

1 An Antioxidant Enzyme Therapeutic for COVID-19

2 Meng Qin^{1*}, Zheng Cao^{3*}, Jing Wen^{3*}, Qingsong Yu¹, Chaoyong Liu¹, Fang Wang¹, Fengmei
3 Yang², Yanyan Li², Gregory Fishbein³, Sen Yan⁴, Bin Xu³, Yi Hou¹, Zhenbo Ning¹, Kaili Nie¹,
4 Ni Jiang¹, Zhen Liu¹, Jun Wu¹, Yanting Yu¹, Heng Li², Huiwen Zheng², Jing Li², Weihua Jin²,
5 Sheng Pan⁵, Shuai Wang⁵, Jianfeng Chen^{1‡}, Zhihua Gan^{1‡}, Zhanlong He^{2‡} and Yunfeng Lu^{3‡}

6

7 1. State Key Laboratory of Organic-inorganic Composites, Beijing Advanced Innovation Center
8 for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing
9 University of Chemical Technology, Beijing, 100029, China.

10 2. Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical
11 College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease,
12 Kunming, 650118, China.

13 3. Department of Chemical and Molecular Engineering, Microbiology, Immunology and
14 Molecular Genetics, and the David Geffen School of Medicine, University of California, Los
15 Angeles, CA 90095, U.S.A.

16 4. Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangdong,
17 China.

18 5. Vivibaba, Inc, 570 Westwood Plaza, University of California, Los Angeles, CA 90095.

19 *These authors contributed equally to this work.

20 ‡Corresponding author. Email addresses: (J. Chen) chenjf@mail.buct.edu.cn; (Z. Gan)
21 zhgan@mail.buct.edu.cn; (Z. He) hzl612@126.com; (Y. Lu) luucla@ucla.edu

22

23 The COVID-19 pandemic has taken a significant toll on people worldwide, and there
24 are currently no specific antivirus drugs or vaccines. We report herein a therapeutic based
25 on catalase, an antioxidant enzyme that can effectively breakdown hydrogen peroxide and
26 minimize the downstream reactive oxygen species, which are excessively produced resulting
27 from the infection and inflammatory process. Catalase assists to regulate production of
28 cytokines, protect oxidative injury, and repress replication of SARS-CoV-2, as demonstrated
29 in human leukocytes and alveolar epithelial cells, and *rhesus macaques*, without noticeable
30 toxicity. Such a therapeutic can be readily manufactured at low cost as a potential treatment
31 for COVID-19.

32 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over
33 ten million COVID-19 cases globally. Broad-spectrum antiviral drugs (e.g., nucleoside analogues
34 and HIV-protease inhibitors) are being utilized to attenuate the infection. However, current
35 management is supportive, and without specific antivirus drugs or vaccine against COVID-19(1).
36 While the pathogenesis of COVID-19 remains elusive, accumulating evidence suggests that a
37 subgroup of patients with severe COVID-19 might have cytokine storm syndrome(2, 3). Cytokine
38 storm is a serious immune dysregulation resultant from overproduction of cytokines, which often
39 occurs during virus infection(4), organ transplant(5), immunotherapy(6), and autoimmune
40 diseases(7), and may result in death if untreated(8). Treatment of hyperinflammation and
41 immunosuppression are highly recommended to address the immediate need to reduce mortality(2).
42 Current immunosuppression options include steroids(9), intravenous immunoglobulin(10),

43 selective cytokine blockade (e.g., anakinra(11) or tocilizumab(12)), and Janus kinase
44 inhibition(13).

45 In light of the findings that elevated levels of reactive oxygen species (ROS) is strongly
46 correlated with inflammation,(14) oxidative injury,(15) as well as viral infection and
47 replication(16–18), we speculate that regulating the ROS level in COVID-19 patients could be
48 effective for the treatment of hyperinflammation, protection of tissues from oxidative injury, and
49 repression of viral replication. As illustrated in **Scheme 1A**, after infection of SARS-CoV-2,
50 leukocytes are attracted to affected sites releasing cytokines and ROS. An increasing ROS level
51 promotes viral replication, causes oxidative injury, and induces cell apoptosis through DNA
52 damage, lipid peroxidation and protein oxidation, which further exacerbates the immune response.
53 As a result, an increasing number of leukocytes are recruited, further releasing ROS and cytokines,
54 resulting in hyperinflammation and cytokine storm syndrome.

55 ROS are a class of partially reduced metabolites of oxygen that possess strong oxidizing
56 capability, which are generated as byproducts of cellular metabolism through the electron transport
57 chains in mitochondria and cytochrome P450(19). The other major source are oxidases(15) (e.g.,
58 NAPDH oxidase), which are ubiquitously present in a variety of cells, particularly phagocytes and
59 endothelial cells. As shown in **Scheme 1B**, partial reduction of O₂ in these processes generates
60 superoxide anions (·O₂⁻), which are rapidly converted to hydrogen peroxide (H₂O₂) mediated by
61 superoxide dismutase (SOD). H₂O₂ may subsequently react forming hydroxyls (OH· and OH⁻)
62 through the Fenton reaction, HOCl through myeloperoxidase (MPO), H₂O through
63 glutathione/glutathione peroxidase (GSH/GPX), and H₂O/O₂ through catalase (CAT),
64 respectively(19). Since ·O₂⁻ possesses a short half-life (~10⁻⁶ s)(20), it is rapidly converted to H₂O₂,
65 which is chemically stable and able to cross cell membranes and diffuse in tissues. Under a
66 pathological condition, where ROS are excessively produced but antioxidant enzymes are
67 insufficiently presented, H₂O₂ may accumulate locally or systematically(21), which oxidizes
68 proteins with sulfur-containing residues (cysteine and methionine) and reacts with transition
69 metals (e.g., iron), generating downstream ROS that are highly active(22, 23). In the context of
70 reaction pathways and kinetics, eliminating the excessive H₂O₂ is critical to minimize the
71 formation of downstream ROS, prevent oxidative injury, and avoid immunopathogenesis.

72 Catalase, the most abundant antioxidant enzyme ubiquitously present in the liver,
73 erythrocytes and alveolar epithelial cells, is the most effective catalyst for the decomposition of
74 H₂O₂(24). One catalase molecule can breakdown 10⁷ H₂O₂ molecules in 1 s with an extremely
75 high turnover number of 10⁷ s⁻¹; however, catalase generally exhibits poor stability and a short
76 plasma half-life(25). To explore its therapeutic use, we encapsulated catalase with a thin shell of
77 polymer through *in situ* polymerization(26, 27). As illustrated in **Scheme 1C**, 2-
78 methacryloyloxyethyl phosphorylcholine (MPC), N-(3-aminopropyl) methacrylamide
79 hydrochloride (APM), and N,N'-methylenebisacrylamide (BIS) are used as the monomers and
80 crosslinker. These molecules are enriched around the catalase molecules through noncovalent
81 interactions; subsequent polymerization grows a thin polymeric shell around individual catalase
82 molecules, forming nanocapsules denoted as n(CAT). The thin shell protects the enzyme, while
83 allowing H₂O₂ to rapidly transport through, endowing n(CAT) with high enzyme activity,
84 augmented stability, and improved plasma half-life.

85 As shown in **Fig. 1A, B**, n(CAT) shows a size distribution centered at 25 nm and a zeta
86 potential of 1.5 mV, in comparison with those of native catalase (10 nm and - 4.0 mV); TEM image
87 confirms that n(CAT) has an average size of 20~30 nm (**Fig. 1C**). Compared with native catalase,
88 n(CAT) exhibits a similar enzyme activity (**fig. S1A**), yet with significantly improved enzyme
89 stability. As shown in **Fig. 1E, F**, n(CAT) and native catalase retain 90% and 52% of the activity
90 after incubation in PBS at 37 °C for 24 h, respectively, indicating improved thermal stability. After
91 incubation in PBS with 50 µg/mL trypsin at 37 °C for 2 h, n(CAT) and native catalase retain 87%
92 and 30% of the activity, respectively, suggesting improved protease stability. In addition, n(CAT)
93 in solution retains 100% of the activity after storage at 4 °C and 25 °C for 3 mo. (**fig. S1B**); after
94 freeze drying, n(CAT) retains more than 90% of the activity (**fig. S1C**). Such characteristics are
95 critical for the transport and distribution of n(CAT).

96 The ability of n(CAT) to protect lung tissues from oxidative injury was examined in human
97 pulmonary alveolar epithelial cells (HPAEpiC). We first investigated the cytotoxicity of n(CAT)
98 by culturing HPAEpiC with different concentrations of n(CAT) (**fig. S2A**). The cells with n(CAT)
99 exhibit similar or higher cell viability than the control cells, indicating that n(CAT) does not show
100 any noticeable cytotoxicity to HPAEpiC. The higher cell viability observed is possibly attributable
101 to the ability of n(CAT) to remove H₂O₂ produced in the cultures. To examine the protective effect,
102 HPAEpiC were cultured with 20 µg/mL of n(CAT) for 12 h, after which 1,000 µM H₂O₂ was
103 added to the media and cultured for 24 h (**Fig. 1F**). The cells without n(CAT) show a cell viability
104 of 63%, while the cells with n(CAT) retain 100% of the cell viability, demonstrating an ability to
105 protect the cells from oxidative injury. In addition, HPAEpiC were incubated with 1000 µM H₂O₂
106 for 24 h to induce cell injury, after which the injured cells were incubated with 20 µg/mL of n(CAT)
107 for 12 h (**Fig. 1G**). Culturing the injured cells with n(CAT) increases the cell viability from 50%
108 to 73%, indicating an ability of n(CAT) to resuscitate injured cells. Similar protective and
109 resuscitative effects were also observed with lower n(CAT) concentrations (**fig. S2B, C**).

110 Hyperinflammatory response induced by SARS-CoV-2 is a major cause of disease severity
111 and death in patients with COVID-19. The infection and the destruction of lung cells trigger a
112 local immune response, recruiting leukocytes to affected sites(28). Unrestrained inflammatory
113 cell infiltration, however, results in excessive secretion of proteases and ROS. In addition to the
114 damage resulting from the virus itself, dysfunctional immune response results in diffusive alveolar
115 damage, including desquamation of alveolar cells, hyaline membrane formation, and pulmonary
116 oedema(29). Overproduction of pro-inflammation cytokines is commonly observed in COVID-
117 19 patients, in whom the severity is strongly correlated to the level of cytokines, such as tumor
118 necrosis factor α (TNF- α) and interleukin 10 (IL-10)(30, 31). Regulating the production of
119 cytokines, in this context, is critical to reinstate immune homeostasis, and anti-cytokine therapy
120 (e.g., TNF- α antagonist) has been suggested for alleviation of hyperinflammation in severe
121 cases(32).

122 In light of these findings, the ability of n(CAT) to regulate cytokine production was studied
123 in human leukocytes (white blood cells, WBC). Leukocytes were cultured with
124 lipopolysaccharides (LPS, a bacterial endotoxin that activates leukocytes) with and without
125 n(CAT). **Fig. 1H, I** show the concentration of TNF α and IL-10 in the culture media. Culturing
126 the leukocytes with LPS without n(CAT) significantly increases the production of TNF- α and IL-
127 10 (P value 0.0001). Moreover, the cultures with n(CAT) show dramatically lower concentrations

128 of TNF- α and IL-10 (P value 0.01 to 0.001), that are comparable with those of the control cells
129 (resting leukocytes). This *ex vivo* study suggests that n(CAT) can downregulate the production of
130 TNF- α and IL-10 by activated leukocytes, indicating a potential use of n(CAT) as an
131 immunoregulator for hyperinflammation.

132 To further elucidate the immunoregulatory effect, leukocytes were cultured with injured
133 HPAEpiC, of which cell injury was induced by H₂O₂ (Control #1, cell viability 85%). As shown
134 in **Fig. 1J**, culturing the cells with leukocytes reduces the viability to 71%. Furthermore, adding
135 8, 16, and 40 μ g/mL n(CAT) increases the viability to 82, 89, and 91%, respectively, which are
136 comparable to those of Control #2 (leukocytes with untreated-HPAEpiC, 91% cell viability). This
137 finding indicates that n(CAT) can not only protect, but also resuscitate, the injured alveolar cells,
138 which is consistent with the observation presented in **Fig. 1G**. Furthermore, HPAEpiC was
139 cultured with leukocytes activated by LPS. As shown in **Fig. 1K**, HPAEpiC (Blank) and
140 HPAEpiC with LPS (Control #3) exhibit a similar cell viability, while HPAEpiC with LPS-
141 activated leukocytes show a dramatically reduced cell viability of 67%. Moreover, adding 8, 16,
142 and 40 μ g/mL n(CAT) increases the cell viability to 78, 88, and 91%, respectively, which are
143 comparable with those of Control #4 (un-activated leukocytes and HPAEpiC, cell viability 91%).
144 This study suggests that n(CAT) can also protect healthy alveolar cells from injury by activated
145 leukocytes, indicating an anti-inflammatory effect.

146 For therapeutic use, we first investigated the pharmacokinetics and biodistribution of
147 n(CAT) in mice. For intravenous administration, BALB/c mice were administered 20 mg/kg of
148 native catalase or n(CAT). **Fig. 2A** shows the biodistribution 6 h and 24 h post-injection;
149 accumulation of n(CAT) is observed in the liver, kidney, lung, and lymph nodes, of which the
150 average radiance is shown in **Fig. 2B**. **Fig. 2C** presents the pharmacokinetics, indicating that
151 n(CAT) has a significantly longer circulation time than the native catalase. Based on the one-
152 compartment model, n(CAT) exhibits a serum half-life of 8.9 h, which is 16.8-fold longer than the
153 native CAT (0.5 h). Further analysis of the drug exposure time through the area under the curve
154 (AUC) indicates that the mice that received n(CAT) had a significantly increased body exposure
155 to catalase compared to the mice with native CAT (~ 2.5-fold increase) (**Fig. 2D**). The following
156 were all within the normal ranges: the plasma levels of alanine aminotransferase, aspartate
157 aminotransferase, and alkaline phosphatase (**fig. S3A**); the levels of urea and uric acid (**fig. S3B**);
158 the total white blood cell (WBC) count; and the counts of lymphocytes, monocytes, and
159 granulocytes (**fig. S3C**). Furthermore, H&E stained sections of the main organs do not show any
160 noticeable tissue damage (**fig. S4**).

161 For intratracheal nebulization, BALB/c mice were administered 2.5 mg/kg of native CAT
162 or n(CAT) labeled with Alexa-Fluor-750. The mice receiving native catalase show fluorescent
163 signal in the lung after 6 h, the intensity of which decreases significantly after 48 h. The mice
164 receiving n(CAT) exhibit significantly higher fluorescent intensity after 6 h and 48 h (**Fig. 2E**),
165 which is confirmed by their fluorescent intensity plot after 48 h (**Fig. 2F**). Except the lung, other
166 organs (heart, liver, spleen, and kidney) after 48 h show negligible fluorescent signal, indicating
167 that the as-administered n(CAT) was mainly retained within the lung. H&E stained sections of
168 the main organs do not show any noticeable tissue damage (**fig. S5**).

169 The ability of n(CAT) to repress the replication of SARS-CoV-2 was examined in *rhesus*
170 *macaques*. As illustrated in **Fig. 3A**, at day 0, all of the animals were inoculated with SARS-CoV-

171 2 through the intranasal route. For the control group (C1, C2), two animals received 10 mL PBS
172 though inhalation at day 2, 4, and 6, respectively. For the nebulization group, three animals (N1,
173 N2, N3) received 5 mg of n(CAT) (10 mL) through inhalation at day 2, 4, and 6. For the
174 intravenous group, two animals (I1, I2) received 10 mL PBS though inhalation and 5 mg/kg of
175 n(CAT) intravenously at day 2, 4, and 6. Except N3 (sacrificed at day 21), the other animals were
176 sacrificed at day 7.

177 **Fig. 3B** shows the viral loads in nasal swabs for the control and nebulized group. N1
178 exhibits a viral load that is similar to C1 and C2 at day 1 and 2, after which the viral load rapidly
179 decreases and becomes significantly lower than the control group. N3 shows a similar viral load
180 to the control group at day 1, after which the viral load remains significantly lower than the control
181 group. It is worth noting that the viral load of N3 at day 2 is lower than the control group.
182 Nevertheless, the oral swabs confirmed that N3 was successfully infected, indicating an individual
183 difference (**fig. S6**). N2 shows similar viral loads to the control group from day 1 to 7. **Fig. 3C**
184 shows viral loads in the nasal swabs for the control and intravenous group. I1 exhibits a similar
185 viral load to the control group at day 1 and 2, after which the viral load rapidly decreases and
186 remains significantly lower than the control group. I2 also shows a similar viral load to the control
187 group at day 1, after which the viral load remains significantly lower than the control group.
188 Similarly, I2 shows a lower viral load than the control group, yet the oral swabs confirmed its
189 active infection. **Fig. 3E-F** presents the viral RNA copy numbers in 100 mg of the organs,
190 including lung, trachea, neck lymph node (LN), and lung LN. N1 shows significantly lower viral
191 loads than the control group; whereas, N2 exhibits similar viral loads to the control group, which
192 is consistent with the nasal-swab results. I1 and I2 show significantly lower viral loads than the
193 control group, which is consistent with the nasal-swab results. No virus is detected from the organs
194 of N3 (**fig. S7**). **Fig. 3D** shows the bodyweight change of the animals, suggesting that the
195 experiment groups have less weight lost. These results confirm the ability of n(CAT) to repress
196 the replication of SARS-CoV-2 in *rhesus macaques*.

197 **Fig. 4A-F** shows the liver and renal functions of the control and experimental group, which
198 exhibit similar levels of alanine aminotransferase, aminotransferase aspartate aminotransferase,
199 alkaline phosphatase, albumin, uric acid, creatine, and blood urea nitrogen, indicating that
200 intravenous administration of 5 mg/kg of n(CAT) did not cause any noticeable liver or renal
201 toxicity. Meanwhile, all of the groups show similar blood routine and other indexes for liver
202 function (**fig. S8**). Similar results were also observed in healthy *rhesus macaques* inhaling 2.0
203 mg/kg (**fig. S9**) n(CAT) per day for 7 d, suggesting that n(CAT) does not cause noticeable liver or
204 kidney toxicity.

205 **Fig. 4G** presents representative H&E sections of kidneys (a, b) and liver (c, d) from animals
206 in the control (a, c) and inhaled group (b, d). The kidneys show neither evidence of interstitial
207 nephritis nor acute tubular injury; the livers exhibit neither steatosis, hepatocyte necrosis,
208 inflammation, cholestasis, nor bile duct injury. Histologic sections of lung tissues in both the
209 control and inhaled groups exhibit unremarkable alveolar architecture, with no evidence of acute
210 lung injury in the form of hyaline membranes, intra-alveolar fibrin, organizing pneumonia, or
211 reactive pneumocyte hyperplasia. The airway epithelium is unremarkable. Vascular
212 compartments are free of thrombi (**fig. S10**). There is no evidence of eosinophilia or vasculitis,
213 and no viral cytopathic effect is identified. The H&E staining of other major organs also shows
214 no tissue injury for both the control and inhaled group (**fig. S11**), confirming the biosafety of

215 n(CAT) administered through intravenous injection or inhalation. In addition, **Fig. 4H** also
216 presents a representative H&E section (a) and immunohistochemistry for SARS-CoV-2
217 nucleocapsid protein (b) of the lung LN in one animal from the control group (C1). Reactive
218 follicular hyperplasia could be observed in the H&E section, and scattered positive mononuclear
219 cells (black arrows) indicate the SARS-CoV-2 infection in the lymph node.

220 The action mechanism of n(CAT) is unclear. In addition to being a weapon against
221 pathogens, ROS also serve as signaling molecules in numerous physiological processes.(33) For
222 example, it has been documented that H₂O₂ generation after wounding is required for the
223 recruitment of leukocytes to the wound(34), and ROS is necessary for the release of pro-
224 inflammatory cytokines to modulate an appropriate immune response(22). Eliminating the H₂O₂
225 excessively produced during inflammation also minimizes the downstream ROS, which assists to
226 downregulate production of cytokines, mitigate recruitment of excessive leukocytes, and repress
227 replication of the viruses. It is also worth noting that immunosuppressive steroids, such as
228 prednisone and dexamethasone, are proven to be effective for treatment of hyperinflammation in
229 severe COVID-19 patients(9). Glucocorticoids constitute powerful, broad-spectrum anti-
230 inflammatory agents that regulate cytokine production, but their utilization is complicated by an
231 equally broad range of adverse effects(35, 36). For instance, in a retrospective study of 539
232 patients with SARS who received corticosteroid treatment, one-fourth of the patients developed
233 osteonecrosis of the femoral head(37). We speculate that n(CAT) could also regulate cytokine
234 production, but through a different pathway – reinstating immune homeostasis through eliminating
235 excessively produced ROS.

236 In conclusion, we have shown the anti-inflammatory effect and ability of catalase to
237 regulate cytokine production in leukocytes, protect alveolar cells from oxidative injury, and repress
238 the replication of SARS-CoV-2 in *rhesus macaques* without noticeable toxicity. Moreover, it is
239 worth noting that catalase is safe and commonly used as a food additive and dietary supplement,
240 and that pilot-scale manufacturing of n(CAT) has been successfully demonstrated. In contrast to
241 the current focus on vaccines and antiviral drugs, this may provide an effective therapeutic solution
242 for the pandemic, as well as treatment of hyperinflammation in general.

243 References

- 244 1. C. Scavone *et al.*, Current pharmacological treatments for COVID-19: What's next? *Br. J. Pharmacol.* (2020), doi:10.1111/bph.15072.
- 245 2. P. Mehta *et al.*, COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet.* **395**, 1033–1034 (2020).
- 246 3. C. Huang *et al.*, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet.* **395**, 497–506 (2020).
- 247 4. Q. Liu, Y. Zhou, Z. Yang, The cytokine storm of severe influenza and development of immunomodulatory therapy. *Cell Mol Immunol.* **13**, 3–10 (2016).
- 248 5. G. R. Hill, J. L. Ferrara, The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. *Blood.* **95**, 2754–2759 (2000).
- 249 6. R. M. Sterner *et al.*, GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. *Blood.* **133**, 697–709 (2019).

259 7. J. J. O'Shea, A. Ma, P. Lipsky, Cytokines and autoimmunity. *Nat. Rev. Immunol.* **2**, 37–45
260 (2002).

261 8. J. R. Tisoncik *et al.*, Into the eye of the cytokine storm. *Microbiol. Mol. Biol. Rev.* **76**, 16–
262 32 (2012).

263 9. K. Kupferschmidt, A cheap steroid is the first drug shown to reduce death in COVID-19
264 patients. *Science* (2020), doi:10.1126/science.abd3683.

265 10. A. A. Nguyen *et al.*, Immunoglobulins in the treatment of COVID-19 infection: Proceed
266 with caution! *Clin. Immunol.* **216**, 108459 (2020).

267 11. T. Huet *et al.*, Anakinra for severe forms of COVID-19: a cohort study. *The Lancet
268 Rheumatology* (2020), doi:10.1016/S2665-9913(20)30164-8.

269 12. G. Guaraldi *et al.*, Tocilizumab in patients with severe COVID-19: a retrospective cohort
270 study. *The Lancet Rheumatology* (2020), doi:10.1016/S2665-9913(20)30173-9.

271 13. F. La Rosée *et al.*, The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe
272 systemic hyperinflammation. *Leukemia* (2020), doi:10.1038/s41375-020-0891-0.

273 14. M. Mittal, M. R. Siddiqui, K. Tran, S. P. Reddy, A. B. Malik, Reactive oxygen species in
274 inflammation and tissue injury. *Antioxid. Redox Signal.* **20**, 1126–1167 (2014).

275 15. M. Schieber, N. S. Chandel, ROS function in redox signaling and oxidative stress. *Curr.
276 Biol.* **24**, R453–62 (2014).

277 16. D. Amatore *et al.*, Influenza virus replication in lung epithelial cells depends on redox-
278 sensitive pathways activated by NOX4-derived ROS. *Cell Microbiol.* **17**, 131–145 (2015).

279 17. R. Vlahos *et al.*, Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced
280 lung inflammation. *PLoS Pathog.* **7**, e1001271 (2011).

281 18. M. Sebastian, O. Chastel, B. de Thoisy, M. Eens, D. Costantini, Oxidative stress favours
282 herpes virus infection in vertebrates: a meta-analysis. *Curr. Zool.* **62**, 325–332 (2016).

283 19. P. Patlevič, J. Vašková, P. Švorc, L. Vaško, P. Švorc, Reactive oxygen species and
284 antioxidant defense in human gastrointestinal diseases. *Integrative Medicine Research.* **5**,
285 250–258 (2016).

286 20. A. Phaniendra, D. B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and
287 their implication in various diseases. *Indian J. Clin. Biochem.* **30**, 11–26 (2015).

288 21. E. Majewska *et al.*, Elevated exhalation of hydrogen peroxide and thiobarbituric acid
289 reactive substances in patients with community acquired pneumonia. *Respir. Med.* **98**,
290 669–676 (2004).

291 22. C. Nathan, A. Cunningham-Bussel, Beyond oxidative stress: an immunologist's guide to
292 reactive oxygen species. *Nat. Rev. Immunol.* **13**, 349–361 (2013).

293 23. I. B. Slimen *et al.*, Reactive oxygen species, heat stress and oxidative-induced
294 mitochondrial damage. A review. *Int. J. Hyperthermia.* **30**, 513–523 (2014).

295 24. M. Nishikawa, M. Hashida, Y. Takakura, Catalase delivery for inhibiting ROS-mediated
296 tissue injury and tumor metastasis. *Adv. Drug Deliv. Rev.* **61**, 319–326 (2009).

297 25. X. Shi *et al.*, PEGylated human catalase elicits potent therapeutic effects on H1N1
298 influenza-induced pneumonia in mice. *Appl. Microbiol. Biotechnol.* **97**, 10025–10033
299 (2013).

300 26. S. Liang *et al.*, Phosphorylcholine polymer nanocapsules prolong the circulation time and
301 reduce the immunogenicity of therapeutic proteins. *Nano Res.* **9**, 1022–1031 (2016).

302 27. M. Yan *et al.*, A novel intracellular protein delivery platform based on single-protein
303 nanocapsules SUPPLEMENTARY INFORMATION. *Nat. Nanotechnol.* **5**, 48–53 (2010).

304 28. M. Merad, J. C. Martin, Pathological inflammation in patients with COVID-19: a key role

305 for monocytes and macrophages. *Nat. Rev. Immunol.* **20**, 355–362 (2020).

306 29. M. Z. Tay, C. M. Poh, L. Rénia, P. A. MacAry, L. F. P. Ng, The trinity of COVID-19:
307 immunity, inflammation and intervention. *Nat. Rev. Immunol.* **20**, 363–374 (2020).

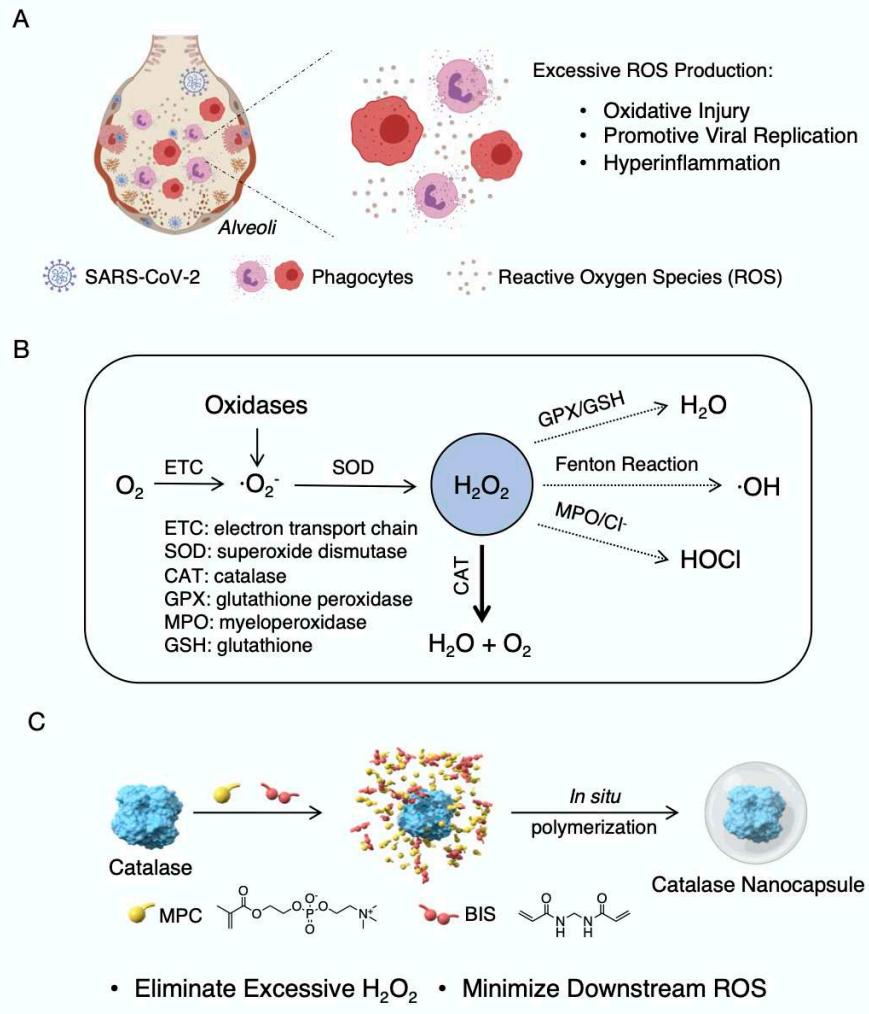
308 30. J. Gong *et al.*, Correlation Analysis Between Disease Severity and Inflammation-related
309 Parameters in Patients with COVID-19 Pneumonia. *medRxiv* (2020),
310 doi:10.1101/2020.02.25.20025643.

311 31. N. Roshanravan, F. Seif, A. Ostadrahimi, M. Pouraghaei, S. Ghaffari, Targeting Cytokine
312 Storm to Manage Patients with COVID-19: A Mini-Review. *Arch Med Res* (2020),
313 doi:10.1016/j.arcmed.2020.06.012.

314 32. A. Marchesoni *et al.*, TNF-alpha antagonist survival rate in a cohort of rheumatoid arthritis
315 patients observed under conditions of standard clinical practice. *Ann. N. Y. Acad. Sci.* **1173**,
316 837–846 (2009).

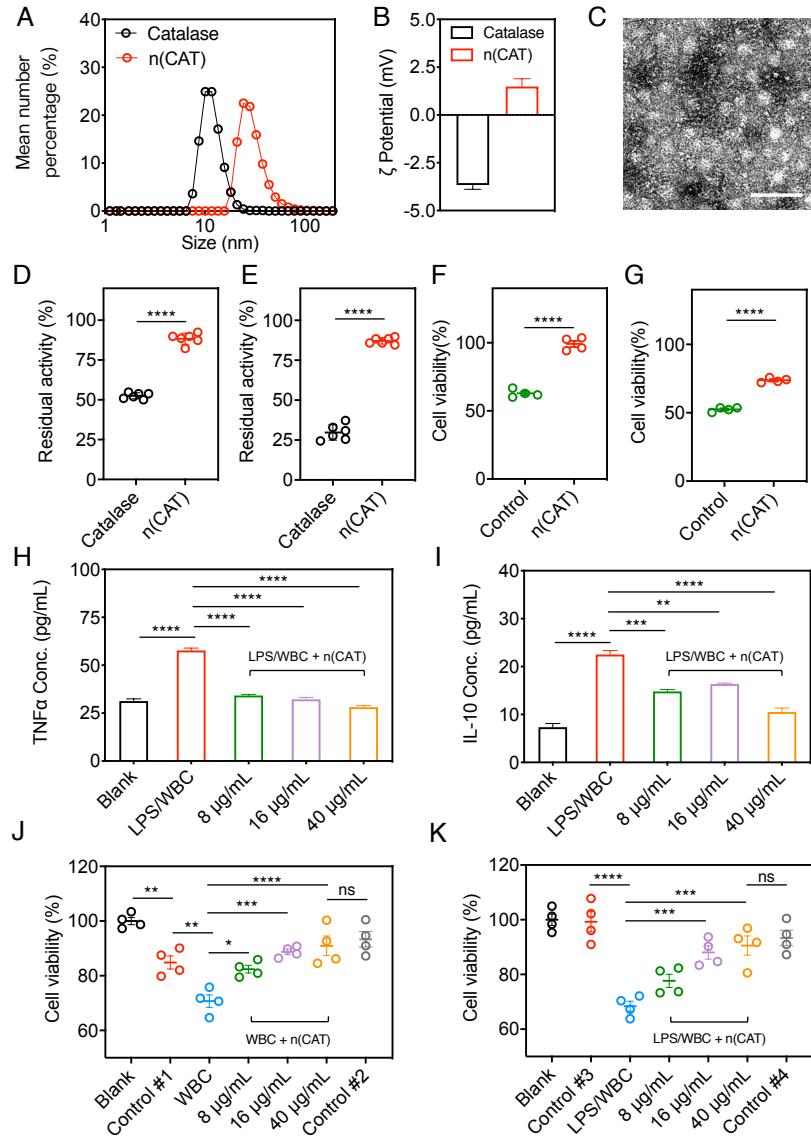
317 33. H. Sies, D. P. Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling
318 agents. *Nat. Rev. Mol. Cell Biol.* (2020), doi:10.1038/s41580-020-0230-3.

319 34. P. Niethammer, C. Grabher, A. T. Look, T. J. Mitchison, A tissue-scale gradient of
320 hydrogen peroxide mediates rapid wound detection in zebrafish. *Nature*. **459**, 996–999
321 (2009).

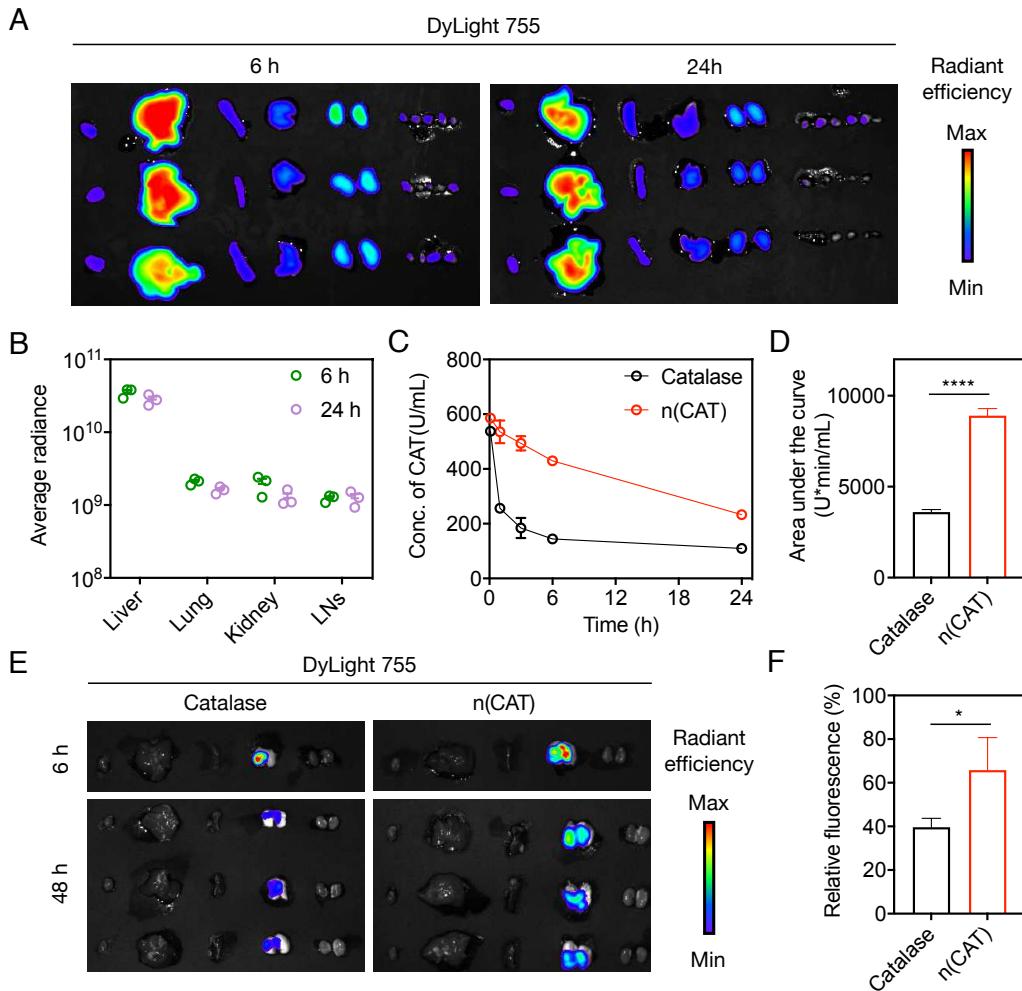

322 35. R. S. Hardy, K. Raza, M. S. Cooper, Therapeutic glucocorticoids: mechanisms of actions
323 in rheumatic diseases. *Nat. Rev. Rheumatol.* **16**, 133–144 (2020).

324 36. C. Tang, Y. Wang, H. Lv, Z. Guan, J. Gu, Caution against corticosteroid-based COVID-19
325 treatment. *Lancet*. **395**, 1759–1760 (2020).

326 37. K. J. Guo *et al.*, The influence of age, gender and treatment with steroids on the incidence
327 of osteonecrosis of the femoral head during the management of severe acute respiratory
328 syndrome: a retrospective study. *Bone Joint J.* **96-B**, 259–262 (2014).

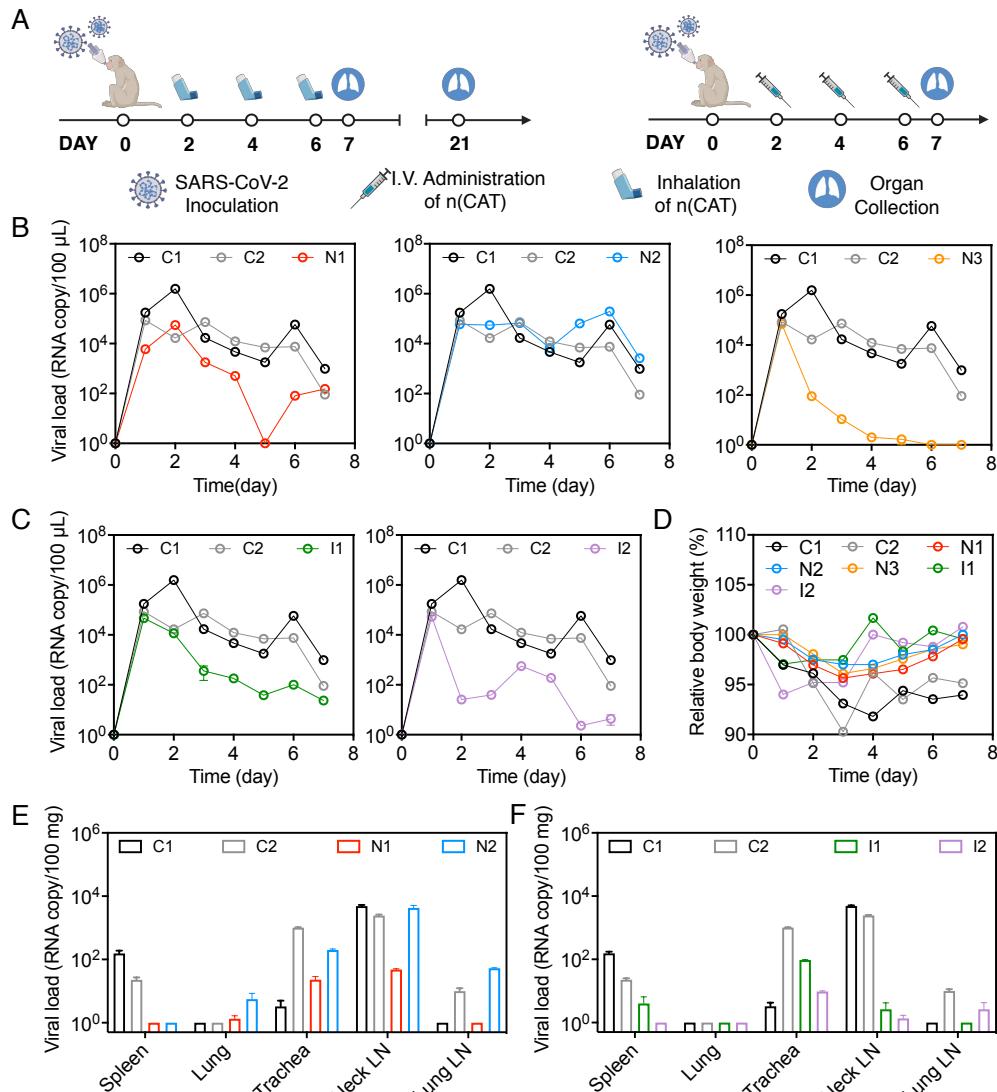

329

330


331

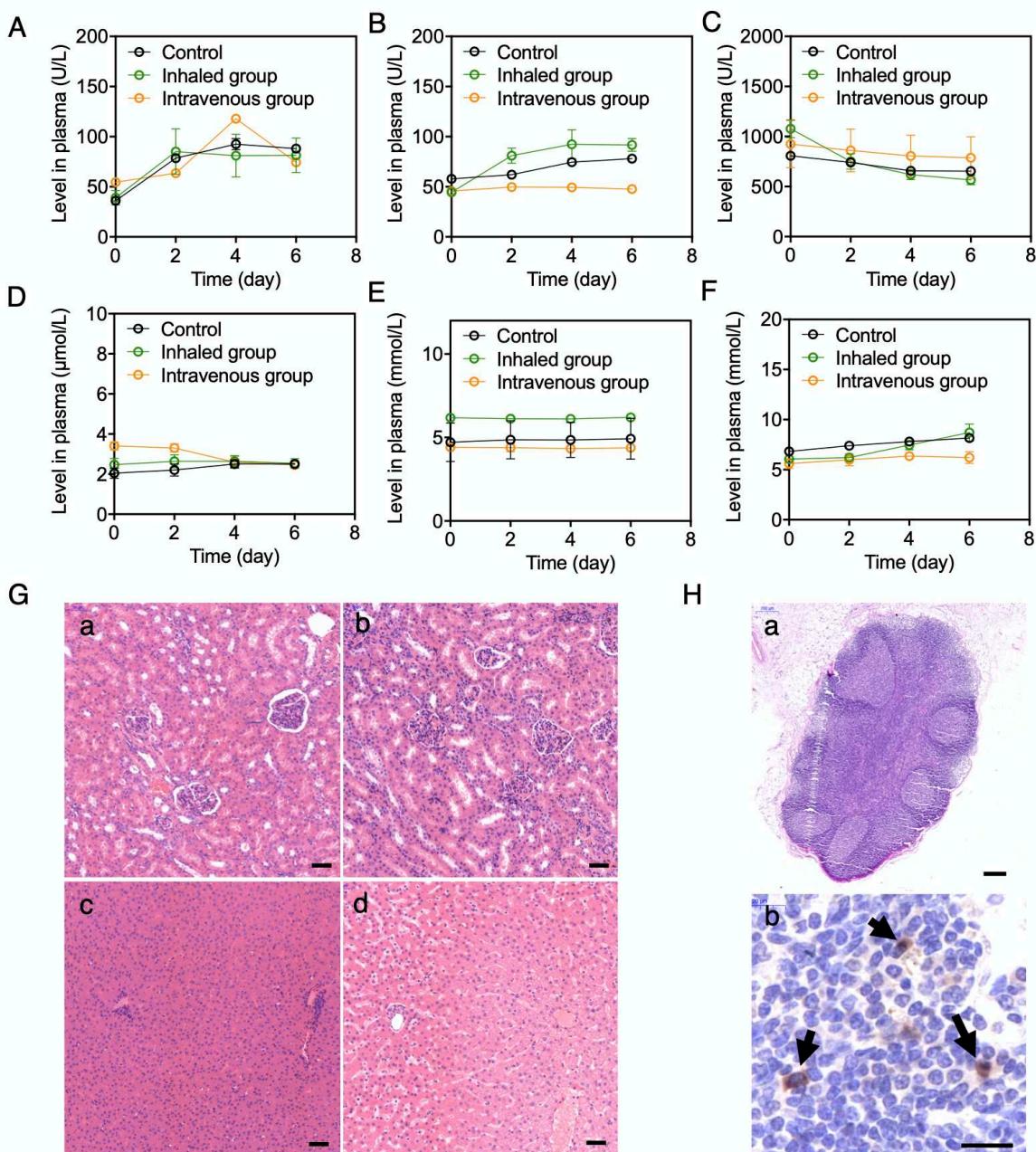
332 **Scheme 1. Proposed mechanism of action and synthesis of catalase nanocapsules.** (A) A
333 schematic illustrating that an elevated level of ROS causes oxidative injury, promotes viral
334 replication, and triggers cytokine storm syndrome in COVID-19 patients. (B) The reaction
335 pathways of ROS, suggesting that eliminating H_2O_2 is the key to minimizing the formation of
336 downstream ROS. (C) The synthesis of catalase nanocapsules by *in situ* polymerization of MPC
337 and BIS around individual catalase molecules exhibiting improved stability and circulation half-
338 life.
339

340


341 **Fig. 1. Characteristic, anti-inflammatory effect, and protective ability of n(CAT).** (A) 342 Dynamic light scattering; (B) zeta potential; (D) thermal stability; (E) proteolytic stability of native 343 catalase and n(CAT). (C) Transmission electron microscopic (TEM) image of n(CAT). (F) Cell 344 viability of HPAEpiC pre-cultured with 20 μ g/mL n(CAT) for 12 h, followed by addition of H_2O_2 345 (1000 μ M) and culturing for 24 h. (G) Cell viability of HPAEpiC pre-cultured with 1000 μ M H_2O_2 346 for 24 h, followed by culturing in fresh media containing 20 μ g/ml n(CAT) for 12 h. (H, I) Concentration of (H) TNF- α and (I) IL-10 in the media of human leukocytes (white blood cells, 347 WBC) cultured with LPS and different concentrations of n(CAT). (J) Cell viability of HPAEpiC 348 pre-cultured with 500 μ M H_2O_2 for 12 h (Control #1) followed by culturing with WBC and 349 different concentrations of n(CAT), as well as that of untreated HPAEpiC cultured with WBC for 350 12 h (Control #2). (K) Cell viability of HPAEpiC cultured with LPS (Control #3), with WBC 351 (Control 4#), and with LPS, WBC, and different concentrations of n(CAT). P value: * < 0.05 ; ** 352 < 0.01 ; *** < 0.001 ; **** < 0.0001 .

354

Fig. 2. Pharmacokinetics and biodistribution of n(CAT) in mice. (A) Fluorescence imaging of the major organs, and (B) average radiance of n(CAT) in the liver, lung, and kidney 6 h and 24 h after intravenous administration of 20 mg/kg Cy7-labeled n(CAT). From left to right: heart, liver, spleen, lung, kidney, and lymph nodes. (C) Pharmacokinetics of native catalase and n(CAT) in BALB/c mice ($n = 3$) after intravenous administration of 20 mg/kg native catalase or n(CAT); blood samples were collected 0.1, 1, 3, 6, and 24 h after injection. (D) Drug exposure of the native catalase and n(CAT). (E) Fluorescence imaging of the major organs after intratracheal nebulization of native catalase and n(CAT). From left to right: heart, liver, spleen, lung, and kidney. (F) Relative fluorescence intensity of the lung 48 h after intratracheal nebulization of native catalase and n(CAT). P value: * < 0.05 ; **** < 0.0001 .


365

366

367 **Fig. 3. Ability of n(CAT) to repress the replication of SARS-CoV-2 in *rhesus macaques*.** (A) 368 Schematic showing the experiment design. (B, C) Viral loads in the nasal swabs of the animals 369 that received (B) nebulization treatment (N1, N2, and N3) and (C) intravenous injection (I1 and 370 I2) of n(CAT). (D) Relative bodyweight of the animals at day 1-7. (E, F) Viral loads in selective 371 organs of the animals receiving (E) nebulization treatment and (F) intravenous injection of n(CAT) 372 at day 7. Animals in the control group were marked as C1 and C2.

373

374

375 **Fig. 4. Biosafety and histology of SARS-CoV-2 infected rhesus macaques.** (A) Aspartate
376 aminotransferase (AST), (B) alanine aminotransferase (ALT), (C) alkaline phosphatase (ALP), (D)
377 uric acid (UA), (E) urea, and (F) blood urea nitrogen (BUN) levels of the animals in the control,
378 inhaled, and intravenous groups. (G) H&E stained sections of the kidneys (a, b) and livers (c, d)
379 in the control (a, c) and inhaled groups (b, d) (scale bar = 50 μm). (H) (a) Representative H&E
380 stained section (scale bar = 200 μm) and (b) immunohistochemistry staining of SARS-CoV-2
381 nucleocapsid protein [6H3], demonstrating scattered positive mononuclear cells (arrows) within
382 the lung LN in C1 (scale bar = 20 μm).

383