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Abstract:

The layered architecture of cortex is thought to play a fundamental role in shaping cortical
computations. However, direct electrophysiological measurements of layered activity are not
possible non-invasively in humans. Recent advances have shown that a distinction of two
layers can be achieved using magnetoencephalography in combination with head casts and
advanced spatial modeling. In this technical note, we present a dynamic causal model of a
single cortical microcircuit that models event related potentials. The model captures the
average dynamics of a detailed two layered circuit. It combines a temporal model of neural
dynamics with a spatial model of a layer specific lead field to facilitate layer separation. In
simulations we show that the spatial arrangement of the two layers can be successfully
recovered using Bayesian inference. The layered model can also be distinguished from a
single dipole model. We conclude that precision magnetoencephalography in combination with
detailed dynamical system modeling can be used to study non-invasively the fast dynamics of

layered computations.
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Introduction

Its layered structure is one of the defining anatomical features of cerebral cortex (Douglas and
Martin, 2004). How this layered, hierarchical organization relates to the computational
properties of the human brain is still not understood in detail. However, theoretical predictions
have been made about a possible role of the layered architecture (Bastos et al., 2012; Douglas
and Martin, 2007; Heinzle et al., 2007). For example, predictive coding (Friston, 2005; Rao and
Ballard, 1999), a specific instantiation of the general “Bayesian brain” theory (Knill and Pouget,
2004), can be implemented by a hierarchy of layered microcircuits, with distinct computational

roles of neurons in different layers (Bastos et al., 2012; Shipp, 2016; Stephan et al., 2019).

In order to test hypotheses like predictive coding in humans, non-invasive measurements of
layered activity are required. One option for this is presented by recent advances in high-
resolution layered functional magnetic resonance imaging (fMRI) (De Martino et al., 2015; Kok
et al., 2016; Muckli et al., 2015). However, fMRI provides an indirect and intrinsically slow
measure of neural activity which might suffer from blood draining effects when applied to layers
(Heinzle et al., 2016). Separation of feedforward (bottom-up) and feedback (top-down) streams
would be facilitated by a more direct, electrophysiological measurement of layered activity as,
for example, provided by magnetoencephalography (MEG, for a review see Baillet, 2017). The
spatial specificity of MEG can be improved by assuring precise positioning of the head within
the MEG and a high-resolution cortical model of layers (Bonaiuto et al., 2018a; Troebinger et
al., 2014b). Simulation studies have shown that under these conditions oscillatory activity can
be reliably distinguished between two layers located at the pial surface or gray matter - white
matter boundary, respectively (Bonaiuto et al., 2018b; Troebinger et al., 2014a). To date, these
studies have focused on inversion of a precise “spatial model” describing the mapping from

one (or several) current dipole(s) distributed on the two cortical surfaces to sensor activity.

In contrast, temporal models which describe the dynamics of neural activity are routinely
considered within the dynamic causal modeling (DCM) framework. DCMs of EEG and MEG
are generative models that explain measured MEG/EEG sensor data through a forward
mapping of activity in one or several connected cortical columns. These are modeled as
microcircuits consisting of several neural populations (e.g. supra- and infragranular pyramidal
neurons, spiny stellate and inhibitory neurons of a cortical column). For reviews see for
example (Kiebel et al., 2009; Moran et al., 2013). However, the spatial model in DCM has, to
date, not allowed the investigation of neural signals at the resolution of layers. Instead, this
approach has considered contributions of individual populations from different layers by
attributing the weighted summed activity to a single point source or current dipole. Using this
forward model, networks of layered microcircuits were used to study the relative importance of

feed-forward and feed-back connections in auditory mismatch (Garrido et al., 2008) and the
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processing of face (Chen et al.,, 2009) and somatosensory stimuli (Auksztulewicz and
Blankenburg, 2013). Recently, a dynamic causal model was applied to invasively recorded
depth dependent cortical activity of mice (Pinotsis et al., 2017), directly predicting layered
signals. This model was based on previous work that proposed a small network of groups of
neurons to explain somatosensory evoked potentials (Jones et al., 2007) and mu-rhythms
(Jones et al., 2009) in MEG. Notably, Jones et al (2007) used detailed compartmental neurons
to directly model currents in dendritic trees. They manually adjusted parameters to match the

resulting current dipole changes to source reconstructed MEG data.

Here, we augment previous generative modeling attempts that focus mainly on temporal
models (e.g. Garrido et al., 2008) or on spatial aspects (Bonaiuto et al., 2018a; Troebinger et
al., 2014a). We fit a temporal model of a laminar circuit to simulated MEG data while making
use of precise anatomical information. This allows us to assign different dipoles to different
cortical layers. As a basis for the temporal model we use a canonical microcircuit (Bastos et
al., 2012; Moran et al., 2013) approximation to the Jones model (Jones et al., 2007). In
simulations, we show that a model with correct layer information can be distinguished from
models where this information is reversed or missing at signal to noise levels that are
commonly observed in MEG. We show how the addition of temporal information removes
considerable ambiguity in the spatial model by constraining sources to lie on the correct sulcal
wall. We then investigate how this inference on layered circuits depends on parameter settings
and how well the distance between current dipoles in supra- and infragranular layers can be
estimated. Finally, we investigate to what degree adding more sensors increases the sensitivity
of the method. In summary, our simulations show that inversion of layered dynamic models is

possible under reasonable SNR settings.
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Methods

The simulations and model inversions performed in this paper use the DCM for EEG and MEG
framework (David et al., 2006; Kiebel et al., 2009, 2006). The generative model for MEG data
consists of a temporal model (a set of differential equations that describe the temporal
evolution of neural activity in a layered microcircuit) and a spatial model (the lead field mapping

that converts current dipoles in different cortical layers to signals in MEG sensors).

We first introduce the dynamical layered model, a canonical microcircuit (Bastos et al., 2012;
Moran et al., 2013) which we adapted to replicate the dynamics of a detailed compartmental
neuronal circuit used to explain somatosensory event related MEG responses (Jones et al.,
2007), referred to as Jones compartmental microcircuit model (JCM) throughout this paper.
Second, we explain the spatial model used for simulating MEG traces from layered cortical
activity (Bonaiuto et al., 2018b, 2018a; Troebinger et al., 2014a, 2014b). Third, we outline the
simulation and inversion of DCM for layered MEG and present the simulations carried out to
test the feasibility of inferring layered circuit activity from MEG data. Figure 1 graphically

summarizes the model used in this paper.
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Figure 1: lllustration of the generative model for layered MEG. Top: The temporal dynamics
of the model were controlled by a canonical microcircuit model (CMC: spiny stellates: black,
inhibitory interneurons: red, superficial pyramidal cells: green, deep pyramidal cells: blue).
The CMC received two waves of bottom-up input to the granular layers (iGR and IGR) and
top-down input to the pyramidal cells (sGR). The parameters of the CMC were fitted in
order to match responses of CMC supra- and infra-granular pyramids (red traces) to the
corresponding cells simulated by the JCM red traces. Bottom: In order to generate MEG
sensor signals we assumed that the activity of the pyramidal neurons generated a current
dipole positioned in the upper (pial surface) and lower (grey matter — white matter
boundary) layer of cortex, with an orientation perpendicular to the cortical surface. The
distance d specifies the distance between the two dipoles and hence relates to cortical
thickness.

The temporal model
In this section, we describe the canonical microcircuit model (MCM; Moran et al., 2013) and

how it was initially fitted to the Jones compartmental microcircuit model (Jones et al., 2007).
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Canonical microcircuit model

The layered microcircuit in this paper was a neural mass model (Moran et al., 2013) that
describes the dynamics of a cortical layer by focusing on key neuronal populations in different
laminae. In order to allow for compatibility with the standard models in SPM, we used the
canonical microcircuit model (CMC) as the basic layered neuronal network. This circuit
includes one population of spiny stellate neurons, one population of inhibitory interneurons,
and two populations of pyramidal neurons in layers 2/3 and 5, respectively. A schematic of the
model circuit is shown in Figure 1. The dynamics of the populations are controlled by a second

order differential equation following the work by Jansen and Rit (1995):

4
’ijk + ZKe,ii)k + xe’ivk = Ke,iHe,i dk] ' 0'(17]-) - Ik ( 1)

j=1

Here, v, is the activity of population k. k. ; controls the oscillatory behavior of the cell population
and may differ between excitatory (e) and inhibitory (i) neurons. H,; is a gain parameter
defining the maximal postsynaptic potential, d; are connectivity parameters and J(vj) is a
sigmoid function transforming activation into a “synaptic” input. Inhibitory connections are
defined by setting the corresponding d,; to be negative. Finally, I; is the “external” input into

population K.

The parameters of the CMC were adapted to approximate the responses of the JCM. In order
to adequately reproduce the JCM with the CMC, we included the three different inputs
proposed in (Jones et al., 2007): an initial granular (iGR) layer input targeting layer 4, a supra-
granular (SGR) layer input — modelling feedback from higher regions and targeting all four
populations, but with different weights (see Table 2, below), and a late granular (IGR) layer
input targeting layer 4. All three inputs were described by Gaussian distributions. Table 1

summarizes the corresponding mean values and dispersion.

Input name Input timing (Mean) | Input dispersion (STD)
iIGR 25 ms 2.5ms

SGR 70 ms 6 ms

IGR 135 ms 7 ms

Table 1: Input timing parameters. Inputs were given as Gaussians in time. Mean and
standard deviation of the three inputs are given.

Fitting the CMC to the JCM
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In order to simulate realistic traces of supra- and infragranular currents, we used the model of
(Jones et al, 2007). We

http://senselab.med.yale.edu/senselab/modeldb/ and simulated a somatosensory evoked

downloaded the version available at

potential. The model was run 100 times as proposed by Jones et al. (2007). Traces were
created by taking the average of these 100 runs. In the next step, we fitted (using SPMs
spm_nisi_GN.m) the CMC to the JCM using a simple forward model that matched the activity
of the supra- and infra-granular layer to the corresponding current dipoles of the JCM model.
The signal was simulated for the first 160 ms after stimulation (i.e. 0-160 ms). Figure 2A
illustrates the traces of the JCM model and the fit. We used these maximum a posteriori (MAP)
estimates of this fitting procedure for all subsequent simulations of MEG data. The resulting

parameters for the simulation of the temporal model are summarized in Table 2.

Parameter name Simulation parameter
iGR — SS 0.8052
SGR — SS -0.3245
SGR — SP -0.2401
SGR — i -0.2834
SGR — DP 0.0645
IGR — SS 1.6990

T SS 1.6743 ms
T SP 0.3957 ms
T i 4.1952 ms
T DP 202.96 ms
SP — SP (7) 1028.8

SP — SS (2) 881.4

li— SS (3) 3353.2
Slope of sigmoid 1.6168

Table 2: Posterior estimates. The MAP estimates of all fitted parameter of the CMC. The
traces were fitted to the JCM. All parameters not listed were kept identical to the SPM
implementation of the CMC.


http://senselab.med.yale.edu/senselab/modeldb/
https://doi.org/10.1101/2020.07.20.208504
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.208504; this version posted July 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Spatial Model

While the temporal model fully determines the traces of the two pyramidal population, a spatial
model is needed to transform the neuronal signals to sensor data. The spatial model
constitutes the forward part of the generative model, mapping hidden states to observations
(measurements). The current dipoles of the two populations were modelled as a dipole pair,
one for the superficial and one for the deep layer traces. The apical dendrites of both
superficial and deep pyramidal neurons are oriented perpendicularly to the cortical surface.
Therefore, we assume that the dipole pairs have the same orientation and their positions differ
only along this axis (see Bonaiuto et al., 2019, for a comparison of different options to define
dipole orientation). In order to mimic a somatosensory stimulation experiment, the dipoles were
placed in area BA3b of a normalized brain (MNI space). Here, we used the average location
of BA3b according to Papadelis et al (2011). For simulations, dipole orientation was defined
by the angle between the dipole and its location vector with respect to the MEG volume
conductor origin. Note that in an inversion with real data, the orientation of the dipole would be
defined perpendicularly to cortex based on the anatomy of the subject. Here, the radial angle
was chosen to be 51° except for simulations where the angle was varied. These exceptions
are indicated in the Results section. Finally, the dipoles of the two layers were separated by a
distance of 2 millimeters along the dipole orientation. The distance of 2 mm is motivated by
cortical thickness measurements in humans which ranges from 1 to 4.5 mm (Fischl and Dale,
2000) but tends to be relatively thin, around 2 mm, in primary sensory areas (Scholtens et al.,
2015).

The lead fields of the different layers were calculated with the single shell model (Nolte, 2003)
of SPM (Litvak et al., 2011). Synthetic sensor data of an MEG scanner were simulated as
described in an earlier paper (Bonaiuto et al.,, 2018b). Briefly, we used an affine spatial
transformation from MNI space to sensor space in order to place the current dipoles in the
correct position within the MEG scanner. We then simulated a total of 274 sensors. Figure 2B
illustrates the lead fields for two dipole pairs in right BA3b. For display purposes and to highlight
the difference between the lead fields of superficial and deep pyramidal neurons, the distance
between the two dipoles of a pair was set to 4mm. As expected, the lead fields of the superficial
and deep dipole within a pair are very similar. Nevertheless, the two dipoles of a cortical column

show differences which are better visible when plotting the lead field in one dimension (Figure
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2B). In this work, we try to exploit these small differences to make statements about layer
differentiation.

Figure 2C illustrates an example of simulated data from the whole model, using a layered
microcircuit in the right BA3b.
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Figure 2: lllustration of MEG sensor activity. A: Simulated activity traces of the superficial
(Layer II/IIl) and deep (Layer V) pyramidal neurons based on JCM (red) and corresponding
approximated CMC traces (fitted to JCM). Signal strength is given in pAm as in (Jones et al.,
2007). Vertical grey dashed lines indicate time points for which brain topographies are
illustrated in C. B: lllustration of lead field. Left: Strength of lead field (LF) for two current dipoles
on the pial (blue solid) and white matter (red dotted) surfaces at a distance of 4mm at all
sensors. The difference between the two curves is plotted below. Right: Topography illustrating
the same lead fields. C: Simulated spatio-temporal traces obtained when the CMC traces in A
are mapped to the sensors through the lead fields illustrated in B. Note that for display

purposes the distance between the dipoles was 4 mm in these simulations.
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Simulations

In order to test whether the proposed layered circuit could be inferred from sensor data, we
simulated MEG data using the generative model described above with a forward model
consisting of two lead fields for the two current dipoles of upper and lower layer pyramidal
cells. The strategy of the simulations is explained in Figure 3. In general, we simulated data
from a model that assigned superficial activity to a current dipole close to the pial surface and
activity of deep pyramidal neurons to a current dipole close to the gray-white matter boundary.
We refer to this model as the layer correct (LC) model. The sensor traces generated from these
simulations were then used as data for subsequent model inversion: In order to investigate
whether and how well the assignment of the two sources could be inferred from the data, we
inverted several models using the generated data. We then used Bayesian model comparison
to establish which was the most likely model, given the data. Model inversion was performed
using the variational Bayes approach in SPM (Variational Laplace) which yields the variational
negative free energy (F) as an approximation to log model evidence (Friston et al., 2007). Log
model evidence is a measure of model goodness used to score different models that were
inverted based on the same data set. A difference in log model evidence larger than 3
(equivalent to a Bayes factor larger than 20) is usually considered strong evidence in favour of

one model compared to another (Kass and Raftery, 1995).

In a first set of simulations, we compared the LC model to two competing hypotheses: First,
we assessed a model with the inverted assignment of layered activity (layer inverted model,
L), that is, with superficial activity assigned to a current dipole close to the gray-white matter
boundary and activity of deep pyramidal neurons assigned to a dipole close to the pial surface.
Second, we also considered a model where both dipoles were located at the same location (at
mid-cortical depth, comparable to traditional DCMs). We refer to this model as layers detached

(LD) or single-source model.
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Simulation of data
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Layer correct (LC) vs. Layer inverted (LI)

Figure 3: lllustration of simulation strategy. In all simulations, we created models with the
correct association between neural populations and dipoles. For model inversion, different
models were fitted to the generated data and then compared, for example the layer correct
to the layer inverted model.

After this first set of model comparisons, we conducted a series of simulations to test how
sensitive the separation between LC and LI models was and how much it depended on the
particular choice of parameters. For this, we simulated different dipole pairs and tested how
well the LC and LI models could be separated. In particular, we varied the orientation of the
dipoles, cortical thickness, and the distance to the closest sensor. Finally, we conducted a
simulation to explore the effects of the arrangement of MEG sensors with a particular focus on

the possibility of reducing the number of sensors.

All data were simulated using the CMC with the parameters indicated in Table 2. If not stated
otherwise, the model generating the data had a distance of 2 mm between the superficial and
deep dipole. After creating the sensor data (sampled at a frequency of 2400 Hz), white
Gaussian noise was added to the signals. The noise of each sensor was assumed to be
independent from the other sensors and also independent between time points. Furthermore,
we assumed the same amount of noise, i.e. variance, for all sensors. We characterize the

amount of noise by the signal to noise ratio (SNR) ¢ as defined by Goldenholz et al (2009):


https://doi.org/10.1101/2020.07.20.208504
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.208504; this version posted July 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a? < b2 a?
§=10-logo (W Z g) =10-logq <s_2 . meank(b§)> (2)

where b? is defined as the signal on sensor k for unit input, sZ is the variance of the noise
added to the k" sensor, N is the number of sensors, and a? the source amplitude. Note that &
describes the overall SNR. The SNR of individual sensors varies and depends on their
respective signal strength. Here, we explored SNRs between -20 and 10 dB. In order to avoid
effects of any particular noise instance, each simulation was repeated with 20 randomly
created noise traces. It is worth noting that the model we propose here can be fitted to
averaged event-related responses (ERPs). Thus noise levels have to be compared to the SNR
of averaged evoked potentials. Averaging the signal over n trials reduces the variance by a

factor of n: sZ,;, = s%/n. This results in an additive increase of SNR by 101log;, n.

Software note

All code used here was implemented in MATLAB (MathWorks, Inc., Natick, Massachusetts,
United States). Simulations were executed either on a personal computer (using Matlab
Release 2016b) or on a high-performance computer cluster (EULER, using Matlab Release
2015a) of ETH Zurich, Switzerland. We employed the DCM implementation in SPM12 (release
7219) for general DCM steps and custom written Matlab functions for layered MEG specific
parts. The code of all simulations and to generate the figures used in the paper is available on

https://gitlab.ethz.ch/tnu/code/dcm-of-layered-meg.
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Results

In this section, we will first show that Bayesian model comparison can distinguish the correctly
layered model from two alternative models, one with both dipoles placed in the middle of cortex
and one with an inverted dipole position. Next, we explore to what extent model inversion
provides model evidence estimates specific enough to distinguish different cortical depths. We
then proceed to a thorough analysis of the influence of dipole properties such as orientation
and separation of the two layers on model inversion. Finally, we illustrate through simulation
how the combined spatio-temporal model is able to distinguish the sign of the current dipole,

i.e. the orientation of pyramidal neurons in cortex.

Proof of Concept

Subsequently, we will show that using both temporal and spatial features improves model
prediction at moderate SNR. We do this by comparing the free energy of three different models
that were all fitted to the data generated with a layer correct model with a distance of 2 mm
between the two layers. The first model incorporated the same dipole locations used for the
data generation (layer correct (LC) model). The second model did not use any spatial
information about layers (layer detached (LD) model). It located both dipoles at the same
position in the middle of cortex, effectively letting them behave as a single dipole. The third
model used the same locations as for the LC model but changed the positions of the superficial
and deep dipole (layer inverted (LI) model). Thus, this model assigned the time-series of

superficial activity to the current dipole in deep layers and vice versa.

By comparing the free energy difference between the LC and the LD model, we can establish
to what degree modelling improves when using spatial information about the layer origin as
compared to assuming one single spatial source per microcircuit. The comparison of the LC
with the LI model shows to what degree different types of layered arrangement can be
separated. The difference in spatial information is larger in this second scenario, which results
in a clearer distinction based on model evidence. This comparison illustrates how the temporal
model can be used to augment spatial information. The results of this model comparison are
plotted in Figure 4 for different SNRs ranging from 10dB to -20dB. As expected, models could
be more clearly distinguished with increasing SNR. Also, as expected, this difference in model
evidence was greater for the more spatially distinct pairings. That is, there was a greater
difference between layer correct (LC) and layer inverted (LI) models than between layer correct
and layer detached (LD or point-source) models. The improvement was decisive (AF > 3) for
both comparisons for SNR levels of 0dB or larger. The correct model was reliably selected in
most cases even for SNRs of -3.3dB (for some instantiations of noise even -6.7dB) when

comparing the LC- and LI-model.
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Figure 4: Difference in negative free energy (F) for different SNR levels (x-axis). The
results are split into three panels in order to allow for different scaling of the y-axis. The y-
axis show differences in F between layer correct (LC, d=2mm) and layer inverted (LI, d=-
2mm, blue) and LC and layer detached (LD, d=0mm, red). The LD model does not use any
layer specific information. The horizontal dashed line and grey shaded area indicates a
difference in F of 3. AF>3 is considered strong evidence in favour of the model with the
higher F. Note the different scales for the three subfigures. Error bars indicate standard
deviations over the 20 simulations.

Model Comparison: Specificity for Cortical Thickness

Next, we considered the situation where the exact cortical thickness is not known. For this, we
created a set of models with thicknesses between -2mm (layer inverted) and 4mm (thick
cortex) and tested which of these models best predicted data generated by a model with
cortical thickness of 2mm. These simulations were performed for different SNRs of -20, -10, 0,
and 10dB, respectively. Figure 5 summarizes the results of these simulations. A discrimination
of cortical depth was possible based on the negative free energy difference between models
at SNRs of 10dB and 0dB. At a SNR of -10dB and -20dB, none of the models was significantly
more likely than the others, i.e. all AF < 3. Overall, these simulations illustrate that model
comparison can be employed to investigate cortical thickness. However, this requires relatively
high SNR of 0dB.
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Figure 5: Model comparison of models with different dipole separations. The four subplots
show the difference in F when comparing models with differing dipole distance to a model
with dipole distance 2 mm that was used to generate the data. SNRs are indicated in the
subplots. Red curves show the mean AF for 20 simulations of the same SNR. Standard
deviations are indicated by the grey shaded area around the curves. Red shaded areas
indicate the region where mean AF is smaller than 3, i.e. where models cannot be safely
distinguished.

Influence of Dipole Properties

In order to determine how properties of the dipole pair impact on a successful layer
differentiation, we conducted simulations with certain properties changed. In particular, we
varied four different quantities: (i) cortical thickness, (ii) dipole orientation, and (iii) the distance
to the sensors, i.e. whether the source was closer to or further away from the skull and,
therefore, the closest sensor. For all of these properties, we investigated how much they
influenced model discrimination. While in previous simulations the noise was always defined
relative to the signal, we adopted a different strategy here. In order to avoid the possibility that
changes in signal strength due to changing dipole properties would lead to changes in noise,
a fixed noise level was added to all simulations discussed in this paragraph. Concretely, the
noise level was chosen to yield an SNR of 0dB when considering the dipole pair used in Figure
4. The same amount of noise was then added to all simulations, potentially leading to different

SNRs, e.g. when the current dipole was placed further away from the skull.

Cortical thickness was defined by changing the distance between the deep and superficial
dipole for both generation of data as well as model inversion. In simulations, cortical thickness
varied from 0 to 4 millimeters. The thicker the cortex, the stronger the LC model was favored

over the LI model. For the given noise level, a significant layer discrimination occurred for a
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cortical thickness above 1 mm. The orientation of the dipole was defined as the angle between
the dipole and the radial, i.e. the vector connecting the centre of the volume conductor with the
position of the dipole. It was varied from 0° to 90° in steps of 6°. As expected for MEG dipoles
the difference in free energy between models increased with increasing angle. In other words,
discriminability between layered models is difficult in patches of cortex that are oriented in
parallel to the sensor grid (i.e. with current dipoles oriented towards the sensor grid), while
sources from sulci where dipoles are oriented in parallel to the sensor grid will facilitate layered
model discriminability. While the two first parameters (dipole distance and orientation)
correspond mainly to anatomical features of cortex, the distance to the closest sensor can be

strongly influenced by how sensors are arranged around the head.

When varying the distance to the closest sensor, the dipole pair location was changed along
the line connecting the origin in MNI space with BA3a. The distance between the dipoles
(cortical thickness) was set to 2 mm and the dipole angle was kept as in the main simulations.
As expected, we observed that the closer the dipole to the sensors, the more successful layer
differentiation became. Hence, for discrimination between different layered models, it is highly
advantageous to measure close to the sources, i.e. bring the sensors as close as possible to
the skull. This would be the case, for example, in MEG measurements using optically pumped
magnetometers (OPMs; Tierney et al., 2019).
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Figure 6: Influence of dipole properties on model selection. The difference in negative free
energy (F) between the LC model and the LI model is plotted as a function of (A) cortical
thickness, i.e. dipole distance, (B) orientation of the dipoles, (C) distance to the sensor grid.
Red traces indicate the mean difference in free energy between the LC and the LI model
for data generated by the LC model. Shaded areas are the standard deviations across the
20 simulations performed for each setting. Vertical green dashed lines indicate the values
of the main simulations in Figure 4. Horizontal green dotted lines indicate a difference of
AF = 3.

Dipole Direction Estimation

In this section, we demonstrate, using simulated data, how the combination of a temporal and
spatial model facilitates estimating the correct direction of cortical current flow. This is a long-
standing problem in M/EEG as data can often be equally well explained by one of two sources
on either side of a sulcus each with different polarity. We assumed that the simulated dipole
pair was located in the bank of a sulcus and tested whether it could be distinguished from a
second dipole pair at a distance of 7 mm at the opposite side of the sulcus (Fig. 7A). Hence,
all dipoles were oriented along the same axis but with different polarities. Data were simulated
with the first dipole pair assuming a separation of 2mm and both sources pointing towards the
pial surface. We then tested four different models to explain the data. Two of the models were
placed at the correct location but with the dipoles pointing either towards the pial surface (pial

positive) or away from the pial surface (pial-negative). The other two models were placed at
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the opposite bank of the sulcus and also had dipoles either oriented towards or away from the
pial surface. For all four models, we inverted the data for cortical thicknesses between -4mm

(layer inverted) and 4mm.

The results of this simulation are depicted in Figure 7. The free energy difference relative to
the (true) generating model is shown for all models as a function of the cortical thickness of
the estimated model. Models with the correct dipole location and pial-positive dipole orientation
performed much better than all other models, independently of the estimated cortical thickness.
Examining the competing models more closely, it becomes obvious that a dipole location error
of 7mm was much less severe than getting the generator polarity wrong (compare the cyan
and violet curves in Figure 7). It is worth noting that for the wrong position, the model with pial-
negative dipoles points into the same direction as the generating model (pial-postivie dipoles
at true position) because the orientation of cortex is inverted on the other side of the sulcus.
As a consequence, the LI model is favoured over the LC model in this scenario. Anatomical
information therefore considerably reduces the number of possible source locations as source
models situated on half of the sulcal walls will not be fitted well given the temporal model’s
prediction. The temporal model can thus act as a constraint to help enforce that the sign of the

dipole orientation, in particular of the dominating dipole, has been chosen correctly.
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Figure 7: Comparing layered circuits across a sulcus. A: lllustration of a simulated
scenario. We simulated the problem of distinguishing two layered microcircuits located in
the two banks of a sulcus. The correct location used for generating the data was on the
right (red and magenta rectangles). The wrong location of the microcircuit was located in
the other bank of the sulcus 7 mm away (blue and cyan). For each dipole location we
introduce a model with correctly orientated, pial-positive (pp) dipole moments (red and blue)
and inverted, pial-negative (pn) dipole moments (magenta and cyan). B: Free energy (F)
difference of all inverted models compared to the generating model (red, dipole distance:
2mm). Colours as in panel A. Mean (solid lines) free energy difference and standard
deviations (dashed lines) over 20 simulations with SNR = 0dB are shown. The dashed
vertical line indicates the true (i.e. generating) dipole distance. Note the separation and
change in scale between the three segments of the y-axis.


https://doi.org/10.1101/2020.07.20.208504
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.208504; this version posted July 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Reducing the number of sensors.

So far, we used data from all 274 sensors for model inversion. While this includes all possible
information it makes simulations and model inversion slow. Furthermore, many sensors are
quite far away from the dipoles and do not contribute much information because their signal is
dominated by noise. For the inversion of real data this could potentially become a problem
because a model predicting temporal traces that are 0 everywhere would explain a large part
of the data, namely all sensors far away from the current moment. In addition, recent advances
in the development of OPMs have led to a new generation of flexible MEG sensors (Boto et
al., 2018, 2017) and make it possible to place sensors in specific positions. Here, we
investigate how using only a subset of the sensor traces influences model comparison.
Simulations were conducted with the standard dipole in BA3 and an SNR of 0 dB as defined
above. The results are plotted in Figure 8. We slowly reduced the number N of sensors using
two different approaches. First, we always selected the N dipoles with the highest average
(between superficial and deep dipole) lead field potential (blue bars in Figure 8). Second, we
selected the N dipoles with the largest difference between the two dipole sources (red bars in

Figure 8).

Generally, free energy differences are larger (and model selection is thus more robust) the
more sensors are used. If the sensors with the highest summed lead field are used, average
AF remains around 3 up to N = 17 sensors. With more than 17 sensors, free energy differences
rise clearly above this level. When the sensors with the highest difference between upper and
lower layer lead fields are used, free energy differences remain at a level slightly above 3 up
to N = 29 and then start to rise. Hence, in order to clearly separate the LC model from the LI
model with model selection roughly 30 or more sensors are necessary at an SNR of 0dB. The
selection of sensors starts to overlap between the highest average and highest difference when
at least 17 sensors are selected. The number of overlapping sensors for different N are: 0
(N=9), 7 (N=17), 15 (N=29), 35 (N=51), 66 (N=89), 120 (N=156) and 274 (N=274). Hence,
model discrimination seems to increase when both types of information (average and

difference of layer dipoles) are considered.
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Figure 8: Free energy (F) differences between the LC and LI model using a different number
of sensors. The reduced number of N sensors was selected either based on highest summed
lead field (blue) or highest difference of lead fields (red) between upper and lower layer. The

simulation was conducted at an SNR 0f 0dB.
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Discussion

In this work, we have shown that the contribution of the deep and superficial layers of a cortical
column can, in principle, be discriminated using MEG combined with layered
electrophysiological models of neural activity. In particular, it is possible to separate the correct
layered model that generated the data from a model where the current dipoles of pyramidal
neurons are swapped between superficial and deep layers. We further explored how sensitive
this model selection is to anatomical details (location and orientation of the dipole) and the
distribution of sensors. Overall, our simulations suggest that inference of layered models is
feasible in MEG data at a signal to noise ratio that can be achieved with MEG when event
related potentials are averaged over several trials. Importantly, we have shown that both
temporal and spatial information improve the discrimination between competing models. In
particular, the temporal model adds considerable robustness to the spatial model by
constraining current flow direction and eliminating competing models on opposing sulcal walls.
In the following, we will discuss this approach in the light of alternative methods such as fMRI,

highlight its limitations and future improvements, and propose applications on real data.

Measuring layered cortical activity

Layer-specific activity of evoked potentials can be measured directly with invasive electrodes
with many electrical contacts and therefore many electrophysiological measurements
throughout cortical depth (Javitt et al., 1996; Schroeder et al., 1995; Self et al., 2013). The
resulting local field potentials or current source densities are usually directly compared
between different experimental conditions, for example to investigate whether a cortical
column is involved in figure ground segregation or not (Self et al., 2013), or to study layered
differences of inputs into somatosensory areas (Schroeder et al., 1995). Although these
invasive extra-cellular measures are far more “direct” measures than EEG/MEG, they can still
be open to interpretation as they are still subject to modelling assumptions (Gratiy et al., 2011;
Haegens et al., 2015). Such invasive data were used in conjunction with a two layered DCM
(for oscillatory activity) to infer layered activity (Pinotsis et al., 2017). Hence, depth resolving
electrophysiological recordings offer an important bridge and testbed for the method proposed
here. However, with the exception of patients implanted with electrodes for presurgical

localization of epileptic foci, such invasive measures are not possible in humans.

Recent advances in magnetic resonance imaging (MRI) at high-fields (for a review see van
der Zwaag et al., 2016) have made it possible to measure functional MRI (fMRI) at
submillimeter resolution, allowing for separating at least two cortical layers. While the initial
studies focused on early visual (Koopmans et al., 2011, 2010; Siero et al., 2011) and motor
areas (Huber et al., 2015; Siero et al., 2011), more recent applications have shown a variety

of applications in cognitive neuroscience (De Martino et al., 2015; Finn et al., 2019; Huber et
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al., 2017; Kok et al., 2016; Lawrence et al., 2019; Muckli et al., 2015). In addition to these
cognitive neuroscience approaches, a relationship between oscillatory activity measured with
EEG and laminar fMRI has been demonstrated (Scheeringa et al., 2016).

However, there are two major challenges when analyzing and interpreting layered fMRI which
measures neural activity only indirectly. First, fMRI activity is filtered by the hemodynamic
response function whose dominant frequency is in the range of 0.04 Hz. This might be too slow
to fully capture fast computations. Second, layered fMRI can be contaminated by blood
draining effects between layers. Although these can be modeled (Havlicek and Uludag, 2019;
Heinzle et al., 2016), they pose an additional complexity for the analysis and interpretation of
the data.

Models of layered cortical activity

Computational models of layered cortical activity have a long tradition dating back to the
introduction of a canonical microcircuit to model the activity in visual cortex after stimulation of
thalamic afferents (Douglas et al., 1989; Douglas and Martin, 1991). This cortical circuit is
believed to form the computational substrate for all cortical computations and can, for example,
be adapted to model the monkey frontal eye fields that guide eye movements (Heinzle et al.,
2007). However, this model was not directly fitted to electrophysiological data. Similarly, the
detailed layered compartmental model by Jones and colleagues (Jones et al., 2007) is able to
explain evoked potentials as well as oscillatory behaviour (Jones et al., 2009), but was never
rigorously fitted to data. A simulation toolbox based on this model allows simulations of EEG
and MEG data (Neymotin et al., 2020). In addition, as with most other modelling attempts of
EEG/MEG data, the relative laminar displacements of the different neuronal populations were
not considered in the forward model. Instead, it was assumed that currents of all pyramidal

cells are linearly combined at a virtual point-source.

A similar approach is taken by DCM for EEG/MEG (Kiebel et al., 2009; Moran et al., 2013),
where the activity of different cell populations of a canonical microcircuit is summed (with
population specific weighting) to yield a dynamically changing electric or current dipole at a
single position in cortex. In a recent version of DCM for fMRI (Friston et al., 2019) activity in a
layered canonical microcircuit is converted to a single hemodynamic signal. Hence, while both
approaches take into account models that consider different layers, the spatial information
about layers is not considered in the modelling approach. This is a practical assumption for
most EEG/MEG recordings where uncertainty in head or electrode position has a much greater
influence on the forward model (Dalal et al., 2014; Hillebrand, 2003). The approach outlined
here is a first step towards aligning the advanced temporal modelling literature with more
recent spatial modelling work in which relative head-to-sensor geometry issues have been
mitigated (Bonaiuto et al., 2018b, 2018a; Troebinger et al., 2014b, 2014b).
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Limitations and potential future improvements

In this section, we discuss limitations of the current approach and suggest some potential
improvements for the future. One of the key assumptions of the simulations in this paper was
that the location of the dipole pair is known. Future versions could also include a forward model
where the geometry of the source configuration is estimated as part of the inversion. This could
attempted in a similar manner to conventional DCM, where spatial priors give initial dipole
locations (Kiebel et al., 2009, 2006). We should stress that this model contains just a single
additional parameter (the displacement) to conventional point source models; and the prior
mean and variance of this parameter (related to cortical thickness) can be informed by the
anatomy. A second important limitation is that we have so far considered only one region. In
most experiments, several cortical regions will be active, and it is not evident how well the
mixture of the activity in several cortical microcircuits can be separated into layered activity.
While the above points concern mainly the spatial model, one could also think of enhancing
the temporal model. One obvious extension would be to use the JCM directly to fit the data.
However, this is complicated by the spiking nature of neural activity which is not suitable for

the gradient based optimization in the variational Bayes approach used here.

In our simulations, we have used independently and identically distributed Gaussian noise at
the sensor level. This is a simplification of the colored and possibly temporally dependent noise
in real MEG data (Engemann and Gramfort, 2015). The results indicate that high SNR (-3dB
to 0 dB) data is needed to robustly infer layered structure. The estimated SNR of MEG data is
roughly in the range of -20 dB to -30dB (Goldenholz et al., 2009) depending on the location of
the source. Averaging over 100 or even 1000 trials would bring this range to 0dB to -10dB or
10dB to 0dB, respectively. Indeed, the improved SNR afforded by head-cast MEG allows for
identifying laminar-specific spectral responses in sensory and motor cortices (Bonaiuto et al.,
2018a). Our approach demonstrates the feasibility for temporal and spatial DCMs for evoked
responses, but in the future this approach could be extended to laminar-resolved human MEG

of spectral activity.

Future applications

One of the most prominent contemporary theories of brain function is the Bayesian brain
hypothesis (Friston, 2010; Knill and Pouget, 2004). It has been suggested that predictive
coding, an implementation of the Bayesian brain, has a natural embedding in cortical
microcircuits (Bastos et al., 2012; Mumford, 1992; Rao and Ballard, 1999). Hence, both layered
fMRI (Stephan et al., 2019) and layered MEG could provide important experimental evidence
in support of or against this hypothesis. One of the advantages of MEG over fMRI is its high
temporal resolution. Cortical computation is relatively fast (on the order of tens to hundreds of

milliseconds) which is reflected in the timing of event related responses. In order to make
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inferences about such fast processes, it is highly advantageous to acquire data at a high

temporal resolution.

Having established the feasibility of layered DCM in MEG using simulations, the next step will
be to invert the model on data from an ERP experiment. Given that the distance to the sensors
is critical, the somatosensory cortex seems the most promising candidate. As a next step, one
could then move to model several regions. In all these applications, it will be paramount to
constrain the spatial location of the dipole pair as narrowly as possible using anatomically
precise measurements. One possibility to improve SNR in MEG is the use of OPMs which
allow recordings using head-mounted sensors (removing relative head-movement issues), and
promise higher SNR recordings as well as potentially much longer recording times (Boto et al.,
2018, 2017, 2016). These sensors, placed directly on the scalp, could also take advantage of
the higher-spatial frequency information generated by these dipole pairs (figure 2B). We have
shown here that layered circuits can be inferred with relatively few cryogenic sensors (roughly
20 in our simulations). This number could potentially be further optimized by using different

sensor types of geometries.
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