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Abstract

Due to the large number of negative tests, individually screening large populations for
rare pathogens can be wasteful and expensive. Sample pooling methods improve the
efficiency of large-scale pathogen screening campaigns by reducing the number of tests
and reagents required to accurately categorize positive and negative individuals. Such
methods rely on group testing theory which mainly focuses on minimizing the total
number of tests; however, many other practical concerns and tradeoffs must be
considered when choosing an appropriate method for a given set of circumstances. Here
we use computational simulations to determine how several theoretical approaches
compare in terms of (a) the number of tests, to minimize costs and save reagents, (b)
the number of sequential steps, to reduce the time it takes to complete the assay, (c) the
number of samples per pool, to avoid the limits of detection, (d) simplicity, to reduce
the risk of human error, and (e) robustness, to poor estimates of the number of positive
samples. We found that established methods often perform very well in one area but
very poorly in others. Therefore, we introduce and validate a new method which
performs fairly well across each of the above criteria making it a good general use
approach.

Introduction 1

For targeted surveillance of rare pathogens, screenings must be performed on a large 2

number of individuals from the host population to obtain a representative sample. For 3

pathogens present at low carriage rates of 1% or less, a typical detection scenario 4

involves testing hundreds to thousands of samples before a single positive is identified. 5

Although advances in molecular biology and genomic testing techniques have greatly 6

lowered the cost of testing, the large number of negative results still renders any 7

systematic pathogen surveillance program inefficient in terms of cost, reagents, and 8

time. These costs can quickly become prohibitively expensive in resource-poor settings 9

(e.g. pathogen surveillance in developing countries [1, 2], in non-human systems, such as 10

wildlife disease surveillance [3]), or when reagents become scarce due to a rapid spike in 11

testing demand (e.g. during the SARS-CoV-2 pandemic [4]). 12

Robert Dorfman first introduced a method to improve the efficiency of large-scale 13

pathogen screening campaigns during World War II. In an effort to screen out syphilitic 14

men from military service, the US was performing antigen-based blood tests on millions 15
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of specimens in order to detect just a few thousand cases. The large number of negative 16

tests struck Dorfman as being extremely wasteful and expensive and he proposed that 17

more information could be gained per test if many samples were pooled together and 18

tested as a group [5]. If the test performed on the pooled samples was negative (which 19

was very likely), then all individuals in the group could be cleared using a single test. If 20

the pooled sample was positive, it would mean that at least one individual in the 21

sample was positive and further testing could be performed to isolate the positive 22

samples. This procedure had the potential to dramatically reduce the number of tests 23

required to accurately screen a large population and it sparked an entirely new field of 24

applied mathematics called group testing. 25

Due to practical concerns, Dorfman’s group testing approach was never applied to 26

syphilis screening because the large number of negative samples had a tendency to 27

dilute the antigen in positive samples below the level of detection [6]. Despite this, 28

sample pooling has proven to be highly effective when using a sufficiently sensitive, 29

often PCR-based, diagnostic assay. In fact, ad hoc pooling strategies have long been 30

used to mitigate the costs of pathogen detection in disease surveillance programs. For 31

example, surveillance of mosquito vector populations in the U.S. involves combining 32

multiple mosquitoes of the same species (typically 1 – 50) into a single pool, prior to 33

testing for the presence of viral pathogens [7–10]. Elsewhere, such pooling techniques 34

have been successful in reducing the total number of tests in systems ranging from 35

birds [11], to cows [12], to humans [13–15]. In many wildlife/livestock surveillance 36

programs, sample pooling is used to simply determine a collective positive or negative 37

status of a population (e.g. a herd or flock) without identifying individual positive 38

samples. While this is often appropriate and sufficient for small-to-medium scale 39

research experiments or surveillance programs, a well designed pooling scheme can 40

easily provide this valuable information with little additional cost. For the purposes of 41

this paper, we will focus on pooling methods that provide accurate classification of each 42

sample so that infected individuals can be identified. 43

Group testing theory primarily focuses on minimizing the number of tests required 44

to identify positive samples and many nearly-optimal strategies for sample pooling have 45

been described. From a combinatorial perspective, a testing scheme begins by 46

examining a sample space which includes all possible arrangements of exactly k positive 47

samples in N total samples. Because the positive samples are indistinguishable from 48

negative samples, a test must be performed on a sample or a group of samples in order 49

to determine their status. The test is typically assumed to always be accurate, even 50

when many samples are tested together (in practice, this is often not the case and 51

approaches that consider test error and constraints on the number of samples per pool 52

have been examined [16,17]). In the worst case, all of the samples would need to be 53

tested individually requiring N tests. The goal of group testing is to devise a strategy 54

which tests groups of samples together in order identify the positive samples in fewer 55

than N tests. Group testing methods are generally more efficient when positive samples 56

are sparse. As the number of positive samples increases, the number of tests will 57

eventually exceed individual testing for all of the methods. This point has been 58

previously estimated to be roughly when the number of positives is greater than N

3
for 59

sufficiently large N [18, 19]. In order to establish the most optimal testing procedure, 60

many group testing schemes are modified based on the expected number of positive 61

samples, k̂. Because it is impossible to know the exact number of positive samples, 62

problems arise when this estimate is not accurate (e.g. overestimation may require more 63

tests to be performed than necessary, and underestimation may result in positive 64

samples going undetected). Therefore, it is important to not only consider how different 65

schemes scale as the number of positive samples increases but also how robust they are 66

when the number of positive samples is misestimated. 67
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For real-world applications, many factors should be considered when designing a 68

pooling strategy, depending on the circumstances. Finding the best strategy often 69

involves weighing the tradeoffs between the following factors: (a) number of tests, to 70

minimize costs and save reagents, (b) number of sequential steps, to reduce the time it 71

takes to complete the assay, (c) number of samples per pool, to avoid the limits of 72

detection, (d) simplicity, to reduce the risk of human error, and (e) robustness, to poor 73

estimates of the number of positive samples. We have identified several pooling 74

strategies that perform well or optimally with respect to at least one of these factors. 75

The goal of this paper is to directly compare the strengths and weaknesses of each 76

strategy and identify the approaches that we feel are most appropriate for 77

small-to-medium scale research experiments or surveillance programs. With this goal in 78

mind, we favored strategies that provided the best balance across each of our criteria, 79

particularly those that maximized the ease of performing the pooling procedure using 80

standard laboratory equipment (i.e. defining pooling groups in ways that are easily 81

captured using multi-channel pipettes). 82

We present the pros and cons of different pooling strategies by providing graphical 83

results from computational simulations with minimal use of mathematical formulas. We 84

focused on making the simulation results as directly comparable as possible and used 85

realistic sample sizes (in multiples of 96 well plates) for small to medium scale 86

experiments. The computational simulations allow us to directly compare (a) the 87

number of tests, (b) the number of steps, (c) the number of samples per pool, (d) the 88

number of individual pipettes, and (d) the robustness for five existing pooling strategies. 89

We also introduce a new strategy that provides key advantages in simplicity and 90

provides the best balance between the other criteria. Finally, we experimentally validate 91

our strategy by testing pools of cow’s milk to detect samples that are positive for the 92

pathogen Coxiella burnetti. 93

Review of pooling strategies compared in this work 94

Pooling strategies often take either a non-adaptive or an adaptive approach. In 95

non-adaptive methods, an optimal pooling strategy is designed in advance (for a given 96

number of samples with an expected number of positives) and therefore it does not 97

adapt based on information gained from the test results. Tests are run on each of the 98

pools in parallel and the results are decoded when the tests are complete to determine 99

which are positive. The ability to run all of the tests in parallel can save a lot of time 100

and this is one of the main benefits of non-adaptive tests. Adaptive methods, on the 101

other hand, require a series of steps that must be performed sequentially because each 102

step relies on information gained from the outcome of a previous step. However, 103

because more information is known at each step, adaptive algorithms often require fewer 104

tests than non-adaptive methods. Below we describe several examples of both 105

non-adaptive and adaptive pooling approaches and, in each case, we assume that the 106

test applied to the pools is noiseless (the test will always be positive if a positive sample 107

is present in the pool and negative otherwise) and it produces only a binary or two-state 108

outcome (e.g. positive/negative or biallelic SNP typing). 109

DNA Sudoku 110

DNA-sudoku is a popular example of an optimal non-adaptive pooling strategy. This 111

strategy is based on the idea that if a sample is present in multiple positive pools and 112

not in any negative pools, then it is likely to be positive. However, ambiguous results 113

can arise if multiple samples co-occur within the same positive pools because it is no 114

longer possible to determine if one or both of the samples are truly positive. DNA 115

Sudoku provides a more rigorous approach to avoid such ambiguity by minimizing the 116
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number of times any two samples are included in the same pool [20]. This is achieved by 117

staggering the samples that are added to each pool in different sized windows or 118

intervals (Fig 1); importantly, the size of the windows must be greater than
√
N and 119

co-prime to minimize the intersections between samples. The number of different 120

pooling windows (the weight) should be one greater than the expected number (upper 121

bound) of positive samples, w = k̂ + 1, to ensure accurate results. 122

Fig 1. DNA Sudoku pooling example. In this example, there are a total of N = 96 samples. The
96-well plates show which samples are combined into each pool for the two different window sizes
(W1 = 10 and W2 = 11 which are greater than

√
N and co-prime). By using two different window sizes,

the weight of this pooling design is w = 2 meaning that k = w − 1 = 1 positive sample can be
unambiguously identified in a single step using T = W1 +W2 = 21 tests. The positive samples are
decoded by finding the samples that appear most often in the positive pools. For example, if G10 is the
only positive sample, we can detect this from the pooling results by noticing that G10 was added to
both of the positive (red) pools while other samples in those pools were added to only one or the other.
Alternatively, if both G10 and D4 are positive, four samples occur with equal frequency (D4, G10, E12,
and F2) in the positive pools (red and purple) and it is impossible to determine which are the true
positive samples. This ambiguity is introduced because the test was designed to handle only one
positive sample.

Once the samples are pooled for each window size and the pools are tested, a 123

decoding scheme is used to identify the positive samples from the positive pools. The 124

decoding works by identifying which samples occur the most frequently in the positive 125

pools. If the weight is chosen correctly using a good estimate of k, all of the positive 126

samples can be unambiguously identified. However, if the true number of positive 127

samples exceeds k̂, the results become ambiguous and false positives can occur. Over 128

estimating the maximum number of positive samples can provide a buffer against 129

ambiguous results but this comes with a large increase in the number of tests (> N 130

additional tests for each additional pooling window). Alternatively, the ambiguous 131

samples can be tested individually, but this requires an additional round of testing 132

which voids one of the main advantages of non-adaptive testing. 133

When k̂ is estimated appropriately, DNA Sudoku is a very efficient non-adaptive 134

approach, especially when the number of samples is very large. It was originally 135

designed for pooling and barcoding thousands of DNA samples in preparation for 136

high-throughput sequencing. However, because it was intended for use in large-scale 137

sequencing facilities with robotic equipment, the pooling design is complex and intricate 138

and therefore difficult for a human technician to perform accurately and consistently by 139

hand. 140

Two Dimensional Pooling 141

Multidimensional pooling is another non-adaptive approach that is generally easier to 142

perform than DNA Sudoku but can be more prone to producing ambiguous results. As 143

the name implies, this procedure can be extended to many dimensions [21, 22], however 144

it becomes more difficult to perform without robotics when more than two dimensions 145

are used. In the two dimensional (2D) case, N samples are arranged in a perfectly 146

square 2D grid or in several smaller but still square sub-grids [23]. For example, when 147

testing 96 samples (as in Fig 2), this could be achieved through a single 10x10 grid or 148

through 4 5x5 sub-grids (with 4 empty spaces). Once arranged, all of the samples along 149

each individual column and each individual row are pooled. This results in 20 pools for 150

a 10x10 grid, and 40 pools for 5x5x4 grids. Once the pools are tested, the positive 151

samples are decoded by identifying which of them are present at the intersection of 152

positive rows and columns [23]. 153

In 2D pooling, ambiguous results arise when positive samples are present in multiple 154

rows and multiple columns (e.g. in the top left grid in Fig 2, the two positive rows and 155
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Fig 2. Two-Dimensional pooling example. A total 96 samples are arrayed in symmetrical 5x5
grids (with 4 empty wells in the last grid) and k = 9 of the samples are positive (red wells). The
pooling procedure combines each row and each column of a grid into separate pools for a total of
T = 2× 5× 4 = 40 tests. Samples that are at the intersection of a positive row and a positive column
(marked with an “X”) are potentially positive samples. When more than one row and more than one
column are positive, some of the samples at the intersections are likely false positives (e.g. the top left
and bottom right grids). Otherwise, the results are unambiguous and the correct positive samples can
be identified (e.g. the top right and bottom left grids).

the two positive columns intersect at four wells, only two of which (red wells) are 156

positive). When this occurs, the number of intersecting points is almost always higher 157

than the true number of positive samples. Ambiguous results can be somewhat 158

mitigated by decreasing the size of the grid as the expected number of positive samples 159

increases. The chances of ambiguous intersections increase when there are more positive 160

samples, so using more grids of smaller size (and consequently more tests), will make 161

ambiguous arrangements less likely. Alternatively, the ambiguous samples can be tested 162

individually in a second followup round of testing, but this again nullifies the main 163

benefit of non-adaptive testing, which is the ability for all tests to be carried out in 164

parallel. 165

S-Stage Approach 166

Dorfman’s original pooling design for syphilis screening was an adaptive two-stage test. 167

Following this method, samples are partitioned and tested in g groups of size n. All of 168

the samples in groups with negative results are considered to be negative and all of the 169

samples in groups with positive results are tested individually. Ignoring the constraints 170

of the actual assay, the optimal group size that minimizes the number of tests depends 171

on the number of positive samples, k. Specifically, there should be roughly
√
Nk groups 172

of size
√

N

k
[5, 24]. Dorfman’s two-stage approach was later generalized to any number 173

of stages using Li’s S-Stage algorithm [24], which can reduce the number of tests 174

required to identify positive samples. At each stage, si, of the S-Stage algorithm (Fig 3), 175

the untested samples are arbitrarily divided into gi groups of size ni and the test is 176

performed on each group. The samples in pools with negative test results are deemed 177

negative and removed from consideration. The samples in positive pools move on to the 178

next stage where they are redivided into gi+1 groups of size ni+1. This is repeated until 179

the final stage, where ns = 1, and all of the remaining samples are tested individually. 180

The optimal number of samples per group at each step is ni =
(

N

k

)

s−i

s and the optimal 181

number of steps is S = ln(N
k
) which achieves an upper bound of e

log
2
e
k log2

(

N

k

)

tests. 182

Li demonstrated that misestimation of the number of positive samples, k̂, has only a 183

small impact on the total number of tests, especially when the number of stages is high. 184

The S-Stage algorithm can require many more steps than non-adaptive algorithms, but 185

when the number of steps is low, it compares favorably, especially in cases when the 186

non-adaptive methods require additional validation steps. 187

Fig 3. S-Stage pooling example. For 96 samples with an estimate of 3 positive samples, the
S-Stage algorithm requires 4 steps. In the first step (top 96 well plate), 96 samples are tested in 6
groups (black outline) of 16. In the next step, the samples in the positive pools from the previous step
are arbitrarily redivided into 5 groups of 6 or 7 samples and tested. In the third step, the samples from
positive pools from step 2 are redivided into 4 groups of 3 or 4. In the final step, individual testing is
performed on samples from the positive pools in step 3. The number of tests required depends on the
initial arrangement of positive samples within the pools but in this example 21 tests are required to
identify 3 positive samples (red wells). The number of tests is lower than the upper bound in this case
due to the fortunate placement of two positive samples in the same pool in steps 1-3.
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Binary Splitting by Halving 188

Sobel and Groll [25, 26], introduced several adaptive group testing algorithms based on 189

recursively splitting samples into groups and maximizing the information from each test 190

result. They demonstrated that this class of algorithm is robust to inaccurate estimates 191

of k, particularly in the case of the Binary Splitting by Halving algorithm which can be 192

performed without any knowledge of the number of positive samples. Binary Splitting 193

by Halving (Fig 4) begins by testing all of the samples in a single pool. If the test is 194

negative, all of the samples are negative and testing is complete, if the test is positive, 195

the samples are split into two roughly equal groups and only one of the groups is tested 196

in each step. If the tested half is negative, we know that all of the samples in the tested 197

group are negative and testing is now complete for those samples. We also know that 198

the untested half must contain at least one positive sample (because the test containing 199

all of the samples tested positive). Alternatively, if the tested pool is positive, we know 200

that it contains at least one positive sample and we know nothing about the untested 201

half. In either case, the binary splitting always continues with the group that is known 202

to contain a positive sample until a single positive sample is identified with individual 203

testing. At this point, all of the samples that remain untested are added to a single pool 204

and tested, beginning the process again. This is repeated k times and stops when the 205

initial test of all the remaining samples is negative or when all samples have been tested 206

(either through individual testing or elimination). Using this method, k positive samples 207

can be identified in at most k log2 N tests. Binary splitting is only efficient when fewer 208

than 10% of samples are positive, otherwise more tests are required than individual 209

testing [25,26]. This is the only approach discussed here that does not rely on an 210

estimate of k and therefore the performance is not impacted by misestimation of the 211

number of positive samples. 212

Fig 4. Binary splitting by halving pooling example. In this example, there are N = 96 samples
and two of the samples are positive (red wells). To begin, all of the samples are pooled and tested (Step
1). If the first test is negative, testing is complete and all samples are considered negative. Otherwise,
half of the samples are pooled and tested (Step 2). If the tested half is negative, then all of the samples
in the tested half are considered to be negative and at least one negative sample is known to be present
in the other non-tested half of the samples. If the tested half is positive, then it contains at least one
positive sample and no information is gained about the other untested half. In either case, the method
continues by halving and testing whichever group is known to contain a positive sample until a single
positive sample is identified (either by individual testing, as seen in Step 7, or by elimination, as seen in
Step 16). Once a single positive sample is identified, the remaining unresolved samples (non-grey wells)
are pooled and tested to determine if any positive samples remain and the process continues until all
positive samples are identified. Only one test is required per round, and in this example, it takes 17
sequential rounds to recover both positive samples.

Generalized Binary Splitting 213

Hwang’s Generalized Binary Splitting algorithm is very similar to Binary Splitting by 214

Halving (Fig 4) except the size of the first split is optimized for the expected number of 215

positive samples. This is important because it helps bypass some of the early and least 216

productive tests. In the Halving method, as the number of positive samples increases, 217

the first few tests are more likely to be positive due to chance. Positive tests, in general, 218

provide the fewest pieces of information and do not eliminate any negative samples; 219

consequently, positive tests are particularly inefficient early on when the potential to 220

eliminate large groups of samples is highest. Additionally, it means that each binary 221

search will begin with a large number of samples which will require more tests and steps 222

to identify the first positive sample. To solve this problem, The Generalized Binary 223

Splitting algorithm attempts to modify the size of the initial pool so that it is small 224

enough to capture a single positive sample on average. When smaller groups are tested 225
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they are less likely to be overwhelmingly positive which means more samples can be 226

eliminated in negative tests and a single positive sample can be found quicker using 227

fewer tests [27]. As the ratio of samples to positive samples (N
k
) increases, the number 228

of tests required to identify k positive samples approaches k log2
(

n

k

)

which is nearly 229

optimal; however, like Binary Splitting by Halving, the Generalized Binary Splitting 230

approach requires many sequential steps to complete testing. 231

Modified 3-Stage Approach 232

Here we are introducing a new approach that we developed with the goal of finding a 233

good balance between the number of tests, the number of steps, simplicity, and 234

robustness. We found that many of the methods described previously focus on 235

optimizing only one of these features usually to the detriment of the others. Instead of 236

attempting to perform the best in a single area, we wanted to take a more balanced 237

approach and find tradeoffs that allow good performance across each of these areas. Our 238

Modified 3-Stage approach (Fig 5) is based on the S-Stage approach but it is modified 239

so that the number of steps is constrained to a maximum of three. At three steps, this 240

approach requires only one additional step than ambiguous non-adaptive approaches 241

that require two steps for complete validation. Because the S-Stage algorithm is already 242

fairly robust, constraining the number of steps does not have a large impact on the 243

number of tests required. We also modified our method to be simpler and easier to 244

perform by borrowing the recursive subdividing used in the binary splitting approaches. 245

In the S-Stage approach, the remaining samples in each step are arbitrarily redivided 246

into pools. Not only does this make it difficult to keep track of the remaining samples 247

spread across the plate, it can also make it more difficult to collect the samples for a 248

pool using a multichannel pipette (e.g. Step 2 in Fig 3). Instead, we opted to recursively 249

subdivide the samples from positive pools. This makes it easier to keep track of the 250

samples that should be pooled at each stage and, because the samples are always in close 251

proximity, they are easier to collect using a multichannel pipette (compare 3 and 5). 252

Fig 5. Modified 3-Stage pooling example. For 96 samples and an estimate of 2 positive samples,
the Modified 3-Stage approach begins by creating 6 pools with 16 samples each. The positive pools
from the first step are then subdivided into 4 groups of 4 in the second step. In the final step, the
samples from the positive pools in step 2 are tested individually. In the modified 3-Stage approach, the
pools are recursively subdivided into groups instead of arbitrarily redividing the remaining samples at
each step. This is simpler and keeps the samples for each subsequent pool in close proximity. The total
number of tests depends on the arrangement of the positive samples, but in this example, the modified
3-stage algorithm requires 22 tests.

Materials and methods 253

Computational simulations 254

Computational simulations were carried out for each of the six pooling strategies 255

described above. The number of samples, N , in each test were in multiples of 96 to 256

represent 96-well plates: 1× 96 = 96, 4× 96 = 384, and 16× 96 = 1, 536. Each set of 257

samples was represented as a binary array of size N , where 1’s represented positive 258

samples and 0’s represented negative samples. For each test, 100 simulations were 259

generated by placing k positive values in random positions in the array, with k ranging 260

from 1 to 20. In each simulation, the number of tests, the number of sequential steps, 261

and the number of individual pipettings required to make the pools were recorded. In 262

cases where it was appropriate, the number of pipettings was calculated assuming either 263

an 8- or a 16-channel pipette in addition to a single channel pipette. We only considered 264
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pooling schemes that were able to completely and accurately identify all of the positive 265

samples in the sample set. To accomplish this, some of the pooling schemes required 266

additional steps and tests that are accounted for in the simulation. The simulation code 267

is available at https://github.com/FofanovLab/sample_pooling_sims. 268

DNA Sudoku Simulations 269

For the DNA Sudoku experiments, we tested different weights ranging from 2 to the 270

highest value that did not exceed the number of tests required for individual testing. 271

For example, with a sample size of 96, the maximum weight we used was 6 with window 272

sizes of 10, 11, 13, 17, 19, and 23; this testing design required 93 tests, in the 273

unambiguous case, and including any additional testing windows would cause the 274

number of tests to exceed individual testing. The window sizes at the maximum weight 275

were 20, 21, 23, 29, 31, 37, 41, 43, 47, and 53 for 384 samples; and 40, 41, 43, 47, 49, 51, 276

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, and 113 for 1,536 samples. For 277

smaller weights, the window sizes were just the first w window sizes listed here for each 278

sample size. For the first round of testing, the total number of tests was equal to the 279

sum of the window sizes. 280

w
∑

i=1

xi > w
√
N

If the result was ambiguous (i.e. any time the number of positives exceeded w − 1), 281

the number of steps increased to two and additional tests, equal to the number of 282

prospective positive samples, were added to the test count. Because the samples that 283

were added to each pool are staggered, multichannel pipettes do not provide any 284

advantage; therefore, the number of pipettings was calculated assuming only a single 285

channel pipette (N × w + |Prospective Positives|). 286

2D Pooling Simulations 287

For the 2D pooling simulations we used square D ×D grids and each of the M grids in 288

a simulation were the same size. The samples were pooled along each row and column 289

requiring 2DM tests. When the results were ambiguous, the number of steps increased 290

by one and the number of tests increased by the number of prospective positive samples 291

to account for the validation. Because the pooling along columns and rows can be easily 292

and more efficiently performed using multichannel pipettes, the number of pipettings 293

was calculated using an 8- and a 16-channel pipette, in addition to a single channel 294

pipette. The number of pipettings was the
∑2DM

i=1

⌈

ni

c

⌉

where ni is the number of 295

samples in each row or column and c is the number of channels in the pipette. We 296

assumed that any additional pipettings required for testing the ambiguous samples was 297

performed with a single channel pipette. 298

S-Stage Simulations 299

The S-Stage simulations were provided with an expected number of positive samples, k̂.

The number of steps was calculated as S = ln
(

N

k̂

)

and the number of samples per

group was ni =
N

k̂

s−i

s . Because these calculations do not provide integer values, a
nearest integer approximation was used. Optimal integer approximations of these values
can be determined numerically but here we consistently applied a ceiling function. For
each number of true positive samples (k = 1− 20) we ran simulations with expected
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values, k̂, ranging from 1-20. The number of tests was calculated as

T =
s

∑

i=1

gi ≤
N

n1

+
kn1

n+ 2
+ . . .+

kns−2

ns−1

+ kns−1

where gi =
⌊

Ni

ni

⌋

is the number of groups tested at each step. The number of pipettings 300

for a single channel pipette was equal to the number of samples in each of the pools that 301

were tested. For multichannel pipettes, the number of samples in each pool was divided 302

by the number of channels and rounded up. In cases where the samples in the pool were 303

not in adjacent wells, additional pipettings were required. 304

Modified 3-Stage Simulations 305

Our modified 3-Stage approach is similar to the S-Stage algorithm except that the 306

number of steps was constrained to a maximum of three: S = min
(

3,
⌈

ln N

k̂

⌉)

. In order 307

to recursively subdivide each pool, the number of subgroups was calculated as 308

gi =
⌊

ni

ni+1

⌋

with ni calculated the same way as the S-Stage simulations. For each true 309

number of positive samples (k = 1− 20) we ran simulations with expected values 310

ranging from k̂ = 1− 20. The number of tests and the number of pipettings were 311

calculated the same way as the S-Stage simulations. 312

Binary Splitting by Halving 313

The Binary Splitting by Halving simulations did not require any estimate of the number 314

of positive samples. The simulation performed repeated binary searches for positive 315

samples until no more positive samples remained. Only one test was performed at each 316

step and, because each step depended on information gained in the previous step, none 317

of the steps were performed in parallel. Therefore, the number of tests was equal to the 318

number of steps. The number of pipettings was equal to the size of each pool divided by 319

the number of channels in the pipette, rounded up. 320

Generalized Binary Splitting 321

The Generalized Binary Splitting simulations were similar to the Binary Splitting by 322

Halving simulations except that the initial group size was calculated based on the 323

number of expected positive samples (k̂). More specifically, the initial group size was 324

calculated as 2a where a =
⌊

log2

(

n−k̂+1
k

)⌋

. Binary Splitting by Halving (as described 325

above) was performed on the initial group until a positive sample was identified at 326

which point the value N was updated to reflect the number of remaining untested 327

samples and the value k̂ was decremented by 1 if a positive sample was found. The next 328

group of 2a was calculated using updated values of N and k̂. This continued until either 329

N ≤ 2k̂ − 2, at which point the remaining samples were tested individually, or k̂ = 0, at 330

which point all of the suspected positive samples were identified. Because the standard 331

algorithm only guarantees that up to k̂ positive samples will be found, we added 332

additional rounds of binary splitting to ensure all of the positive samples were identified. 333

The number of tests, steps, and pipettings were calculated the same way as the Binary 334

Splitting by Halving simulations. 335

Experimental validation of modified 3-stage approach 336

We set up rare pathogen detection experiments in complex microbiome backgrounds to 337

test our Modified 3-Stage approach. We used a total of 768 samples (eight 96-well 338
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plates) that contained a background of 2 µL of DNA extraction from cow’s milk and 8 339

µL of molecular grade water. These samples originated from 24 distinct cow milk 340

samples and were replicated (32 replicates each) to fill eight 96-well plates – a total of 341

24 unique microbiome backgrounds. C. burnetti DNA (1 µL) was added to 10 randomly 342

chosen background samples (∼ 1.3% carriage rate) as we verified that the spike-in was 343

successful using a highly sensitive Taqman assay designed to target the IS1111 344

repetitive element in Coxiella burnetti [28]. Using the same Taqman assay, we also 345

verified that the target pathogen was not present in any of the 24 unique microbiome 346

backgrounds prior to the spike-in. To ensure a consistent amount of background DNA, 347

the milk extractions were tested to determine the amount of bacteria with a real-time 348

PCR assay that detects the 16S gene and compares it to a known standard [29]. 349

The pooling procedure was carried out by a typical researcher looking to identify 350

samples that are positive for the pathogen of interest, C. burnetti. Assuming N = 96 351

and k̂ = d96× 0.013e = 2 the pooling scheme recommended by our modified 3-stage 352

approach is depicted in Fig 5. In the first step, 6 pools consisted of 16 samples each, 353

collected along every 2 columns of the 96 well plate using an 8-channel pipette. The 2 354

µL aliquots from each sample were collected in a plastic reservoir and then pipetted 355

back into a single well in a new 96 well plate. The C. burnetti Taqman assay was used 356

to test each of the pools. For the reaction, the following were combined for a final 357

volume of 10 µL: 1 µL from the pool, 2 µL of Life Technologies TaqMan® Universal 358

PCR Master Mix for a final concentration of 1X, 0.3 µL each of the forward and reverse 359

primers for a concentration of 0.6 µM, 0.13 µL of the probe for a concentration of 0.25 360

µm and molecular grade water to a final volume of 10 µL. The reaction was run on an 361

Applied Biosystems 7900 Real Time PCR system with the following conditions: 50 °C 362

for 2 minutes, 95 °C for 10 minutes, and 40 cycles of 95°C for 15 seconds and 60°C for 1 363

minute. The second pooling step was carried out by subdividing the samples from the 364

positive pools in the previous step into four groups of four samples. Again, 2 µL from 365

each well was combined into the pool. These pools were subjected to Taqman C. 366

burnetti assay as described above. Finally, the individual samples belonging to pools 367

positive in the second pooling step, were tested as described above. 368

Results and Discussion 369

Number of tests 370

Because minimizing the number of tests is one of the primary goals of group testing, we 371

begin by comparing the number of tests required for each method using a range of 372

sample sizes: 96, 384, and 1,536. The number of positive samples ranged from 1 to 20 373

which resulted in minimum positive rates of 1.04%, 0.26%, and 0.07%; and maximum 374

positive rates of 20.83%, 5.20%, and 1.30% for 96, 284, and 1,536 samples, respectively. 375

Fig 6 directly compares the average number of tests for each method using the optimal 376

parameter settings. For the S-Stage, Modified 3-Stage, and General Binary Splitting 377

approaches, the results shown are for simulations where the expected number of positive 378

samples was the same as the true number of positives (k = k̂). For DNA Sudoku and 379

2D Pooling, the results shown are for simulations with parameters that resulted in the 380

lowest average number of tests. 381

As expected, the General Binary Splitting method consistently required the fewest 382

number of tests in all cases because it is nearly optimal according to group testing 383

theory. Also expectedly, all of the pooling methods were most efficient positive samples 384

were sparse (Fig. 6, top row where k = 1). The two non-adaptive methods (DNA 385

Sudoku and 2D Pooling) required the highest number of tests when k = 1. DNA 386

Sudoku performed slightly worse than 2D pooling (by one test) owing to the fact that 387
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Fig 6. Comparison of the number of tests required for each pooling method. The bar
graphs show the average number of tests required for each method and the error bars are the standard
deviation across 100 simulations. The top row shows simulations with one positive sample and the
bottom row shows simulations with 20 positive samples. The columns are different sample sizes from
left to right: 96, 384, and 1,596. For the S-Stage, Modified 3-Stage, and General Binary Splitting
approaches, the results shown are for simulations where the expected number of positive samples was
the same as the true number of positives. For DNA Sudoku and 2D Pooling, the results shown are for
simulations with parameters that resulted in the lowest average number of tests (DNA Sudoku: w = 2
when k = 1, and when k = 20, w = 3 for 96 samples and w = 4 for 384 and 1,536 samples; 2D Pooling:
when k = 1, the grid sizes shown are 1x10x10 for 96 samples, 1x20x20 for 394 samples, and 1x40x40 for
1536 samples, and when k = 20 the grid sizes are 11x3x3 for 96 samples, 24x4x4 for 384 samples, and
96x4x4 for 1,536 samples).

the window sizes were co-prime instead of symmetrical like 2D Pooling. At the 388

maximum number of positive samples for our simulations (k = 20), Binary Splitting by 389

Halving performed the worst when the positive rate was high and exceeded individual 390

testing for 96 samples (along with many DNA Sudoku simulations). The number of 391

tests required for our Modified 3-Stage approach typically fell somewhere in the middle 392

except for when the number of total samples and positive samples were highest. When 393

N = 1, 536 and k = 20, the Modified 3-Stage simulations required only slightly fewer 394

tests, on average, than 2D Pooling, which performed the worst (Table 1). 395

Table 1. Summary of the performance of pooling methods for each of our areas of interest: number of
tests, number of steps, number of samples per pool, robustness, and simplicity. For sample sizes N = 96,
384, and 1,536, the table shows the average number for each feature when k = 1 and for k = 20.

No. of
Samples

DNA Sudoku 2D Pooling S-Stage Halving
Generalized
Binary Splitting

Modified
3-Stage

Avg. No. Tests

(k = 1, k̂ = 1)

96 21 20 13 8.65 7.99 14
384 41 40 16.59 10.66 9.99 22.1
1,536 81 80 20.61 12.60 12.00 34.68

Avg. No. Tests

(k = 20, k̂ = 20)

96 97.77 85.18 80.84 132.05 70.34 80.99
384 147.19 152.16 149.63 171.37 112.60 155.84
1,536 214.43 250.67 224.82 211.14 152.96 248.78

Avg. No. Steps

(k = 1, k̂ = 1)

96 1 1 5 8.65 7.99 3
384 1 1 6 10.66 9.99 3
1,536 1 1 8 12.60 12.00 3

Avg. No. Steps

(k = 20, k̂ = 20)

96 2 2 2 132.05 69.56 2
384 2 2 3 171.37 112.54 3
1,536 2 2 5 211.14 152.94 3

Max No. Samples
per Pool

96
10
(Wi = 10)

10
(10x10x1)

3

(2 steps, k̂ = 13− 20)
48

(5 steps, k̂ = 1)

96
2 (k̂ = 20)

64 (k̂ = 1)

3 (k̂ = 13− 20)
24 (k= 1)

384
20
(Wi = 20)

20
(20x20x1)

8

(3 steps, k̂ = 20)
192

(6 steps, k̂ = 1− 2)

384
16 (k̂ = 20)

256 (k̂ = 1)

8 (k̂ = 17− 20)

55 (k̂ = 1)

1,536
39
(Wi = 40)

40
(40x40x1)

34

(5 steps, k̂ = 11− 20)
768

(8 steps, k̂ = 1)

1,536
64 (k̂ = 20)

1024 (k̂ = 1)

20 (k̂ = 19− 20)

140 (k̂ = 1)

Change in No. Tests
with Overestimate
of Positive Samples

(k = 1, k̂ = 20)

96 +935 +45
+22
(-3 steps)

N/A
+68.77
(+32.19 steps)

+21
(-1 step)

384 +1187 +217
+37.41
(-3 steps)

N/A
+109.30
(+73.08 steps)

+31.89

1,536 +1455 +945
+35.39
(-3 steps)

N/A
+146.96
(+110.89 steps)

+54.65

Change in No. Tests
with Underestimate
of Positive Samples

(k = 20, k̂ = 1)

96
-857.68
(+1 step)

+11.5
(+1 step)

+14.53
(+3 steps)

N/A
+61.99
(+62.57 steps)

+11.75
(+1 step)

384
-1027.82
(+1 step)

-60.79
(+1 step)

+11.34
(+3 steps)

N/A
+58.40
(+58.40 steps)

+54.74

1,536
-1212.81
(+1 step)

-691.86
(+1 step)

+7.34
(+3 steps)

N/A
+56.80
(+56.80 steps)

+108.85

No. of Channels 1 1 8 16 1 8 16 1 8 16 1 8 16 1 8 16

Avg. No. Pipettes

(k = 1, k̂ = 1)

96 192 192 39 20 172 26 17 238.48 32.92 19.07 177.87 24.79 14.63 126 22 18
384 768 768 111 79 675.66 91.59 50.59 973.63 124.83 65.05 682.72 87.88 46.18 447.96 70.11 43.11
1,536 3072 3072 384 222 2762.68 352.61 181.61 3790.28 476.88 241.04 2781.30 350.20 177.36 1688.32 232.68 122.68

Avg. No. Pipettes

(k = 20, k̂ = 20)

96 351.77 229.18 85.18 85.18 144.84 80.84 80.84 2096.29 332.10 214.15 156.24 70.57 70.34 144.99 80.99 80.99
384 1590.19 840.16 223.16 151.16 575.92 160.5 160.5 8442.96 1141.23 627.38 815.90 145.06 115.07 592.76 155.84 155.84
1,536 6187.43 3162.67 556.67 399.67 2519.24 476.96 349.81 33899.45 4340.01 2236.15 3382.25 465.78 273.17 1970.68 404.98 324.98

Number of steps 396

The number of sequential steps is one of the major factors that differentiates pooling 397

methods. The major benefit of non-adaptive pooling methods is that, in some cases, all 398

of the tests can be run at the same time which means that testing can be completed 399

faster. Clearly, the nonadaptive tests required the fewest number of steps even when the 400

results were ambiguous, necessitating a second round of validation 7. For 96 samples, 401

the highest weight that we tested was 6 which meant that any simulation with 5 or 402
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more positive samples was ambiguous. Although higher weights could be used to avoid 403

ambiguous results, the number of tests required would have exceeded individual testing. 404

For 384 and 1,536 samples, up to 9 and 20 positive samples, respectively, were 405

unambiguously identified without exceeding individual testing. The ability to 406

unambiguously identify the positive samples in a single step, however, came with a high 407

cost in the number of tests that needed to be performed. For example, the cost of 408

saving one step when using w = 6 versus w = 2 for 5 positive samples was on average 409

56.56 tests for 96 samples. This increased to an additional 1,321.57 tests on average for 410

1,536 samples using w = 21 (1 step) versus w = 4 (2 steps) when k = 20. 411

Fig 7. Comparison of the number of steps required for each pooling method. The bar plot
shows the average number of steps required for each method and the error bars are the standard
deviation across 100 simulations (note the different scales for the y-axis). The top row shows
simulations with one positive sample and the bottom row shows simulations with 20 positive samples.
The columns are different sample sizes from left to right: 96, 384, and 1,596. These results are from the
same set of simulations as shown in Fig 6.

For 2D Pooling, ambiguous results occurred more frequently as the number of 412

positive samples increased and were more likely in larger grid arrangements (Fig. 11). 413

Unlike the DNA Sudoku results, which were always ambiguous or unambiguous based 414

on the weight and the number of positives, ambiguous results for 2D Pooling depended 415

on the random arrangement of the positive samples in the grid and therefore were not 416

always consistent for a given window size. For 96 samples, up to 16 positive samples 417

could be identified in a single step but this only occurred in 1% of the simulations. At 5 418

positive samples (the highest number that could be unambiguously identified using 419

DNA Sudoku), 66% of the simulations required only one step using 3x3x11 grids (66 420

tests). For 384 samples, up to 20 positive samples were unambiguously identified using 421

3x3x43 grids (258 tests) in 15% of the simulations. For 1,536 samples, 20 positive 422

samples were unambiguously identified in 60% of the 3x3x171 grid simulations (1,026 423

tests), and in only 6% of the 6x6x43 grid simulations (516 tests). This shows that 424

reducing the grid size increases the chances of an unambiguous result but, again, it 425

comes with a large increase in the number of tests (1,026 tests for 3x3x171 grid vs. 160 426

tests for 20x20x4 at 1,536 samples). 427

For the adaptive methods, the trade off for being more efficient in the number of 428

tests is often an increase in the number of sequential steps. This is most striking in the 429

case of the Generalized Binary Splitting method which performed the best overall in the 430

number of tests but, in some cases, required over 100 steps. Even so, the Binary 431

Splitting by Halving method required even more steps than the General Binary 432

Splitting method. This is partially due to the fact that the number of tests is highly 433

correlated with the number of steps for both of these methods and the General Binary 434

Splitting algorithm does a better job of minimizing the number of tests (the General 435

Binary Splitting method also switches to individual testing in some cases and, because 436

individual tests can be completed in parallel, this can also reduce the total number of 437

steps). The number of steps required for the S-Stage approach were much more 438

moderate compared to the binary splitting algorithms; however, they did get as high as 439

8 sequential steps. Our Modified 3-stage approach performed the best among the 440

adaptive methods because it enforced a maximum of 3 steps. 441

Number of samples per pool 442

The number of samples that are combined in a single pool is a very important practical 443

concern because it can determine whether the assay can produce accurate results. 444

Typically, assays can fail to identify positive samples if the positive signal is diluted 445

beyond the limit of detection. This means that pooling approaches that limit the 446
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number of samples per pool are more likely to perform better in practice. Fig 8 447

compares the maximum number of samples per pool for each pooling method. 448

Fig 8. Comparison of the maximum number of samples per pool for each pooling

method. The bar graphs plot the maximum number of samples in a single pool for each method (note
the different scales for the y-axis). The top row shows simulations with one positive sample and the
bottom row shows simulations with 20 positive samples. The columns are different sample sizes from
left to right: 96, 384, and 1,596. These results are from the same set of simulations as shown in Fig 6.

For the DNA Sudoku simulations, the number of samples per pool was determined 449

by the pooling interval. Because the size of the pooling interval determined the number 450

of pools that the samples would be divided into, a smaller interval resulted in more 451

samples per pool. For 96 samples, the smallest interval was 10 which resulted in up to 452

10 samples per pool, for 394 samples, the smallest interval was 20 with 20 samples per 453

pool, and for 1,536 samples the smallest interval was 40 with 39 samples per pool (Table 454

1). For 2D Pooling, the number of samples per pool was equal to the number of samples 455

in each column or row for a given grid layout. The largest grid layouts had the largest 456

number of samples per pool: 10 for 96 samples, 20 for 384 samples, and 40 for 1,536 457

samples. The number of samples per pool was very consistent for both DNA Sudoku 458

and 2D pooling. For the adaptive approaches, the number of samples per pool varied at 459

each step and tended to be the largest for the first step. For the S-Stage, the Modified 460

3-stage, General Binary Splitting approaches, the maximum number of samples per pool 461

was lowest when the number of expected positive samples was high and increased as the 462

number of expected positive samples decreased (Table 1). The Modified 3-Stage 463

approach always had the same or fewer samples per pool compared to the S-stage 464

approach. This was particularly true when the number of positive samples was low, 465

resulting in a reduction of 24, 137, and 628 samples per pool for N = 96, 384, 1,536, 466

respectively. The Binary Splitting by Halving method required the largest number of 467

samples per pool at 96, 384, and 1536, due to the need to pool and test all of the 468

samples together as the first step. 469

Simplicity of pooling method 470

The simplicity of a pooling method can be somewhat subjective. However, one of the 471

major points of failure when combining pools by hand, is mistakes in pipetting the 472

wrong samples. Therefore, we used the number of individual pipetting actions required 473

for each method using 1-, 8-, and 16-channel pipettes as an indicator for the simplicity 474

and reproducibility of each method. Fig 9 compares the number of pipettings required 475

for each method with either 1 or 20 positive samples for each of the sample sizes. 476

Fig 9. Comparison of the average number of pipettings for each pooling method. The
number of pipettings required for each pooling method is an indicator of method simplicity and
reproducibility. The bar charts indicate the average number of pipettings required to create pools for
each method using 1-, 8-, and 16-channel pipettes (columns). The rows are the results from simulations
using N = 96, 384, and 1,536 samples and k = 1 or 20 positive samples (note the different scale on the
y-axes). The error bars represent the standard deviation of 100 simulations. The DNA Sudoku method
does not benefit from the use of multichannel pipettes so the number of pipettings is the same across
each row. These results are from the same set of simulations as shown in Fig 6.

In most methods, using a multichannel pipette reduced the number of pipettings by 477

an order of magnitude in some cases. Compared to the 8-channel pipette, the 478

16-channel pipette reduced the number of pipettings only for schemes where the size of 479

the pools were large. Our Modified 3-Stage method required the fewest pipettings with 480

a single-channel pipette, compared to the other methods; however, the S-Stage method 481

performed similarly well in cases where the number of steps happened to be similar (i.e. 482
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in Fig 9, both methods required the same number of steps when k = 20 for N = 96 and 483

384). This generally translated into the best performance when using multichannel 484

pipettes; although, the General Binary Splitting simulations performed slightly better in 485

cases where the size of the pools were large, making the multichannel pipettes more 486

efficient. 487

Binary Splitting by Halving is the least efficient method in number of pipettings, 488

likely because the method requires many samples to be pooled at each step for many 489

steps. The performance is slightly improved when multichannel pipettes are used but it 490

is still the least efficient in many cases. Using a single pipette, DNA Sudoku was not 491

the most inefficient compared to the other methods. However, because the samples that 492

are combined in each pool are spaced out in different intervals instead of in consecutive 493

groups, the number of pipettings did not improve by using multichannel pipettes. This 494

means that, in the best case, a laboratory technician would need to correctly pipette 495

∼ 200 (N = 96) to ∼ 6, 000 (N = 1, 536) times to combine the samples into pools. 496

Sensitivity to misestimation of positive rate 497

Most of the methods described here required an estimate of the positive rate in order to 498

design the pooling scheme. In some cases, over or underestimating the number of 499

positives can have large impacts on the number of tests and/or the number of steps 500

required to complete the assay. Methods that minimize the impact of misestimation are 501

more robust to fluctuating rates in the sample population which is common in outbreak 502

scenarios. 503

Binary Splitting by Halving was, by default, the most robust of the approaches 504

because the protocol was not modified based on any estimate of the number of positive 505

samples (Fig 10, second from right). Although the number of tests increased when there 506

were more positive samples, assuming a fixed sample size, knowledge of the number of 507

positive samples did not have any impact on the performance of this approach. In 508

contrast, the size of the initial pool for the Generalized Binary Splitting method 509

depended on k̂ and, among the adaptive approaches, misestimation of the true value 510

resulted in the largest impact on the number of tests and steps (Fig 10, right). The 511

consequences of extreme overestimation (k = 1 and k̂ = 20) and underestimation 512

(k = 20 and k̂ = 1) are provided in Table 1 which shows that method is more sensitive 513

to overestimation than to underestimation. Of the methods that depended on an 514

estimate of the number of positive samples, the S-Stage (Fig 10, left) and our Modified 515

3-Stage approach (Fig 10, second from left) were the most robust to misestimations of k. 516

The number of steps was more robust in the Modified 3-Stage approach than the 517

S-Stage due to the 3-Step constraint; however, the Modified 3-Stage was more sensitive 518

in the number of tests in some cases (Table 1). 519

Fig 10. Changes in the number of tests and steps given different estimated positive rates

for the adaptive methods. The figure shows the number of tests (y-axis) and the number of steps
(marker size) required to recover all positive samples (x-axis) in simulations with N = 384 samples
using each of the adaptive methods. For each method, except for Binary Splitting by Halving, the
pooling scheme was optimized around the expected number of positive samples (marker color) provided
to each simulation. Each point represents a single simulation and the lines are the average number of
tests for a given number of expected positives. The black dashed line in the S-Stage, 3-Stage, and
Binary Splitting by Halving figures represents the upper bound of the number of tests (assuming that
the number of positive samples is estimated correctly, where applicable). For the Generalized Binary
Splitting figure, the number of tests approaches the lower bound (black dashed line) when N

k
is large.

DNA Sudoku (Fig 11, left) was the most sensitive method overall. Overestimating of 520

the number of positive samples caused the weight of the pooling design (w = k̂ + 1) to 521

be set higher than it needed to be. When this happened, all of the positive samples 522
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were still unambiguously identified but each unnecessary increase in the weight required 523

more than
√
N additional tests. When the number of positive samples was 524

underestimated, fewer tests were performed but the pooling scheme was no longer able 525

to unambiguously identify the positive samples in a single step and a second round of 526

verification was required. A similar pattern occurred in the 2D Pooling simulations (Fig 527

11, right). While the grid dimensions did not directly depend on k, generally larger 528

grids were more efficient when the number of positive samples was low and smaller grids 529

reduced ambiguous results when the number of positive samples was high but at the 530

cost of many more tests. However, because 2D Pooling was constrained to two 531

dimensions, the number of tests did not vary as drastically as DNA Sudoku. 532

Fig 11. Changes in the number of tests and steps given different estimated positive rates

for the non-adaptive methods. The figure shows the number of tests (y-axis) and the number of
steps (marker size) required to recover all positive samples (x-axis) in simulations with N = 384 samples
using DNA Sudoku and 2D Pooling methods. Each point is the average number of tests required for
100 simulations and the width of the bands is the standard deviation. The simulations were run using
different weights for DNA Sudoku and different symmetrical 2D grid sizes for 2D Pooling. Small
markers indicate unambiguous results that required only a single round of testing and the larger
markers indicate ambiguous results that required a second validation step to correctly identify the
positive samples. The grey dashed line is the number of tests required for individual testing.

Experimental validation of modified 3-Stage approach 533

To experimentally validate our modified 3-Stage approach, we set up a controlled 534

experiment with C. burnetti DNA spiked into complex microbiome background samples. 535

All of the 24 background samples used in the validation experiment were negative for 536

the C. burnetti pathogen prior to the spike-in and each background extraction was 537

found to have similar amounts of the 16S gene (CT values of 29 to 31), indicating 538

similar background bacterial loads. C. burnetti was detected in the spike-in samples 539

prior to pooling. The random placement of the C. burnetti positive samples within the 540

eight 96-well plates is shown in Table 2. Although the expected number of positive 541

samples per plate was ∼ 2 given the 1.3% carriage rate, the actual number of positives 542

ranged from 0 to 3 and none of the plates had exactly 2 positive samples (Table 2). The 543

TaqMan assay was able to accurately identify the positive pools without any false 544

positives or false negatives even during the first step when the number of samples per 545

pool was the largest at 16. Using an 8-channel pipette where appropriate, a total of 180 546

pipettings was required to pool the samples. A total of 120 TaqMan assays were 547

performed which is ∼ 84% fewer than would be required to individually test 768 548

samples. 549

Conclusions 550

Picking the right pooling approach for a given pathogen surveillance campaign can be a 551

complicated decision, which is often driven by a set of conflicting constraints and 552

priorities, including budgetary limitations, complexity of the procedure (and thus 553

likelihood of human error), and time-to-answer requirements. As is evident from the 554

data presented in this manuscript, no single group theory approach is a clear winner 555

under all these possible constraints – the correct choice depends on the predominant 556

constraints placed on the surveillance campaign. Below we present some of the practical 557

implications of the various group theory approaches outlined in this manuscript. 558

When minimizing the total number of tests is the absolute overriding goal and 559

time-to-answer is not an important constraint, Generalized Binary Splitting is the 560

optimal choice. This approach minimized the total number of tests while maintaining a 561
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Table 2. Using the modified 3-Stage approach we were able to accurately recover all of

the positive C. burnetii samples. Eight 96-well plates were filled with background DNA from
complex cow milk microbiome samples and 10 randomly chosen samples had C. burnetii DNA spiked in.
The table shows the number and location of the positive samples in each 96-well plate and the number
of tests and pipettings required to identify the positive samples using our Modified 3-Stage pooling
approach.

Plate #
Positive
Samples

(k)

Exp.
Positive
Samples

(k̂)

Samples
(N)

Positive
Wells

Tests Pipettings

1 3 2 96 F1, A4, G9 30 48
2 1 2 96 H2 14 20
3 1 2 96 D9 14 20
4 1 2 96 E11 14 20
5 0 2 96 NA 6 12
6 3 2 96 F3, A10, C10 22 28
7 0 2 96 NA 6 12
8 1 2 96 D4 14 20

reasonable complexity, as measured by the number of distinct pipetting actions, but 562

sacrifices speed due to significantly increase in the number of serial steps. On the other 563

hand, when speed is the predominant constraint, DNA Sudoku can offer a single-step 564

pooling approach with the minimum number of tests, at the cost of significant 565

complexity. DNA Sudoku, however, is far from optimal for monitoring rapidly changing 566

pandemics due to its extreme sensitivity to misestimation of the carriage rate of the 567

pathogen in population. 568

A good middle ground between the adaptive and non-adaptive pooling approaches is 569

the Modified 3-Stage approach – our preference in our own surveillance applications. 570

While it is never the absolute best in any one category, it is always nearly optimal in 571

terms of number of serial steps (2nd best), complexity (2nd best), number of tests (4th 572

best), and extremely resilient to misestimation of the carriage rate (2nd best). The 573

latter is particularly important, as it allows this approach to be useful for surveillance in 574

situations with rapidly changing pathogen carriage rates (e.g. in pandemic or seasonal 575

outbreaks), while keeping number of serial steps as low as possible for an adaptive 576

method. 577
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