bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Sample pooling methods for efficient pathogen screening:
Practical implications

Tara N. Furstenau', Jill H. Cocking®2, Crystal M. Hepp'2, Viacheslav Y. Fofanov!2"

1 School of Informatics, Computing, and Cyber Systems, Northern Arizona University,
Flagstaff, Arizona, USA
2 Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona,

USA

* Viacheslav.Fofanov@nau.edu

Abstract

Due to the large number of negative tests, individually screening large populations for
rare pathogens can be wasteful and expensive. Sample pooling methods improve the
efficiency of large-scale pathogen screening campaigns by reducing the number of tests
and reagents required to accurately categorize positive and negative individuals. Such
methods rely on group testing theory which mainly focuses on minimizing the total
number of tests; however, many other practical concerns and tradeoffs must be
considered when choosing an appropriate method for a given set of circumstances. Here
we use computational simulations to determine how several theoretical approaches
compare in terms of (a) the number of tests, to minimize costs and save reagents, (b)
the number of sequential steps, to reduce the time it takes to complete the assay, (c) the
number of samples per pool, to avoid the limits of detection, (d) simplicity, to reduce
the risk of human error, and (e) robustness, to poor estimates of the number of positive
samples. We found that established methods often perform very well in one area but
very poorly in others. Therefore, we introduce and validate a new method which
performs fairly well across each of the above criteria making it a good general use
approach.

Introduction

For targeted surveillance of rare pathogens, screenings must be performed on a large
number of individuals from the host population to obtain a representative sample. For
pathogens present at low carriage rates of 1% or less, a typical detection scenario
involves testing hundreds to thousands of samples before a single positive is identified.
Although advances in molecular biology and genomic testing techniques have greatly
lowered the cost of testing, the large number of negative results still renders any
systematic pathogen surveillance program inefficient in terms of cost, reagents, and
time. These costs can quickly become prohibitively expensive in resource-poor settings
(e.g. pathogen surveillance in developing countries |11[2], in non-human systems, such as
wildlife disease surveillance [3]), or when reagents become scarce due to a rapid spike in
testing demand (e.g. during the SARS-CoV-2 pandemic [4]).

Robert Dorfman first introduced a method to improve the efficiency of large-scale
pathogen screening campaigns during World War II. In an effort to screen out syphilitic
men from military service, the US was performing antigen-based blood tests on millions

June 26, 2020

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

of specimens in order to detect just a few thousand cases. The large number of negative
tests struck Dorfman as being extremely wasteful and expensive and he proposed that
more information could be gained per test if many samples were pooled together and
tested as a group [5]. If the test performed on the pooled samples was negative (which
was very likely), then all individuals in the group could be cleared using a single test. If
the pooled sample was positive, it would mean that at least one individual in the
sample was positive and further testing could be performed to isolate the positive
samples. This procedure had the potential to dramatically reduce the number of tests
required to accurately screen a large population and it sparked an entirely new field of
applied mathematics called group testing.

Due to practical concerns, Dorfman’s group testing approach was never applied to
syphilis screening because the large number of negative samples had a tendency to
dilute the antigen in positive samples below the level of detection [6]. Despite this,
sample pooling has proven to be highly effective when using a sufficiently sensitive,
often PCR-based, diagnostic assay. In fact, ad hoc pooling strategies have long been
used to mitigate the costs of pathogen detection in disease surveillance programs. For
example, surveillance of mosquito vector populations in the U.S. involves combining
multiple mosquitoes of the same species (typically 1 — 50) into a single pool, prior to
testing for the presence of viral pathogens |7H10]. Elsewhere, such pooling techniques
have been successful in reducing the total number of tests in systems ranging from
birds [11], to cows |12], to humans [13H15]. In many wildlife/livestock surveillance
programs, sample pooling is used to simply determine a collective positive or negative
status of a population (e.g. a herd or flock) without identifying individual positive
samples. While this is often appropriate and sufficient for small-to-medium scale
research experiments or surveillance programs, a well designed pooling scheme can
easily provide this valuable information with little additional cost. For the purposes of
this paper, we will focus on pooling methods that provide accurate classification of each
sample so that infected individuals can be identified.

Group testing theory primarily focuses on minimizing the number of tests required
to identify positive samples and many nearly-optimal strategies for sample pooling have
been described. From a combinatorial perspective, a testing scheme begins by
examining a sample space which includes all possible arrangements of exactly k positive
samples in N total samples. Because the positive samples are indistinguishable from
negative samples, a test must be performed on a sample or a group of samples in order
to determine their status. The test is typically assumed to always be accurate, even
when many samples are tested together (in practice, this is often not the case and
approaches that consider test error and constraints on the number of samples per pool
have been examined [16,/17]). In the worst case, all of the samples would need to be
tested individually requiring N tests. The goal of group testing is to devise a strategy
which tests groups of samples together in order identify the positive samples in fewer
than N tests. Group testing methods are generally more efficient when positive samples
are sparse. As the number of positive samples increases, the number of tests will
eventually exceed individual testing for all of the methods. This point has been
previously estimated to be roughly when the number of positives is greater than % for
sufficiently large N [18l[19]. In order to establish the most optimal testing procedure,
many group testing schemes are modified based on the expected number of positive
samples, k. Because it is impossible to know the exact number of positive samples,
problems arise when this estimate is not accurate (e.g. overestimation may require more
tests to be performed than necessary, and underestimation may result in positive
samples going undetected). Therefore, it is important to not only consider how different
schemes scale as the number of positive samples increases but also how robust they are
when the number of positive samples is misestimated.

June 26, 2020

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

For real-world applications, many factors should be considered when designing a
pooling strategy, depending on the circumstances. Finding the best strategy often
involves weighing the tradeoffs between the following factors: (a) number of tests, to
minimize costs and save reagents, (b) number of sequential steps, to reduce the time it
takes to complete the assay, (c) number of samples per pool, to avoid the limits of
detection, (d) simplicity, to reduce the risk of human error, and (e) robustness, to poor
estimates of the number of positive samples. We have identified several pooling
strategies that perform well or optimally with respect to at least one of these factors.
The goal of this paper is to directly compare the strengths and weaknesses of each
strategy and identify the approaches that we feel are most appropriate for
small-to-medium scale research experiments or surveillance programs. With this goal in
mind, we favored strategies that provided the best balance across each of our criteria,
particularly those that maximized the ease of performing the pooling procedure using
standard laboratory equipment (i.e. defining pooling groups in ways that are easily
captured using multi-channel pipettes).

We present the pros and cons of different pooling strategies by providing graphical
results from computational simulations with minimal use of mathematical formulas. We
focused on making the simulation results as directly comparable as possible and used
realistic sample sizes (in multiples of 96 well plates) for small to medium scale
experiments. The computational simulations allow us to directly compare (a) the
number of tests, (b) the number of steps, (c) the number of samples per pool, (d) the

number of individual pipettes, and (d) the robustness for five existing pooling strategies.

We also introduce a new strategy that provides key advantages in simplicity and
provides the best balance between the other criteria. Finally, we experimentally validate
our strategy by testing pools of cow’s milk to detect samples that are positive for the
pathogen Coxiella burnetti.

Review of pooling strategies compared in this work

Pooling strategies often take either a non-adaptive or an adaptive approach. In
non-adaptive methods, an optimal pooling strategy is designed in advance (for a given
number of samples with an expected number of positives) and therefore it does not
adapt based on information gained from the test results. Tests are run on each of the
pools in parallel and the results are decoded when the tests are complete to determine
which are positive. The ability to run all of the tests in parallel can save a lot of time
and this is one of the main benefits of non-adaptive tests. Adaptive methods, on the
other hand, require a series of steps that must be performed sequentially because each
step relies on information gained from the outcome of a previous step. However,
because more information is known at each step, adaptive algorithms often require fewer
tests than non-adaptive methods. Below we describe several examples of both
non-adaptive and adaptive pooling approaches and, in each case, we assume that the
test applied to the pools is noiseless (the test will always be positive if a positive sample
is present in the pool and negative otherwise) and it produces only a binary or two-state
outcome (e.g. positive/negative or biallelic SNP typing).

DNA Sudoku

DNA-sudoku is a popular example of an optimal non-adaptive pooling strategy. This
strategy is based on the idea that if a sample is present in multiple positive pools and
not in any negative pools, then it is likely to be positive. However, ambiguous results
can arise if multiple samples co-occur within the same positive pools because it is no
longer possible to determine if one or both of the samples are truly positive. DNA
Sudoku provides a more rigorous approach to avoid such ambiguity by minimizing the

June 26, 2020

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

number of times any two samples are included in the same pool [20]. This is achieved by
staggering the samples that are added to each pool in different sized windows or
intervals (Fig ; importantly, the size of the windows must be greater than v/N and
co-prime to minimize the intersections between samples. The number of different
pooling windows (the weight) should be one greater than the expected number (upper
bound) of positive samples, w = k+ 1, to ensure accurate results.

Fig 1. DNA Sudoku pooling example. In this example, there are a total of N = 96 samples. The
96-well plates show which samples are combined into each pool for the two different window sizes

(W1 =10 and W3 = 11 which are greater than VN and co-prime). By using two different window sizes,
the weight of this pooling design is w = 2 meaning that kK = w — 1 = 1 positive sample can be
unambiguously identified in a single step using T'= W7 + Wa = 21 tests. The positive samples are
decoded by finding the samples that appear most often in the positive pools. For example, if G10 is the
only positive sample, we can detect this from the pooling results by noticing that G10 was added to
both of the positive (red) pools while other samples in those pools were added to only one or the other.
Alternatively, if both G10 and D4 are positive, four samples occur with equal frequency (D4, G10, E12,
and F2) in the positive pools (red and purple) and it is impossible to determine which are the true
positive samples. This ambiguity is introduced because the test was designed to handle only one
positive sample.

Once the samples are pooled for each window size and the pools are tested, a
decoding scheme is used to identify the positive samples from the positive pools. The
decoding works by identifying which samples occur the most frequently in the positive
pools. If the weight is chosen correctly using a good estimate of k, all of the positive
samples can be unambiguously identified. However, if the true number of positive
samples exceeds]Aﬂ, the results become ambiguous and false positives can occur. Over
estimating the maximum number of positive samples can provide a buffer against
ambiguous results but this comes with a large increase in the number of tests (> N
additional tests for each additional pooling window). Alternatively, the ambiguous
samples can be tested individually, but this requires an additional round of testing
which voids one of the main advantages of non-adaptive testing.

When £ is estimated appropriately, DNA Sudoku is a very efficient non-adaptive
approach, especially when the number of samples is very large. It was originally
designed for pooling and barcoding thousands of DNA samples in preparation for
high-throughput sequencing. However, because it was intended for use in large-scale
sequencing facilities with robotic equipment, the pooling design is complex and intricate
and therefore difficult for a human technician to perform accurately and consistently by
hand.

Two Dimensional Pooling

Multidimensional pooling is another non-adaptive approach that is generally easier to
perform than DNA Sudoku but can be more prone to producing ambiguous results. As
the name implies, this procedure can be extended to many dimensions |21}22], however
it becomes more difficult to perform without robotics when more than two dimensions
are used. In the two dimensional (2D) case, N samples are arranged in a perfectly
square 2D grid or in several smaller but still square sub-grids [23]|. For example, when
testing 96 samples (as in Fig , this could be achieved through a single 10x10 grid or
through 4 5x5 sub-grids (with 4 empty spaces). Once arranged, all of the samples along
each individual column and each individual row are pooled. This results in 20 pools for
a 10x10 grid, and 40 pools for 5x5x4 grids. Once the pools are tested, the positive
samples are decoded by identifying which of them are present at the intersection of
positive rows and columns [23].

In 2D pooling, ambiguous results arise when positive samples are present in multiple
rows and multiple columns (e.g. in the top left grid in Fig|2] the two positive rows and

June 26, 2020

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Fig 2. Two-Dimensional pooling example. A total 96 samples are arrayed in symmetrical 5x5
grids (with 4 empty wells in the last grid) and k = 9 of the samples are positive (red wells). The
pooling procedure combines each row and each column of a grid into separate pools for a total of

T =2 x5 x4 =40 tests. Samples that are at the intersection of a positive row and a positive column
(marked with an “X”) are potentially positive samples. When more than one row and more than one
column are positive, some of the samples at the intersections are likely false positives (e.g. the top left
and bottom right grids). Otherwise, the results are unambiguous and the correct positive samples can
be identified (e.g. the top right and bottom left grids).

the two positive columns intersect at four wells, only two of which (red wells) are
positive). When this occurs, the number of intersecting points is almost always higher
than the true number of positive samples. Ambiguous results can be somewhat
mitigated by decreasing the size of the grid as the expected number of positive samples
increases. The chances of ambiguous intersections increase when there are more positive
samples, so using more grids of smaller size (and consequently more tests), will make
ambiguous arrangements less likely. Alternatively, the ambiguous samples can be tested
individually in a second followup round of testing, but this again nullifies the main
benefit of non-adaptive testing, which is the ability for all tests to be carried out in
parallel.

S-Stage Approach

Dorfman’s original pooling design for syphilis screening was an adaptive two-stage test.
Following this method, samples are partitioned and tested in g groups of size n. All of
the samples in groups with negative results are considered to be negative and all of the
samples in groups with positive results are tested individually. Ignoring the constraints
of the actual assay, the optimal group size that minimizes the number of tests depends
on the number of positive samples, k. Specifically, there should be roughly v Nk groups

of size \/% [5,24]. Dorfman’s two-stage approach was later generalized to any number

of stages using Li’s S-Stage algorithm [24], which can reduce the number of tests
required to identify positive samples. At each stage, s;, of the S-Stage algorithm (Fig [3]),
the untested samples are arbitrarily divided into g; groups of size n; and the test is
performed on each group. The samples in pools with negative test results are deemed
negative and removed from consideration. The samples in positive pools move on to the
next stage where they are redivided into g;41 groups of size n; 1. This is repeated until
the final stage, where ns = 1, and all of the remaining samples are tested individually.

The optimal number of samples per group at each step is n; = (%)7 and the optimal

number of steps is S = ln(%) which achieves an upper bound of @k log, (%) tests.

Li demonstrated that misestimation of the number of positive samples, IAf, has only a
small impact on the total number of tests, especially when the number of stages is high.
The S-Stage algorithm can require many more steps than non-adaptive algorithms, but
when the number of steps is low, it compares favorably, especially in cases when the
non-adaptive methods require additional validation steps.

Fig 3. S-Stage pooling example. For 96 samples with an estimate of 3 positive samples, the
S-Stage algorithm requires 4 steps. In the first step (top 96 well plate), 96 samples are tested in 6
groups (black outline) of 16. In the next step, the samples in the positive pools from the previous step
are arbitrarily redivided into 5 groups of 6 or 7 samples and tested. In the third step, the samples from
positive pools from step 2 are redivided into 4 groups of 3 or 4. In the final step, individual testing is
performed on samples from the positive pools in step 3. The number of tests required depends on the
initial arrangement of positive samples within the pools but in this example 21 tests are required to
identify 3 positive samples (red wells). The number of tests is lower than the upper bound in this case
due to the fortunate placement of two positive samples in the same pool in steps 1-3.

June 26, 2020

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Binary Splitting by Halving

Sobel and Groll |25}26], introduced several adaptive group testing algorithms based on
recursively splitting samples into groups and maximizing the information from each test
result. They demonstrated that this class of algorithm is robust to inaccurate estimates
of k, particularly in the case of the Binary Splitting by Halving algorithm which can be
performed without any knowledge of the number of positive samples. Binary Splitting
by Halving (Fig|4) begins by testing all of the samples in a single pool. If the test is
negative, all of the samples are negative and testing is complete, if the test is positive,
the samples are split into two roughly equal groups and only one of the groups is tested
in each step. If the tested half is negative, we know that all of the samples in the tested
group are negative and testing is now complete for those samples. We also know that
the untested half must contain at least one positive sample (because the test containing
all of the samples tested positive). Alternatively, if the tested pool is positive, we know
that it contains at least one positive sample and we know nothing about the untested
half. In either case, the binary splitting always continues with the group that is known
to contain a positive sample until a single positive sample is identified with individual
testing. At this point, all of the samples that remain untested are added to a single pool
and tested, beginning the process again. This is repeated k times and stops when the
initial test of all the remaining samples is negative or when all samples have been tested
(either through individual testing or elimination). Using this method, k positive samples
can be identified in at most klog, N tests. Binary splitting is only efficient when fewer
than 10% of samples are positive, otherwise more tests are required than individual
testing [25}/26]. This is the only approach discussed here that does not rely on an
estimate of k and therefore the performance is not impacted by misestimation of the
number of positive samples.

Fig 4. Binary splitting by halving pooling example. In this example, there are N = 96 samples
and two of the samples are positive (red wells). To begin, all of the samples are pooled and tested (Step
1). If the first test is negative, testing is complete and all samples are considered negative. Otherwise,
half of the samples are pooled and tested (Step 2). If the tested half is negative, then all of the samples
in the tested half are considered to be negative and at least one negative sample is known to be present
in the other non-tested half of the samples. If the tested half is positive, then it contains at least one
positive sample and no information is gained about the other untested half. In either case, the method
continues by halving and testing whichever group is known to contain a positive sample until a single
positive sample is identified (either by individual testing, as seen in Step 7, or by elimination, as seen in
Step 16). Once a single positive sample is identified, the remaining unresolved samples (non-grey wells)
are pooled and tested to determine if any positive samples remain and the process continues until all
positive samples are identified. Only one test is required per round, and in this example, it takes 17
sequential rounds to recover both positive samples.

Generalized Binary Splitting

Hwang’s Generalized Binary Splitting algorithm is very similar to Binary Splitting by
Halving (Fig) except the size of the first split is optimized for the expected number of
positive samples. This is important because it helps bypass some of the early and least
productive tests. In the Halving method, as the number of positive samples increases,
the first few tests are more likely to be positive due to chance. Positive tests, in general,
provide the fewest pieces of information and do not eliminate any negative samples;
consequently, positive tests are particularly inefficient early on when the potential to
eliminate large groups of samples is highest. Additionally, it means that each binary
search will begin with a large number of samples which will require more tests and steps
to identify the first positive sample. To solve this problem, The Generalized Binary
Splitting algorithm attempts to modify the size of the initial pool so that it is small
enough to capture a single positive sample on average. When smaller groups are tested

June 26, 2020

NE

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

they are less likely to be overwhelmingly positive which means more samples can be
eliminated in negative tests and a single positive sample can be found quicker using
fewer tests [27]. As the ratio of samples to positive samples (4) increases, the number
of tests required to identify k positive samples approaches k log, (%) which is nearly
optimal; however, like Binary Splitting by Halving, the Generalized Binary Splitting
approach requires many sequential steps to complete testing.

Modified 3-Stage Approach

Here we are introducing a new approach that we developed with the goal of finding a
good balance between the number of tests, the number of steps, simplicity, and
robustness. We found that many of the methods described previously focus on
optimizing only one of these features usually to the detriment of the others. Instead of
attempting to perform the best in a single area, we wanted to take a more balanced
approach and find tradeoffs that allow good performance across each of these areas. Our
Modified 3-Stage approach (Fig 5] is based on the S-Stage approach but it is modified
so that the number of steps is constrained to a maximum of three. At three steps, this
approach requires only one additional step than ambiguous non-adaptive approaches
that require two steps for complete validation. Because the S-Stage algorithm is already
fairly robust, constraining the number of steps does not have a large impact on the
number of tests required. We also modified our method to be simpler and easier to

perform by borrowing the recursive subdividing used in the binary splitting approaches.

In the S-Stage approach, the remaining samples in each step are arbitrarily redivided
into pools. Not only does this make it difficult to keep track of the remaining samples
spread across the plate, it can also make it more difficult to collect the samples for a
pool using a multichannel pipette (e.g. Step 2 in Fig . Instead, we opted to recursively
subdivide the samples from positive pools. This makes it easier to keep track of the
samples that should be pooled at each stage and, because the samples are always in close
proximity, they are easier to collect using a multichannel pipette (compare |3| and .

Fig 5. Modified 3-Stage pooling example. For 96 samples and an estimate of 2 positive samples,
the Modified 3-Stage approach begins by creating 6 pools with 16 samples each. The positive pools
from the first step are then subdivided into 4 groups of 4 in the second step. In the final step, the
samples from the positive pools in step 2 are tested individually. In the modified 3-Stage approach, the
pools are recursively subdivided into groups instead of arbitrarily redividing the remaining samples at
each step. This is simpler and keeps the samples for each subsequent pool in close proximity. The total
number of tests depends on the arrangement of the positive samples, but in this example, the modified
3-stage algorithm requires 22 tests.

Materials and methods

Computational simulations

Computational simulations were carried out for each of the six pooling strategies
described above. The number of samples, IV, in each test were in multiples of 96 to
represent 96-well plates: 1 x 96 = 96, 4 x 96 = 384, and 16 x 96 = 1,536. Each set of
samples was represented as a binary array of size N, where 1’s represented positive
samples and 0’s represented negative samples. For each test, 100 simulations were
generated by placing k positive values in random positions in the array, with £ ranging
from 1 to 20. In each simulation, the number of tests, the number of sequential steps,
and the number of individual pipettings required to make the pools were recorded. In
cases where it was appropriate, the number of pipettings was calculated assuming either
an 8- or a 16-channel pipette in addition to a single channel pipette. We only considered

June 26, 2020

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

pooling schemes that were able to completely and accurately identify all of the positive
samples in the sample set. To accomplish this, some of the pooling schemes required
additional steps and tests that are accounted for in the simulation. The simulation code
is available at https://github.com/FofanovLab/sample_pooling_sims|

DNA Sudoku Simulations

For the DNA Sudoku experiments, we tested different weights ranging from 2 to the
highest value that did not exceed the number of tests required for individual testing.
For example, with a sample size of 96, the maximum weight we used was 6 with window
sizes of 10, 11, 13, 17, 19, and 23; this testing design required 93 tests, in the
unambiguous case, and including any additional testing windows would cause the
number of tests to exceed individual testing. The window sizes at the maximum weight
were 20, 21, 23, 29, 31, 37, 41, 43, 47, and 53 for 384 samples; and 40, 41, 43, 47, 49, 51,
53, B9, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, and 113 for 1,536 samples. For
smaller weights, the window sizes were just the first w window sizes listed here for each
sample size. For the first round of testing, the total number of tests was equal to the
sum of the window sizes.

Xw: xri; > ’U)\/N
1=1

If the result was ambiguous (i.e. any time the number of positives exceeded w — 1),
the number of steps increased to two and additional tests, equal to the number of
prospective positive samples, were added to the test count. Because the samples that
were added to each pool are staggered, multichannel pipettes do not provide any
advantage; therefore, the number of pipettings was calculated assuming only a single
channel pipette (N x w 4 |Prospective Positives|).

2D Pooling Simulations

For the 2D pooling simulations we used square D x D grids and each of the M grids in
a simulation were the same size. The samples were pooled along each row and column
requiring 2D M tests. When the results were ambiguous, the number of steps increased
by one and the number of tests increased by the number of prospective positive samples
to account for the validation. Because the pooling along columns and rows can be easily
and more efficiently performed using multichannel pipettes, the number of pipettings
was calculated using an 8- and a 16-channel pipette, in addition to a single channel
pipette. The number of pipettings was the Z?flM ("7] where n; is the number of
samples in each row or column and c¢ is the number of channels in the pipette. We
assumed that any additional pipettings required for testing the ambiguous samples was
performed with a single channel pipette.

S-Stage Simulations

The S-Stage simulations were provided with an expected number of positive samples, k.

The number of steps was calculated as S = In (%) and the number of samples per
group was n; = % = . Because these calculations do not provide integer values, a

nearest integer approximation was used. Optimal integer approximations of these values
can be determined numerically but here we consistently applied a ceiling function. For
each number of true positive samples (k = 1 — 20) we ran simulations with expected

June 26, 2020

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

https://github.com/FofanovLab/sample_pooling_sims
https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.
values, IAc, ranging from 1-20. The number of tests was calculated as

u N kny kng_o
T= ;< — + + ..+ + kng_
;g ng n+2 Ng_1 !

where g; = U\[J is the number of groups tested at each step. The number of pipettings

for a single channel pipette was equal to the number of samples in each of the pools that
were tested. For multichannel pipettes, the number of samples in each pool was divided
by the number of channels and rounded up. In cases where the samples in the pool were
not in adjacent wells, additional pipettings were required.

Modified 3-Stage Simulations

Our modified 3-Stage approach is similar to the S-Stage algorithm except that the
number of steps was constrained to a maximum of three: S = min (3, [1n %-I) In order

to recursively subdivide each pool, the number of subgroups was calculated as

ni+
number of positive samples (k = 1 — 20) we ran simulations with expected values
ranging from k£ = 1 — 20. The number of tests and the number of pipettings were
calculated the same way as the S-Stage simulations.

gi = { o J with n; calculated the same way as the S-Stage simulations. For each true

Binary Splitting by Halving

The Binary Splitting by Halving simulations did not require any estimate of the number
of positive samples. The simulation performed repeated binary searches for positive
samples until no more positive samples remained. Only one test was performed at each
step and, because each step depended on information gained in the previous step, none
of the steps were performed in parallel. Therefore, the number of tests was equal to the
number of steps. The number of pipettings was equal to the size of each pool divided by
the number of channels in the pipette, rounded up.

Generalized Binary Splitting

The Generalized Binary Splitting simulations were similar to the Binary Splitting by
Halving simulations except that the initial group size was calculated based on the
number of expected positive samples (k). More specifically, the initial group size was

calculated as 2* where a = Llogg ("*Tk“” Binary Splitting by Halving (as described

above) was performed on the initial group until a positive sample was identified at
which point the value N was updated to reflect the number of remaining untested
samples and the value k was decremented by 1 if a positive sample was found. The next
group of 2¢ was calculated using updated values of N and k. This continued until either
N < 2k — 2, at which point the remaining samples were tested individually, or k= 0, at
which point all of the suspected positive samples were identified. Because the standard
algorithm only guarantees that up to k positive samples will be found, we added

additional rounds of binary splitting to ensure all of the positive samples were identified.

The number of tests, steps, and pipettings were calculated the same way as the Binary
Splitting by Halving simulations.
Experimental validation of modified 3-stage approach

We set up rare pathogen detection experiments in complex microbiome backgrounds to
test our Modified 3-Stage approach. We used a total of 768 samples (eight 96-well

June 26, 2020

NE

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

plates) that contained a background of 2 uL of DNA extraction from cow’s milk and 8
uL of molecular grade water. These samples originated from 24 distinct cow milk
samples and were replicated (32 replicates each) to fill eight 96-well plates — a total of
24 unique microbiome backgrounds. C. burnetti DNA (1 pL) was added to 10 randomly
chosen background samples (~ 1.3% carriage rate) as we verified that the spike-in was
successful using a highly sensitive Tagman assay designed to target the IS1111
repetitive element in Coziella burnetti [28]. Using the same Tagqman assay, we also
verified that the target pathogen was not present in any of the 24 unique microbiome
backgrounds prior to the spike-in. To ensure a consistent amount of background DNA,
the milk extractions were tested to determine the amount of bacteria with a real-time
PCR assay that detects the 16S gene and compares it to a known standard [29].

The pooling procedure was carried out by a typical researcher looking to identify
samples that are positive for the pathogen of interest, C. burnetti. Assuming N = 96
and k = [96 x 0.013] = 2 the pooling scheme recommended by our modified 3-stage
approach is depicted in Fig[5] In the first step, 6 pools consisted of 16 samples each,
collected along every 2 columns of the 96 well plate using an 8-channel pipette. The 2
L aliquots from each sample were collected in a plastic reservoir and then pipetted
back into a single well in a new 96 well plate. The C. burnetti Taqgman assay was used
to test each of the pools. For the reaction, the following were combined for a final
volume of 10 uyL: 1 L from the pool, 2 pL of Life Technologies TagMan®) Universal
PCR Master Mix for a final concentration of 1X, 0.3 uL each of the forward and reverse
primers for a concentration of 0.6 pM, 0.13 pL of the probe for a concentration of 0.25
pm and molecular grade water to a final volume of 10 yL. The reaction was run on an
Applied Biosystems 7900 Real Time PCR system with the following conditions: 50 °C
for 2 minutes, 95 °C for 10 minutes, and 40 cycles of 95°C for 15 seconds and 60°C for 1
minute. The second pooling step was carried out by subdividing the samples from the
positive pools in the previous step into four groups of four samples. Again, 2 uL. from
each well was combined into the pool. These pools were subjected to Tagman C.
burnetti assay as described above. Finally, the individual samples belonging to pools
positive in the second pooling step, were tested as described above.

Results and Discussion

Number of tests

Because minimizing the number of tests is one of the primary goals of group testing, we
begin by comparing the number of tests required for each method using a range of
sample sizes: 96, 384, and 1,536. The number of positive samples ranged from 1 to 20
which resulted in minimum positive rates of 1.04%, 0.26%, and 0.07%; and maximum

positive rates of 20.83%, 5.20%, and 1.30% for 96, 284, and 1,536 samples, respectively.

Fig [6] directly compares the average number of tests for each method using the optimal
parameter settings. For the S-Stage, Modified 3-Stage, and General Binary Splitting
approaches, the results shown are for simulations where the expected number of positive
samples was the same as the true number of positives (k = lAc) For DNA Sudoku and
2D Pooling, the results shown are for simulations with parameters that resulted in the
lowest average number of tests.

As expected, the General Binary Splitting method consistently required the fewest
number of tests in all cases because it is nearly optimal according to group testing
theory. Also expectedly, all of the pooling methods were most efficient positive samples
were sparse (Fig. @ top row where k = 1). The two non-adaptive methods (DNA
Sudoku and 2D Pooling) required the highest number of tests when & = 1. DNA
Sudoku performed slightly worse than 2D pooling (by one test) owing to the fact that

June 26, 2020

10/18

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Fig 6. Comparison of the number of tests required for each pooling method. The bar
graphs show the average number of tests required for each method and the error bars are the standard
deviation across 100 simulations. The top row shows simulations with one positive sample and the
bottom row shows simulations with 20 positive samples. The columns are different sample sizes from
left to right: 96, 384, and 1,596. For the S-Stage, Modified 3-Stage, and General Binary Splitting
approaches, the results shown are for simulations where the expected number of positive samples was
the same as the true number of positives. For DNA Sudoku and 2D Pooling, the results shown are for
simulations with parameters that resulted in the lowest average number of tests (DNA Sudoku: w = 2

when k£ = 1, and when k = 20, w = 3 for 96 samples and w = 4 for 384 and 1,536 samples; 2D Pooling:

when k = 1, the grid sizes shown are 1x10x10 for 96 samples, 1x20x20 for 394 samples, and 1x40x40 for
1536 samples, and when k£ = 20 the grid sizes are 11x3x3 for 96 samples, 24x4x4 for 384 samples, and
96x4x4 for 1,536 samples).

the window sizes were co-prime instead of symmetrical like 2D Pooling. At the
maximum number of positive samples for our simulations (k = 20), Binary Splitting by
Halving performed the worst when the positive rate was high and exceeded individual
testing for 96 samples (along with many DNA Sudoku simulations). The number of
tests required for our Modified 3-Stage approach typically fell somewhere in the middle
except for when the number of total samples and positive samples were highest. When
N = 1,536 and k = 20, the Modified 3-Stage simulations required only slightly fewer
tests, on average, than 2D Pooling, which performed the worst (Table [1]).

Table 1. Summary of the performance of pooling methods for each of our areas of interest: number of
tests, number of steps, number of samples per pool, robustness, and simplicity. For sample sizes N = 96,
384, and 1,536, the table shows the average number for each feature when k = 1 and for k£ = 20.

No. of N N Generalized Modified
Samples | PNA Sudoku | 2D Pooling S-Stage Halving Bintmy Splitting 3-Stage
96 a1 20 13 865 7.9 i1
Ak"f‘l]\t’;f"“s 384 a1 10 16,50 10.66 9.09 21
(k=1k=1) 1,536 | 81 80 2061 12.60 12.00 3168
96 9777 85.18 8081 132.05 70.31 80.99
. No. Tests
Ak_"f 2{:7 _ ;“)"‘ 384 TI7.19 52.16 T19.63 7137 112.60 T55.81
(§) 1,536 214.43 250.67 224.82 211.14 152.96 248.78
X 96 1 1 5 8.65 7.99 3
AA"E' IN ;’j‘em 384 1 1 [10.66 9.99 3
(k=1,k=1) 1,536 I T 3 12.60 12.00 3
N 96 2 2 2 132.05 60.56 2
Avg. No. St
“Vg 20 Dk :,‘;s 384 2 2 3 7137 1251 3
=0, k=2 1536 |2 2 5 21114 15200 3
3
9 10 10 (2 steps, k = 13 — 20) % 2 (k =20)
Max No. Samples (W, = 10) (10x10x1) 48 64 (k=1)
per Pool (5 steps, k =1)
3
20 20 (3 steps, k = 20) ., 16 (k = 20) 8 (k=17 -20)
384 .) 384 , ;
(W; = 20) (20x20x1) 192 256 (k = 1) 55 (k=1)
(6 steps, k=1-2)
31
39 40 (5 steps, k = 11 — 20) . 64 (k = 20) 20 (k =19 - 20)
1,536 o s 1,536 VP i
(W; = 40) (40x40x1) 68 > 1024 (k= 1) 140 (k= 1)
(8 steps, k = 1)
N , 22 To8.77 ESI)
. o3 5 p
Si}a\]née in No. Tests | 96 +935 +45 - N/A (+3219 steps) (1 step)
restimat =
of Positive Samples | 384 1187 +217 N/A (*‘“7’;3;: steps) +31.89
(=1, k=20) . ¥ A TS
5 55 945 ! +54.65
1,536 155 045 (-3 steps) / (+110.89 steps) 5165
Change in No. Tests
with Underestimate | o - -857.68 +115 +14.53 N/A +61.99 +11.75
of Positive Samples (+1 step) (+1 step) (+3 steps) 1t (+62.57 steps) (+1 step)
(k =20,k =1)
1027.82 60.79 ; 5800 .
384 (+1 step) (+1 step) N/A (+58.40 steps) o
“1212.81 ~GOL1.86 +56.80 .
5 / 4
1,536 (+1 step) (+1 step N/A (+56.80 steps) 10885
No. of Channels 1 1 16 8 16 1 8 16 1 8 16 1 8 16
Ave. No. Pipettes |98 192 102 20 26 7 23848 | 3292 | 19.07 2179 | 1463 | 126 2 8
k E'l [P 384 768 768 79 9150 | 5059 | 973.63 | 12483 | 65.05 S788 [4618 | 417.06 | 7041 | 4311
(’) 1,536 3072 3072 222 3 | 352.61 | 181.61 | 3790.28 476.88 241.04 350.20 | 177.36 | 1688.32 | 232.68 | 122.68
Avg. No. Pipettes 96 351.77 229.18 85.18 80.84 80.84 2096.29 33210 2 5 156.24 70.57 70.34 144.99 80.99 80.99
0 b o0 384 1500.10 810.16 15116 1605 | 1605 | 8442.06 | 1141.23 815.00 | 145.06 | 115.07 | 592.76_| 15581 | 155.84
(k =20, k=20) 1,536 | 618743 3162.67 300.67 | 25 176.06 | 319.81 | 33809.45 | 1340.01 5 | 3382.25 | 165.78 | 273.17 | 1070.68 | 404.08 | 324.08

Number of steps

The number of sequential steps is one of the major factors that differentiates pooling
methods. The major benefit of non-adaptive pooling methods is that, in some cases, all
of the tests can be run at the same time which means that testing can be completed
faster. Clearly, the nonadaptive tests required the fewest number of steps even when the
results were ambiguous, necessitating a second round of validation [7] For 96 samples,
the highest weight that we tested was 6 which meant that any simulation with 5 or

June 26, 2020

1118

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

more positive samples was ambiguous. Although higher weights could be used to avoid

ambiguous results, the number of tests required would have exceeded individual testing.

For 384 and 1,536 samples, up to 9 and 20 positive samples, respectively, were
unambiguously identified without exceeding individual testing. The ability to
unambiguously identify the positive samples in a single step, however, came with a high
cost in the number of tests that needed to be performed. For example, the cost of
saving one step when using w = 6 versus w = 2 for 5 positive samples was on average
56.56 tests for 96 samples. This increased to an additional 1,321.57 tests on average for
1,536 samples using w = 21 (1 step) versus w = 4 (2 steps) when k = 20.

Fig 7. Comparison of the number of steps required for each pooling method. The bar plot
shows the average number of steps required for each method and the error bars are the standard
deviation across 100 simulations (note the different scales for the y-axis). The top row shows
simulations with one positive sample and the bottom row shows simulations with 20 positive samples.
The columns are different sample sizes from left to right: 96, 384, and 1,596. These results are from the
same set of simulations as shown in Fig@

For 2D Pooling, ambiguous results occurred more frequently as the number of
positive samples increased and were more likely in larger grid arrangements (Fig. .
Unlike the DNA Sudoku results, which were always ambiguous or unambiguous based
on the weight and the number of positives, ambiguous results for 2D Pooling depended
on the random arrangement of the positive samples in the grid and therefore were not
always consistent for a given window size. For 96 samples, up to 16 positive samples
could be identified in a single step but this only occurred in 1% of the simulations. At 5
positive samples (the highest number that could be unambiguously identified using
DNA Sudoku), 66% of the simulations required only one step using 3x3x11 grids (66
tests). For 384 samples, up to 20 positive samples were unambiguously identified using
3x3x43 grids (258 tests) in 15% of the simulations. For 1,536 samples, 20 positive
samples were unambiguously identified in 60% of the 3x3x171 grid simulations (1,026
tests), and in only 6% of the 6x6x43 grid simulations (516 tests). This shows that
reducing the grid size increases the chances of an unambiguous result but, again, it
comes with a large increase in the number of tests (1,026 tests for 3x3x171 grid vs. 160
tests for 20x20x4 at 1,536 samples).

For the adaptive methods, the trade off for being more efficient in the number of
tests is often an increase in the number of sequential steps. This is most striking in the
case of the Generalized Binary Splitting method which performed the best overall in the
number of tests but, in some cases, required over 100 steps. Even so, the Binary
Splitting by Halving method required even more steps than the General Binary
Splitting method. This is partially due to the fact that the number of tests is highly
correlated with the number of steps for both of these methods and the General Binary
Splitting algorithm does a better job of minimizing the number of tests (the General
Binary Splitting method also switches to individual testing in some cases and, because
individual tests can be completed in parallel, this can also reduce the total number of
steps). The number of steps required for the S-Stage approach were much more
moderate compared to the binary splitting algorithms; however, they did get as high as
8 sequential steps. Our Modified 3-stage approach performed the best among the
adaptive methods because it enforced a maximum of 3 steps.

Number of samples per pool

The number of samples that are combined in a single pool is a very important practical
concern because it can determine whether the assay can produce accurate results.
Typically, assays can fail to identify positive samples if the positive signal is diluted
beyond the limit of detection. This means that pooling approaches that limit the

June 26, 2020

1218

403

404

405

406

407

408

409

410

411

412

413

414

416

417

418

419

420

421

422

423

424

436

437

438

439

440

441

442

444

445

446

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

number of samples per pool are more likely to perform better in practice. Fig
compares the maximum number of samples per pool for each pooling method.

Fig 8. Comparison of the maximum number of samples per pool for each pooling
method. The bar graphs plot the maximum number of samples in a single pool for each method (note
the different scales for the y-axis). The top row shows simulations with one positive sample and the
bottom row shows simulations with 20 positive samples. The columns are different sample sizes from
left to right: 96, 384, and 1,596. These results are from the same set of simulations as shown in Fig@

For the DNA Sudoku simulations, the number of samples per pool was determined
by the pooling interval. Because the size of the pooling interval determined the number
of pools that the samples would be divided into, a smaller interval resulted in more
samples per pool. For 96 samples, the smallest interval was 10 which resulted in up to
10 samples per pool, for 394 samples, the smallest interval was 20 with 20 samples per
pool, and for 1,536 samples the smallest interval was 40 with 39 samples per pool (Table
11)). For 2D Pooling, the number of samples per pool was equal to the number of samples
in each column or row for a given grid layout. The largest grid layouts had the largest
number of samples per pool: 10 for 96 samples, 20 for 384 samples, and 40 for 1,536
samples. The number of samples per pool was very consistent for both DNA Sudoku
and 2D pooling. For the adaptive approaches, the number of samples per pool varied at
each step and tended to be the largest for the first step. For the S-Stage, the Modified
3-stage, General Binary Splitting approaches, the maximum number of samples per pool
was lowest when the number of expected positive samples was high and increased as the
number of expected positive samples decreased (Table[I]). The Modified 3-Stage
approach always had the same or fewer samples per pool compared to the S-stage
approach. This was particularly true when the number of positive samples was low,
resulting in a reduction of 24, 137, and 628 samples per pool for N = 96, 384, 1,536,
respectively. The Binary Splitting by Halving method required the largest number of
samples per pool at 96, 384, and 1536, due to the need to pool and test all of the
samples together as the first step.

Simplicity of pooling method

The simplicity of a pooling method can be somewhat subjective. However, one of the
major points of failure when combining pools by hand, is mistakes in pipetting the
wrong samples. Therefore, we used the number of individual pipetting actions required
for each method using 1-, 8-, and 16-channel pipettes as an indicator for the simplicity
and reproducibility of each method. Fig[0] compares the number of pipettings required
for each method with either 1 or 20 positive samples for each of the sample sizes.

Fig 9. Comparison of the average number of pipettings for each pooling method. The
number of pipettings required for each pooling method is an indicator of method simplicity and
reproducibility. The bar charts indicate the average number of pipettings required to create pools for
each method using 1-, 8-, and 16-channel pipettes (columns). The rows are the results from simulations
using N = 96, 384, and 1,536 samples and k = 1 or 20 positive samples (note the different scale on the
y-axes). The error bars represent the standard deviation of 100 simulations. The DNA Sudoku method
does not benefit from the use of multichannel pipettes so the number of pipettings is the same across
each row. These results are from the same set of simulations as shown in Fig@

In most methods, using a multichannel pipette reduced the number of pipettings by
an order of magnitude in some cases. Compared to the 8-channel pipette, the
16-channel pipette reduced the number of pipettings only for schemes where the size of
the pools were large. Our Modified 3-Stage method required the fewest pipettings with
a single-channel pipette, compared to the other methods; however, the S-Stage method

performed similarly well in cases where the number of steps happened to be similar (i.e.

June 26, 2020

13/18

447

448

449

450

452

453

454

455

456

457

458

459

460

462

463

464

465

467

468

469

470

471

472

473

475

476

477

478

479

480

482

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

in Fig [0 both methods required the same number of steps when k = 20 for N = 96 and
384). This generally translated into the best performance when using multichannel
pipettes; although, the General Binary Splitting simulations performed slightly better in
cases where the size of the pools were large, making the multichannel pipettes more
efficient.

Binary Splitting by Halving is the least efficient method in number of pipettings,
likely because the method requires many samples to be pooled at each step for many
steps. The performance is slightly improved when multichannel pipettes are used but it
is still the least efficient in many cases. Using a single pipette, DNA Sudoku was not
the most inefficient compared to the other methods. However, because the samples that
are combined in each pool are spaced out in different intervals instead of in consecutive
groups, the number of pipettings did not improve by using multichannel pipettes. This
means that, in the best case, a laboratory technician would need to correctly pipette
~ 200 (N =96) to ~ 6,000 (N = 1,536) times to combine the samples into pools.

Sensitivity to misestimation of positive rate

Most of the methods described here required an estimate of the positive rate in order to
design the pooling scheme. In some cases, over or underestimating the number of
positives can have large impacts on the number of tests and/or the number of steps
required to complete the assay. Methods that minimize the impact of misestimation are
more robust to fluctuating rates in the sample population which is common in outbreak
scenarios.

Binary Splitting by Halving was, by default, the most robust of the approaches
because the protocol was not modified based on any estimate of the number of positive
samples (Fig second from right). Although the number of tests increased when there
were more positive samples, assuming a fixed sample size, knowledge of the number of
positive samples did not have any impact on the performance of this approach. In
contrast, the size of the initial pool for the Generalized Binary Splitting method
depended on k and, among the adaptive approaches, misestimation of the true value
resulted in the largest impact on the number of tests and steps (Fig right). The
consequences of extreme overestimation (k =1 and k= 20) and underestimation
(k=20 and k = 1) are provided in Table [1| which shows that method is more sensitive
to overestimation than to underestimation. Of the methods that depended on an
estimate of the number of positive samples, the S-Stage (Fig left) and our Modified

3-Stage approach (Fig second from left) were the most robust to misestimations of k.

The number of steps was more robust in the Modified 3-Stage approach than the
S-Stage due to the 3-Step constraint; however, the Modified 3-Stage was more sensitive
in the number of tests in some cases (Table .

Fig 10. Changes in the number of tests and steps given different estimated positive rates
for the adaptive methods. The figure shows the number of tests (y-axis) and the number of steps
(marker size) required to recover all positive samples (x-axis) in simulations with N = 384 samples
using each of the adaptive methods. For each method, except for Binary Splitting by Halving, the
pooling scheme was optimized around the expected number of positive samples (marker color) provided
to each simulation. Each point represents a single simulation and the lines are the average number of
tests for a given number of expected positives. The black dashed line in the S-Stage, 3-Stage, and
Binary Splitting by Halving figures represents the upper bound of the number of tests (assuming that
the number of positive samples is estimated correctly, where applicable). For the Generalized Binary
Splitting figure, the number of tests approaches the lower bound (black dashed line) when % is large.

DNA Sudoku (Fig |11} left) was the most sensitive method overall. Overestimating of
the number of positive samples caused the weight of the pooling design (w =k + 1) to
be set higher than it needed to be. When this happened, all of the positive samples

June 26, 2020

14/18

483

484

485

486

487

488

489

490

491

492

493

495

496

497

498

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

were still unambiguously identified but each unnecessary increase in the weight required
more than /N additional tests. When the number of positive samples was
underestimated, fewer tests were performed but the pooling scheme was no longer able
to unambiguously identify the positive samples in a single step and a second round of
verification was required. A similar pattern occurred in the 2D Pooling simulations (Fig
right). While the grid dimensions did not directly depend on k, generally larger
grids were more efficient when the number of positive samples was low and smaller grids
reduced ambiguous results when the number of positive samples was high but at the
cost of many more tests. However, because 2D Pooling was constrained to two
dimensions, the number of tests did not vary as drastically as DNA Sudoku.

Fig 11. Changes in the number of tests and steps given different estimated positive rates
for the non-adaptive methods. The figure shows the number of tests (y-axis) and the number of
steps (marker size) required to recover all positive samples (x-axis) in simulations with N = 384 samples
using DNA Sudoku and 2D Pooling methods. Each point is the average number of tests required for
100 simulations and the width of the bands is the standard deviation. The simulations were run using
different weights for DNA Sudoku and different symmetrical 2D grid sizes for 2D Pooling. Small
markers indicate unambiguous results that required only a single round of testing and the larger
markers indicate ambiguous results that required a second validation step to correctly identify the
positive samples. The grey dashed line is the number of tests required for individual testing.

Experimental validation of modified 3-Stage approach

To experimentally validate our modified 3-Stage approach, we set up a controlled

experiment with C. burnettt DNA spiked into complex microbiome background samples.

All of the 24 background samples used in the validation experiment were negative for
the C. burnetti pathogen prior to the spike-in and each background extraction was
found to have similar amounts of the 16S gene (CT values of 29 to 31), indicating
similar background bacterial loads. C. burnetti was detected in the spike-in samples
prior to pooling. The random placement of the C. burnetti positive samples within the
eight 96-well plates is shown in Table[2] Although the expected number of positive
samples per plate was ~ 2 given the 1.3% carriage rate, the actual number of positives
ranged from 0 to 3 and none of the plates had exactly 2 positive samples (Table . The
TagMan assay was able to accurately identify the positive pools without any false
positives or false negatives even during the first step when the number of samples per
pool was the largest at 16. Using an 8-channel pipette where appropriate, a total of 180
pipettings was required to pool the samples. A total of 120 TaqgMan assays were
performed which is ~ 84% fewer than would be required to individually test 768
samples.

Conclusions

Picking the right pooling approach for a given pathogen surveillance campaign can be a
complicated decision, which is often driven by a set of conflicting constraints and
priorities, including budgetary limitations, complexity of the procedure (and thus
likelihood of human error), and time-to-answer requirements. As is evident from the
data presented in this manuscript, no single group theory approach is a clear winner
under all these possible constraints — the correct choice depends on the predominant
constraints placed on the surveillance campaign. Below we present some of the practical
implications of the various group theory approaches outlined in this manuscript.
When minimizing the total number of tests is the absolute overriding goal and
time-to-answer is not an important constraint, Generalized Binary Splitting is the
optimal choice. This approach minimized the total number of tests while maintaining a

June 26, 2020

15/18

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table 2. Using the modified 3-Stage approach we were able to accurately recover all of
the positive C. burnetit samples. Eight 96-well plates were filled with background DNA from

complex cow milk microbiome samples and 10 randomly chosen samples had C. burnetii DNA spiked in.

The table shows the number and location of the positive samples in each 96-well plate and the number
of tests and pipettings required to identify the positive samples using our Modified 3-Stage pooling
approach.

" Exp.
Positive Positive Samples Positive . .
Plate # | Samples Samples (N) Wells Tests Pipettings

1 3 2 96 F1, A4, G9 30 48
2 1 2 96 H2 14 20
3 1 2 96 D9 14 20
4 1 2 96 El1 14 20
5 0 2 96 NA 6 12
6 3 2 96 F3, A10, C10 22 28
7 0 2 96 NA 6 12
8 1 2 96 D4 14 20

reasonable complexity, as measured by the number of distinct pipetting actions, but
sacrifices speed due to significantly increase in the number of serial steps. On the other
hand, when speed is the predominant constraint, DNA Sudoku can offer a single-step
pooling approach with the minimum number of tests, at the cost of significant
complexity. DNA Sudoku, however, is far from optimal for monitoring rapidly changing
pandemics due to its extreme sensitivity to misestimation of the carriage rate of the
pathogen in population.

A good middle ground between the adaptive and non-adaptive pooling approaches is
the Modified 3-Stage approach — our preference in our own surveillance applications.
While it is never the absolute best in any one category, it is always nearly optimal in
terms of number of serial steps (2nd best), complexity (2nd best), number of tests (4th
best), and extremely resilient to misestimation of the carriage rate (2nd best). The
latter is particularly important, as it allows this approach to be useful for surveillance in
situations with rapidly changing pathogen carriage rates (e.g. in pandemic or seasonal
outbreaks), while keeping number of serial steps as low as possible for an adaptive
method.

References

1. Abdurrahman ST, Mbanaso O, Lawson L, Oladimeji O, Blakiston M, Obasanya J,
et al. Testing Pooled Sputum with Xpert MTB/RIF for Diagnosis of Pulmonary
Tuberculosis To Increase Affordability in Low-Income Countries. Journal of
clinical microbiology. 2015;53(8):2502-2508. doi:10.1128/JCM.00864-15.

2. Ray KJ, Zhou Z, Cevallos V, Chin S, Enanoria W, Lui F, et al. Estimating
Community Prevalence of Ocular Chlamydia trachomatis Infection using Pooled
Polymerase Chain Reaction Testing. Ophthalmic Epidemiology. 2014;21(2):86-91.
doi:10.3109/09286586.2014.884600.

3. Stallknecht DE. Impediments to wildlife disease surveillance, research, and
diagnostics. Curr Top Microbiol Immunol. 2007;315:445-461.
doi:10.1007/978-3-540-70962-6_17.

June 26, 2020

1618

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10.

11.

12.

13.

14.

15.

16.

17.

. Evaluating and testing persons for coronavirus disease 2019 (COVID-19). Centers

for Disease Control and Prevention; 2020. Available from: https:
//www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-criteria.htmll

. Dorfman R. The Detection of Defective Members of Large Populations. Annals of

Mathematical Statistics. 1943;14(4):436-440. doi:10.1214/aoms/1177731363.

. Du Dz, Kwang-ming Hwang F. Combinatorial group testing and its applications.

2nd ed. World Scientific; 1993.

. Ramirez AL, van den Hurk AF, Meyer DB, Ritchie SA. Searching for the

proverbial needle in a haystack: advances in mosquito-borne arbovirus
surveillance. Parasites & Vectors. 2018;11(1):320. doi:10.1186/s13071-018-2901-x.

. Hepp CM, Cocking JH, Valentine M, Young SJ, Damian D, Samuels-Crow KE,

et al. Phylogenetic analysis of West Nile Virus in Maricopa County, Arizona:
Evidence for dynamic behavior of strains in two major lineages in the American
Southwest. PLOS ONE. 2018;13(11):1-12. doi:10.1371/journal.pone.0205801.

. Sutherland GL, Nasci RS. Detection of West Nile Virus in Large Pools of

Mosquitoes. Journal of the American Mosquito Control Association.
2007;23(4):389 — 395. doi:10.2987/5630.1.

West Nile Virus in the United States: Guidelines for Surveillance, Prevention,
and Control. Centers for Disease Control and Prevention; 2013. Available from:
https://www.cdc.gov/westnile/resources/pdfs/wnvGuidelines.pdf.

Pannwitz G, Wolf C, Harder T. Active surveillance for avian influenza virus
infection in wild birds by analysis of avian fecal samples from the environment. J
Wildl Dis. 2009;45(2):512-518. doi:10.7589/0090-3558-45.2.512.

Munoz-Zanzi CA, Johnson WO, Thurmond MC, Hietala SK. Pooled-Sample
Testing as a Herd-Screening Tool for Detection of Bovine Viral Diarrhea Virus
Persistently Infected Cattle. Journal of Veterinary Diagnostic Investigation.
2000;12(3):195-203. doi:10.1177/104063870001200301.

Hogan CA, Sahoo MK, Pinsky BA. Sample Pooling as a Strategy to Detect
Community Transmission of SARS-CoV-2. JAMA. 2020;323(19):1967-1969.
doi:10.1001 /jama.2020.5445.

Taylor SM, Juliano JJ, Trottman PA, Griffin JB, Landis SH, Kitsa P, et al.
High-Throughput Pooling and Real-Time PCR-Based Strategy for Malaria
Detection. Journal of Clinical Microbiology. 2010;48(2):512-519.
doi:10.1128/JCM.01800-09.

Pilcher CD, McPherson JT, Leone PA, Smurzynski M, Owen-O’Dowd J,
Peace-Brewer AL, et al. Real-time, Universal Screening for Acute HIV Infection
in a Routine HIV Counseling and Testing Population. JAMA.
2002;288(2):216-221. doi:10.1001/jama.288.2.216.

Aldridge M, Johnson O, Scarlett J. Group Testing: An Information Theory
Perspective. Foundations and Trends®) in Communications and Information
Theory. 2019;15(3-4):196-392. doi:10.1561,/0100000099.

Laurin E, Thakur K, Mohr PG, Hick P, Crane MSJ, Gardner IA, et al. To pool
or not to pool? Guidelines for pooling samples for use in surveillance testing of
infectious diseases in aquatic animals. Journal of Fish Diseases.
2019;42(11):1471-1491. doi:10.1111/j£d.13083.

June 26, 2020

17/18

https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-criteria.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-criteria.html
https://www.cdc.gov/westnile/resources/pdfs/wnvGuidelines.pdf
https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206060; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Hu MC, Hwang FK, Wang JK. A Boundary Problem for Group Testing. STAM
Journal on Algebraic Discrete Methods. 1981;2(2):81-87. doi:10.1137/0602011.

Riccio L, Colbourn CJ. Sharper Bounds in Adaptive Group Testing. Taiwanese J
Math. 2000;4(4):669-673. doi:10.11650/twjm/1500407300.

Erlich Y, Chang K, Gordon A, Ronen R, Navon O, Rooks M, et al. DNA
Sudoku-harnessing high-throughput sequencing for multiplexed specimen
analysis. Genome Res. 2009;19(7):1243-53. doi:10.1101/gr.092957.109.

Chi X, Zhang Y, Xue Z, Feng L, Liu H, Wang F, et al. Discovery of rare
mutations in extensively pooled DNA samples using multiple target enrichment.
Plant Biotechnol J. 2014;12(6):709-17. doi:10.1111/pbi.12174.

Cao HX, Schmidt R. Screening of a Brassica napus bacterial artificial
chromosome library using highly parallel single nucleotide polymorphism assays.
BMC Genomics. 2013;14:603. doi:10.1186/1471-2164-14-603.

Zuzarte PC, Denroche RE, Fehringer G, Katzov-Eckert H, Hung RJ, McPherson
JD. A two-dimensional pooling strategy for rare variant detection on
next-generation sequencing platforms. PLoS One. 2014;9(4):e93455.
doi:10.1371/journal.pone.0093455.

Li CH. A Sequential Method for Screening Experimental Variables. Journal of
the American Statistical Association. 1962;57(298):455-477.
d0i:10.1080/01621459.1962.10480672.

Sobel M, Groll PA. Group testing to eliminate efficiently all defectives in a
binomial sample. The Bell System Technical Journal. 1959;38(5):1179-1252.

Sobel M, Groll PA. Binomial Group-Testing with an Unknown Proportion of
Defectives. Technometrics. 1966;8(4):631-656.

Hwang FK. A Method for Detecting all Defective Members in a Population by
Group Testing. Journal of the American Statistical Association.
1972;67(339):605-608. doi:10.1080/01621459.1972.10481257.

Loftis AD, Reeves WK, Szumlas DE, Abbassy MM, Helmy IM, Moriarity JR,
et al. Rickettsial agents in Egyptian ticks collected from domestic animals. Exp
Appl Acarol. 2006;40(1):67-81. doi:10.1007/s10493-006-9025-2.

Liu CM, Aziz M, Kachur S, Hsueh PR, Huang YT, Keim P, et al. BactQuant: an
enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC
Microbiol. 2012;12:56. doi:10.1186/1471-2180-12-56.

June 26, 2020

18/]18

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

o'elelelele’e
uhﬁuﬁmﬁmﬂ
etalet deten
4
OO

f.r.nBEDEFGH

.....f.uBEDEF....__._H

o

b
i

o] loje0le] {0
Ne'ele/el0/elole
= QBN

0999,
R +..._T_..+.-_ .f.f‘.f.
» QRS
SR80S

OO0
W
JﬂﬂJWAW,

+
5
300

o
I+I+)

OQC
olol0le
X

o0

ol0/0/0le
S
oj0/0l0le
.?fﬂﬁ?
000

o
e

.60 I+l+

b
QA

+w€ﬁ#
P90
olelele’

....,..nBEDEFGH

+
Nelele'e
~ QO
aiﬁjh?ﬁ s
e
OO0

-

T
=

VY ivnvrvvviuuw

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

L] -i :
o T -

3456 78 91

D SR SRS
RO
S AR R S
DS VD NS PSS
D T N
S A

/12345678 9101112
..':.....:..
Nele'e - o/e/e'e'e o o'®
..*!‘h ,!*....h X OO
> QQIOOOC
= QOQAOOIAC
F QOO0 ¢¢¢¢| OO
1000 " 00000000
100000000000

W Wy

/123456?39101112

No 0o 00000000
doos seimeees
C

> OO
Neeee0eeee s ee
oo eeeeee e
& OO

Wiy W

Fig 3

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

1 2 3 4 5 6 7 8 9 101112
N N Y N Y N Y Y SNV

et
et
B
S A
Bttt e
S S
S Y

Imﬂmﬂﬁmh\

1 2 3 45 6 7 8 9101112
e T

QOO

R R s

S eSS 22D

BRI
4444

vu»é---\ﬁf--iﬁ'f.---@—Jgﬁ—@r-*Wb‘h-{iﬁ'*-‘:‘_:p\---iﬁl---lﬁh- whp has granted bioRi

der aCC-BY 4.0 Interrjafid

I@-nm:lnm:h-\

1 2 3 45 67 8 9101112 8

?

— - .. = i
iﬁ - > QOCIOOADOONK

RS R RS
e e e

e e e e N o e e e

IO MmOon®> N

—
o)

Im'ﬂmﬂﬂmh\

Tl
0q
AN

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

Tiiii

/123456 7 8 9101112

— —
Yoo o oooo oo
Eliﬁ%% 1&4% 6 yoed

O 4r4b4 2
c ORI o‘#‘o

HH HH

5 OO
= QOROORRIONC
F..HHooooHHoo

1000 500000 0.
1005500005500

W W

/123456?39101112
Y000 000000000
1000000000000
4000 00000000
o OOOOOOOO
e OOOOOOOO

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

k=1, N=96 k=1N= 384 k=1, N=1536

300 - - :
250 - -]
200 - -]
@
@ 150 - -
=
T R S SV R]]
50 -
o LN e e o _-_-_*_*_*_-
- k=20, N=296 k=20 N=384 k=20, N=1536
“
W
K
o

Method Method Method

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

Steps

140

120 H

100

k=1,N=96

k=1 N= 384 k=1 N=1536

k=20,N=96

k=20, N= 384 k=20, N=1536
175 -
200 4
150 4
125 = 150 =
100 -
25,4 100 -
50 -
50 5
25 -
0 I] D [I
NS o0 & SRPY.Y 00 a
R e ﬂp,‘:?}ﬁa?"‘# o5 @0 gy
g."i""i "L %@ﬂ @0&{.:3“ %) "I 'Ep""i@ﬂ *G‘S&E
o™ 2™
Method Method

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

Max Samples per Pool

Max Samples per Pool

100

k=1,N=96

k=20, N=96

Method

400 +
350 4
300 -
250 =
200 -
150 1
100

50

400 +
350 4
300
250 4
200
150
100

50

o

k=1 N= 384

W
0

o 0¥

k=20 N= 384

o o
ge® .:f.O&

Method

. 2
o9 \H“:"ﬂq .35‘3%

k=1 N=1536

k=20, N=1536

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

N=96 k=1
1 Channel Pipette

§ 200 -
2 100 -
(=
I:' =
N=96 k=20
1 Channel Pipette
wn 2000 -
U
.
g 1000 -
s
ﬂ -
N=384 k=1
1 Channel Pipette
» 1000 -
:uj.. bioRxiv F;‘rg [60; this version poste
@ 500"
-
D -
N=334 k=20
1 Channel Pipette
I
L
o 5000 -
o
2
D =
N=1536 k=1
1 Channel Pipette
4000 -
L
h
@ 2000 -
O
=
D -
N=1536 k=20
1 Channel Pipette
L
ot
+ 20000 -
(=3
=
ﬂ -
ﬂﬁg Dﬂ"‘*“ & 5’{,'33@'-\‘1\ “#ﬁ-“ 4:3@%
GE.
Method

Fig 9

o has granted bioRxiv a license t
4.0 International licens|

N=96 k=1
16 Channel Pipette

N=96 k=1
8 Channel Pipette

I...

N=96 k=20
8 Channel Pipette

L.l.

N=384 k=1
8 Channel Pipette

200 200

100 100

N=96 k=20
16 Channel Pipette

200 200

0

N=384 k=1
16 Channel Pipette

L.

N=384 k=20
16 Channel Pipette

500

copyright holder for this preprint (which

6, 2
he preprint in perpetuity. It is made

0

N=384 k=20
8 Channel Pipette

| I

1000 1000

0

N=1536 k=1

N=1536 k=1
16 Channel Pipette

8 Channel Pipette

I...

N=1536 k=20
8 Channel Pipette

2000 2000

T

0

N=1536 k=20
16 Channel Pipette

5000 5000
2500 2500

0 0

=
ﬂeg‘?“#% 5133%1‘4‘" @\# S@Q .:f‘ nﬂi"‘;f;@?a \q\ﬁ#‘ Qc:,t:a-‘-f!«
N @xﬂ?ﬁ&“ N7 %‘“f 56
e o
Method Mathod

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

400 -

300 -

200 -

Tests

100 -

S-Stage

3-Stage

400 +

300 -

200

Tests

100 -

Halving

Gen. Binary Splitting

6

|]
g8 10 12 14 1
True Positives

6 1

T
8

20

& 8 10 12 14 1
True Positives

T
B

18 20

® o & o 0 8 0 0

Exp Positives

Steps

60
120
180

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

DNA Sudoku

400

a- 8 -0=0-F=0- a=0=0 -0=0
3009 . = o8-89 9= B-0-88-0-0
- §-0-0-0=0-0-0-0 00" a-b
L“: 200 P — ------i-l-t-i-q--i----p-t—--l
;E ----1—--l-------ta-—t-ﬁ—i-i-t
e - T Tl
iy BB -0=8 =1 -a-a-iF--:.-:-_-:.-.-'l __:—a -1

1[}[}—' _____ I?-B-u-—u:--n—n-ﬂ-'ﬁ"i"
EI' 1 I 1 1 | T T I T -
2 4 6 8 10 12 14 16 18 20

True Positives

[T

¢ |

Weight

(¥ T o O T T I TR S I

Tests

2D Pooling
400
300 4
200 9= 8=0-0=0-0 0=0- 8-0-0 88 ﬁ'i::
82020201 0=0s 0 0=0 00 80 ".:='-=i#' Ji
e S
—828z0=0 0=z 000 5.;::_-;:;.&"..--*‘
- 1
100 _!*.--;l:!'iz:::;‘y $
.-l;"'—-'-
I:I 1 1 I 1 1 | | | I I
2 4 6 8 10 12 14 16 18 20

True Positives

Grid Size
3x3

434

aXD

Ix7
10x10
20x20
Steps

1

2

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1101/2020.07.16.206060
http://creativecommons.org/licenses/by/4.0/

