions between structures (Figure S7E, F). We also noted a strong correlation
313 between the lengths of the A-C linker and the pinhead in *P. tetraurelia* centrioles
314 (Figure S7B), suggesting that these two structures might have coordinated assembly.
315 Conversely, there is no clear correlation between the lengths of the cartwheel and
316 pinhead in *P. tetraurelia* centrioles (Figure S7C).

317 To better understand the relationship between the A-C linker and the cartwheel,
318 we mapped their respective boundaries in the centrioles of *P. tetraurelia*, *C. reinhardtii*,
319 *N. gruberi* and humans (Figure 4O). We found that the cartwheel length extends 111
320 +/- 20 nm, 75 +/- 17 nm, 300 +/- 65 nm and 189 +/- 9 nm in *C. reinhardtii*, *P.*

321 *tetraurelia*, *N. gruberi* and humans, respectively (Figure 4O). Note that, as expected,
322 mature human centrioles lacked cartwheels (Guichard et al., 2010), but we found 4
323 procentriole cartwheels to include in our analysis. In parallel, we analyzed the
324 boundaries of the A-C linker and found that it spans 199 +/- 17 nm, 160 +/- 28 nm, 330
325 +/- 81 nm and 270 +/- 26 nm of the proximal region in *C. reinhardtii*, *P. tetraurelia*, *N.*
326 *gruberi* and humans, respectively (Figure 4O). As previously reported (Le Guennec et
327 al., 2020), this represents approximately 40% of the total centriole length. Comparing
328 the measurements of these two structures reveals that the cartwheel spans 56% of the
329 A-C linker length in *C. reinhardtii*, 47% in *P. tetraurelia*, 66% in *N. gruberi* and 70%
330 in humans.

331

332 **The triplet base bridges the pinhead with the A-C linker**

333 Our analysis of raw tomograms revealed that the triplet base emanates from the
334 pinhead and binds the A-C linker, thereby indirectly connecting the cartwheel to the A-
335 C linker (Figure 4). However, this analysis did not allow us to precisely detect where
336 the triplet base connects to the A-C linker. Moreover, this connection has never been
337 observed in previous subtomogram averaging analysis (Guichard et al., 2013; Li et al.,
338 2019). Consequently, we undertook a subtomogram averaging approach focused on
339 revealing the triplet base connection and the A-C linker structure, using 11 tomograms
340 of uncompressed *P. tetraurelia* centrioles. We succeeded in resolving the triplet base
341 in our average; however, it had very low map density, suggesting that this structure is
342 flexible or not stoichiometrically occupied (Figure 5A) and explaining why it has not
343 been observed before in cryo-ET. It is also important to note that although both the

344 triplet base and the pinhead are clearly visible, we could not reliably retrieve their
345 longitudinal periodicities.

346 Next, we focused on the A-C linker and found that it can be subdivided into two
347 major regions previously observed in *Trichonympha*: the A-link that contacts the A-
348 tubule and the C-link that contacts the C-tubule. The *P. tetraurelia* A-C linker has a
349 longitudinal periodicity of 8.4 ± 0.2 nm, consistent with previous measurements from
350 *Trichonympha* and *C. reinhardtii* (Guichard et al., 2013; Li et al., 2019) (Figure S8A,
351 B and Figure S8F-H). With the obtained resolution of 31.5\AA (Figure S9), we were able
352 to identify that the C-link is composed of two main densities: ArmA, which contacts
353 the C-tubule protofilaments C8 and C9, and ArmB, which decorates only C-tubule
354 protofilament C9 (Figures 5 and S8). On the A-link side, we identified a single
355 connection between the A-link's trunk and A-tubule protofilament 8, an interaction
356 originally described in *C. reinhardtii* (Li et al., 2019) (Figure S8F, G). In addition to
357 the A-C linker, we identified a large density between protofilaments 8 and 9 of the A-
358 tubule that we termed the A-tusk (Figures 5 and S8C-E). Interestingly, we observed
359 that the triplet base connects to the A-C linker directly on the ArmB density, reinforcing
360 our conclusion that the entire proximal region forms an interconnected structural
361 network from the central hub of the cartwheel, through the radial spokes, the pinhead
362 and the triplet base to the A-C linker.

363 To check whether the connection between the pinhead and the A-C linker is
364 maintained throughout the proximal region, we split the dataset in two halves
365 corresponding to the more proximal and more distal parts of this region (Figure 5E, F).
366 The nine-fold symmetrized model of each map was reconstructed. Interestingly, as
367 previously observed (Figure 4 B, C), we noticed that the pinhead density is almost
368 completely absent in the average from the more distal part of the proximal region,

369 whereas the A-C linker is still present and has an extra density on ArmB seemingly
370 replacing the triplet base position (Figure 5E, F, red circles). This observation indicates
371 that although the pinhead and A-C linker are connected through the triplet base, the
372 presence of the A-C linker is independent of the pinhead and triplet base. We also
373 noticed a difference in the microtubule triplet and A-C linker angles between the two
374 maps (Figure 5F), with an angle decrease of 6° for the triplet and 9° for the A-C linker.
375 As this difference was previously observed in *C. reinhardtii* (Li et al., 2019), the slight
376 twist we measured in the proximal region appears to be evolutionarily conserved. This
377 proximal twist suggests that the A-C linker is able to adapt to the difference in angles
378 between the microtubule triplets and thus remain connected to them.

379

380 **Discussion**

381 In this study, we used cryo-ET to analyze the proximal region of centrioles from
382 four evolutionarily distant species. We describe the structural features of this region
383 including the cartwheel, the pinhead, the triplet base and the A-C linker (Figure 6).
384 Interestingly, we found that the cartwheel structure protrudes proximally beyond the
385 microtubule triplets in all species that we investigated, especially in the assembling *C.*
386 *reinhardtii* procentrioles. This observation supports the notion that the cartwheel
387 assembles independently of the microtubule triplets, which are connected by the A-C
388 linker, and that the two structures, cartwheel and A-C linker, likely play a role in
389 defining the nine-fold symmetry of the organelle (Hilbert et al., 2016; Nakazawa et al.,
390 2007) as well as its cohesion at the proximal region (Le Guennec et al., 2020; Yoshioka
391 et al., 2019). The cartwheel's proximal extension is also consistent with the proximal-
392 directed growth of the cartwheel protein SAS-6 observed in *Drosophila* (Aydogan et

393 al., 2018). It is currently not known whether the cartwheel structure can grow from its
394 proximal end and whether such a mechanism is evolutionary conserved.

395 Our cryo-ET analysis revealed that the cartwheel's central hub in *C. reinhardtii*
396 and *P. tetraurelia* is organized in ring-pairs (Figure 6). Furthermore, in all four studied
397 species, we observed densities inside the lumen of the central hub with a similar
398 periodicity formed by the CIDs in *Trichonympha*. We therefore conclude that CID
399 structures are present in every species studied to date and are a conserved element of
400 the cartwheel. Moreover, one CID is positioned between the two rings of the ring-pair,
401 suggesting that it might be involved in ring-pair assembly by helping build a cohesive
402 unit. Whether the ring-pair is composed of only SAS-6, or whether another protein
403 participates in forming this structure, is an open question that the resolution of our
404 current dataset cannot answer. Therefore, an important future challenge will be to
405 determine the molecular composition of the ring-pair and the CID.

406 At the outer margin of the central hub's ring-pairs, we observed that the
407 cartwheel spokes are clearly organized differently than in *Trichonympha*, which turns
408 out to be the biggest structural difference between the cartwheels of the different
409 species. In *Trichonympha*, we could observe only two spokes merging, forming a
410 longitudinal periodicity of 17 nm (Guichard et al., 2013). Here, we have demonstrated
411 that the resolution obtained in the *Trichonympha* study is not sufficient to see certain
412 details. Nevertheless, even by artificially lowering the resolution of our *P. tetraurelia*
413 cartwheel map, the spoke organization remains distinct, with a lateral periodicity of ~25
414 nm. In both *C. reinhardtii* and *P. tetraurelia* cartwheels, this 25 nm periodicity results
415 from the merge of spokes emanating from 3 adjacent ring-pairs (Figure 6). However,
416 we could also distinguish that the spoke organization differed between these species. In
417 *P. tetraurelia*, one spoke is made of 3 substructures that each emanate from a pair of

418 rings, whereas in *C. reinhardtii*, the final spoke tip is made from only two substructures
419 (Figure 3J). As the coiled-coil domain of SAS-6 is part of the spokes (Gönczy, 2012),
420 the difference in radial spoke organization could potentially be explained by the low
421 homology between SAS-6 coiled coils (Leidel et al., 2005). It is possible to imagine
422 that coiled coils of neighboring SAS-6 proteins merge to form a coiled coil bundle or a
423 tetramer/hexamer. Another possibility is that a different protein interacts with the SAS-
424 6 coiled coil and is responsible for this bundling. To date, SAS-5 is one of the most
425 likely candidates for this role. Indeed, it has been shown in several species that SAS-5
426 interacts with the SAS-6 coiled coil where the bundle is formed (Cottee et al., 2013;
427 Qiao et al., 2012; Shimanovskaya et al., 2013). In addition, it has been shown that the
428 Ana2 (SAS-5 in *Drosophila*) coiled coil forms a tetramer (Cottee et al., 2013) and that
429 *C. elegans* SAS-5 forms higher-order protein assemblies up to hexamers in solution
430 (Rogala et al., 2015). It is therefore possible that different stoichiometries of SAS-
431 6:SAS-5 can modify the architecture of the spoke bundling.

432 Our study also highlights the triplet base structure (Figure 6), originally
433 described in conventional electron microscopy of resin-embedded mammalian
434 centrioles (Vorobjev and Chentsov, 1980). We found that the triplet base connects the
435 pinhead to the A-C linker, thus forming a continuous structure that bridges the
436 cartwheel with the A-C linker. The triplet base might enhance the cohesion and stability
437 of the entire proximal region. Although its molecular nature is not known, its apparent
438 flexibility, length and low map density, similar to the cartwheel spokes, would suggest
439 that the triplet base is made by a long coiled coil protein. It is therefore tempting to
440 speculate that this structure might consist of the coiled coil protein Bld10p/Cep135.
441 Indeed, based on its immuno-localization as well as its known interaction with the C-
442 terminus of SAS-6 and microtubules, current models place this protein as part of the

443 pinhead (Hiraki et al., 2007b; Hirono, 2014; Kraatz et al., 2016). The coiled coil length
444 prediction for Cep135 is ~900 of its 1140 total amino acids, which would yield a coiled
445 coil that is 133 nm long (900 residues x 0.1485 nm [axial rise per residue]= 133 nm,
446 formula from (Kitagawa et al., 2011)). Considering that the pinhead is ~20 nm long
447 (Guichard et al., 2013), it is likely that a large portion of Bld10/Cep135 extends from
448 it. Therefore, we propose that a part of the predicted 133 nm coiled coil constitutes the
449 35 nm long triplet base connecting to the A-C linker (Figure 5A). This hypothesis is
450 consistent with the phenotypes of *C. reinhardtii* and *Tetrahymena* Bld10p mutants,
451 which not only lose the connection of the cartwheel to the microtubule wall but also
452 lose the microtubule triplets themselves, suggesting that the cohesion between triplets
453 is partially lost (Bayless et al., 2012; Matsuura et al., 2004). Future studies on the
454 precise location of the different regions of Cep135 would be needed to answer these
455 questions.

456 An important structural feature revealed in our study is the intrinsic polarity of
457 the cartwheel structure along its proximal-distal axis. Previous work had observed such
458 polarity in the pinhead and A-C linker structure (Guichard et al., 2013; Li et al., 2019).
459 Our work now reveals that polarity also exists within the cartwheel itself, which might
460 play a critical role in centriole biogenesis. Such polarity is likely important to define
461 the directionality of structural features that assemble after cartwheel formation. For
462 instance, microtubule triplets, which are also polarized structures, only grow in the
463 distal direction. Although it is possible that the triplets lengthen slightly on the proximal
464 side, it is clear that the plus ends of the microtubules always face the distal end of the
465 centriole. It is therefore possible that the polarity of the cartwheel defines the growth
466 directionality of the procentriole from the very beginning of assembly. It is interesting
467 to note that the only known example of microtubule triplet polarity inversion was

468 observed in a *Tetrahymena* Bld10p mutant (Bayless et al., 2012). As Bld10p constitutes
469 part of the cartwheel spoke-tip/pinhead, this reinforces the idea that the cartwheel
470 defines the direction of centriole growth.

471 Combining our present study with previous work on the structure of the
472 centriole proximal region from different species offers a glimpse at evolutionary
473 conservation and divergence at the level of molecular architecture. The data presented
474 here suggest that the cartwheel-containing region has a conserved overall organization
475 with defined structural characteristics (Figure 6). However, our work also demonstrates
476 that the specific layout of the centriole and the finer structural elements may differ
477 considerably between species. These observations correlate well with the fact that many
478 centriolar proteins are conserved between species, yet they can vary significantly in
479 their size or amino acid composition, as exemplified by the low sequence homology of
480 the cartwheel protein SAS-5/Ana2/STIL (Stevens et al., 2010). Our work therefore
481 shows that there may be different routes to build a centriole.

482

483 **Author Contributions**

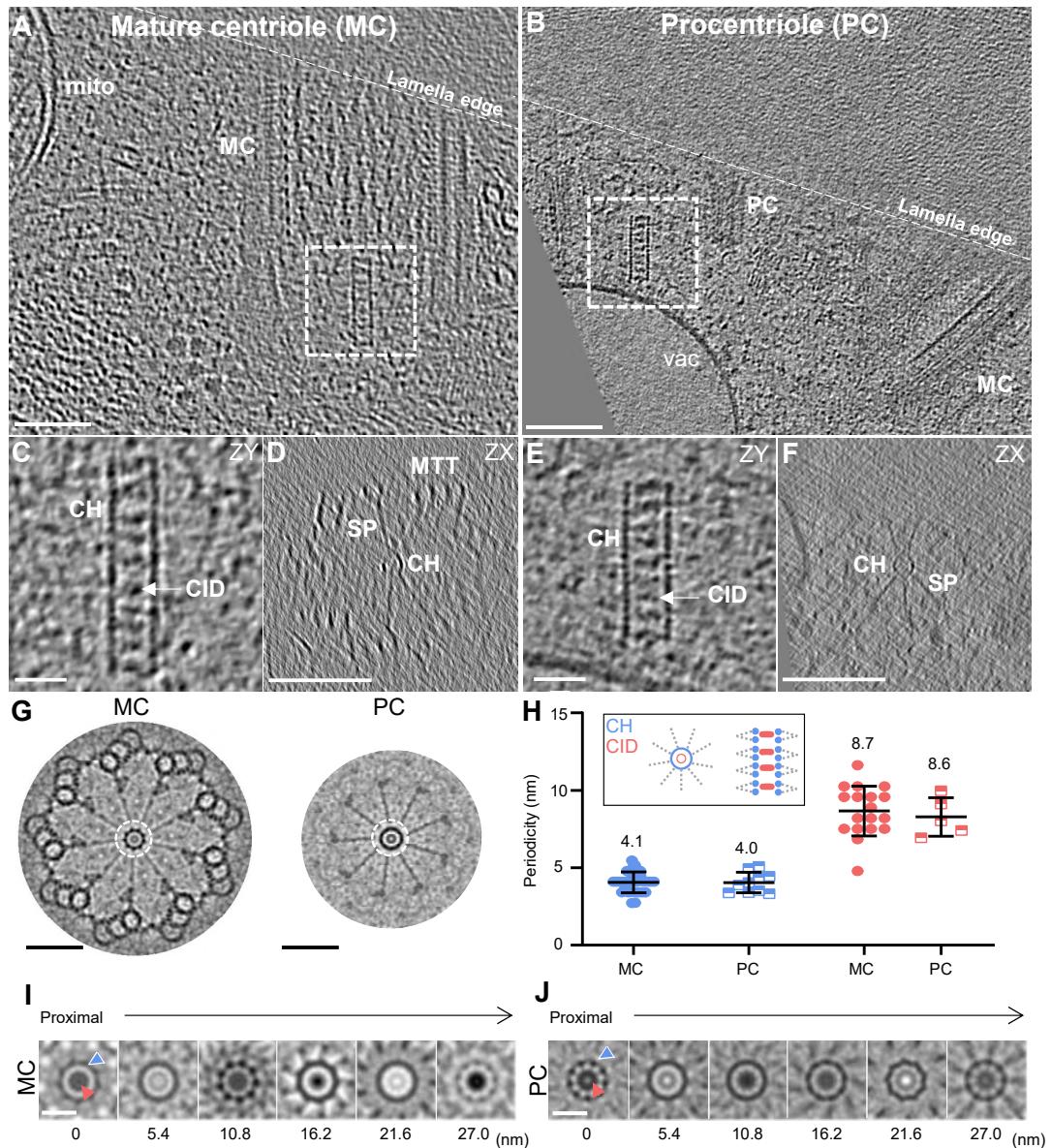
484 V.H, P.G. and B.D.E conceived, supervised, designed the project and wrote the final
485 manuscript with input from all authors. N. K and M.L.G. performed all image
486 processing and analyzed the data. A-M.T. purified the *P. tetraurelia* centrioles. N. K.
487 isolated the human centrioles and acquired tomograms of these two species with the
488 help of L.K, K.N.G., H.v.d.H and B.D.E. Sample preparation and tomography of *in situ*
489 *C. reinhardtii* centrioles as well as isolated *N. gruberi* centrioles was performed by P.E.,
490 M.S., H.v.d.H and B.D.E. G.A generated the 3D model of the centriole.

491

492 **Acknowledgments**

493 We thank the BioImaging Center at Unige. We thank Jürgen Plitzko and Wolfgang
494 Baumeister for providing support and instrumentation. This work was supported by the
495 Swiss National Science Foundation (SNSF) PP00P3_187198 and by the European
496 Research Council ERC ACCENT StG 715289 attributed to P.G., as well as the
497 Helmholtz Zentrum München and the Max Plank Society.

498

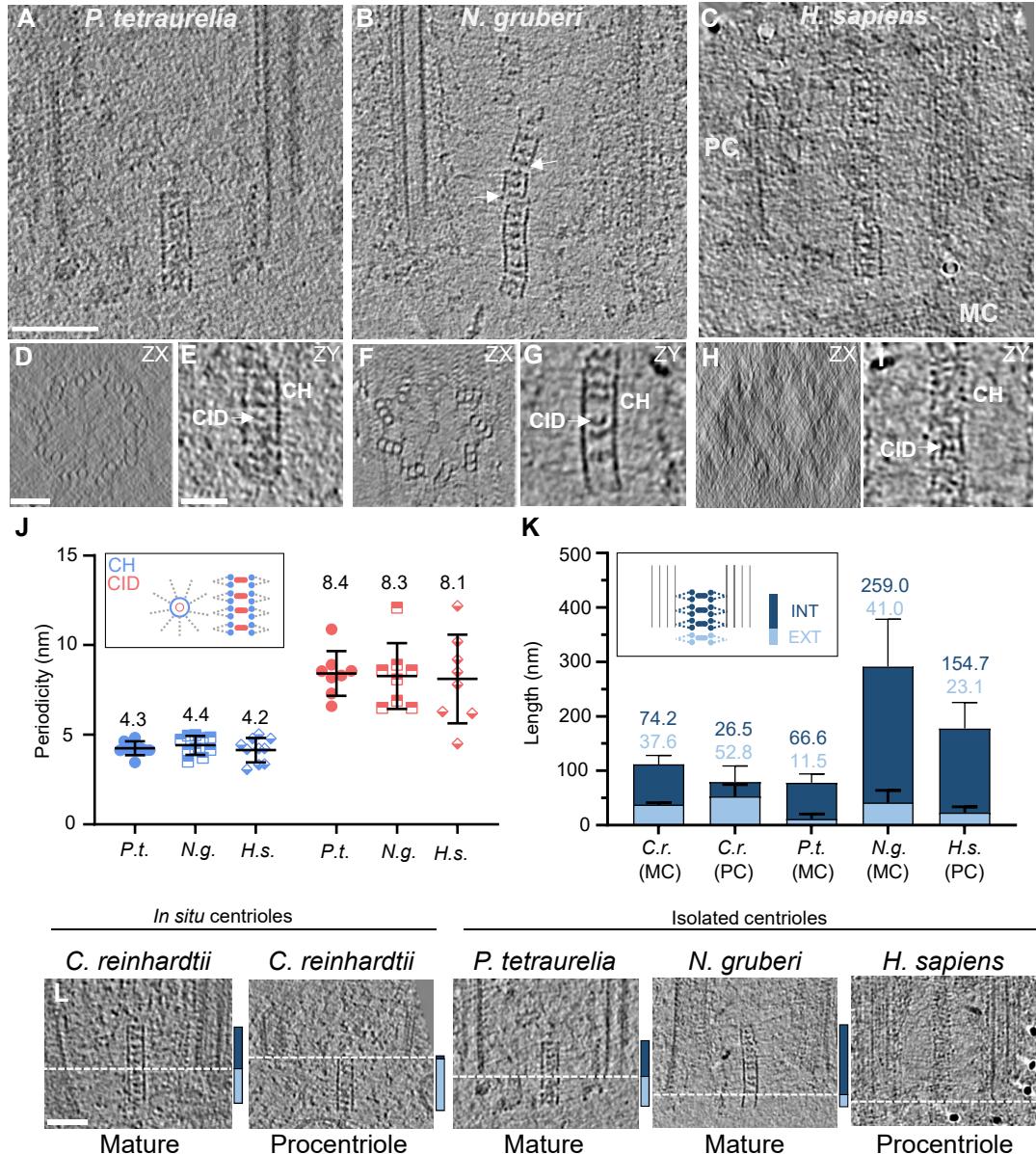

499 **Competing Interests:** The authors declare that they have no competing interests.

500 **Data and materials availability:** Subtomogram averages have been deposited at the
501 Electron Microscopy Data Bank (EMD-10726, EMD-10727, EMD-10728, EMD-
502 10729). All data needed to evaluate the conclusions in the paper are present in the paper
503 and/or the supplementary materials. Additional data is available from authors upon
504 request. Correspondence and requests for materials should be addressed to P.G.
505 (paul.guichard@unige.ch).

506

507

508 **Figure**

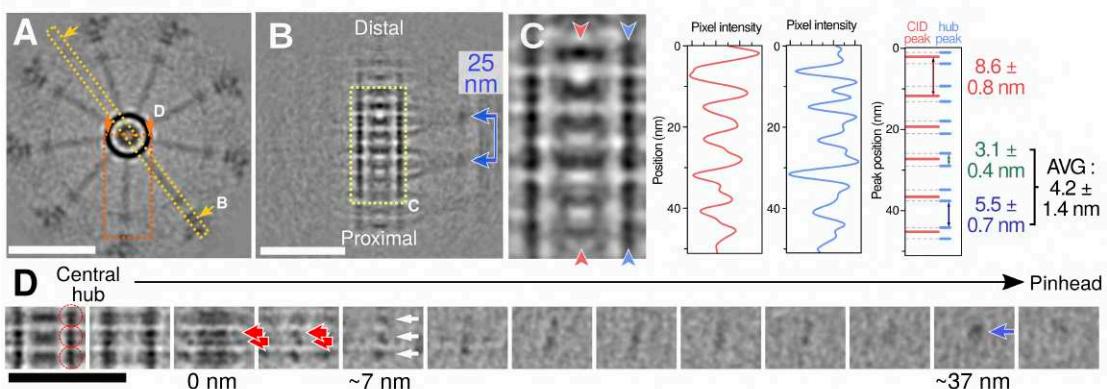


509

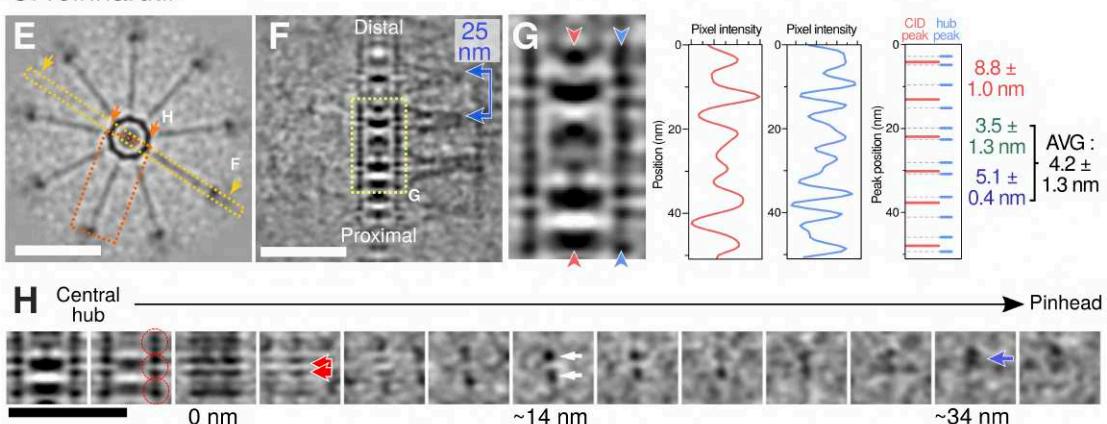
510 **Figure 1. In situ cryo-ET reveals the native cartwheel structure in *C. reinhardtii***
511 **centrioles. (A, B) In situ cryo-electron tomogram displaying the proximal region of a**
512 **mature mother centriole (A) and procentriole (B). Mature centriole, MC; procentriole,**
513 **PC; mitochondria, mito; vacuole, vac; white dashed line, lamella edge. Scale bars, 100**
514 **nm. (C, E) Side view z-projection of cartwheels containing the central hub and several**

515 CIDs from a mature centriole (C) and a procentriole (E). Central hub, CH; cartwheel
516 inner densities, CID. Scale bars, 20 nm. (D, F) Cross sections of the cartwheel-
517 containing regions from a mature centriole (D) and a procentriole (F). Microtubule
518 triplet, MTT; spokes, SP. Scale bars, 200 nm. (G) Nine-fold symmetrized cross sections
519 of the cartwheel-containing region from a mature centriole (left side) and a procentriole
520 (right side). Dashed white circle, central hub. Scale bars, 100 nm. (H) Longitudinal
521 periodicity measurements of the central hub and CIDs. Central hub, blue; CID, red.
522 Mean values are displayed above the data range. (I, J) Nine-fold symmetrized central
523 hub z-projections, starting at the proximal end of the cartwheel and continuing distally
524 along the cartwheel by 5.4 nm steps in a mature centriole (I) and a procentriole (J). Red
525 arrow, CID; blue arrow; central hub.

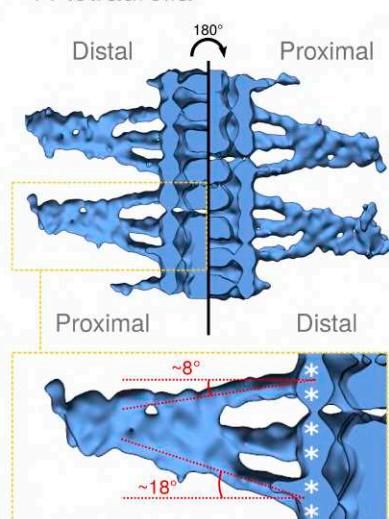
526

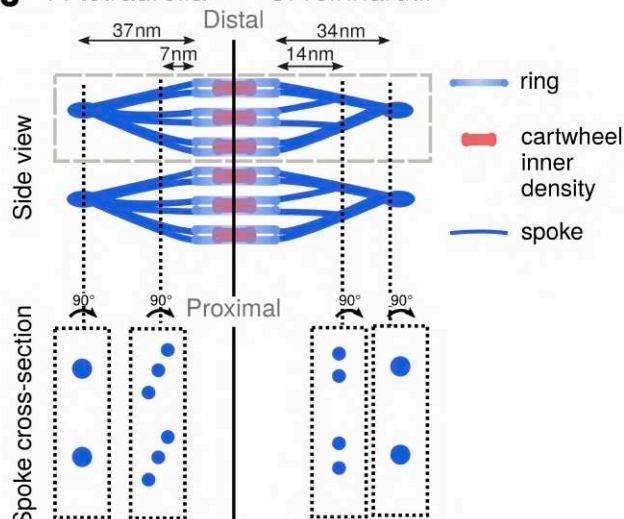


528 **Figure 2. Cryo-ET of isolated centrioles from *P. tetraurelia*, *N. gruberi*, and *H.***
529 ***sapiens* reveals novel cartwheel periodicities.** (A, B, C) Cryo-electron tomograms of
530 the proximal regions of a *P. tetraurelia* centriole (A), a *N. gruberi* centriole, (B) and a
531 *H. sapiens* procentriole (C). White arrows denote a broken cartwheel; procentriole, PC;
532 mature centriole, MC; Scale bar, 100 nm. Note that *N. gruberi* and *H. sapiens* centrioles
533 were heavily compressed during the cryo-EM preparation, as previously described
534 (Guichard et al., 2010). The periodicities in *N. gruberi* and *H. sapiens* centrioles were
535 measured only on parts that were not damaged. (D, F, H) Cross sections from


536 cartwheel-containing regions of *P. tetraurelia* (D), *N. gruberi* (F), and *H. sapiens* (H)
537 centrioles. Scale bar, 50 nm. (E, G, I) Zoomed side views of cartwheels from *P.*
538 *tetraurelia* (E), *N. gruberi* (G), and *H. sapiens* (I), displaying the central hub (CH) and
539 several cartwheel inner densities (CIDs), white arrow. Scale bar, 25 nm. (J)
540 Longitudinal periodicity of the central hub and CIDs in *P. tetraurelia*, *N. gruberi*, and
541 *H. sapiens*. Mean value displayed above range. (K, L) Proximal protrusion of the
542 cartwheel beyond the microtubule triplets in *C. reinhardtii*, *P. tetraurelia*, *N. gruberi*,
543 and *H. sapiens*. Internal cartwheel inside the microtubule barrel, dark blue (INT);
544 external cartwheel beyond the microtubule wall, light blue (EXT). Mean values are
545 displayed above the range (K). Start of the microtubule wall is delineated by dashed
546 white line (L). Scale bar, 50 nm.

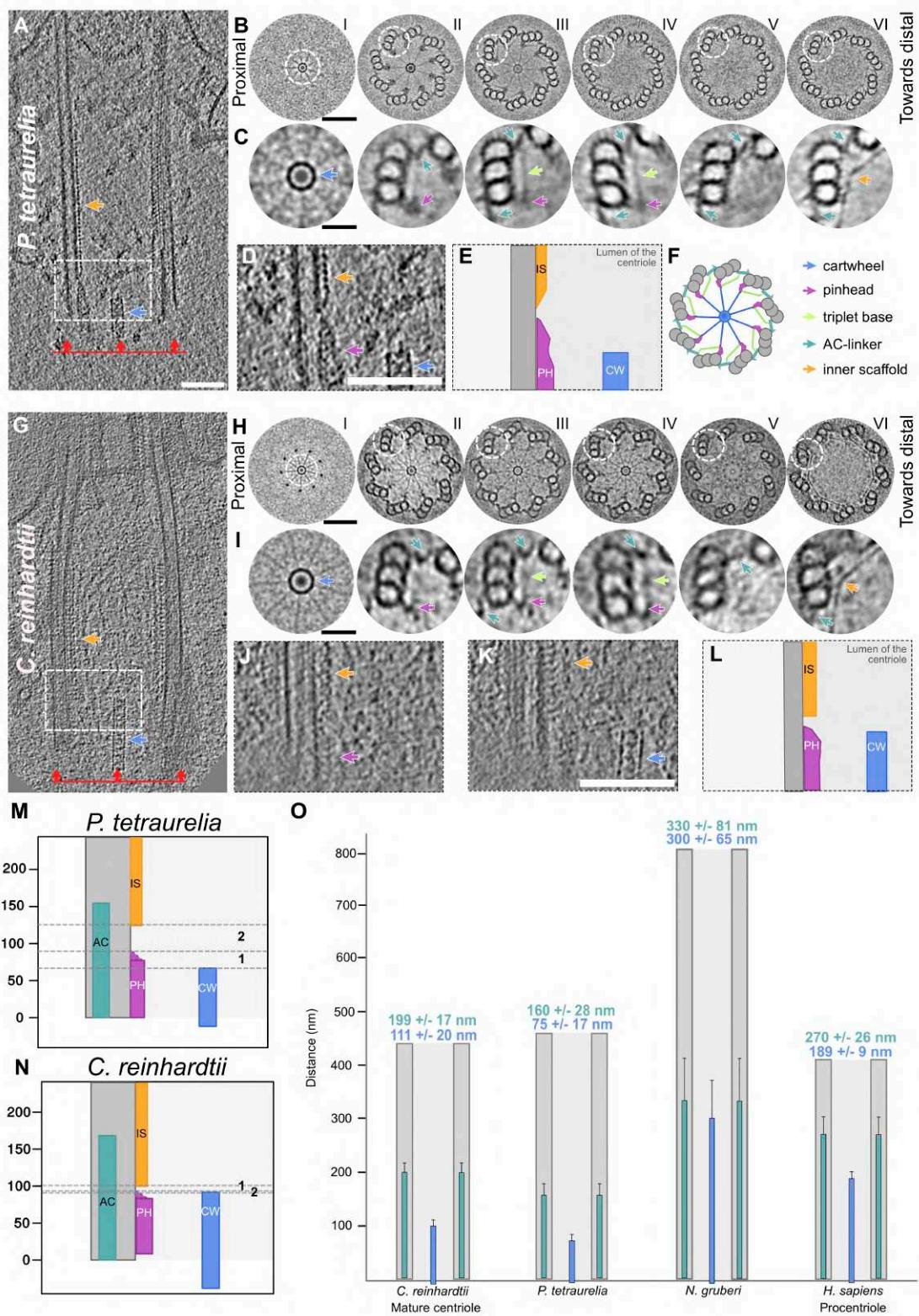
547


P. tetraurelia


C. reinhardtii

I *P. tetraurelia*

J *P. tetraurelia* *C. reinhardtii*

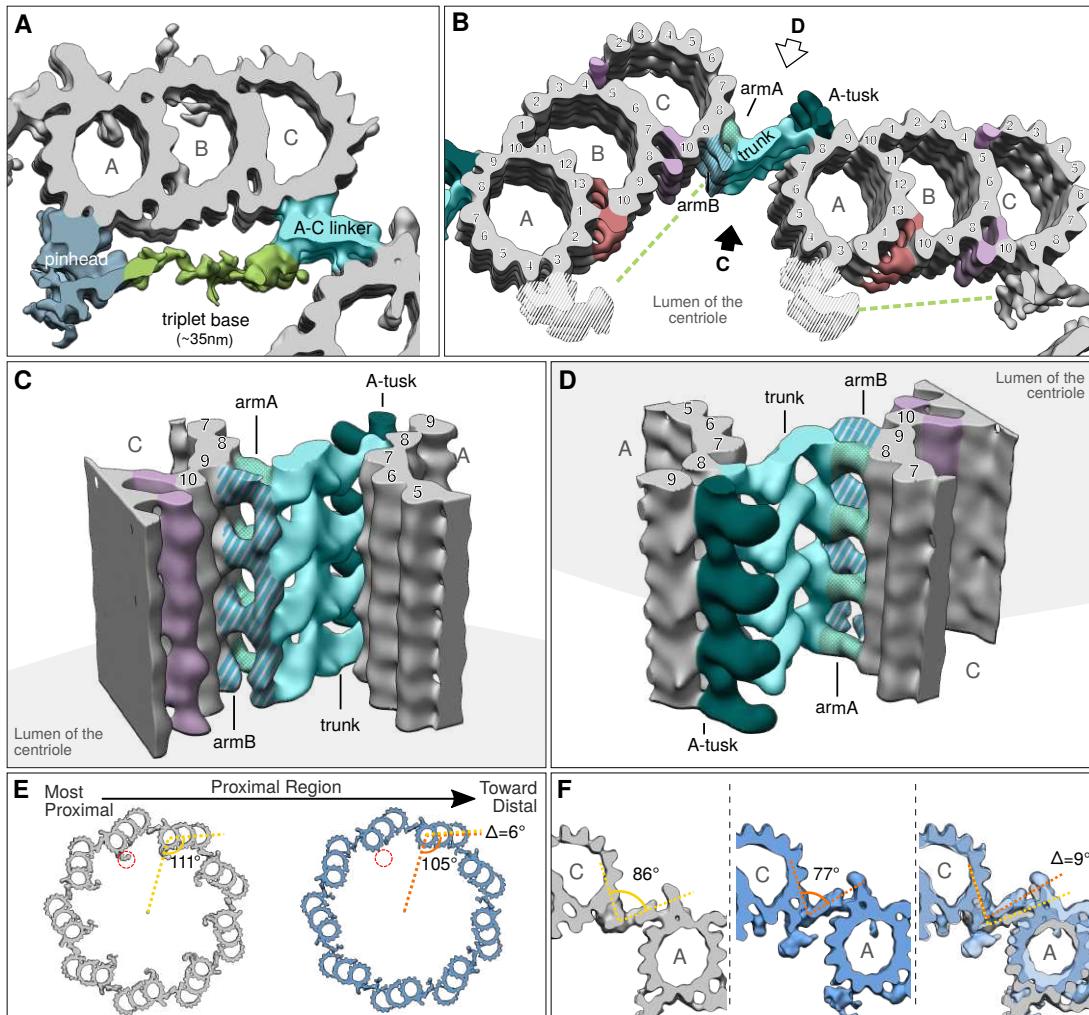


548

549 **Figure 3. Subtomogram averaging of *P. tetraurelia* and *C. reinhardtii* cartwheels**
550 **reveals novel cartwheel structural organization.** (A, E) Top views of cartwheel
551 reconstructions from *P. tetraurelia* (A) and *C. reinhardtii* (E). Scale bars, 50 nm.
552 Dashed yellow line with arrows denotes the central hub-focused reslice shown in panels

553 B and F; dashed red box with arrows denotes the spoke-focused reslice shown in panels
554 D and H. (B, F) Reslice of central hub-containing region with spokes in *P. tetraurelia*
555 (B) and *C. reinhardtii* (F). Scale bars, 50 nm. Dashed light yellow line denotes the
556 zoomed view shown in panels C and G, blue line with arrows indicates the ~25 nm
557 repeat distance between merged spokes. (C, G) Zoomed view displaying periodic
558 repeats of the central hub (CH) and several cartwheel inner densities (CIDs) in *P.*
559 *tetraurelia* (C) and *C. reinhardtii* (G). CID, red arrowheads and red plot profile; CH,
560 blue arrowheads and blue plot profile. Overlay between CIDs and CH peaks plotted on
561 the right in red and blue. Mean distance between CIDs peaks, red +/- S.E.M. Distances
562 between CH peaks split into two distinct populations: smaller (within a ring-pair), green
563 +/- S.E.M; larger (between ring-pairs), blue +/- S.E.M; average periodicity; black +/-
564 S.E.M. (D, H) Serial z-projections of ~4 nm thickness from one cartwheel repeat unit
565 of *P. tetraurelia* (D) and *C. reinhardtii* (H). Left-most z-projections display the central
566 hub, right-most projection shows the microtubule wall. Red circles delineate one ring-
567 pair. Red arrows mark individual spokes. White arrows mark merged spokes. Blue
568 arrow indicates the final merged spoke (D1 density). Scale bar, 50 nm. (I) Three-
569 dimensional rendering of the cartwheel reconstruction from *P. tetraurelia*. Left side,
570 cartwheel oriented along the correct proximal-distal axis; right side, 180° inverted
571 proximal-distal axis, showing the asymmetry of spoke inclination. Dashed yellow box,
572 inset of one spoke unit, with the major and minor tilt angles of the spokes relative to
573 the central hub. White asterisks denote subunits of ring-pairs. (J) Model of *P.*
574 *tetraurelia* (left side) and *C. reinhardtii* (right side) cartwheel structures. Dashed grey
575 box denotes one repeat unit of the cartwheel, dashed black lines and boxes display cross
576 sections of spokes.

577

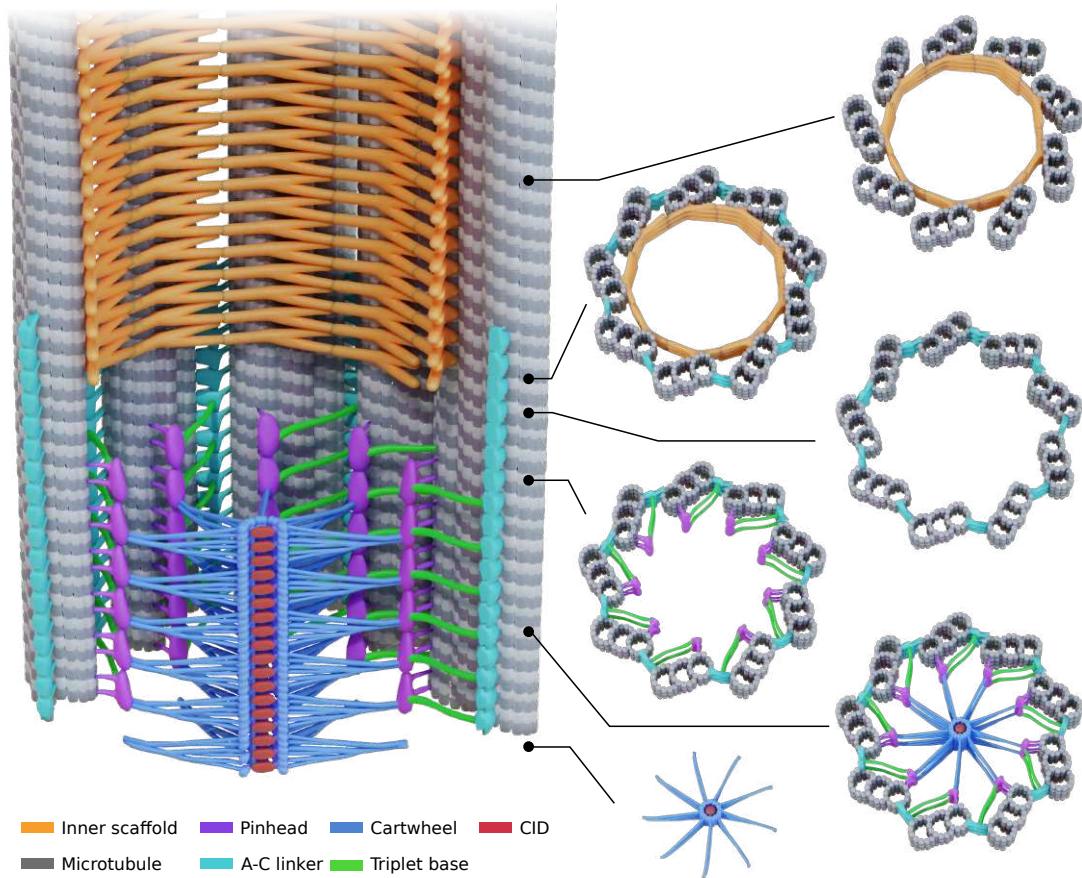


578

579 **Figure 4. Structural features of the centriole's proximal region in *P. tetraurelia***
 580 **and *C. reinhardtii*. (A, G) Cryo-electron tomograms of *P. tetraurelia* (A) and *C.***
 581 ***reinhardtii* (G) centrioles. Blue arrow denotes cartwheel, orange arrow denotes inner**

582 scaffold, red line with arrows denotes the proximal side of the centriole. Scale bar, 100
583 nm. (B, H) Nine-fold symmetrizations of serial cross sections taken along the proximal
584 to distal axis in *P. tetraurelia* (B) and *C. reinhardtii* (H). Each section is a z-projection
585 of 20.7 nm. White dashed circles delineate the structures highlighted in C and I. Scale
586 bar, 60 nm. (C, I) Zoomed images of proximal centriole substructures from nine-fold
587 symmetrizations of *P. tetraurelia* (C) and *C. reinhardtii* (I) along the proximal-distal
588 axis. Each panel corresponds to the above image from panel B or H. Purple arrow,
589 pinhead; light green arrow, triplet base; turquoise arrow, A-C linker; orange arrow,
590 inner scaffold. (D, J, K) Side view showing the transition from pinhead to inner scaffold
591 in *P. tetraurelia* (D) and *C. reinhardtii* (J, K). (E) Cartoon representation of panel D.
592 (F) Representative model of a cross section of a centriole's proximal region. Colored
593 arrows indicate the different structural features identified. (L) Cartoon representation
594 combining the z-projections in panels J and K. (M, N) Positioning of the different
595 structures along the proximal length from representative *P. tetraurelia* (M) and *C.*
596 *reinhardtii* (N) centrioles. Distance between the ends of the pinhead and cartwheel
597 regions is denoted by zone 1 (for quantification, see Figure S7E). Distance between end
598 of the pinhead region and start of the inner scaffold region is denoted by zone 2 (for
599 quantification, see Figure S7F). (O) Cartwheel and A-C linker length in *C. reinhardtii*,
600 *P. tetraurelia*, *N. gruberi*, and *H. sapiens*. Means and standard deviations of the mean
601 are displayed above the range. A-C linker, turquoise; cartwheel, blue; microtubule
602 triplets, grey.

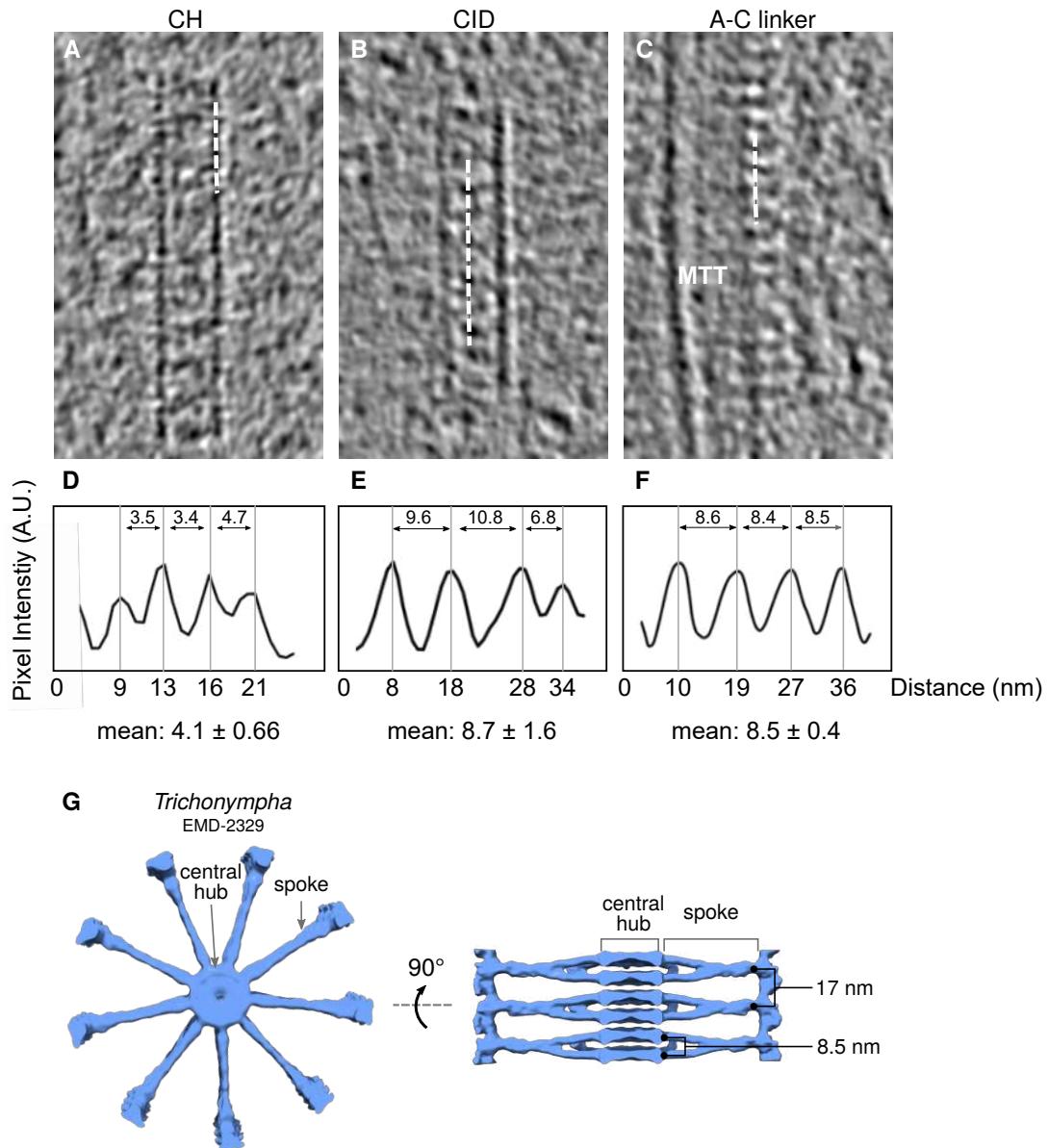
603



605 **Figure 5. Subtomogram averaging of the proximal triplet from *P. tetraurelia*. (A)**
606 Microtubule triplet reconstruction from the beginning of the proximal region, displayed
607 with a low contour threshold value to show the triplet base density (green) connected
608 to the pinhead (blue) and the A-C linker (turquoise). (B) Two adjacent triplets from the
609 beginning of proximal region, displayed with a higher contour threshold than in A. The
610 A-C linker is segmented into different substructures (patterned turquoise colors)
611 according to nomenclature (Li et al., 2019). The green dashed line indicates the putative
612 position of the triplet base. Non-tubulin densities are colored in red and purple. The
613 pinhead has been hidden in this view, as its reconstruction is not correct due to the 8.5
614 nm initial subvolume picking that imposes this periodicity on the structure. (C) Three-

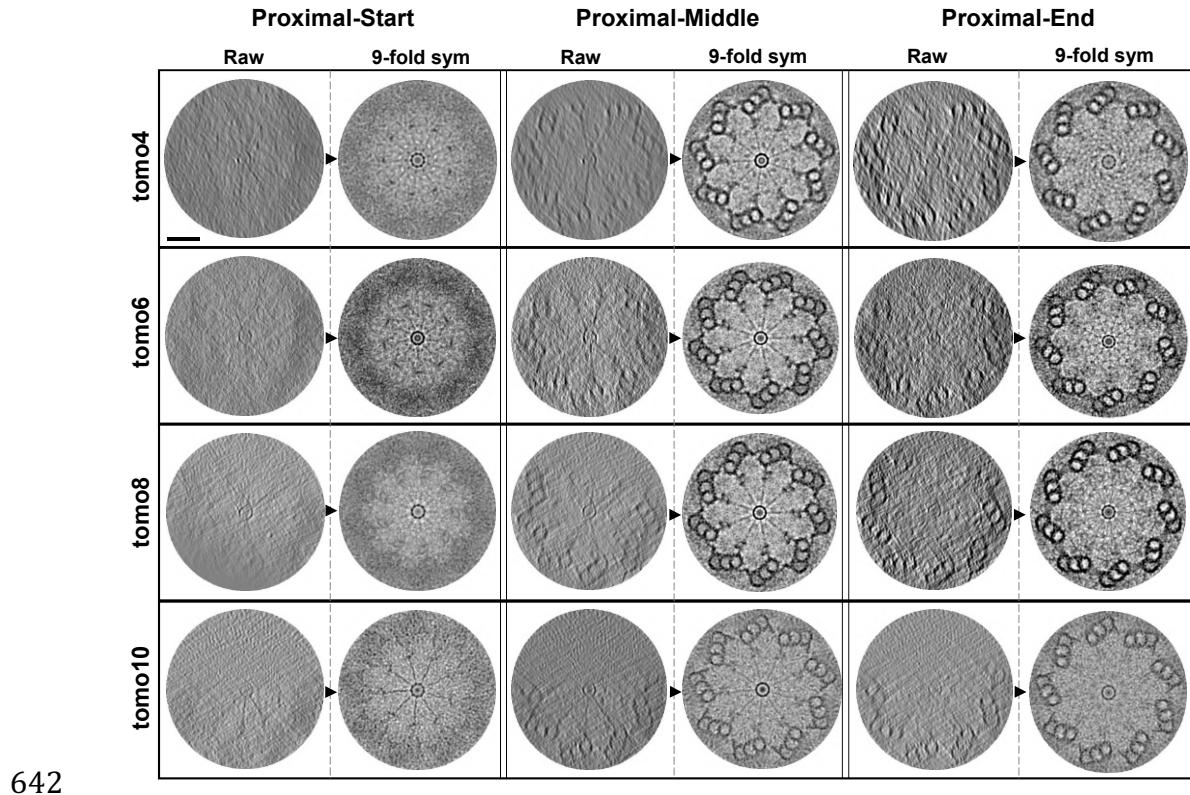
615 dimensional side view of the A-C linker from the lumen of the centriole. (D) Three-
616 dimensional side view of the A-C linker from outside the centriole (rotated 180° from
617 C). (E) Top views of independent averages from the more proximal (grey) and more
618 distal (blue) parts of the *P. tetraurelia* proximal region. (F) Focus on the A-C linker
619 from the beginning of the proximal region (left, grey), the end of the proximal region
620 (middle, blue), and the superimposition of both structures (right).

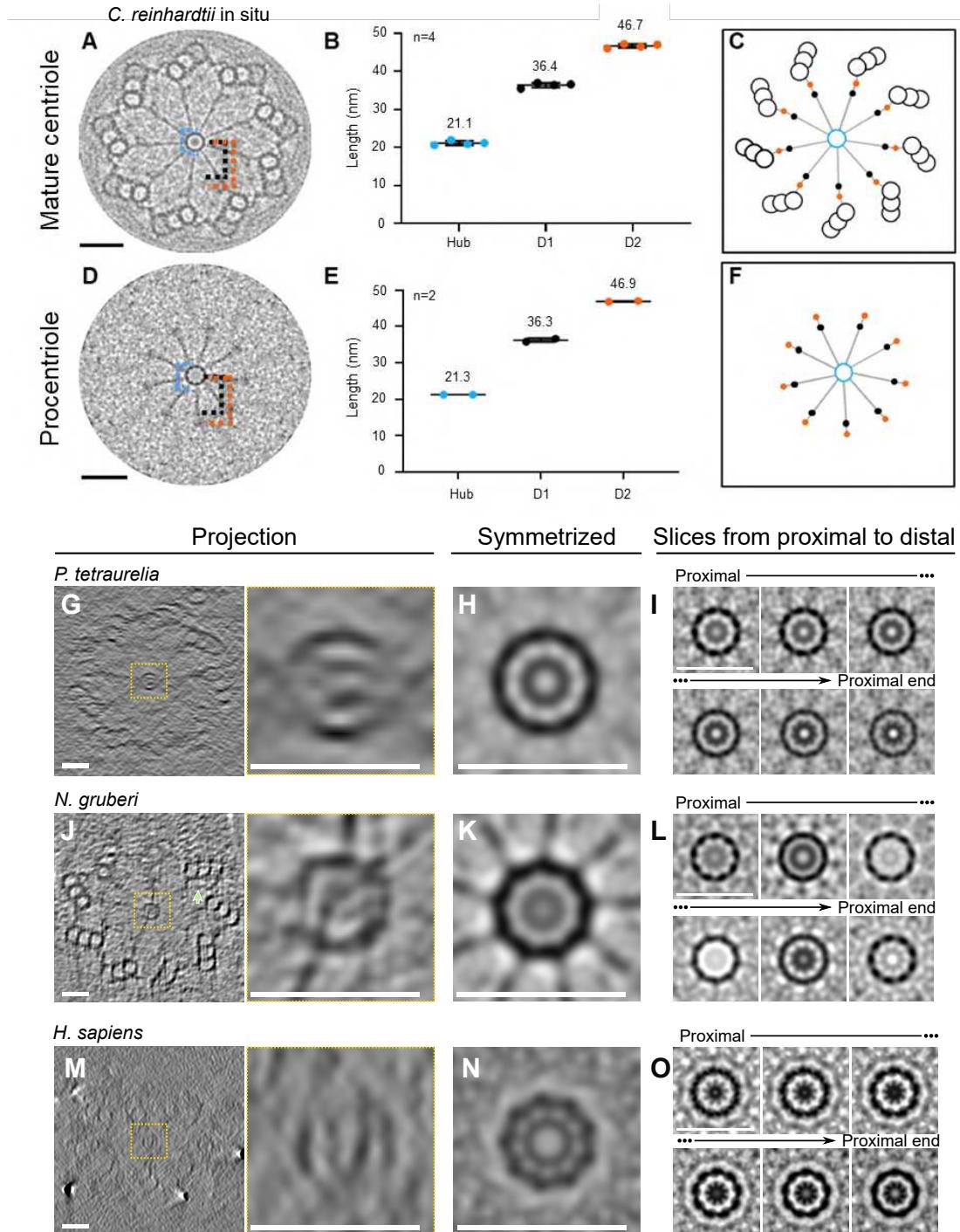
621


622

623

624 **Figure 6. Model of the architecture of the proximal region of the centriole.** The
625 colors corresponding to each structure are indicated in the legend. Note that the
626 cartwheel structure protrudes proximally from the microtubule wall; here, one unit has
627 been depicted that corresponds to an external cartwheel of about 25nm. The cartwheel's
628 structural unit consists of 3 ring-pairs, from which emanate 6 radial spokes that merge
629 into one density before contacting the pinhead structure. The pinhead and the A-C
630 linker are connected through the triplet base. The A-C linker extends more distal than
631 the cartwheel and co-exists with the inner scaffold structure.


632



633

634 **Figure S1. Periodicity along the central hub, cartwheel inner densities, and A-C**
635 **linker in *C. reinhardtii* *in situ* centrioles.** (A, B, C) Cryo-ET sections depicting
636 representative central hub (CH) (A), several cartwheel inner densities (CIDs) (B), and
637 A-C linker (C). Dashed white line denotes region from which plot profiles were
638 generated. (D, E, F) Plot profiles with their associated mean periodicity displayed
639 below. Scale bar, 20 nm. (G) Top and side views of *Trichonympha* cartwheel and
640 associated periodicities from (Guichard et al., 2013).

641

657 external edge the central hub to D1 and D2 densities of the radial spoke, respectively.

658 (B, E) Measurements of cartwheel features: mean diameter of the central hub (blue),

659 distance from the central hub to D1 (black) and D2 (orange) densities in mature

660 centrioles (B, n = 4) and procentrioles (E, n = 2). Mean values are displayed above data

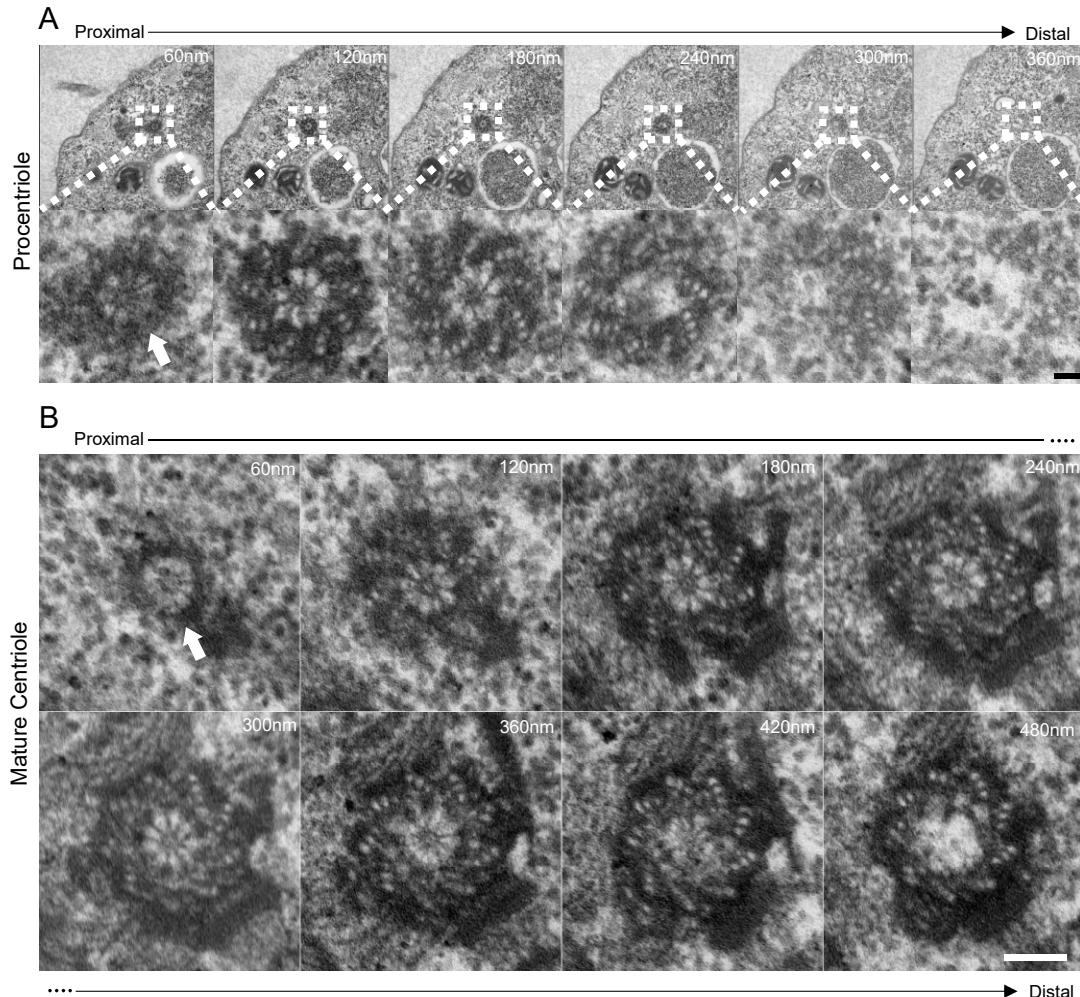
661 range. (C, F) Models of cartwheel organization and distance from the central hub to D1

662 and D2 in mature centrioles (C) and procentrioles (E). Central hub, blue; spoke, grey;

663 D1, black circle; D2, orange circle. (G, J, M) Cryo-electron tomogram cross sections

664 depicting top views of the proximal regions of *P. tetraurelia* (G), *N. gruberi* (J), and *H.*

665 *sapiens* (M). Yellow dashed box indicates central hub with the corresponding zoom on


666 the right. Scale bar, 40 nm. (H, K, N) Nine-fold symmetrized images corresponding to

667 the panels in A, J and M. (I, L, O) Symmetrized 4 nm serial projections through one

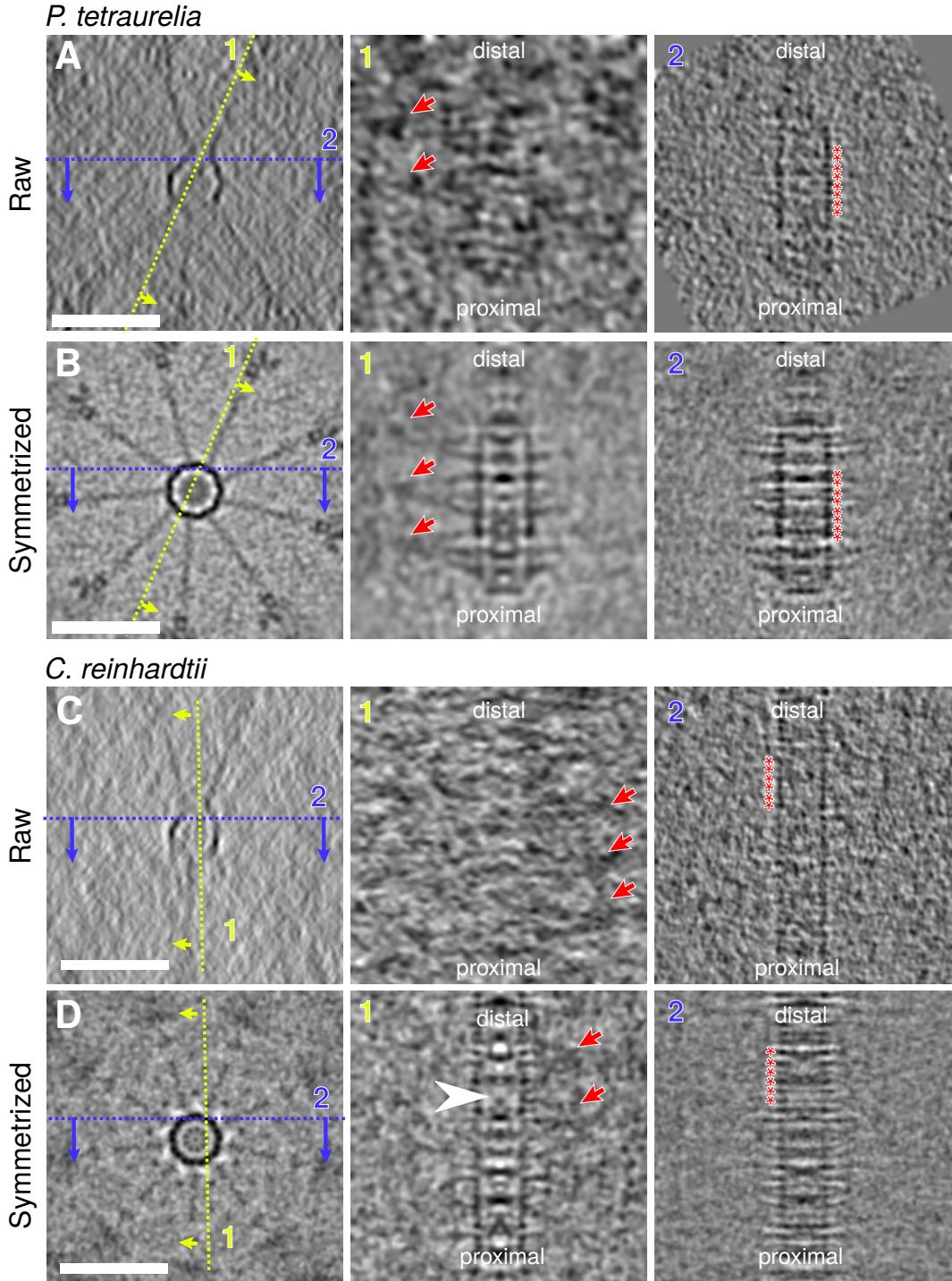
668 central hub of *P. tetraurelia* (I), *N. gruberi* (L), and *H. sapiens* (O). Scale bar, 40 nm.

669

670

671

672 **Figure S4. Resin-embedded *N. gruberi* cells display the proximal cartwheel**
673 **protrusion in both mature centrioles and procentrioles.** (A) Serial sections through
674 a procentriole in a resin-embedded *N. gruberi* cell, moving from proximal (left) to distal
675 (right). White-dashed box denotes the zoomed region in the bottom panel. White arrow
676 denotes the cartwheel extending beyond the proximal microtubule triplet region. Scale
677 bar, 50nm. (B) Serial sections through a mature centriole in a resin-embedded *N.*
678 *gruberi* cell, moving from proximal (left) to more distal (right). White arrow denotes
679 the cartwheel extending beyond the proximal microtubule triplet region. Scale bar,
680 100nm

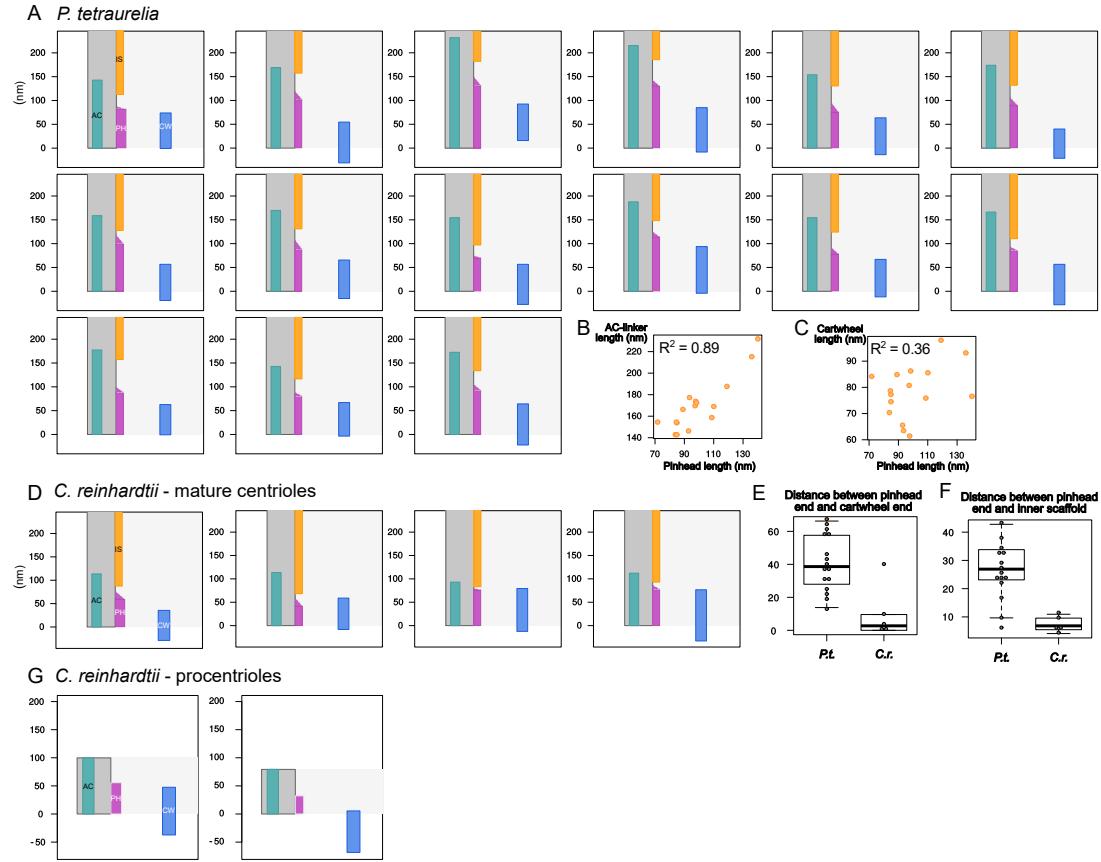

681

683 **Figure S5. Cartwheel spoke organization in *P. tetraurelia* and *C. reinhardtii* from**
684 **the central hub through the pinhead.** (A, B) Serial z-projections of approximately 4
685 nm thickness from subtomogram averages of *P. tetraurelia* (A) and *C. reinhardtii* (B)
686 cartwheels. The left-most z-projections display the central hub, the right-most
687 projections show the pinhead. Orange dashed lines delineate one repeat unit of the
688 cartwheel. Red arrows mark individual spokes, white arrows mark merged spokes, and
689 blue arrows with a line mark the final merged spoke (D1 density) longitudinally spaced
690 every 25 nm. Scale bars, 50 nm. (C) Bandpass filter applied to a *P. tetraurelia*
691 subtomogram average projection with a cutoff at 38 Å. Purple and blue arrows denote
692 the central hub and position of the associated plot profiles. The unfiltered projection
693 displays a mean periodicity of 4.0 ± 1.3 nm (SEM), while the projection filtered to 38

694 Å displays a mean periodicity of 8.6 +/- 0.4 nm (SEM). Scale bar, 20nm. (D) Plot
695 profile along the previously published *Trichonympha* central hub (EMD-2329)
696 displaying a longitudinal periodicity of 8.2 nm. Scale bar, 20nm.

697

699 **Figure S6. Raw and symmetrized cartwheels from *P. tetraurelia* and *C. reinhardtii*.**

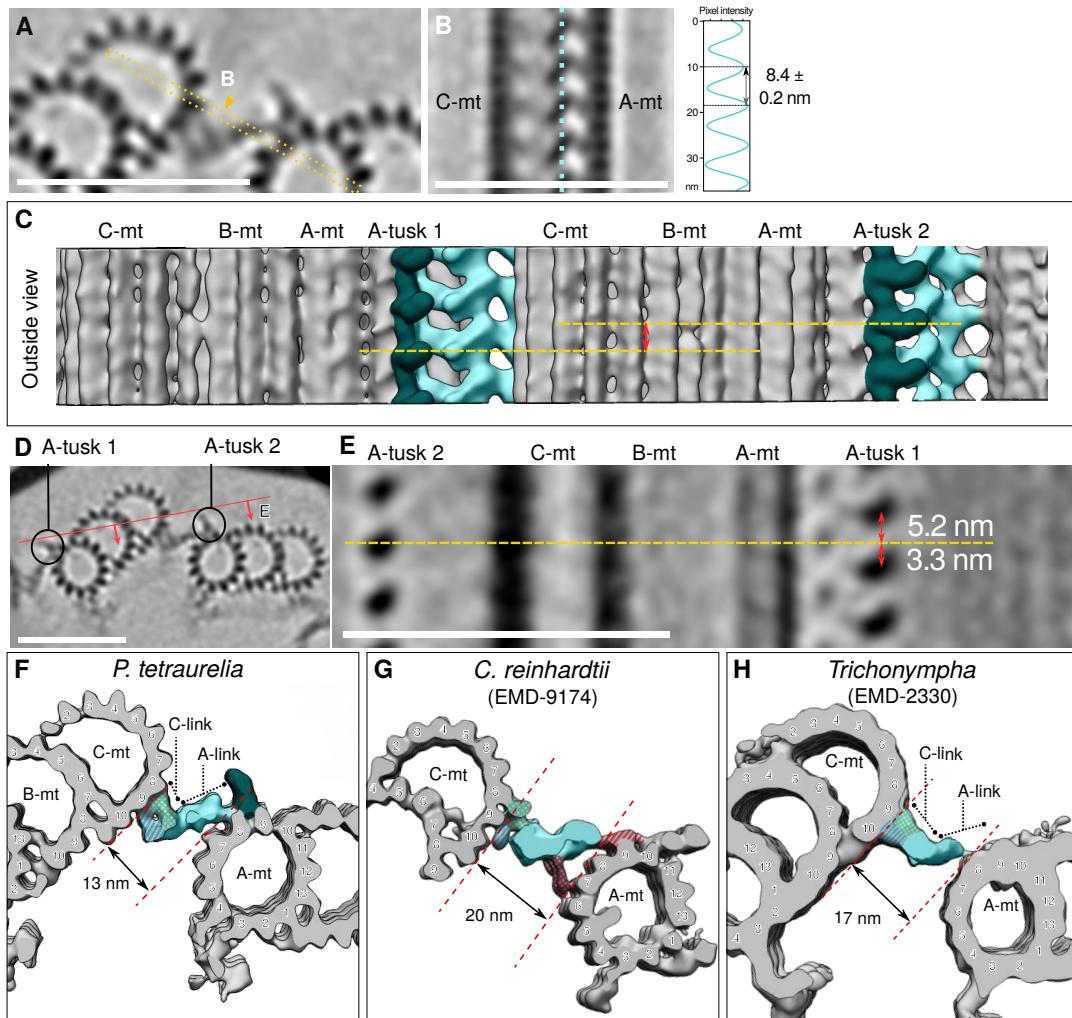

700 (A, C) Cryo-electron tomogram sections displaying the cartwheels of *P. tetraurelia* (A)

701 and *C. reinhardtii* (C) from top view (left panels) and side views (middle and right

702 panels). Scale bars, 50 nm. (B, D) Corresponding nine-fold symmetrized image

703 displaying the cartwheels of *P. tetraurelia* (B) and *C. reinhardtii* (D) from top view
704 (left panels) and side views (middle and right panels). Scale bars, 50 nm. Dashed yellow
705 lines and arrows indicate the position and direction of the reslice to visualize the radial
706 spokes (1), Dashed blue line and arrows indicate the position and direction of the reslice
707 to visualize the central hub (2). Red arrows indicate the position of merged spokes (1).
708 Red asterisks denote positions of central hub ring subunits (2).

709

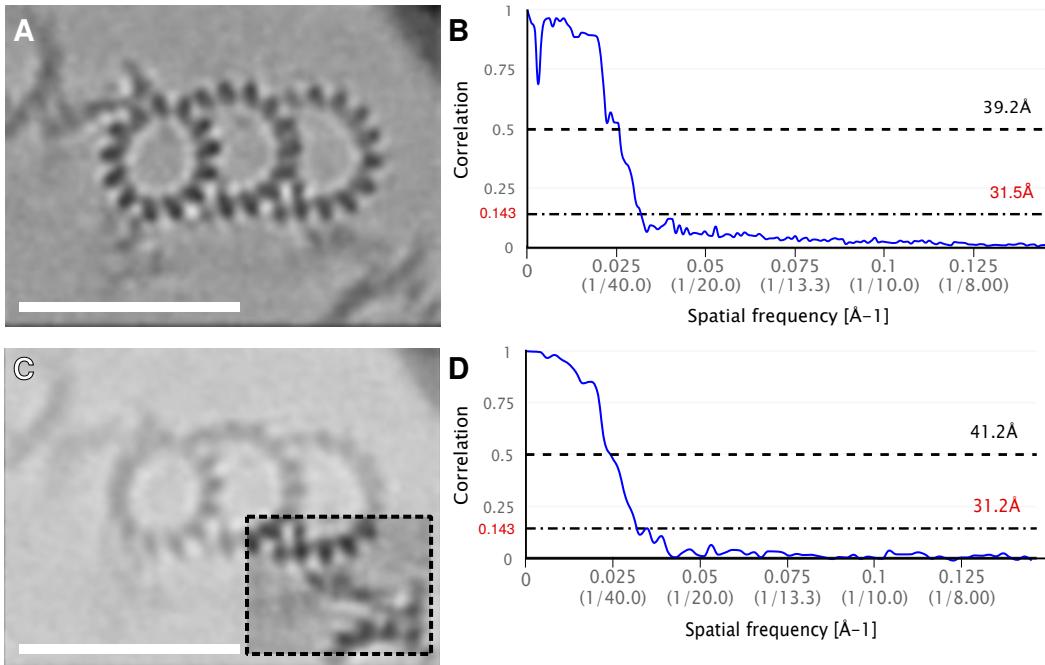


710

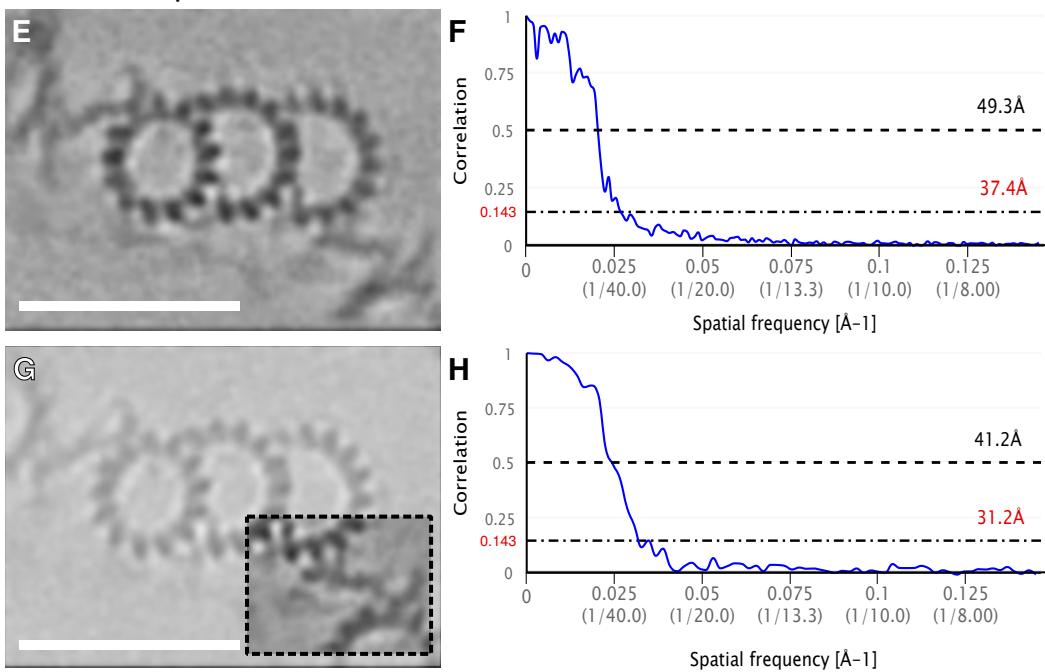
711 **Figure S7. Boundaries of the proximal region's structural features in *P. tetraurelia***
712 **and *C. reinhardtii* centrioles.** (A) Position of the different structures along the
713 proximal to distal axis of 15 different *P. tetraurelia* centrioles. Dark blue, cartwheel
714 (CW); magenta, pinhead (PH); turquoise, A-C linker (AC); orange, inner scaffold (IS);
715 dark grey, microtubules wall. (B) Correlation plot depicting A-C linker length versus
716 pinhead length from *P. tetraurelia* centrioles. N = 16, Pearson correlation coefficient
717 0.89. (C) Correlation plot depicting cartwheel length versus pinhead length from *P.*
718 *tetraurelia* centrioles. N = 16, Pearson correlation coefficient 0.36. (D) Position of the
719 different structures along the proximal to distal axis of 4 different *C. reinhardtii* mature
720 centrioles. Same color code as panel A. (E) Distance between the end of the pinhead
721 region and the end of the cartwheel region. (n = 16, *P. tetraurelia*; n = 5, *C. reinhardtii*).
722 (F) Distance between the end of the pinhead region and the beginning of the inner
723 scaffold region (n = 15, *P. tetraurelia*; n = 5, *C. reinhardtii*). (G) Position of the

724 different structures along the proximal to distal axis of 2 different *C. reinhardtii*
725 procentrioles.

726


727

728 **Figure S8. Architectural features of the *P. tetraurelia* proximal region, and**
729 **evolutionary comparison of the A-C linker.** (A) Z-projection of the reconstructed
730 junction between adjacent proximal microtubule triplets. Scale bar, 50 nm. (B) Cross-
731 section highlighting the lateral periodicity of the trunk and its associated plot profile
732 (right) measured along the light blue dotted line. Scale bar, 50 nm. (C) Three-
733 dimensional view of two adjacent proximal microtubule triplets seen from the outside
734 of the centriole. Yellow dashed lines indicate the position of the A-tusk of adjacent
735 triplets. The double headed red arrow indicates the shift along the z-axis between the
736 position of two consecutive A-tusks. (D) Z-projection image of two adjacent proximal
737 microtubule triplets. The red line indicates the position of the cross-section shown in


738 (E). Scale bar, 50 nm. (E) Cross-section of two proximal microtubules triplets showing
739 the shift along the z-axis of the A-tusk on one triplet (A-tusk 2) compared to the A-tusk
740 on the adjacent triplet (A-tusk 1). Scale bar, 50 nm. (F, G, H) Three-dimensional views
741 of *P. tetraurelia* (F), *C. reinhardtii* (G, EMD-9174, filtered to 45 Å) and *Trichonympha*
742 (H, EMD-2330). The dotted red lines define the distance between consecutive
743 microtubule triplets. Note that this distance varies between species. Microtubule triplets
744 are in grey and the A-C linker is in light blue/green. Dashed blue: arms A and B, blue:
745 trunk, red: legs. Dark green: A-tusk.

746

Proximal triplet, proximal subset

Proximal triplet, distal subset

747

748 **Figure S9. Resolutions of the subtomogram averages generated from the *P.***
749 ***tetraurelia* proximal centriole.** (A, C, E, G) Z-projections of the obtained 3D maps
750 (left) and their corresponding resolutions estimation by FSC curve (right, panel B, D,
751 F, H). Initial maps were obtained by averaging the entire microtubule triplet from only

752 the most proximal region (A) or the more distal part of the proximal region (E).

753 Additional maps were made by local refinement of the A-C linker (dashed squared area)

754 (C, G). Scale bars, 50 nm.

755

756

757 **Materials and Methods**

758 ***Paramecium tetraurelia* centriole isolation and cryo-electron tomography**

759 *P. tetraurelia* cortical units were isolated from two different strains, the wild type
760 reference strain d4-2 and and Δ -CenBP1, as previously described (Le Guennec et al.,
761 2020). Briefly, isolated *P. tetraurelia* centrioles were diluted with 1:1 colloidal gold in
762 10 mM K-PIPES buffer. Five microliters were deposited on 300 mesh lacey carbon grid
763 and blotted from the backside before plunging in liquid ethane using a manual plunge
764 freezing system. Tomograms were acquired with SerialEM software (Mastronarde,
765 2005) on a 300 kV FEI Titan Krios equipped with a Gatan K2 summit direct electron
766 detector. The tilt-series were recorded from approximately -60° to +60° (bidirectional,
767 2° steps, separated at -0°), using an object pixel size of 3.45 Å, a defocus around -5 µm
768 and a total dose of 70-120 electrons /Å².

769

770 **Culture and *in situ* tomography of *Chlamydomonas reinhardtii* cells**

771 The *in situ* of FIB-milling of *C. reinhardtii* centrioles was performed in the *mat3-4*
772 strain, as previously described (Le Guennec et al., 2020). In brief, 4 µl of *C. reinhardtii*
773 cells were deposited onto 200-mesh copper EM (R2/1, Quantifoil Micro Tools) and
774 vitrified using a Vitrobot Mark 4 (FEI Thermo Fisher Scientific). Cryo-FIB sample
775 preparation was performed as previously described (Schaffer et al., 2017, 2015). The
776 FIB-milled EM grids were transferred into a 300-kV FEI Titan Krios transmission
777 electron microscope, equipped with a post-column energy filter (Quantum, Gatan) and
778 a direct detector camera (K2 Summit, Gatan). Tomogram were acquired using
779 SerialEM software (Mastronarde, 2005), with tilt series between -60° and + 60°

780 (bidirectional, 2° steps, separated at -0° or -20°) and a total dose around 100
781 electrons/Å². A subset of tilt-series were acquired with a dose-symmetric scheme
782 (Hagen et al., 2017). Individual tilts were recorded in movie mode at 12 frames/s, at an
783 object pixel size of 3.42 Å and a defocus of -5 to -6 µm.

784

785 ***Naegleria gruberi* centriole isolation and cryo-electron tomography**

786 Centriole isolation and tomogram acquisition were performed as previously described
787 in (Le Guennec et al., 2020). Briefly, the *N. gruberi* NEG strain were differentiated into
788 flagellates (Fulton, 1977), and centrioles were isolated using a sucrose gradient.
789 Isolated centrioles were then deposited onto 200-mesh copper EM grids coated with
790 holey carbon (R3.5/1, Quantifoil Micro Tools) and plunge-frozen in a liquid
791 ethane/propane mixture. Tilt-series were recorded using SerialEM (Mastronarde, 2005)
792 on a 300 kV FEI Titan Krios transmission electron microscope, equipped with a direct
793 detector camera (K2 Summit, Gatan) and a post-column energy filter (Quantum,
794 Gatan). Tilt-series were bidirectional (2° steps, separated at -0° or -20°), and
795 individual images were recorded in movie mode at 10 frames/s, with an object pixel
796 size of 4.21 Å and a defocus of -5 to -8 µm.

797

798 **Human centriole isolation and cryo-electron tomography**

799 Human centrioles were isolated from the human lymphoblastic KE-37 cell line as
800 previously described, (Gogendeau et al., 2015) with modification described in (Le
801 Guennec et al., 2020). In brief, 5 µl of isolated centrioles diluted 1:2 with colloidal gold
802 in 10 mM K-PIPES buffer were deposited on 300 mesh lacey carbon grids, blotted from
803 the backside and quickly vitrified in liquid ethane using a manual plunge freezing.

804 Tomogram acquisition was performed a 300 kV FEI Titan Krios equipped with a Gatan
805 K2 summit direct electron detector. Bidirectional tilt series (2° steps, separated at -20°)
806 were acquired with SerialEM (Mastronarde, 2005). Each tilt was recorded in movie
807 mode at 12 frames/s with an object pixel size of 3.42 Å and a defocus of -4 to -6 µm.

808

809 **Subtomogram averaging of the A-C linker**

810 From 11 tomograms of *P. tetraurelia* centrioles, 16 centrioles contained an
811 intact proximal region. The positions of microtubules triplets were picked and
812 interpolated every 8.5 nm as described in (Le Guennec et al., 2020) along the region
813 displaying the A-C linker structure. Using Dynamo (Castaño-Díez et al., 2012), 1941
814 subtomograms of 320 x 320 x 320 voxels were extracted, encompassing the
815 microtubule triplet with its associated A-C linkers. Initially, the microtubule triplets
816 were roughly aligned on the *Trichonympha* reference (EMD-2330) (Guichard et al.,
817 2013). To discriminate between subtomograms from the most proximal region and from
818 the most distal region, a mask was created around the A-B inner junction where either
819 the pinhead (a proximal marker) or the inner scaffold (a more distal marker) lies. A
820 multireference alignment job was launched on this region, allowing us to classify our
821 set into two classes: the “proximal-proximal” class (n = 1042) and the “proximal-distal”
822 class (n = 899). For each set, the average was generated as a reference for the next step.
823 Each set was then divided into two independent halves and aligned for a few iterations
824 to produce two averages. The resolution was estimated using Fourier shell correlation
825 (FSC) with a cut-off at 0.143. One of the averages was bandpass filtered at this
826 resolution and the two half-sets were aligned on this filtered map to generate the final
827 map.

828 The new aligned set was then split again into two halves, each half was locally
829 aligned on the A-C linker region of the final map. After the two halves were aligned
830 and the resolution computed, they were aligned on a common filtered map as previously
831 performed for the global map.

832 The global map and the A-C linker map were combined together as described
833 in (Le Guennec et al., 2020) to generate a volume displaying two adjacent microtubule
834 triplets connected through the A-C linker. This map was then binned by a factor of 2
835 and combined with a rotated duplicate of itself to form a structure of the complete nine-
836 fold proximal region, as described in (Le Guennec et al., 2020).

837

838 **Subtomogram averaging of the cartwheel**

839 ***P. tetraurelia* cartwheel:**

840 From 7 tomograms, 10 intact cartwheels were extracted as subtomograms with
841 dimensions of 420 x 420 x 420 voxels. For each cartwheel, 9 duplicates were generated,
842 each of them was rotated by a multiple of 40° to produce 9 different orientations of the
843 original cartwheel. Each new volume was then shifted by -25, 0 or +25 nm to position
844 a different unit of the cartwheel in the center of the volume. For each cartwheel, 27
845 subtomograms were generated (9 orientations x 3 units), resulting in 270 subtomograms
846 in total from 10 cartwheels. To reduce the noise, the subtomograms were filtered using
847 the nonlinear anisotropic diffusion command of Bsoft (Heymann et al., 2008).

848 An initial reference was generated by taking a cartwheel and its 8 differently
849 oriented copies and averaging them together. The 270 subtomograms were aligned on
850 this reference using SPIDER (Frank et al., 1996). After a few iterations, the average
851 generated was used as a new reference on which the original, filtered but not aligned,

852 subtomograms were aligned. From the 270 subtomograms, 38 failed to correctly align
853 and thus were removed from the final set, resulting in 232 subtomograms used for the
854 averaging. Nine-fold symmetry was then applied on the generated map to increase the
855 contrast of the volume.

856 ***C. reinhardtii* cartwheel:**

857 From five bin2 tomograms, 5 cartwheels were extracted as subtomograms with
858 dimensions of 210 x 210 x 210 voxels. For each cartwheel, 9 duplicates were generated,
859 each duplicate was rotated by a multiple of 40° to generate 9 different orientations of
860 the original cartwheel. Each rotated volume was then shifted by -25, 0, or +25 nm to
861 position different units of the cartwheel in the center of the volume. From five
862 cartwheels, 9 x 3 = 27 subtomograms were generated resulting in 135 subtomograms
863 in total. To improve the contrast, subtomograms were binned by a factor 2.

864 The 135 subtomograms were first aligned on the *P. tetraurelia* cartwheel map
865 previously generated. Out of the 135 subtomograms, 86 were correctly aligned and used
866 to produce an average map. This map was filtered by applying 3 iterations of Gaussian
867 filter (with a sigma value of 2). The originally unaligned subtomograms were then
868 aligned on this filtered average. 102 subtomograms were correctly aligned and kept to
869 generate the average map. Nine-fold symmetry was then applied on the generated map
870 to increase the contrast of the volume.

871

872 **Symmetrization**

873 Top views of centrioles were generated using a z-projection of few slices from
874 the cryo-tomogram and processed with the ImageJ plugin CentrioleJ for circularization
875 and symmetrization (Guichard et al., 2013).

876 The symmetrization of the CID region was performed by generating a z-
877 projection of a proximal part centered on the CID. From this image, 9 duplicates were
878 generated by applying rotation from 0 to 360 degrees with a step of 40 degrees using
879 Bsoft (Heymann et al., 2008). The 9 rotated images were then averaged together using
880 SPIDER (Frank et al., 1996).

881

882 **Transmission electron microscopy of *Naegleria gruberi* serial section**

883 *N. gruberi* NEG cells were differentiated from amoebae into flagellates as
884 described in (Le Guennec et al., 2020), following a standard protocol (Fulton, 1977).
885 Cells were fixed 50-80 minutes after the initiation of differentiation in order to observe
886 both procentrioles and mature centrioles. The cells were pelleted and resuspended in 60
887 mM HEPES, 4 mM CaCl₂, 2.5% glutaraldehyde, pH 7.2 and fixed for 120 min at room
888 temp (replacing the fixative with fresh solution after 40 minutes). Cells were washed
889 2x 5 min in 60 mM HEPES, 4 mM CaCl₂, pH 7.2 and osmicated using 1 % OsO₄ in
890 distilled water for 75 min at 4 °C. Cells were washed 3x 10 min in distilled water before
891 en bloc staining in 1 % uranyl acetate in distilled water overnight at 4 °C. After washing
892 3x 10 min in distilled water, the cells were embedded in 1 % Agar noble (BD Difco,
893 Sparks, MD, USA). Dehydration in ethanol, infiltration with Epon 812 (Serva
894 Electrophoresis, Heidelberg, Germany) and final embedding was performed following
895 standard procedures. Ultrathin serial sections (nominal 60 nm thickness) were cut with
896 a diamond knife (type ultra 35°; Diatome, Biel, Switzerland) on an EM UC6
897 ultramicrotome (Leica, Wetzlar, Germany) and mounted on single-slot Pioloform-
898 coated copper grids (Plano, Wetzlar, Germany). Sections were stained with uranyl
899 acetate and lead citrate (Reynolds, 1963) and viewed with a JEM-2100 transmission

900 electron microscope (JEOL, Tokyo, Japan) operated at 80 kV. Micrographs were
901 acquired using a 4K charge-coupled device camera (UltraScan 4000; Gatan,
902 Pleasanton, CA) and Gatan Digital Micrograph software (version 1.70.16.).

903

904 **References**

905 Aydogan MG, Wainman A, Saurya S, Steinacker TL, Caballe A, Novak ZA,
906 Baumbach J, Muschalik N, Raff JW. 2018. A homeostatic clock sets daughter
907 centriole size in flies. *J Cell Biol* **217**:1233–1248. doi:10.1083/jcb.201801014

908 Azimzadeh J, Bornens M. 2007. Structure and duplication of the centrosome. *J Cell
909 Sci* **120**:2139–2142.

910 Bayless B a, Giddings TH, Winey M, Pearson CG. 2012. Bld10/Cep135 stabilizes
911 basal bodies to resist cilia-generated forces. *Mol Biol Cell* **23**:4820–32.
912 doi:10.1091/mbc.E12-08-0577

913 Carvalho-Santos Z, Machado P, Alvarez-Martins I, Gouveia SM, Jana SC, Duarte P,
914 Amado T, Branco P, Freitas MC, Silva STN, Antony C, Bandeiras TM,
915 Bettencourt-Dias M. 2012. BLD10/CEP135 is a microtubule-associated protein
916 that controls the formation of the flagellum central microtubule pair. *Dev Cell*
917 **23**:412–24. doi:10.1016/j.devcel.2012.06.001

918 Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H. 2012. Dynamo: a flexible,
919 user-friendly development tool for subtomogram averaging of cryo-EM data in
920 high-performance computing environments. *J Struct Biol* **178**:139–51.
921 doi:10.1016/j.jsb.2011.12.017

922 Cottee M a, Muschalik N, Wong YL, Johnson CM, Johnson S, Andreeva A, Oegema

923 K, Lea SM, Raff JW, van Breugel M. 2013. Crystal structures of the CPAP/STIL
924 complex reveal its role in centriole assembly and human microcephaly. *Elife*
925 2:e01071. doi:10.7554/eLife.01071

926 Dippell RV. 1968. The development of basal bodies in paramecium. *Proc Natl Acad
927 Sci U S A* 61:461.

928 Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith a. 1996. SPIDER
929 and WEB: processing and visualization of images in 3D electron microscopy and
930 related fields. *J Struct Biol* 116:190–9. doi:10.1006/jsb.1996.0030

931 Fulton C. 1977. Cell Differentiation in Naegleria Gruberi. *Annu Rev Microbiol*
932 31:597–627. doi:10.1146/annurev.mi.31.100177.003121

933 Geimer S, Melkonian M. 2004. The ultrastructure of the Chlamydomonas reinhardtii
934 basal apparatus: identification of an early marker of radial asymmetry inherent in
935 the basal body. *J Cell Sci* 117:2663–74. doi:10.1242/jcs.01120

936 Gibbons IR, Grimstone a V. 1960. On flagellar structure in certain flagellates. *J
937 Biophys Biochem Cytol* 7:697–716.

938 Gogendeau D, Guichard P, Tassin AM. 2015. Purification of centrosomes from
939 mammalian cell lines, Methods in Cell Biology. Elsevier.
940 doi:10.1016/bs.mcb.2015.03.004

941 Gönczy P. 2012. Towards a molecular architecture of centriole assembly. *Nat Rev
942 Mol Cell Biol* 13:425–35. doi:10.1038/nrm3373

943 Greenan GA, Keszthelyi B, Vale RD, Agard DA. 2018. Insights into centriole
944 geometry revealed by cryotomography of doublet and triplet centrioles. *Elife*
945 7:1–18. doi:10.7554/eLife.36851

946 Grigorieff N. 2013. Direct detection pays off for electron cryo-microscopy. *Elife*
947 2013:2–4. doi:10.7554/eLife.00573

948 Guichard P, Chrétien D, Marco S, Tassin A-M. 2010. Procentriole assembly revealed
949 by cryo-electron tomography. *EMBO J.*

950 Guichard P, Desfosses A, Maheshwari A, Hachet V, Dietrich C, Brune A, Ishikawa T,
951 Sachse C, Gönczy P. 2012. Cartwheel architecture of Trichonympha basal body.
952 *Science* 337:553. doi:10.1126/science.1222789

953 Guichard P, Hachet V, Majubu N, Neves A, Demurtas D, Olieric N, Flückiger I,
954 Yamada A, Kihara K, Nishida Y, Moriya S, Steinmetz MO, Hongoh Y, Gönczy
955 P. 2013. Native architecture of the centriole proximal region reveals features
956 underlying its 9-fold radial symmetry. *Curr Biol* 23:1620–8.
957 doi:10.1016/j.cub.2013.06.061

958 Guichard P, Hamel V, Gönczy P. 2018. The Rise of the Cartwheel: Seeding the
959 Centriole Organelle. *BioEssays* 40. doi:10.1002/bies.201700241

960 Guichard P, Hamel V, Le Guennec M, Banterle N, Iacovache I, Nemčíková V,
961 Flückiger I, Goldie KN, Stahlberg H, Lévy D, Zuber B, Gönczy P. 2017. Cell-
962 free reconstitution reveals centriole cartwheel assembly mechanisms. *Nat
963 Commun* 8:14813. doi:10.1038/ncomms14813

964 Hagen WJH, Wan W, Briggs JAG. 2017. Implementation of a cryo-electron
965 tomography tilt-scheme optimized for high resolution subtomogram averaging. *J
966 Struct Biol* 197:191–198. doi:10.1016/j.jsb.2016.06.007

967 Hamel V, Steib E, Hamelin R, Armand F, Borgers S, Flückiger I, Busso C, Olieric N,
968 Sorzano COS, Steinmetz MO, Guichard P, Gönczy P. 2017. Identification of

969 Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human
970 WDR90 in Ciliogenesis. *Curr Biol* **27**:2486-2498.e6.
971 doi:10.1016/j.cub.2017.07.011

972 Heymann JB, Cardone G, Winkler DC, Steven AC. 2008. Computational resources
973 for cryo-electron tomography in Bsoft. *J Struct Biol* **161**:232–42.
974 doi:10.1016/j.jsb.2007.08.002

975 Hilbert M, Noga A, Frey D, Hamel V, Guichard P, Kraatz SHW, Pfreundschuh M,
976 Hosner S, Flückiger I, Jaussi R, Wieser MM, Thielges KM, Deupi X, Müller
977 DJ, Kammerer RA, Gönczy P, Hirono M, Steinmetz MO. 2016. SAS-6
978 engineering reveals interdependence between cartwheel and microtubules in
979 determining centriole architecture **18**. doi:10.1038/ncb3329

980 Hiraki M, Nakazawa Y, Kamiya R, Hirono M. 2007a. Bld10p constitutes the
981 cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. *Curr
982 Biol* **17**:1778–1783.

983 Hiraki M, Nakazawa Y, Kamiya R, Hirono M. 2007b. Bld10p constitutes the
984 cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. *Curr
985 Biol* **17**:1778–1783.

986 Hirono M. 2014. Cartwheel assembly. *Philos Trans R Soc Lond B Biol Sci* **369**.
987 doi:10.1098/rstb.2013.0458

988 Keller LC, Marshall WF. 2008. Isolation and proteomic analysis of chlamydomonas
989 centrioles. *Methods Mol Biol* **432**:289–300. doi:10.1007/978-1-59745-028-7-20

990 Keller LC, Romijn EP, Zamora I, Yates JR, Marshall WF. 2005. Proteomic analysis
991 of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.

992 *Curr Biol* **15**:1090–8. doi:10.1016/j.cub.2005.05.024

993 Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D, Olieric V, Bortfeld M, Erat

994 MC, Flückiger I, Gönczy P, Steinmetz MO. 2011. Structural Basis of the 9-Fold

995 Symmetry of Centrioles. *Cell* **144**:1–12. doi:10.1016/j.cell.2011.01.008

996 Kraatz S, Guichard P, Obbineni JM, Olieric N, Hatzopoulos GN, Hilbert M, Sen I,

997 Missimer J, Gönczy P, Steinmetz MO. 2016. The Human Centriolar Protein

998 CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule

999 Binding. *Structure* **24**:1358–1371. doi:10.1016/j.str.2016.06.011

1000 Kudryashev M, Castaño-Díez D, Stahlberg H. 2012. Limiting factors in single particle

1001 cryo electron tomography. *Comput*

1002 Le Guennec M, Klena N, Gambarotto D, Laporte MH, Tassin A, van den Hoek H,

1003 Erdmann PS, Schaffer M, Kovacik L, Borgers S, Goldie KN, Stahlberg H,

1004 Bornens M, Azimzadeh J, Engel BD, Hamel V, Guichard P. 2020. A helical

1005 inner scaffold provides a structural basis for centriole cohesion. *Sci Adv*

1006 **6**:eaaz4137. doi:10.1126/sciadv.aaz4137

1007 Leidel S, Delattre M, Cerutti L, Baumer K, Gönczy P. 2005. SAS-6 defines a protein

1008 family required for centrosome duplication in *C. elegans* and in human cells. *Nat*

1009 *Cell Biol* **7**:115–125.

1010 Li S, Fernandez J-J, Marshall WF, Agard D a. 2011. Three-dimensional structure of

1011 basal body triplet revealed by electron cryo-tomography. *EMBO J* 1–11.

1012 doi:10.1038/emboj.2011.460

1013 Li S, Fernandez J-J, Marshall WF, Agard DA. 2019. Electron cryo-tomography

1014 provides insight into procentriole architecture and assembly mechanism. *Elife*

1015 8:1–25. doi:10.7554/eLife.43434

1016 Mastronarde DN. 2005. Automated electron microscope tomography using robust
1017 prediction of specimen movements. *J Struct Biol* **152**:36–51.
1018 doi:10.1016/j.jsb.2005.07.007

1019 Matsuura K, Lefebvre PA, Kamiya R, Hirono M. 2004. Bld10p, a novel protein
1020 essential for basal body assembly in Chlamydomonas: localization to the
1021 cartwheel, the first ninefold symmetrical structure appearing during assembly. *J
1022 Cell Biol* **165**:663–671.

1023 Nakazawa Y, Hiraki M, Kamiya R, Hirono M. 2007. SAS-6 is a cartwheel protein
1024 that establishes the 9-fold symmetry of the centriole. *Curr Biol* **17**:2169–2174.

1025 Nigg EA, Raff JW. 2009. Centrioles, centrosomes, and cilia in health and disease.
1026 *Cell* **139**:663–678.

1027 Qiao R, Cabral G, Lettman MM, Dammermann A, Dong G. 2012. SAS-6 coiled-coil
1028 structure and interaction with SAS-5 suggest a regulatory mechanism in *C.
1029 elegans* centriole assembly. *EMBO J* **31**:4334–4347.
1030 doi:10.1038/emboj.2012.280

1031 Reynolds ES. 1963. THE USE OF LEAD CITRATE AT HIGH pH AS AN
1032 ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY. *J Cell Biol*
1033 **17**:208–212. doi:10.1083/jcb.17.1.208

1034 Rogala KB, Dynes NJ, Hatzopoulos GN, Yan J, Pong SK, Robinson C V., Deane
1035 CM, Gönczy P, Vakonakis I. 2015. The *Caenorhabditis elegans* protein SAS-5
1036 forms large oligomeric assemblies critical for centriole formation. *Elife* **4**:1–51.
1037 doi:10.7554/eLife.07410

1038 Schaffer M, Engel BD, Laugks T, Mahamid J, Plitzko JM, Baumeister W. 2015.

1039 Cryo-focused Ion Beam Sample Preparation for Imaging Vitreous Cells by Cryo-

1040 electron Tomography. *Bio-protocol* **5**.

1041 Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM. 2017.

1042 Optimized cryo-focused ion beam sample preparation aimed at in situ structural

1043 studies of membrane proteins. *J Struct Biol* **197**:73–82.

1044 doi:10.1016/j.jsb.2016.07.010

1045 Shimanovskaya E, Qiao R, Lesigang J, Dong G. 2013. The SAS-5 N-terminal domain

1046 is a tetramer, with implications for centriole assembly in *C. elegans*. *Worm*

1047 **2**:e25214. doi:10.4161/worm.25214

1048 Stevens NR, Dobbelaere J, Brunk K, Franz A, Raff JW. 2010. Drosophila Ana2 is a

1049 conserved centriole duplication factor. *J Cell Biol* **188**:313–323.

1050 Strnad P, Gönczy P. 2008. Mechanisms of procentriole formation. *Trends Cell Biol*

1051 **18**:389–96. doi:10.1016/j.tcb.2008.06.004

1052 van Breugel M, Hirono M, Andreeva A, Yanagisawa H-A, Yamaguchi S, Nakazawa

1053 Y, Morgner N, Petrovich M, Ebong I-O, Robinson C V, Johnson CM,

1054 Veprintsev D, Zuber B. 2011. Structures of SAS-6 suggest its organization in

1055 centrioles. *Science* **331**:1196–9. doi:10.1126/science.1199325

1056 van Breugel M, Wilcken R, McLaughlin SH, Rutherford TJ, Johnson CM. 2014.

1057 Structure of the SAS-6 cartwheel hub from *Leishmania major*. *eLife* **3**:e01812.

1058 doi:10.7554/eLife.01812

1059 Vorobjev IA, Chentsov YS. 1980. The ultrastructure of centriole in mammalian tissue

1060 culture cells. *Cell Biol Int Rep* **4**:1037–44.

1061 Winey M, O'Toole E. 2014. Centriole structure. *Philos Trans R Soc Lond B Biol Sci*

1062 **369.** doi:10.1098/rstb.2013.0457

1063 Yoshiba S, Tsuchiya Y, Ohta M, Gupta A, Shiratsuchi G, Nozaki Y, Ashikawa T,

1064 Fujiwara T, Natsume T, Kanemaki MT, Kitagawa D. 2019. HsSAS-6-dependent

1065 cartwheel assembly ensures stabilization of centriole intermediates. *J Cell Sci*

1066 **132.** doi:10.1242/jcs.217521

1067

1068