

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 1

1 **Extracellular matrix supports excitation-inhibition balance in neuronal** 2 **networks by stabilizing inhibitory synapses**

3 *Egor Dzyubenko¹, Michael Fleischer¹, Daniel Manrique-Castano¹, Mina Borbor¹, Christoph*
4 *Kleinschmitz¹, Andreas Faissner² and Dirk M Hermann¹*

5 ¹Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122 Essen, Germany

6 ²Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology,
7 Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany

8

9	Number of words (abstract):	159
10	Number of words (text):	5999
11	Number of figures:	6
12	Number of supplementary figures:	9
13	Number of supplementary codes:	1
14	Number of references:	54

15

16 **Correspondence:**

17 Egor Dzyubenko, PhD
18 Department of Neurology
19 University Hospital Essen
20 Hufelandstr. 55
21 D-45122 Essen, Germany
22 Email: egor.dzyubenko@uk-essen.de

23 Prof. Dirk M. Hermann, MD
24 Department of Neurology
25 University Hospital Essen
26 Hufelandstr. 55
27 D-45122 Essen, Germany
28 Email: dirk.hermann@uk-essen.de

29

30

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 2

1 **Abstract**

2 Maintaining the balance between excitation and inhibition is essential for the appropriate
3 control of neuronal network activity. Sustained excitation-inhibition (E-I) balance relies on
4 the orchestrated adjustment of synaptic strength, neuronal activity and network circuitry.
5 While growing evidence indicates that extracellular matrix (ECM) of the brain is a crucial
6 regulator of neuronal excitability and synaptic plasticity, it remains unclear whether and how
7 ECM contributes to neuronal circuit stability. Here we demonstrate that the integrity of ECM
8 supports the maintenance of E-I balance by retaining inhibitory connectivity. Depletion of
9 ECM in mature neuronal networks preferentially decreases the density of inhibitory
10 synapses and the size of individual inhibitory postsynaptic scaffolds. After ECM depletion,
11 inhibitory synapse strength homeostatically increases via the reduction of presynaptic
12 GABA_B receptors. However, the inhibitory connectivity reduces to an extent that inhibitory
13 synapse scaling is no longer efficient in controlling neuronal network activity. Our results
14 indicate that the brain ECM preserves the balanced network state by stabilizing inhibitory
15 synapses.

16

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 3

1 **Significance statement**

2 The question how the brain's extracellular matrix (ECM) controls neuronal plasticity and
3 network activity is key for an appropriate understanding of brain functioning. In this study,
4 we demonstrate that ECM depletion much more strongly affects the integrity of inhibitory
5 than excitatory synapses in vitro and in vivo. We revealed that by retaining inhibitory
6 connectivity, ECM ensures the efficiency of inhibitory control over neuronal network activity.
7 Our work significantly expands our current state of knowledge about the mechanisms of
8 neuronal network activity regulation. Our findings are similarly relevant for researchers
9 working on the physiological regulation of neuronal plasticity in vitro and in vivo and for
10 researchers studying the remodeling of neuronal networks upon brain injury, where
11 prominent ECM alterations occur.

12

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 4

1 **Introduction**

2 Neuronal network activity is regulated through a dynamic balance of excitation and inhibition
3 (Haider et al., 2006) that requires coordinated plasticity of excitatory and inhibitory synapses
4 (Bhatia et al., 2019; Trapp et al., 2018). Over several years, experimental studies have
5 gathered solid evidence on the plasticity of excitatory synapses, establishing the modulation
6 of presynaptic neurotransmitter release and postsynaptic responsiveness to glutamate as
7 key neural correlates for memory and learning (Ho et al., 2011). On the network level, scaling
8 of inhibitory synapses is essential for homeostatic mechanisms maximizing information
9 processing capacity in neuronal networks (Ma et al., 2019). Computational modelling
10 suggests that patterns of neuronal network activity are primarily determined by inhibitory
11 connectivity (Mongillo et al., 2018). Yet, the limited knowledge about inhibitory synapses (for
12 review see Gandolfi et al., 2020) limits our understanding how inhibitory plasticity and
13 connectivity influence neuronal activity at the integrative network level.

14 The brain extracellular matrix (ECM) is a multicomponent macromolecular meshwork
15 containing chondroitin sulfate carrying proteoglycans (CSPGs), which anchors to the
16 neuronal surface via hyaluronic acid synthesizing enzymes (Krishnaswamy et al., 2019; Roll
17 and Faissner, 2014). Neuronal activity induces the consolidation of ECM molecules
18 (Dityatev et al., 2007) forming densely packed lattice-shaped layers around a subpopulation
19 of neurons. These coatings, termed perineuronal nets (PNNs), support the fast spiking
20 properties of interneurons (Chu et al., 2018), regulate learning and help to retain acquired
21 memory (Carulli et al., 2020). In adulthood, CSPGs of PNNs and interstitial ECM restrict
22 neuronal plasticity (Carulli et al., 2006; Carulli et al., 2007; Dzyubenko et al., 2016a;
23 Pizzorusso et al., 2002).

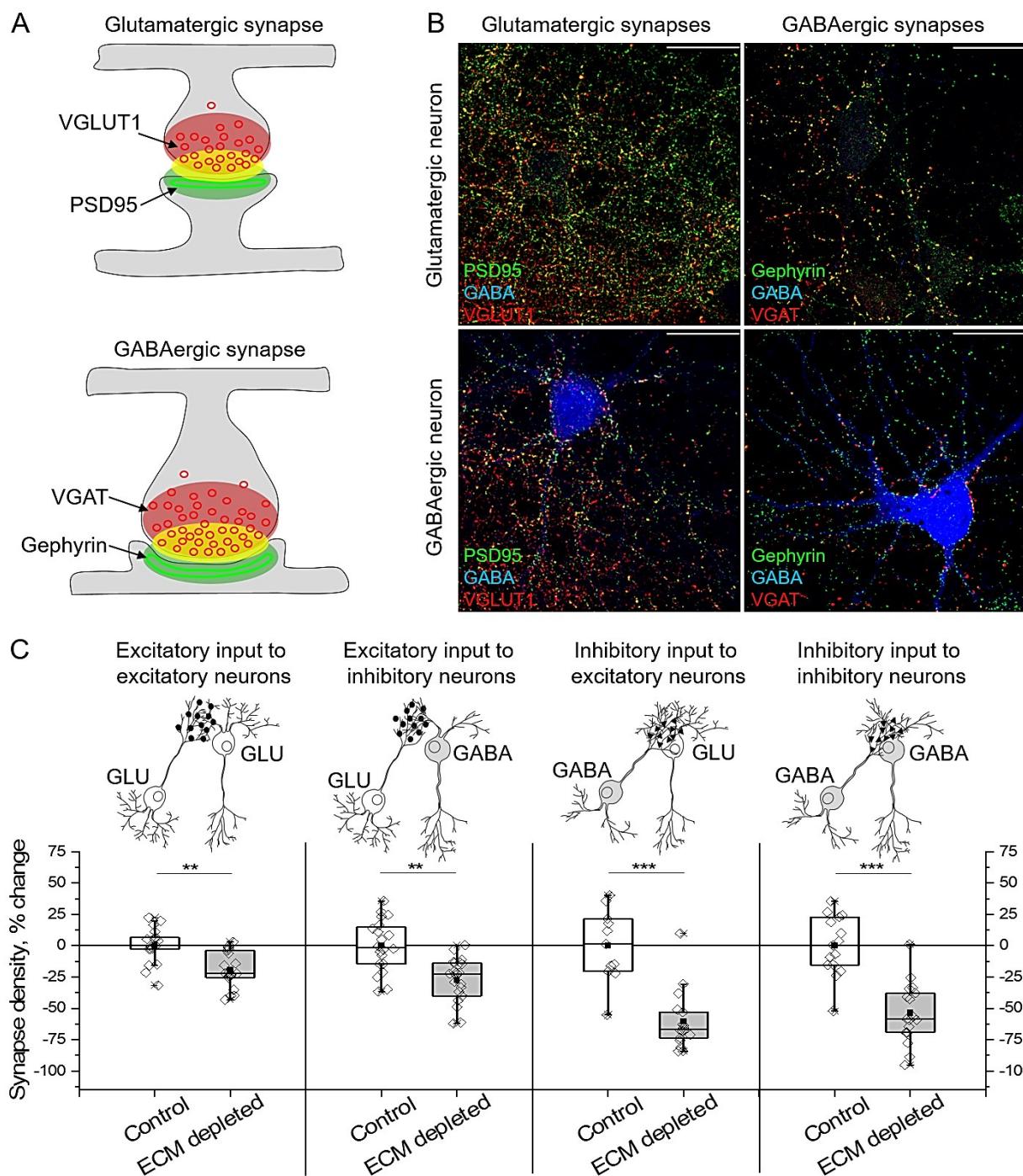
Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 5

1 Enzymatic digestion of ECM increases lateral mobility of excitatory glutamate receptors,
2 alters short-term plasticity of excitatory synapses (Frischknecht et al., 2009) and enhances
3 neuronal network activity (Bikbaev et al., 2015). Thus, ECM integrity is essential for
4 sustained synaptic signaling and neuronal circuit stability. Upon brain injury induced by
5 ischemic stroke, the ECM is rapidly degraded within a few hours (Härtig et al., 2017), and it
6 remains partly decomposed after one week in lesion-surrounding brain areas (Dzyubenko
7 et al., 2018), in which neuronal network activity is compromised (Clarkson et al., 2010; Lake
8 et al., 2017). Whether ECM depletion contributes to the altered neuronal network activity
9 after brain injury and how it influences synaptic plasticity remains to be identified. The role
10 of inhibitory synapses in controlling neuronal network activity after ECM depletion was
11 unknown.

12 Here we investigated the role of ECM for stabilizing excitatory and inhibitory synapses and
13 balancing neuronal network activity. We enzymatically degraded hyaluronic acid and
14 CSPGs in the extracellular space and combined structural and functional readouts for
15 studying neuronal connectivity and activity at the synapse and network level. By using data-
16 driven computer simulations, we explored the influence of synaptic strength and connectivity
17 changes on the activity of neuronal networks.

18

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 6


1 **Results**

2 **ECM depletion reduces inhibitory synapse density *in vitro***

3 Measuring synapse density changes provides an indirect but straightforward estimate of
4 neuronal network connectivity alterations (Dzyubenko et al., 2017). Thus, we first quantified
5 the density of structurally complete synapses in mature networks of primary murine neurons.
6 The networks consisted of principal excitatory neurons and inhibitory interneurons in the
7 ratio 2:1 and were fully mature after 21 days of cultivation, indicated by the appearance of
8 PNNs, which are condensed ECM layers, in neuronal cultures (Figures S1 and S2). The
9 density of both GABAergic and glutamatergic synapses was quantified using GABA as
10 marker of inhibitory perikarya, allowing for the gross estimation of network connectivity. The
11 co-labelling of vesicular glutamate transporter type 1 (VGLUT1) and postsynaptic density
12 protein 95 (PSD95) indicated the excitatory inputs to excitatory and inhibitory neurons, while
13 the co-labelling of vesicular GABA transporter (VGAT) and gephyrin signified inhibitory
14 inputs to excitatory and inhibitory neurons (Figure 1A, B).

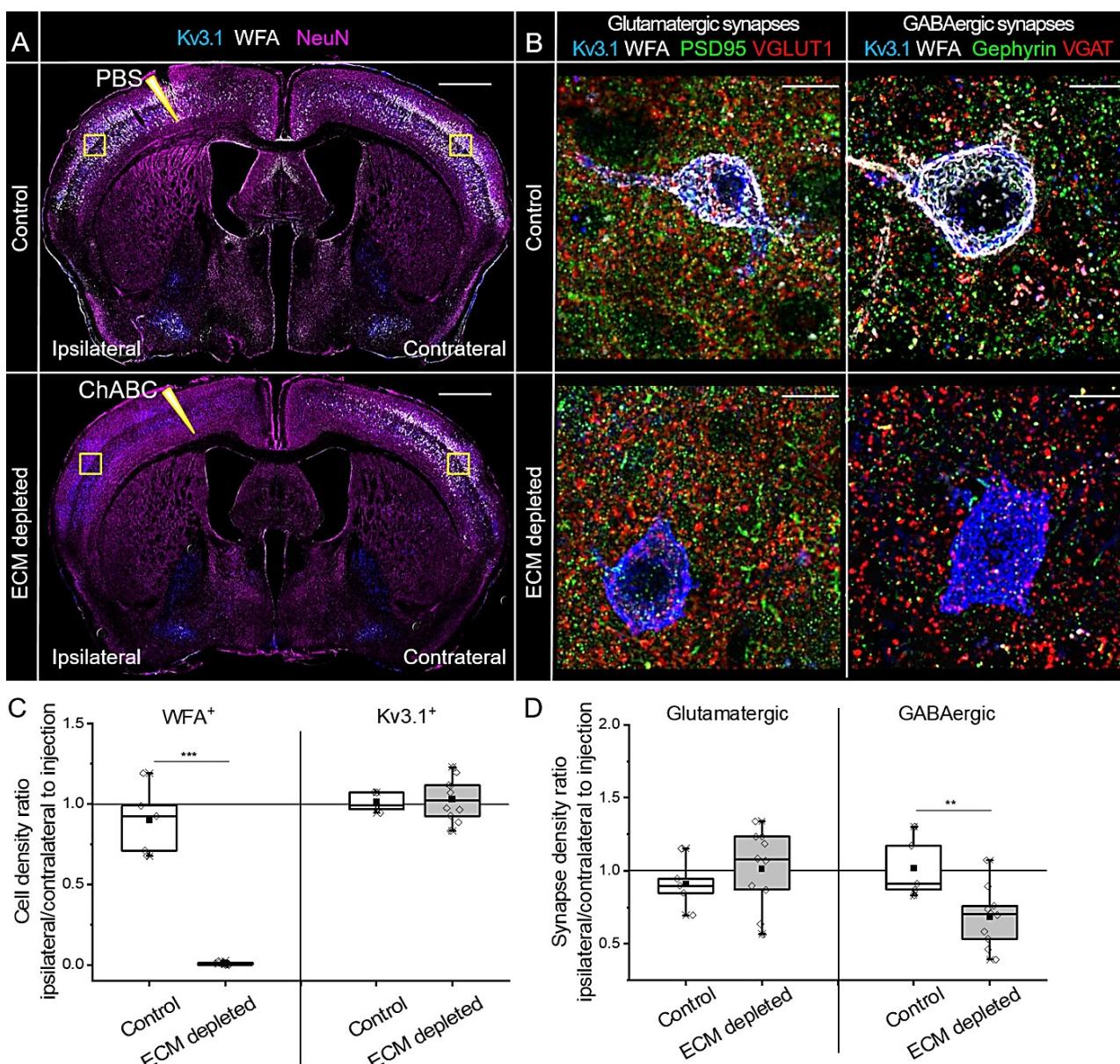
15 The density of both glutamatergic and GABAergic synapses decreased after enzymatic
16 ECM depletion (500 mU/ml chondroitinase ABC [ChABC], 16 hours). Compared with control,
17 ECM depletion reduced excitatory input to excitatory neurons by $19.0 \pm 3.3\%$ (mean \pm s.e.m.),
18 excitatory input to inhibitory neurons by $27.4 \pm 3.6\%$, inhibitory input to excitatory neurons by
19 $60.3 \pm 5.7\%$ and inhibitory input to inhibitory neurons by $53.7 \pm 5.9\%$ (Figure 1C). ECM
20 depletion did not affect neuronal survival, as indicated by fragmented nuclei quantifications
21 (Figure S3). Because GABAergic synapses were affected more strongly than glutamatergic
22 ones, we concluded that ECM depletion preferentially reduced inhibitory connectivity *in vitro*.

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 7

Figure 1. Excitatory and inhibitory synapse densities decrease after ECM depletion *in vitro*.
(A) Overlapping immunolabelling of presynaptic (red) and postsynaptic (green) markers was used to detect structurally complete synapses (yellow). (B) The density of glutamatergic (PSD95-VGLUT1) and GABAergic (gephyrin-VGAT) synapses was measured with reference to GABA immunoreactivity. Representative micrographs are shown. Scale bars, 30 μ m. (C) Synapse density changes were calculated as differences with mean values of corresponding control experiments. Data are shown for each neuron examined ($n \geq 20$ neurons per condition, results obtained from 5 independent experiments). GLU, glutamate. Data are medians (lines inside boxes)/ means (filled squares inside boxes) \pm IQR (boxes) with 10/ 90% ranks as whiskers. Open diamonds are data

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 8

1 points. The asterisks indicate significant differences with control, based on Kruskal-Wallis tests
2 (**p<0.001, **p<0.01).


3 **ECM depletion reduces inhibitory synapse density *in vivo***

4 Based on these observations, we next analyzed the density of glutamatergic and GABAergic
5 synapses in somatosensory cortex layers 3-5 following ECM depletion *in vivo*. Intracortical
6 injection of ChABC (500 mU in 3 μ l 0.1 M phosphate-buffered saline [PBS], 16 hours)
7 unilaterally depleted ECM in the brain, indicated by the absence of PNNs, which in the brain
8 are found around the fast-spiking interneurons expressing a specific potassium channel
9 Kv3.1. The procedure did not affect the density of Kv3.1⁺ neurons and did not alter PNN
10 expression in the contralateral hemisphere (Figure 2A, C). ECM depletion did not influence
11 the density of glutamatergic synapses, but significantly reduced GABAergic synapses in the
12 cortex by 42 \pm 6% (Figure 2B, D). Hence, ECM depletion reduced inhibitory connectivity *in*
13 *vivo*.

14 **ECM depletion increases the strength of inhibitory synapses**

15 Since ECM depletion reduced the density of inhibitory synapses, we further asked whether
16 the strength of inhibitory input is functionally reduced at the single neuron level. To answer
17 this question, we analyzed spontaneous neurotransmitter release in inhibitory synapses. We
18 measured miniature inhibitory postsynaptic currents (mIPSCs) in mature cultivated neurons
19 using somatic patch clamp recordings (Figure 3A, B).

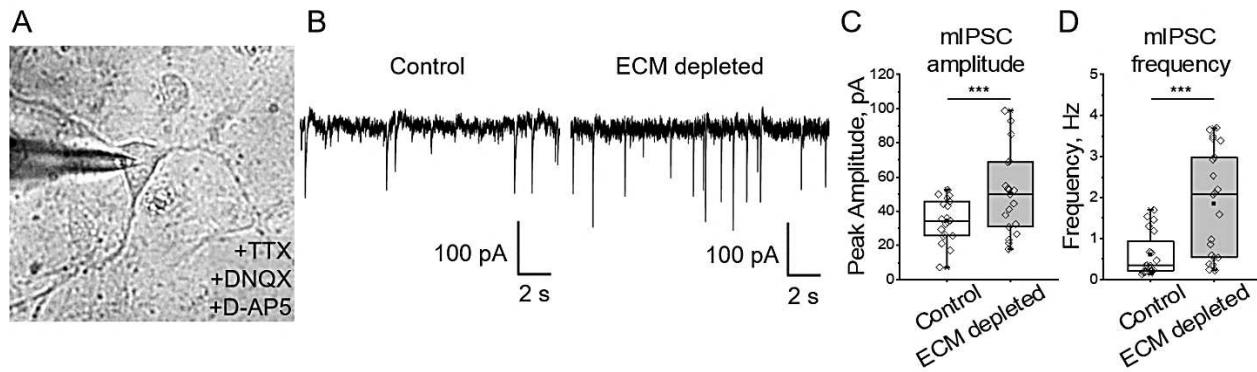

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 9

Figure 2. Inhibitory synapse density decreases after ECM depletion *in vivo*. (A) Neuronal nuclei (NeuN, magenta), fast spiking interneurons (Kv3.1, blue) and PNNs (WFA, *Wisteria floribunda* agglutinin, white) were immunohistochemically labeled in brain sections obtained from mice treated with chondroitinase ABC (ChABC, ECM depleted) or phosphate buffered saline (PBS, control) for 16 hours. Sharp triangles indicate intracortical injection sites. Squares indicate the regions in which cell and synapse densities were analyzed. Scale bar, 1 mm. (B) The density of glutamatergic (PSD95-VGLUT1) and GABAergic (Gephyrin-VGAT) synapses was measured in somatosensory cortex layers 3-5. Maximum projections of 56.7x56.7x5 μm regions ipsilateral to the injection sites are shown. Scale bars, 10 μm . (C) Changes in PNN⁺ and Kv3.1⁺ neuron densities were quantified as ipsilateral to contralateral ratios. (D) Changes in glutamatergic and GABAergic synapse densities were calculated as ipsilateral to contralateral ratios. Data are shown for each animal examined ($n \geq 5$ animals per condition). Data are medians (lines inside boxes)/ means (filled squares inside boxes) \pm interquartile ranges (IQR; boxes) with 10/ 90% ranks as whiskers. Open diamonds are data points. The asterisks indicate significant differences with control, based on Kruskal-Wallis tests (**p<0.01, ***p<0.001).

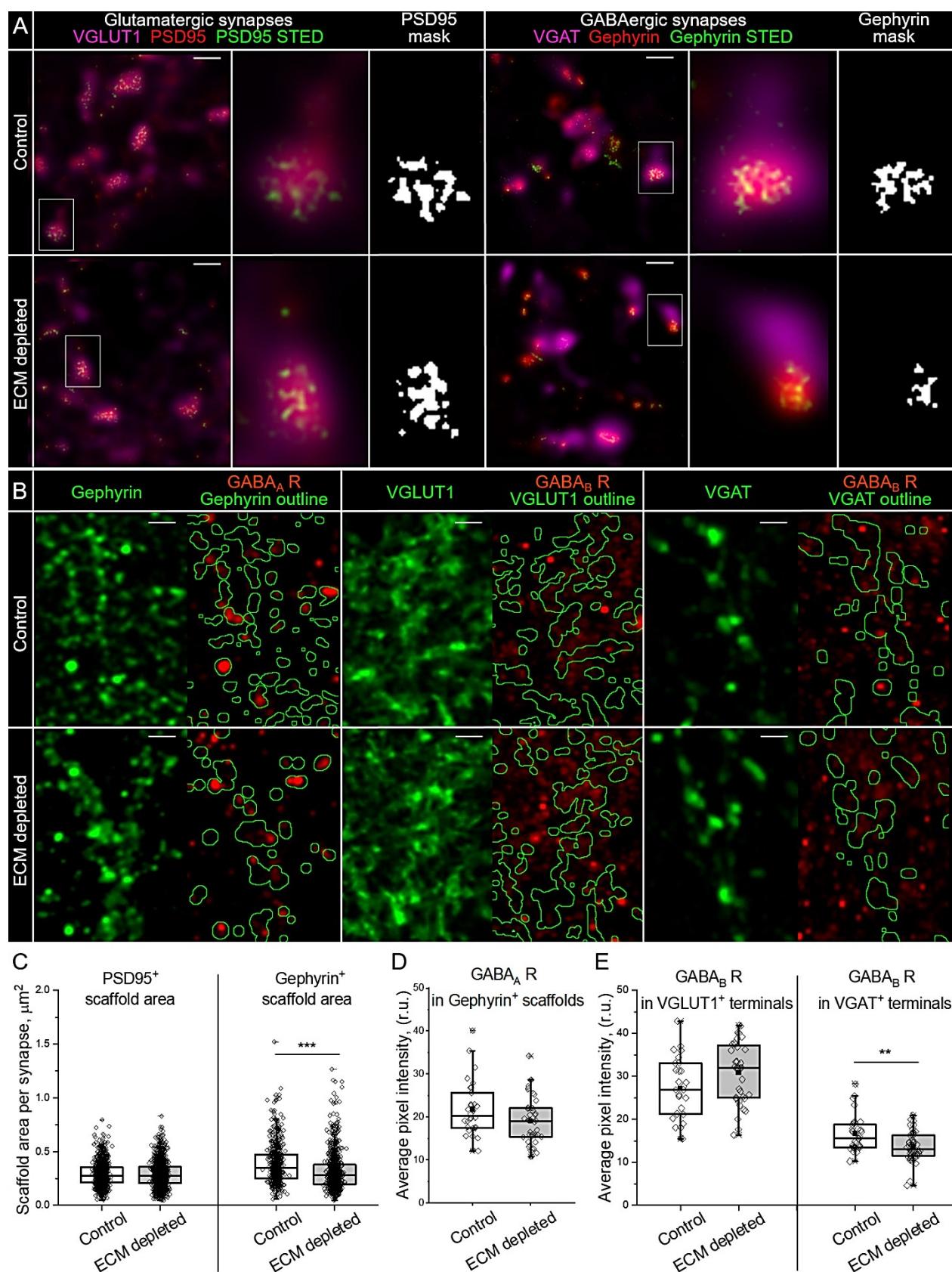
Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 10

1 For recording mIPSCs, 1 μ M tetrodotoxin (TTX) was applied to prevent action potential-
2 driven synaptic release, and a mixture of glutamate receptor antagonists (10 μ M DNQX and
3 10 μ M D-APV) was added to isolate inhibitory currents. Interestingly, ECM depletion
4 increased both amplitude (Figure 3C) and frequency (Figure 3D) of mIPSCs. While the
5 higher mIPSC amplitude indicates elevated neurotransmitter content per synaptic vesicle
6 (Frerking et al., 1995) or increased number and conductance of postsynaptic receptors
7 (Nusser et al., 1997), the higher frequency can result from increased number of synapses
8 and higher release probability (Roberto et al., 2004). Together with the reduction of synapse
9 number (Figure 1C), these data show that ECM depletion increased the strength of inhibitory
10 synapses.

11
12 **Figure 3. ECM depletion strengthens inhibitory input to single neurons.** (A) Somatic patch
13 clamp of a neuron in presence of sodium channel blocker (TTX) and glutamate receptor antagonists
14 (DNQX and D-AP5) reveals miniature inhibitory postsynaptic currents (mIPSCs). (B) Representative
15 current tracks exemplify mIPSCs detected in control and ECM depleted cultures. (C, D)
16 Quantifications of mIPSC amplitude and frequency indicate that ECM depletion increased the total
17 inhibitory input to single neurons (n \geq 19 neurons per condition, results obtained from 5 independent
18 experiments). Data are medians (lines inside boxes)/ means (filled squares inside boxes) \pm IQR
19 (boxes) with 10/ 90% ranks as whiskers. Open diamonds are data points. The asterisks indicate
20 significant differences with control, based on Kruskal-Wallis tests (**p<0.001).

21

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 11


1 **ECM depletion reduces presynaptic expression of GABA_B receptors in inhibitory 2 synapses**

3 To understand how ECM depletion facilitates inhibition, we examined the ultrastructural
4 organization of inhibitory and excitatory postsynapses and analyzed the distribution of GABA
5 receptors. We used stimulated emission depletion (STED) microscopy to uncover the
6 morphology of gephyrin and PSD95 containing scaffolds within structurally complete
7 GABAergic and glutamatergic synapses (Figure 4A).

8 By analyzing the area of binary masks representing single synaptic scaffolds, we determined
9 that ECM depletion reduced the size of gephyrin, but not PSD95 scaffolds (Figure 4C).
10 Because gephyrin scaffolds are essential for the clusterization of postsynaptic GABA_A
11 receptors, we measured the immunoreactivity of GABA_A receptors inside gephyrin
12 containing postsynapses (Figure 4B, D), but found no significant changes after ECM
13 depletion. The total expression of GABA_A receptors was not affected (Figure S3).

14 GABA_B receptors act as negative regulators of neurotransmitter release on the presynaptic
15 side of both excitatory and inhibitory synapses. By measuring the immunoreactivity of
16 GABA_B receptors on VGLUT1⁺ and VGAT⁺ presynaptic terminals, we revealed that ECM
17 depletion preferentially reduces GABA_B receptor expression in GABAergic presynapses
18 (Figure 4 B, E). These results suggest that the increased strength of inhibitory synapses
19 after ECM depletion is associated with reduced reciprocal inhibition of neurotransmitter
20 release. Neither total nor postsynaptic expression of GABA_B receptors was significantly
21 influenced by ECM depletion (Figures S4 and S5).

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 12

1

2 **Figure 4. ECM depletion alters the pre- and postsynaptic organization of inhibitory synapses.**
3 (A) Stimulated emission depletion (STED) microscopy resolves the morphology of presynaptic

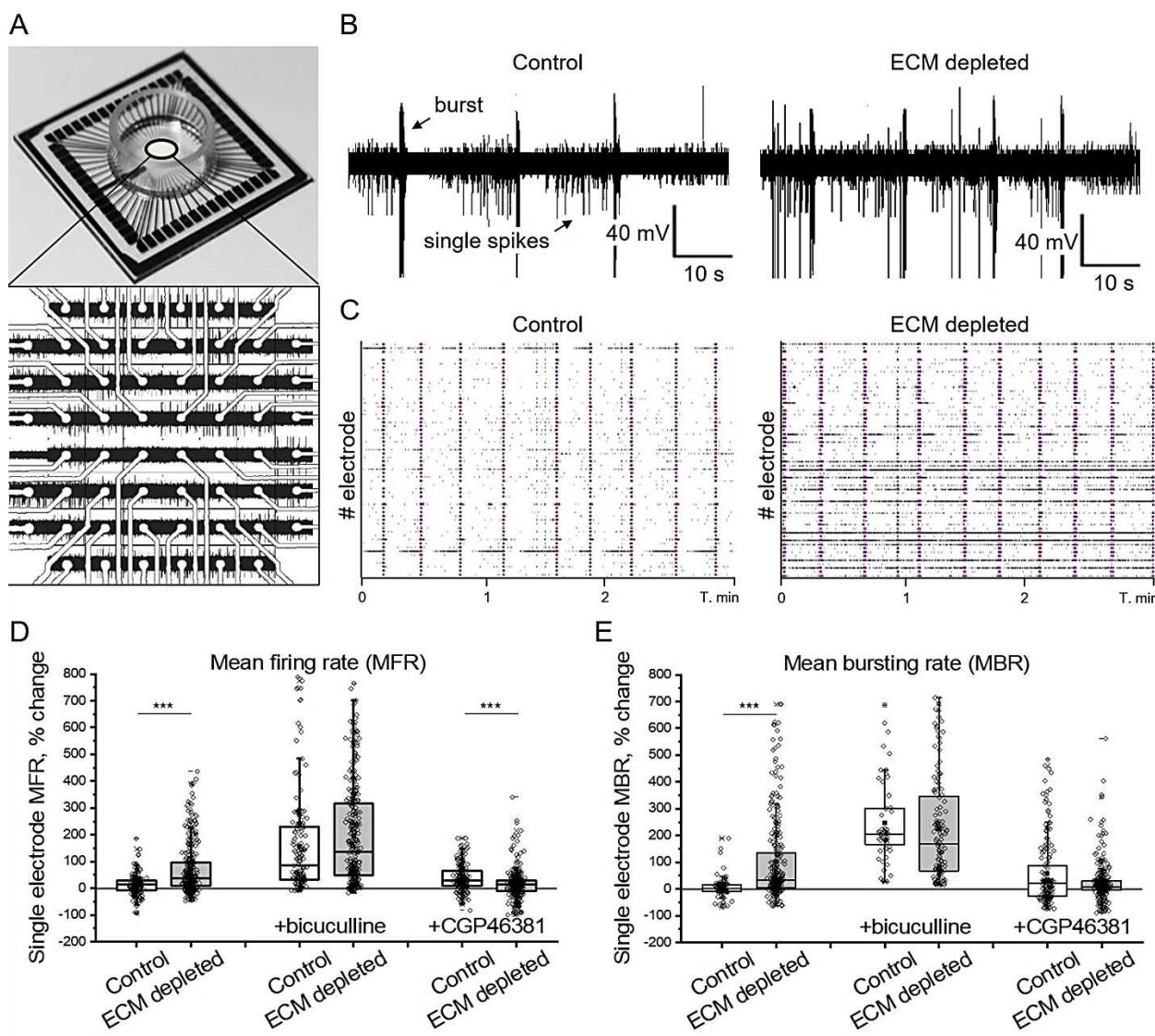
Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 13

1 scaffolds in glutamatergic and GABAergic synapses. Scale bars, 1 μ m. Single synapses highlighted
2 with white rectangles are magnified and the corresponding masks of postsynaptic scaffolds are
3 shown. (B) The panel illustrates the analysis of GABA_A receptor (GABA_A R) expression in inhibitory
4 postsynapses (gephyrin⁺ areas), GABA_B receptor (GABA_B R) expression in excitatory (VGLUT1⁺
5 areas) and inhibitory (VGAT⁺ areas) postsynapses. The outlined areas (green) depict the regions in
6 which the immunoreactivity of GABA receptors was measured. Scale bars, 2 μ m. (C) The area of
7 scaffolds containing PSD95 or gephyrin was quantified in single synapses (n \geq 580 synapses per
8 condition, results from 5 independent experiments). (D) Immunoreactivity of GABA_A receptors in
9 GABAergic postsynapses. (E) Immunoreactivity of GABA_B receptors in glutamatergic and
10 GABAergic presynapses. (D, E) The average pixel intensity was quantified for each neuron
11 examined (n \geq 30 cells per condition, results from 5 independent experiments). Data are medians
12 (lines inside boxes)/ means (filled squares inside boxes) \pm IQR (boxes) with 10/ 90% ranks as
13 whiskers. Open diamonds are data points. The asterisks indicate significant differences with control,
14 based on Kruskal-Wallis tests (**p<0.001, **p<0.01).

15 **ECM depletion increases neuronal activity and facilitates spiking-bursting transitions**

16 Knowing that ECM depletion reduces inhibitory connectivity, but enhances inhibitory input
17 to single neurons, we asked how these opposing changes affect neuronal activity at the
18 network level. Spontaneous network activity was investigated using multiple electrode
19 arrays (MEAs). Within this methodology, neuronal cultures are grown on an array of
20 electrodes, each detecting population spikes and bursts, generated by small groups of
21 neurons (10-15 in our experiments), located within 100 μ m radius from the center of the
22 electrode (Figure 5A, B). While the frequency of spikes measured as the electrode mean
23 firing rate (MFR) represents general neuronal activity, the network phase transitions are
24 represented by bursting behavior, which was evaluated as mean bursting rate (MBR)
25 changes. In mature networks, spiking-bursting transitions are mostly synchronized, as
26 indicated by the alignment of burst events (Figure 5C). Therefore, MBR measurements also
27 partially reflect neuronal network synchrony.

28 We analyzed how ECM depletion alters neuronal activity and bursting behavior by
29 measuring MFR and MBR changes after ChABC (500 mU/ml, 16 hours) or control (PBS, 16
30 hours) treatment. The activity recorded by single electrodes was compared to the baseline


Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 14

1 activity of the same electrode before treatment (Figure 5D, E). On average, ECM depletion
2 increased MFR by $69.8 \pm 5.2\%$ (mean \pm s.e.m.) and MBR by $102.0 \pm 9.6\%$ (mean \pm s.e.m.). The
3 increase of neuronal network activity and facilitated bursting was inhibition-dependent, since
4 the blockage of GABA_A receptors (6 μ M bicuculline metiodide for 30 minutes) levelled the
5 effect of ECM depletion. The blockage of GABA_B receptors (100 μ M CGP46381 for 30
6 minutes) moderately enhanced neuronal activity. After ECM depletion, the effect of GABA_B
7 receptor blockage was significantly reduced, as indicated by MFR quantification after
8 treatment with CGP46381. Hence, the increase of neuronal network activity after ECM
9 depletion functionally involved the downregulation of GABA_B receptors.

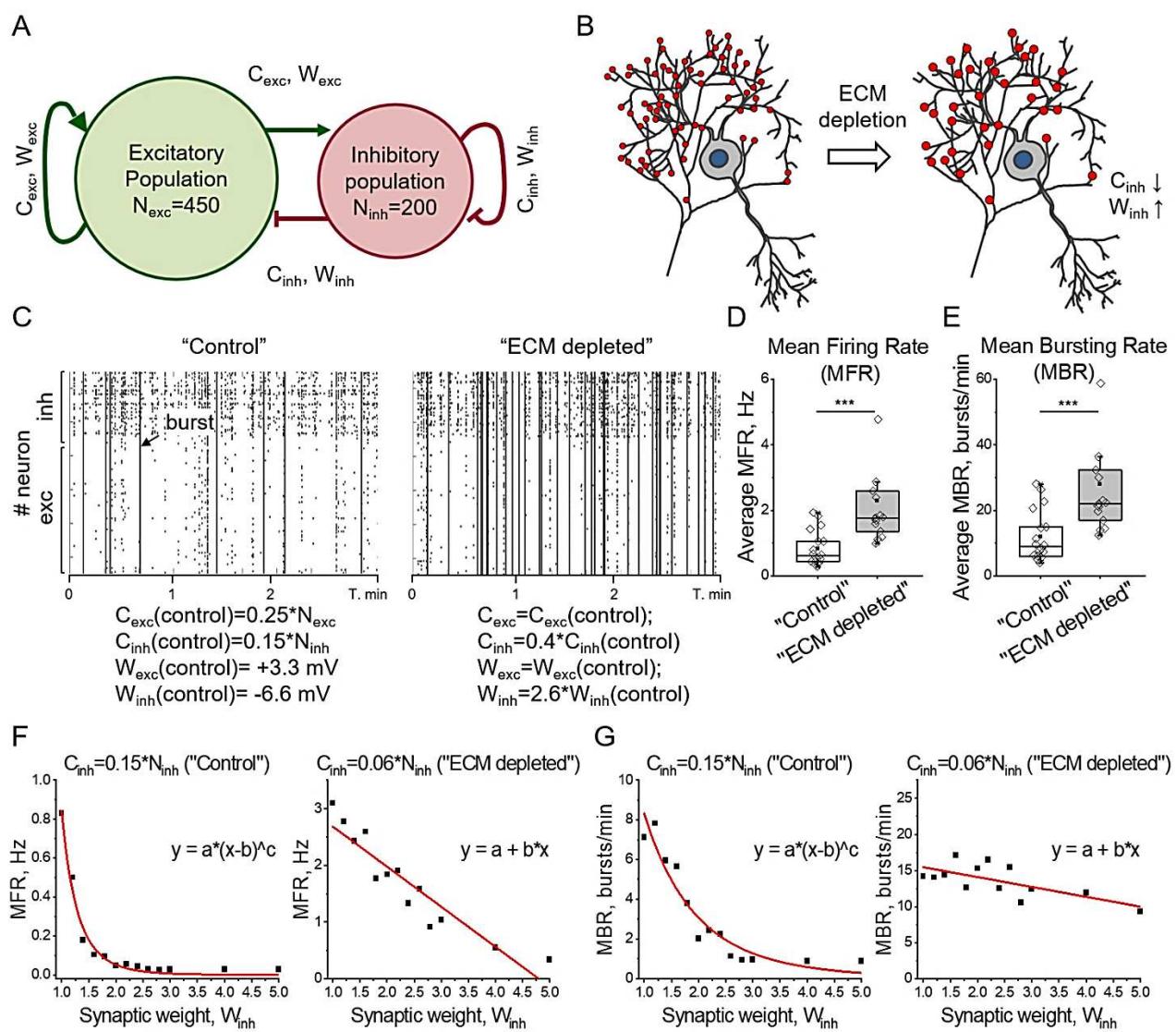
10 **Reduction of inhibitory connectivity after ECM depletion outweighs inhibitory 11 synapse strength increase**

12 The number and strength of GABAergic synapses are essential determinants of inhibitory
13 input that control the activity and synchronization in neuronal networks. We revealed that
14 these parameters undergo opposing changes after ECM depletion, implying the necessity
15 to understand their interaction at the network level. Using the earlier elaborated method
16 (Dzyubenko et al., 2017), we reconstructed the observed alterations *in silico* (Figure 6A).

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 15

1

2 **Figure 5. The increase of neuronal network activity after ECM depletion is inhibition-**
3 **dependent.** (A) Neuronal network activity was examined using multiple electrode arrays (MEAs).
4 The panel demonstrates the layout and network activity recorded on a MEA chip with a square array
5 of 59 electrodes. (B) Representative voltage tracks exemplify spikes and bursts detected by single
6 electrodes in control and ECM depleted cultures. (C) Raster plots show synchronized network
7 activity in control and ECM depleted cultures. Black ticks are single spikes, magenta bars are burst
8 events. The changes of (D) mean firing rate (MFR) and (E) mean bursting rate (MBR) were quantified
9 for single electrodes as the differences with the baseline activity of the same electrode before
10 treatment ($n \geq 169$ electrodes per condition, results from 5 independent experiments). The effects of
11 GABA_A and GABA_B receptor blockage were analyzed by comparing single electrode activity before
12 and after incubation with the antagonist (6 μ M bicuculline and 100 μ M CGP46381, respectively).
13 Data are medians (lines inside boxes)/ means (filled squares inside boxes) \pm IQR (boxes) with 10/
14 90% ranks as whiskers. Open diamonds are data points. The asterisks indicate significant
15 differences with control, based on Kruskal-Wallis tests ($***p < 0.001$).


Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 16

1 Excitatory and inhibitory connectivity was defined as the proportion of all neurons providing
2 the input to a single cell ($C_{exc}=0.25*N_{exc}$, $C_{inh}=0.15*N_{inh}$ in “control”), based on the previous
3 study (Izhikevich, 2003) and connectivity estimations in neuronal cultures (Pastore et al.,
4 2018). The strength of single connections was defined by synaptic weights reflecting
5 membrane potential changes upon synapse activation ($W_{exc}=+3.3$ mV, $W_{inh}=-6.6$ mV in
6 “control”). Thereby, excitation and inhibition were balanced, and the computations were
7 performed in a near-critical state (Figure S6) characterized by stable spiking-bursting
8 transitions. ECM depletion was simulated by modifying inhibitory connectivity (C_{inh}) and
9 synaptic weights (W_{inh}) in accordance with experimentally observed changes (Figure 6B). In
10 agreement with *in vitro* experiments, ECM depletion increased network MFR (Figure 6C, D)
11 and bursting rates (Figure 6C, E). Of note, our approach closely resembled the intrinsic
12 variability in real neuronal networks, because the connectivity matrix was newly generated
13 for each simulation instance.

14 To compare the impact of C_{inh} and W_{inh} on the resulting neuronal activity, we measured MFR
15 and MBR over a range of different C_{inh} and W_{inh} values (Figure S7). Excitatory input
16 parameters C_{exc} and W_{exc} were set to control values. The reduction of C_{inh} negatively and
17 linearly correlated with network MFR ($r=-0.98$; $p<0.01$) and MBR ($r=-0.92$; $p<0.01$), while the
18 increased C_{inh} strongly diminished neuronal activity. Under moderate decrease of C_{inh}
19 ($C_{inh}=0.125*N_{inh}$ and $C_{inh}=0.1*N_{inh}$), increasing W_{inh} partially compensated MFR and MBR
20 changes. However, when C_{inh} was set in accordance with ECM depletion effect *in vitro* (40%
21 of control, $C_{inh}=0.06*N_{inh}$), both MFR and MBR remained elevated in a broad range of W_{inh} .
22 While changing inhibitory connectivity from $C_{inh}=0.15*N_{inh}$ in “control” simulation to
23 $C_{inh}=0.06*N_{inh}$ in “ECM depleted” simulation, the dependence of MFR and MBR on W_{inh}
24 switched from a power law to linearity (Figure 6F, G). Conclusively, the reduction of inhibitory

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 17

- 1 connectivity after ECM depletion outweighed the strengthening of inhibitory synapses and
- 2 increased the resulting activity of neuronal networks.

- 3
- 4 **Figure 6. Network activity simulation *in silico* indicates the prevailing role of inhibitory**
- 5 **connectivity reduction following ECM depletion.** (A) The schematic drawing illustrates the model
- 6 of the spiking neuron network. N_{inh} and N_{exc} are numbers of inhibitory and excitatory neurons, W_{inh}
- 7 and W_{exc} are weights of corresponding synapses. (B) The ECM depletion was mimicked by tuning
- 8 C_{inh} and W_{inh} parameters in accordance with experimentally observed changes. (C) Raster plots
- 9 exemplify the activity of "control" and "ECM depleted" networks. The corresponding simulation
- 10 parameters are depicted. Ticks are single spikes, vertical dashes indicate burst events. The
- 11 quantification of network average (D) mean firing rate (MFR) and (E) mean bursting rate (MBR) is
- 12 shown for "control" and "ECM depleted" simulation conditions. Data are medians (lines inside boxes)/
- 13 means (filled squares inside boxes) \pm IQR (boxes) with 10/ 90% ranks as whiskers. Open diamonds
- 14 are data points. The asterisks indicate significant differences with the control, based on Kruskal-
- 15 Wallis tests ($***p<0.001$). (F) MFR and (G) MBR are quantified in a range of W_{inh} changes for "control"
- 16 and "ECM depleted" inhibitory connectivity. Note that the reduction of inhibitory connectivity switches

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 18

1 the dependence of network activity on inhibitory synapse weight from power law to linearity. Squares
2 indicate the mean of simulation repetitions, fit functions are shown in red. For each condition, 15
3 independent simulation experiments were performed.

4 Discussion

5 Here we demonstrate that the brain ECM supports the maintenance of neuronal network E-
6 I balance by retaining inhibitory connectivity. ECM depletion preferentially decreases the
7 density of inhibitory synapses and the size of inhibitory postsynaptic scaffolds, while it
8 homeostatically increases inhibitory synapse strength. Commonly, inhibitory synapse
9 scaling downregulates neuronal network activity and synchronization, providing a key
10 mechanism for neuronal activity adjustment (Sprekeler, 2017). After ECM depletion, the
11 degree of inhibitory connectivity reduces to an extent that inhibitory synapse scaling is no
12 longer efficient in controlling the state of neuronal networks. As a result, neuronal network
13 activity and synchrony increase.

14 We observed that ~60% of GABAergic synapses are lost already 16 hours after ECM
15 depletion. How could such a major decrease in synapse density occur without increased
16 neuronal cell death? Recent findings indicate that neuronal networks are continuously
17 remodelled and that synapses dynamically wane and re-emerge within a few days (Pfeiffer
18 et al., 2018). Inhibitory synapses are especially dynamic, about 60% of them retract and
19 return at the same place within 4 days (Villa et al., 2016). Intuitively, this structural volatility
20 but spatial persistency implies the existence of a stable framework to secure the integrity of
21 neuronal circuits. Our data suggests that brain ECM provides such framework to stabilize
22 inhibitory connectivity. After ECM depletion, the reduction of GABAergic synapse density
23 may be due to the increased volatility and inability of synaptic boutons to find their
24 postsynaptic site. The demarcation of postsynaptic sites has been proposed to be defined

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 19

1 by PNNs (Fawcett et al., 2019; Sigal et al., 2019), the facet-like ECM coatings that
2 compartmentalize neuronal surface. On neurons devoid of PNNs, a less dense ECM layer
3 may potentially play a similar role. An increased ratio of excitatory to inhibitory synapses has
4 recently been shown in the hippocampus of mice exhibiting simultaneous knockout of
5 several ECM proteins and glycoproteins as a consequence of disturbed PNN formation
6 (Gottschling et al., 2019).

7 At the level of single synapses, ECM depletion increases inhibitory synapse strength, as
8 indicated by the increased mIPSC amplitude and frequency together with the decreased
9 synapse density. With STED microscopy, we observed the reduced size of postsynaptic
10 gephyrin scaffolds after ECM depletion. However, despite the known role of gephyrin for
11 postsynaptic GABA_A receptor clustering and stabilization (Choii and Ko, 2015), neither
12 expression nor localization of GABA_A receptors was affected. Apparently, the gephyrin
13 containing scaffolds condensed and retained GABA_A receptors. On the presynaptic side, we
14 found a significant reduction of GABA_B receptor expression on VGAT⁺ terminals, which
15 functionally associated with the diminished sensitivity to the GABA_B antagonist CGP46381.
16 Presynaptic GABA_B receptors act as activity-dependent regulators of neurotransmitter
17 release. Upon repetitive stimulation, the spillover of GABA activates presynaptic GABA_B
18 receptors, transiently reducing subsequent neurotransmitter release (Davies et al., 1990;
19 Pitler and Alger, 1994). Our results indicate that ECM depletion attenuated this mechanism
20 and increased inhibitory synapse strength via presynaptic facilitation. It remains unclear how
21 exactly ECM regulates GABA_B receptor localization and function. The extracellular
22 complement control protein module CCP1 of GABA_B R1 subunit interacts with laminin α 5
23 subunit and fibulin-2 of ECM (Blein et al., 2004; Pless, 2009), but the functional
24 consequences of this interaction need further investigation.

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 20

1 At the network level, the reduction of inhibitory connectivity outweighs the increased
2 inhibitory synapse strength after ECM depletion. Thereby, the E-I balance switches towards
3 excitation, resulting in the increased neuronal activity and network synchrony, as evidenced
4 by MEA recordings and *in silico* simulations. A similar increase of network activity could arise
5 from the reduced excitatory input to GABAergic interneurons, as observed in the visual
6 cortex after ECM depletion (Faini et al., 2018), and the decreased rate of their spontaneous
7 firing, as observed in a model of peritumoral epilepsy (Tewari et al., 2018). Unlike the
8 VGLUT2⁺ thalamic inputs in the visual cortex (Faini et al., 2018; Nahmani and Erisir, 2005),
9 ECM depletion does not significantly alter the local excitatory connectivity in somatosensory
10 cortex layers 3-5, as indicated by the VGLUT1⁺ synapse quantifications. We therefore
11 conclude that controlling the density of excitatory synapses on GABAergic interneurons is
12 not likely to be a key mechanism by which extracellular matrix supports excitation-inhibition
13 balance in local neuronal networks. However, the decreased rate of spontaneous firing of
14 GABAergic interneurons may indeed amplify the E-I balance changes by further decreasing
15 the efficiency of inhibitory control over neuronal network activity.

16 Altered E-I balance following ECM breakdown is likely a key component of pathophysiology
17 of psychosis (Pantazopoulos et al., 2015; Soleman et al., 2013) and epilepsy (Arranz et al.,
18 2014; Tewari et al., 2018). In ischemic stroke, adjusting the E-I balance after ECM
19 decomposition may, on the contrary, support neurological recovery. Post-stroke
20 neuroplasticity is impaired by decreased neuronal excitability in perilesional brain areas
21 (Clarkson et al., 2010; Wang et al., 2018). In light of the new evidence we present here, the
22 transient decline in cortical ECM integrity after ischemia (Dzyubenko et al., 2018) may
23 support neuronal network rewiring by stimulating neuronal activity. Hence, the controlled

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 21

1 degradation of ECM could be a promising target in stroke therapy, as it may allow promoting
2 neuronal activity and plasticity.
3 The therapeutic potential of ECM degradation in the injured brain will crucially depend on
4 the precise targeting of ECM modifications. The crude ablation of ECM elicits memory loss
5 and learning deficits (Hylin et al., 2013; Shi et al., 2019). In this study, we demonstrate that
6 the near-complete ECM digestion disrupts criticality in neuronal networks, indicated by the
7 switch of dependence between neuronal activity and inhibitory synapse strength from a
8 power law to linearity. The dynamic tuning of cortical circuits to criticality is essential for
9 efficient information processing in the brain (Gautam et al., 2015; Kinouchi and Copelli,
10 2006; Ma et al., 2019). Refined tools for controlled ECM decomposition will not only expand
11 opportunities for research but will also open new directions in neurorestorative therapies.

12 **Materials and methods**

13 **Legal issues and animal housing**

14 Experimental procedures were approved by the local government (Bezirksregierung
15 Düsseldorf) and conducted in accordance to European Union (Directive 2010/63/EU)
16 guidelines for the care and use of laboratory animals. C57BL/6j mice (Envigo, Indianapolis,
17 IN, U.S.A.) were kept in groups of 5 animals/cage in a regular inverse 12 h light-dark cycle
18 and access to food and water *ad libitum*. All efforts were made to reduce the number of
19 animals in the experiments.

20 **Cell cultures**

21 Primary cultures of neurons and astrocytes were prepared as described previously
22 (Gottschling et al., 2016). Hippocampal neurons were obtained at embryonic day 15 (E15)

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 22

1 and cortical astrocytes were obtained at postnatal day 1 (P1) from male and female mice.
2 Neurons were supported by astrocyte monolayers cultivated on cell culture inserts with a
3 permeable membrane (Figure S1A), allowing for the long term maturation of neuronal
4 networks. We plated 50,000 neurons in a 50 μ l droplet onto pre-treated glass coverslips or
5 MEA chips. Cell culture inserts containing 50,000 astrocytes were combined with neuronal
6 cultures on the same day. The cultures were maintained in Neurobasal medium (21103049,
7 ThermoFisher, Waltham, MA, U.S.A.) supplemented with 2 mM L-glutamine (25030081,
8 ThermoFisher), 1% v/v B27 (A3582801, ThermoFisher) and 1% v/v SM1 (05711,
9 STEMCELL Technologies, Vancouver, Canada). We changed half of the medium weekly to
10 keep the pH around 6.5. All *in vitro* experiments were performed on fully mature neurons
11 after 21-28 days of cultivation. The evolution of neuronal networks *in vitro* was characterized
12 by coherent maturation of synaptic connectivity and ECM expression, partially resembling
13 neuronal circuit development *in vivo* (Choi, 2018). In the course of cultivation, synapse
14 density increased until maturity was reached after 21 days in vitro (DIV) (Figure S1B, C).
15 The establishment of network connectivity correlated with the expression of PNNs, the
16 condensed ECM layers characteristic for the mature neuronal cultures (Figure S1B, D). The
17 network activity in neuronal cultures evolved accordingly, changing from the high frequency
18 random spiking at 7 DIV followed by the low activity period at 14 DIV and the regular bursting
19 pattern at 21 DIV (Figure S1E). At later time points (i.e., 35 DIV) synapse density, PNN
20 expression and network activity were stabilized and did not change. Similar to our previous
21 work (Dzyubenko et al., 2017), the mature neuronal cultures contained 34 \pm 6.3%
22 (mean \pm s.e.m.) inhibitory interneurons (Figure S2).

23 **ECM depletion**

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 23

1 We followed an established approach for enzymatic ECM digestion (Bikbaev et al., 2015;
2 Pizzorusso et al., 2002). Cell cultures were incubated with 500 mU/ml ChABC (C3667,
3 Sigma-Aldrich, Taufkirchen, Germany) or 500 U/ml hyaluronidase (HYase, H4272, Sigma-
4 Aldrich) for 16 hours. For ECM depletion *in vivo*, 500 mU ChABC or 500 U HYase were
5 dissolved in 2 μ l of 0.1 M PBS and delivered via a single stereotactic (bregma 0, left 3 mm,
6 deep 1 mm) intracortical injection. At 16 hours post injection, animals were sacrificed and
7 brains were processed for further analysis. Control animals were treated with vehicle (0.1 M
8 PBS). In our hands, the two enzymes were equally efficient for ECM digestion and
9 specifically targeted the neuronal cell culture compartment, while no alterations in glial cells
10 were detected (Figure S7). Moreover, ChABC and HYase induced identical changes in
11 synapse density and network activity (Figure S9).

12 **Immunolabelling procedures**

13 For immunohistochemistry, brains were perfused with 4% w/v paraformaldehyde (PFA) and
14 post-fixed for 12 hours in 4% w/v PFA. 40 μ m coronal free-floating sections were obtained
15 from the bregma level. For immunocytochemistry, cell cultures were fixed with 4% w/v PFA
16 for 10 min at room temperature. Synaptic proteins were detected mouse anti-PSD95 (1:500,
17 MAB1598, Millipore, Burlington, MA, U.S.A.), guinea pig anti-VGLUT1 (1:500, 135304,
18 Synaptic Systems, Goettingen, Germany), mouse anti-gephyrin (1:500, 147011, Synaptic
19 Systems) and guinea pig anti-VGAT (1:500, 131103, Synaptic Systems) antibodies. For
20 GABA receptor quantification, GABA_A and GABA_B receptors were labelled with chicken anti-
21 GABA_A γ 2 (1:500, 224006, Synaptic Systems) and rabbit anti-GABA_B (1:500, 322102,
22 Synaptic Systems) antibodies. To characterize ECM expression, we applied biotinylated
23 WFA (1:100, B-1355, Vector Laboratories, Burlingame, USA), biotinylated hyaluronan

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 24

1 binding protein (1:100, 400763, AMS Biotechnology, Frankfurt, Germany), rabbit anti-
2 aggrecan antibody (1:500, AB1031, Millipore) and rat anti-473HD antibody (1:100, produced
3 by the group of Prof. Andreas Faissner, Bochum, Germany; (von Holst et al., 2006)).
4 Neuronal types were identified using rabbit anti-GABA (1:2000, A2052, Sigma-Aldrich),
5 chicken anti-NeuN (1:300, ABN91, Millipore), mouse anti-neurofilament M (1:500, 171231,
6 Synaptic Systems) and rabbit anti-Kv3.1b (1:1000, APC-014, Alomone Labs, Jerusalem,
7 Israel) antibodies. Rat anti-glial acidic fibrillary protein (GFAP; 1:1000, 13-0300,
8 ThermoFisher), mouse anti-β-catenin (1:500, ab19381, Abcam, Cambridge, UK) and rabbit
9 anti-connexin 43 (1:500, 3512, Cell Signaling Technologies, Frankfurt, Germany) antibodies
10 were used as astroglial markers. For fluorescence detection, secondary antibodies
11 conjugated to Alexa or Atto dyes were used. Nuclei were counterlabeled with DAPI (1:1000,
12 D1306, ThermoFisher).

13 **Low-resolution microscopy for basic quantifications**

14 For basic quantifications of cell density and marker proteins expression following
15 immunohistochemistry/ immunocytochemistry, four 425.1x425.1 μm regions of interest
16 (ROIs) per condition per experiment were selected at random positions for cell culture
17 specimens. In brain sections, the ROIs were positioned in the left and right cerebral
18 somatosensory cortex layers 3-5. Single plane micrographs were obtained using the Carl
19 Zeiss LSM710 confocal microscope (20x Plan Apochromat objective, NA 0.8, pixel size 0.21
20 μm).

21 **Total expression of GABA receptors**

22 The total expression of GABA receptors on the neuronal surface was investigated *in vitro* by
23 Western blot. Membrane proteins were extracted using the Mem-PER Plus Membrane

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 25

1 Protein Extraction Kit (89842, ThermoFisher) and separated by sodium dodecyl sulfate
2 polyacrylamide gel electrophoresis (SDS-PAGE) on 1 mm 8% polyacrylamide gels. To avoid
3 protein aggregation the samples were not heated. The proteins were transferred onto
4 nitrocellulose membranes using the Trans-Blot Turbo Transfer System (Biorad, Hercules,
5 CA, U.S.A.) mixed molecular weight program, followed by pre-blocking in 3% bovine serum
6 albumin (BSA) for 1 hour. Then, the membranes were incubated with primary chicken anti-
7 GABA_A γ2 (1:1000, 224006, Synaptic Systems), rabbit anti-GABA_B (1:1000, 322102,
8 Synaptic Systems) and mouse anti-synaptotagmin-1 (1:1000, 105011, Synaptic Systems)
9 antibodies for 72 h at 4°C. Secondary antibodies were applied stepwise, and the proteins
10 were visualized in separated fluorescence and luminescence channels. For fluorescence
11 detection, Alexa-647 and Cy-3 conjugated antibodies were used. Chemiluminescence was
12 detected with HRP conjugated antibodies using Pierce ECL Western Blotting-Substrate
13 (32106, ThermoFisher). Multiple proteins were detected on the same membrane using the
14 ChemiDoc XRS+ Imaging System (Biorad), and labelling intensity was normalized to the
15 stain-free signal. The molecular weights of the proteins were verified using a prestained
16 protein ladder (ab116028, Abcam). Data were analyzed by densitometry in ImageJ using
17 the gel quantification plugin.

18 **Synapse density and synaptic GABA receptor quantifications**

19 The density of glutamatergic and GABAergic synapses was quantified using a previously
20 established method (Dzyubenko et al., 2016b). For synapse analysis *in vitro*, five
21 66.5x66.5x5 μm ROIs per condition per experiment were selected at random positions,
22 containing the soma and proximal dendrites of single neurons. In brain sections, five
23 51x51x10 μm ROIs per condition per experiment were selected in the left and right cerebral

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 26

1 cortex layers 3-5. The confocal stacks were obtained using the LSM710 confocal
2 microscope (100x alpha Plan-Apochromat objective, NA 1.46; Carl Zeiss, Jena, Germany).
3 Structurally complete synapses were identified by the overlapping immunolabelling of pre-
4 and postsynaptic markers, which were analyzed with an in-house Synapse Counter plugin
5 for ImageJ (freely available at <https://github.com/SynPuCo/SynapseCounter>). Therefore,
6 our synapse quantification approach detects the majority of inputs, which a particular cell
7 receives from its local network partners. The expression of pre- and postsynaptic GABA_B
8 and GABA_A receptors was evaluated by immunofluorescence intensity analysis. Pre- and
9 postsynaptic structures were analyzed using Synapse Counter, and mean pixel intensities
10 were determined as estimates of protein expression changes.

11 **STED microscopy of postsynaptic scaffolds**

12 The morphology of postsynaptic scaffolds was investigated by STED microscopy using a
13 previously established method (Dzyubenko et al., 2016b). We employed the time-gated
14 Leica TCS SP8 microscope (Wetzlar, Germany), which is equipped with white light pulse
15 laser (WLL2) and gated hybrid detection. An oil immersion HCX PL APO STED 100x
16 (numerical aperture 1.4) objective was used. The ultrastructure of postsynaptic scaffolds
17 within structurally complete synapses was analyzed. First, 23.8x23.8 μm single-plane
18 confocal images were obtained using 488 and 633 nm excitation wavelengths for the post-
19 and presynaptic markers, respectively. Then, the STED scans were obtained in the same
20 stage position using 488 nm excitation and 592 nm depletion lasers. The detection time-
21 gating interval was set to 6-10 ps post-pulse time window. All settings were kept constant
22 throughout the experiments. To improve the visibility of fine structural elements, the raw data
23 were deconvolved using Hyugen's software. The binary masks of single synaptic scaffolds

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 27

1 were generated using automated thresholding (Otsu method) in ImageJ, and the mask area
2 was measured.

3 **Whole-cell mIPSC recordings**

4 Neuronal cultures were recorded in patch-clamp whole-cell configuration using Axopatch
5 200B amplifier (Molecular Devices, San Jose, CA, U.S.A.) with pClamp software 10.6.
6 Microelectrodes of 1.5 mm thin-walled filamented borosilicate glass (World Precision
7 Instruments, Friedberg, Germany) were pulled with a DMZ-Universal Puller (Zeitz
8 Instruments, Martinsried, Germany) and polished to a final resistance of 3–4 MΩ. Neurons
9 were voltage-clamped at -60 mV, the signals were filtered at 1.0 kHz and recorded with 10
10 kHz. Series resistance and cell capacitance were compensated prior to the recordings.
11 BrainPhys basal medium was used as extracellular solution. The pipette solution contained
12 140 mM KCl, 1 mM CaCl₂·2H₂O, 4 mM MgCl₂, 10 mM HEPES, 0.4 mM Na₂-GTP, 4 mM Mg-
13 ATP and 10 mM EGTA (pH 7.3). For the recording of mIPSCs we applied TTX (1 μM) to
14 prevent action potential-driven synaptic release. The inhibitory postsynaptic currents were
15 pharmacologically isolated using glutamate receptor antagonist DNQX (10 μM) and NMDA
16 receptor antagonist D-APV (10 μM). Data were analysed with Clampfit software 10.6
17 (Molecular Devices).

18 **Spontaneous network activity recordings**

19 Spontaneous activity in neuronal networks was measured using cell culture compatible
20 square 8x8 electrode MEA (60MEA200/30iR-Ti, Multi Channel Systems, Reutlingen,
21 Germany), on which primary neurons were grown. To evaluate the effects of ECM depletion,
22 we recorded the baseline activity prior to the application of digesting enzymes, and
23 compared it with the post-treatment activity after 16 hours. The control cultures were treated

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 28

1 with 0.1 M PBS. To study the impact of ECM depletion on GABAergic neurotransmission,
2 GABA_A (6 μ M bicuculline metiodide, Tocris, Bristol, UK) or GABA_B (100 μ M CGP46381,
3 Tocris) receptor antagonists were applied. After 30 minutes of incubation with the
4 antagonist, network activity was recorded. The effects of GABA antagonists were evaluated
5 with reference to neuronal activity after ECM depletion or control treatment. In all
6 experiments, we recorded spontaneous network activity for 15 minutes (temperature
7 stabilized at 35°C, gas exchange prevented) using the MEA2100 60-channel headstage with
8 the sampling frequency of 40,000 Hz using MC Rack. For each electrode, the mean firing
9 rate (MFR) and mean bursting rate (MBR) were analyzed in MatLab with the SpyCode
10 toolbox generously provided by Dr. Michela Chiappalone (Bologna et al., 2010).

11 **Network activity simulations**

12 To evaluate the impact of connectivity alterations versus the synaptic strength changes
13 induced by ECM depletion, we implemented a computational approach that we previously
14 established (Dzyubenko et al., 2017). Experimentally observed effects of ECM depletion
15 were reconstructed using an *in silico* network of spiking neurons. The key variables of our
16 model define neuronal response properties and network connectivity. The physiology of fast
17 spiking interneurons and primary excitatory neurons was replicated using previously defined
18 parameters (Izhikevich, 2003). Network circuitry was defined by the sparseness of
19 connectivity (C_{exc} , C_{inh}) and synaptic weights (W_{exc} , W_{inh}). Sparseness of connectivity was
20 defined as the proportion of all neurons of a certain type providing the input to a single cell
21 on average: $C_{exc}=0,25*N_{exc}$ for excitatory, $C_{inh}=0,15*N_{inh}$ for inhibitory input in control
22 condition. Synaptic weights were set as absolute values of postsynaptic membrane potential
23 changes after activation of a synapse. We modified C_{inh} and W_{inh} within a range of

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 29

1 biologically feasible values to determine their impact on neuronal network activity. For each
2 simulation instance, network connectivity was newly generated, mimicking the intrinsic
3 variability of real neuronal networks.

4 **Statistics**

5 For non-normally distributed datasets, data were evaluated by Kruskal-Wallis tests using
6 OriginPro2020 software. For multiple comparisons, Bonferroni correction was applied. Data
7 were presented as box plots depicting the medians (lines inside boxes)/ means (filled
8 squares inside boxes) \pm IQR (boxes) with 10% and 90% ranks as whiskers. For normally
9 distributed datasets, e.g. the *in silico* simulations, data were evaluated by two-tailed
10 independent Student's t-tests. Data were shown as mean \pm s.e.m. columns. Data points were
11 indicated as diamonds. P values <0.05 were defined to indicate statistical significance.

12 **Citations**

13 Arranz, A.M., K.L. Perkins, F. Irie, D.P. Lewis, J. Hrabe, F. Xiao, N. Itano, K. Kimata, S. Hrabetova, and Y.
14 Yamaguchi. 2014. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity
15 and seizures via reduction in brain extracellular space. *The Journal of neuroscience : the official
16 journal of the Society for Neuroscience*. 34:6164-6176.

17 Bhatia, A., S. Moza, and U.S. Bhalla. 2019. Precise excitation-inhibition balance controls gain and timing in
18 the hippocampus. *eLife*. 8:e43415.

19 Bikbaev, A., R. Frischknecht, and M. Heine. 2015. Brain extracellular matrix retains connectivity in neuronal
20 networks. *Sci Rep*. 5:14527.

21 Blein, S., R. Gingham, D. Uhrin, B.O. Smith, D.C. Soares, S. Veltel, R.A. McIlhinney, J.H. White, and P.N.
22 Barlow. 2004. Structural analysis of the complement control protein (CCP) modules of GABA(B)
23 receptor 1a: only one of the two CCP modules is compactly folded. *J Biol Chem*. 279:48292-48306.

24 Bologna, L.L., V. Pasquale, M. Garofalo, M. Gandolfo, P.L. Baljon, A. Maccione, S. Martinoia, and M.
25 Chiappalone. 2010. Investigating neuronal activity by SPYCODE multi-channel data analyzer. *Neural
26 Networks*. 23:685-697.

27 Carulli, D., R. Broersen, F. de Winter, E.M. Muir, M. Meskovic, M. de Waal, S. de Vries, H.J. Boele, C.B.
28 Canto, C.I. De Zeeuw, and J. Verhaagen. 2020. Cerebellar plasticity and associative memories are
29 controlled by perineuronal nets. *Proc Natl Acad Sci U S A*. 117:6855-6865.

30 Carulli, D., K.E. Rhodes, D.J. Brown, T.P. Bonnert, S.J. Pollack, K. Oliver, P. Strata, and J.W. Fawcett. 2006.
31 Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their
32 components. *J Comp Neurol*. 494:559-577.

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 30

1 Carulli, D., K.E. Rhodes, and J.W. Fawcett. 2007. Upregulation of aggrecan, link protein 1, and hyaluronan
2 synthases during formation of perineuronal nets in the rat cerebellum. *Journal of Comparative*
3 *Neurology*. 501:83-94.

4 Choi, S.-Y. 2018. Synaptic and circuit development of the primary sensory cortex. *Experimental & Molecular*
5 *Medicine*. 50:13.

6 Choi, G., and J. Ko. 2015. Gephyrin: a central GABAergic synapse organizer. *Exp Mol Med*. 47:e158.

7 Chu, P., R. Abraham, K. Budhu, U. Khan, N. De Marco Garcia, and J.C. Brumberg. 2018. The Impact of
8 Perineuronal Net Digestion Using Chondroitinase ABC on the Intrinsic Physiology of Cortical
9 Neurons. *Neuroscience*. 388:23-35.

10 Clarkson, A.N., B.S. Huang, S.E. Macisaac, I. Mody, and S.T. Carmichael. 2010. Reducing excessive GABA-
11 mediated tonic inhibition promotes functional recovery after stroke. *Nature*. 468:305-309.

12 Davies, C.H., S.N. Davies, and G.L. Collingridge. 1990. Paired-pulse depression of monosynaptic GABA-
13 mediated inhibitory postsynaptic responses in rat hippocampus. *J Physiol*. 424:513-531.

14 Dityatev, A., G. Bruckner, G. Dityateva, J. Grosche, R. Kleene, and M. Schachner. 2007. Activity-dependent
15 formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets.
16 *Developmental neurobiology*. 67:570-588.

17 Dzyubenko, E., C. Gottschling, and A. Faissner. 2016a. Neuron-Glia Interactions in Neural Plasticity:
18 Contributions of Neural Extracellular Matrix and Perineuronal Nets. *Neural Plast*. 2016:5214961.

19 Dzyubenko, E., G. Juckel, and A. Faissner. 2017. The antipsychotic drugs olanzapine and haloperidol modify
20 network connectivity and spontaneous activity of neural networks in vitro. *Sci Rep*. 7:11609.

21 Dzyubenko, E., D. Manrique-Castano, C. Kleinschnitz, A. Faissner, and D.M. Hermann. 2018. Topological
22 remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. *Matrix*
23 *Biol*. 74:121-132.

24 Dzyubenko, E., A. Rozenberg, D.M. Hermann, and A. Faissner. 2016b. Colocalization of synapse marker
25 proteins evaluated by STED-microscopy reveals patterns of neuronal synapse distribution in vitro. *J*
26 *Neurosci Methods*. 273:149-159.

27 Faini, G., A. Aguirre, S. Landi, D. Lamers, T. Pizzorusso, G.M. Ratto, C. Deleuze, and A. Bacci. 2018.
28 Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons. *eLife*.
29 7:e41520.

30 Fawcett, J.W., T. Oohashi, and T. Pizzorusso. 2019. The roles of perineuronal nets and the perinodal
31 extracellular matrix in neuronal function. *Nat Rev Neurosci*. 20:451-465.

32 Frerking, M., S. Borges, and M. Wilson. 1995. Variation in GABA mini amplitude is the consequence of
33 variation in transmitter concentration. *Neuron*. 15:885-895.

34 Frischknecht, R., M. Heine, D. Perrais, C.I. Seidenbecher, D. Choquet, and E.D. Gundelfinger. 2009. Brain
35 extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. *Nat*
36 *Neurosci*. 12:897-904.

37 Gandolfi, D., A. Bigiani, C.A. Porro, and J. Mapelli. 2020. Inhibitory Plasticity: From Molecules to
38 Computation and Beyond. *Int J Mol Sci*. 21.

39 Gautam, S.H., T.T. Hoang, K. McClanahan, S.K. Grady, and W.L. Shew. 2015. Maximizing Sensory Dynamic
40 Range by Tuning the Cortical State to Criticality. *PLoS Comput Biol*. 11:e1004576.

41 Gottschling, C., E. Dzyubenko, M. Geissler, and A. Faissner. 2016. The Indirect Neuron-astrocyte Coculture
42 Assay: An In Vitro Set-up for the Detailed Investigation of Neuron-glia Interactions. *J Vis*
43 *Exp*:e54757.

44 Gottschling, C., D. Wegrzyn, B. Denecke, and A. Faissner. 2019. Elimination of the four extracellular matrix
45 molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and
46 inhibitory synapses. *Sci Rep*. 9:13939.

47 Haider, B., A. Duque, A.R. Hasenstaub, and D.A. McCormick. 2006. Neocortical network activity in vivo is
48 generated through a dynamic balance of excitation and inhibition. *The Journal of neuroscience : the*
49 *official journal of the Society for Neuroscience*. 26:4535-4545.

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 31

1 Härtig, W., B. Mages, S. Aleithe, B. Nitzsche, S. Altmann, H. Barthel, M. Krueger, and D. Michalski. 2017.
2 Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats
3 and Sheep. *Frontiers in Integrative Neuroscience*. 11.

4 Ho, V.M., J.-A. Lee, and K.C. Martin. 2011. The Cell Biology of Synaptic Plasticity. *Science*. 334:623-628.

5 Hylin, M.J., S.A. Orsi, A.N. Moore, and P.K. Dash. 2013. Disruption of the perineuronal net in the
6 hippocampus or medial prefrontal cortex impairs fear conditioning. *Learn Mem*. 20:267-273.

7 Izhikevich, E.M. 2003. Simple model of spiking neurons. *IEEE Trans Neural Netw*. 14:1569-1572.

8 Kinouchi, O., and M. Copelli. 2006. Optimal dynamical range of excitable networks at criticality. *Nature
9 physics*. 2:348-351.

10 Krishnaswamy, V.R., A. Benbenisty, P. Blinder, and I. Sagi. 2019. Demystifying the extracellular matrix and
11 its proteolytic remodeling in the brain: structural and functional insights. *Cellular and Molecular Life
12 Sciences*. 76:3229-3248.

13 Lake, E.M.R., P. Bazzigaluppi, J. Mester, L.A.M. Thomason, R. Janik, M. Brown, J. McLaurin, P.L. Carlen, D.
14 Corbett, G.J. Stanisz, and B. Stefanovic. 2017. Neurovascular unit remodelling in the subacute stage
15 of stroke recovery. *Neuroimage*. 146:869-882.

16 Ma, Z., G.G. Turrigiano, R. Wessel, and K.B. Hengen. 2019. Cortical Circuit Dynamics Are Homeostatically
17 Tuned to Criticality In Vivo. *Neuron*. 104:655-664 e654.

18 Mongillo, G., S. Rumpel, and Y. Loewenstein. 2018. Inhibitory connectivity defines the realm of excitatory
19 plasticity. *Nat Neurosci*. 21:1463-1470.

20 Nahmani, M., and A. Erisir. 2005. VGlut2 immunohistochemistry identifies thalamocortical terminals in layer 4 of
21 adult and developing visual cortex. *J Comp Neurol*. 484:458-473.

22 Nusser, Z., S. Cull-Candy, and M. Farrant. 1997. Differences in Synaptic GABA Receptor Number Underlie
23 Variation in GABA Mini Amplitude. *Neuron*. 19:697-709.

24 Pantazopoulos, H., M. Markota, F. Jaquet, D. Ghosh, A. Wallin, A. Santos, B. Caterson, and S. Berretta. 2015.
25 Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a
26 postmortem study on the amygdala. *Transl Psychiatry*. 5:e496.

27 Pastore, V.P., P. Massobrio, A. Godjoski, and S. Martinoia. 2018. Identification of excitatory-inhibitory links
28 and network topology in large-scale neuronal assemblies from multi-electrode recordings. *PLOS
29 Computational Biology*. 14:e1006381.

30 Pfeiffer, T., S. Poll, S. Bancelin, J. Angibaud, V.K. Inavalli, K. Keppler, M. Mittag, M. Fuhrmann, and U.V.
31 Nagerl. 2018. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the
32 hippocampus in vivo. *Elife*. 7.

33 Pitler, T.A., and B.E. Alger. 1994. Differences between presynaptic and postsynaptic GABAB mechanisms in
34 rat hippocampal pyramidal cells. *J Physiol*. 72:2317-2327.

35 Pizzorusso, T., P. Medini, N. Berardi, S. Chierzi, J.W. Fawcett, and L. Maffei. 2002. Reactivation of ocular
36 dominance plasticity in the adult visual cortex. *Science*. 298:1248-1251.

37 Pless, E. 2009. An investigation of interactions with extracellular matrix proteins mediated by the CCP
38 modules of the metabotropic GABAB receptor.

39 Roberto, M., S.G. Madamba, D.G. Stouffer, L.H. Parsons, and G.R. Siggins. 2004. Increased GABA release in
40 the central amygdala of ethanol-dependent rats. *The Journal of neuroscience : the official journal of
41 the Society for Neuroscience*. 24:10159-10166.

42 Roll, L., and A. Faissner. 2014. Influence of the extracellular matrix on endogenous and transplanted stem
43 cells after brain damage. *Frontiers in Cellular Neuroscience*. 8.

44 Shi, W., X. Wei, X. Wang, S. Du, W. Liu, J. Song, and Y. Wang. 2019. Perineuronal nets protect long-term
45 memory by limiting activity-dependent inhibition from parvalbumin interneurons. *Proceedings of
46 the National Academy of Sciences*. 116:27063-27073.

47 Sigal, Y.M., H. Bae, L.J. Bogart, T.K. Hensch, and X. Zhuang. 2019. Structural maturation of cortical
48 perineuronal nets and their perforating synapses revealed by superresolution imaging. *Proceedings
49 of the National Academy of Sciences*. 116:7071-7076.

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 32

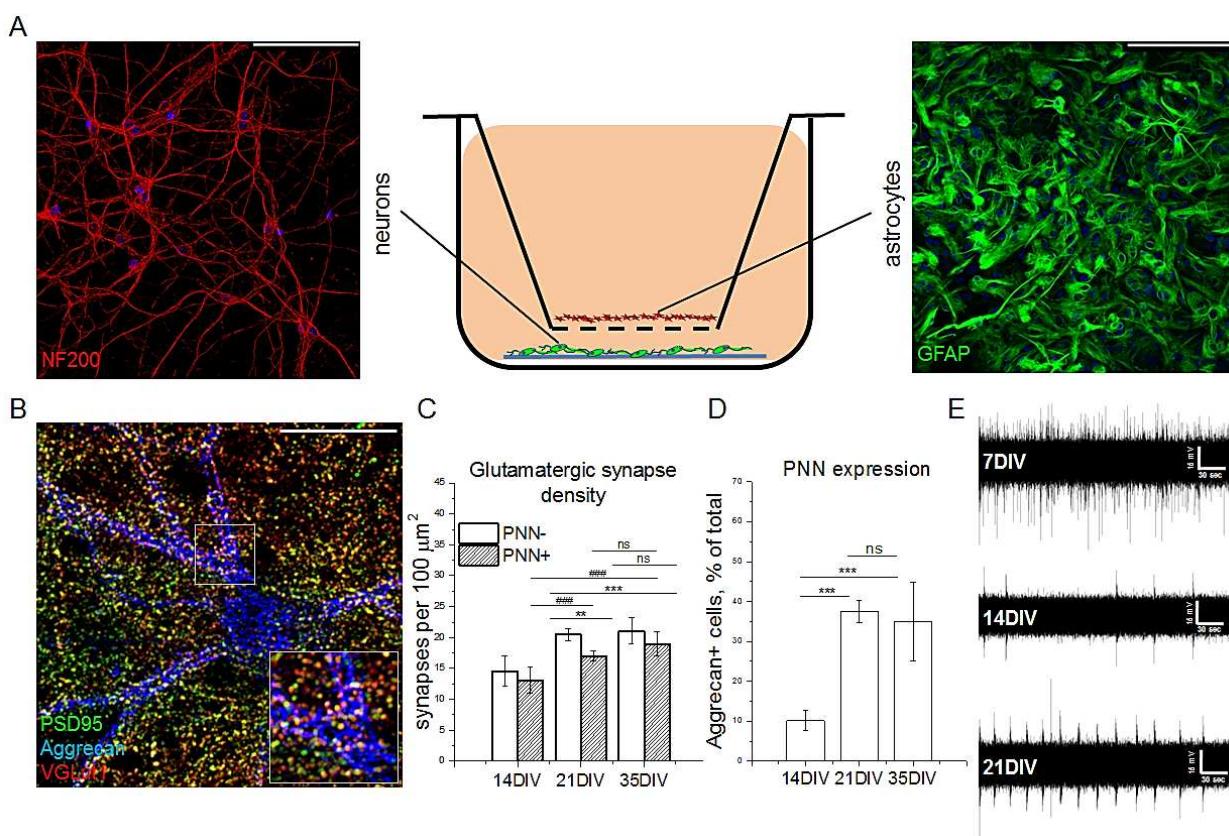
1 Soleman, S., M.A. Filippov, A. Dityatev, and J.W. Fawcett. 2013. Targeting the neural extracellular matrix in
2 neurological disorders. *Neuroscience*. 253:194-213.

3 Sprekeler, H. 2017. Functional consequences of inhibitory plasticity: homeostasis, the excitation-inhibition
4 balance and beyond. *Current opinion in neurobiology*. 43:198-203.

5 Tewari, B.P., L. Chaunsali, S.L. Campbell, D.C. Patel, A.E. Goode, and H. Sontheimer. 2018. Perineuronal nets
6 decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy.
7 *Nat Commun.* 9:4724.

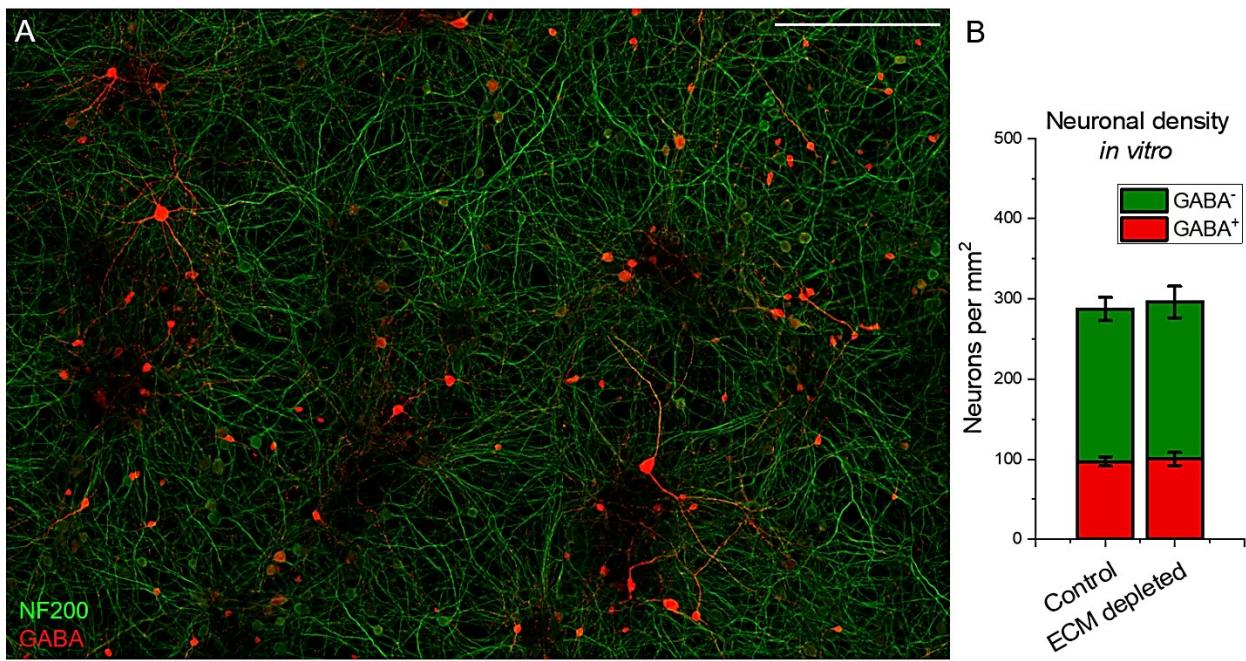
8 Trapp, P., R. Echeveste, and C. Gros. 2018. E-I balance emerges naturally from continuous Hebbian learning
9 in autonomous neural networks. *Sci Rep.* 8:8939.

10 Villa, K.L., K.P. Berry, J. Subramanian, J.W. Cha, W.C. Oh, H.B. Kwon, Y. Kubota, P.T. So, and E. Nedivi. 2016.
11 Inhibitory Synapses Are Repeatedly Assembled and Removed at Persistent Sites In Vivo. *Neuron*.
12 89:756-769.


13 von Holst, A., S. Sirko, and A. Faissner. 2006. The unique 473HD-Chondroitinsulfate epitope is expressed by
14 radial glia and involved in neural precursor cell proliferation. *The Journal of neuroscience : the
15 official journal of the Society for Neuroscience*. 26:4082-4094.

16 Wang, Y.C., E. Dzyubenko, E.H. Sanchez-Mendoza, M. Sardari, T. Silva de Carvalho, T.R. Doeppner, B.
17 Kaltwasser, P. Machado, C. Kleinschmitz, C.L. Bassetti, and D.M. Hermann. 2018. Postacute Delivery
18 of GABA_A alpha5 Antagonist Promotes Postischemic Neurological Recovery and Peri-infarct Brain
19 Remodeling. *Stroke*. 49:2495-2503.

20


21

1 **Supplement**

2
3 **Figure S1. Coherent maturation of synaptic connectivity, extracellular matrix and neuronal**
4 **network activity in primary neuron-astrocyte co-cultures.** (A) The panel illustrates the principle
5 of the indirect co-cultivation of primary neurons and astrocytes. In this setup, the two cell types do
6 not contact each other directly, but share the same medium. Scale bars, 100 μm . (B) The
7 representative micrograph of a single PNN coated neuron is shown. The major proteoglycan of PNNs
8 is labelled with specific anti-aggreccan antibody (blue). Glutamatergic synapses are labeled with anti-
9 PSD95 (green) and anti-VGLUT1 (red) antibodies. The square inlet illustrates that synapse formation
10 predominantly occurs in the areas devoid of aggrecan labelling. Scale bar, 30 μm . The density of
11 structurally complete glutamatergic synapses (C) and the percentage of PNN expressing neurons
12 (D) is quantified after 14, 21 and 35 days of cultivation (DIV). The results of quantification ($n \geq 24$ ROIs
13 measuring 66.5x66.5 μm , results obtained from 4 independent experiments) are expressed as
14 mean \pm s.e.m. Statistically significant differences are indicated with asterisks and hashes, based on
15 Kruskal-Wallis tests (***, ###p<0.001; **, #p<0.01). (E) The evolution of neuronal activity detected by
16 a single electrode is shown over the time of cultivation.

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 34

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 35

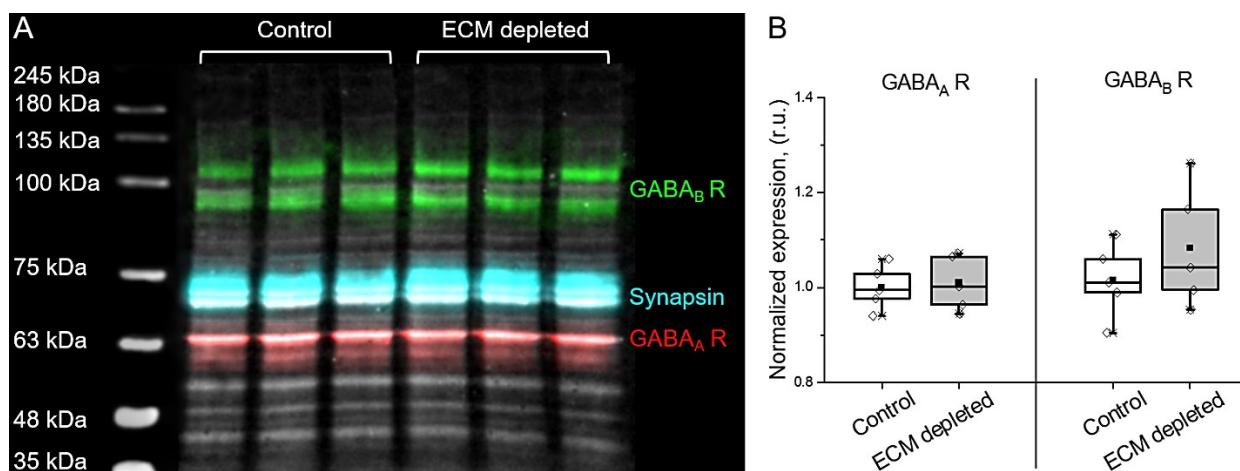


Figure S4. Cell surface expression of GABA receptors. (A) Multicolor detection of GABA_B receptors (green), GABA_A receptors (red), synapsin (cyan) and stain-free total protein (grey) on a single Western blot membrane, on which protein samples from cell membranes were loaded. (B) The total relative expression of surface GABA receptors is not altered by ECM depletion (n=5 independent Western blots).

7

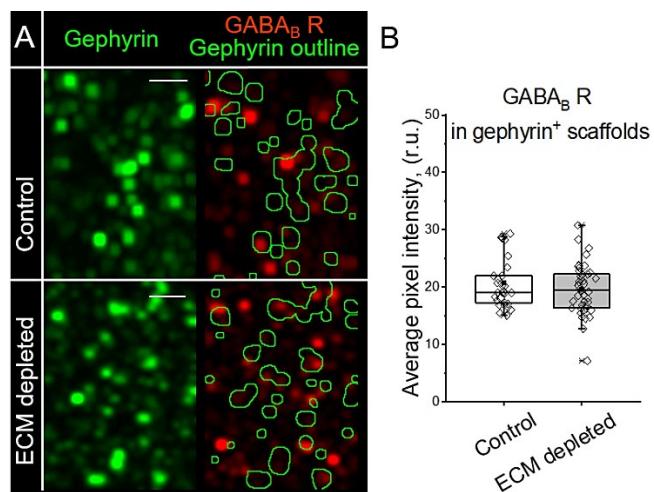


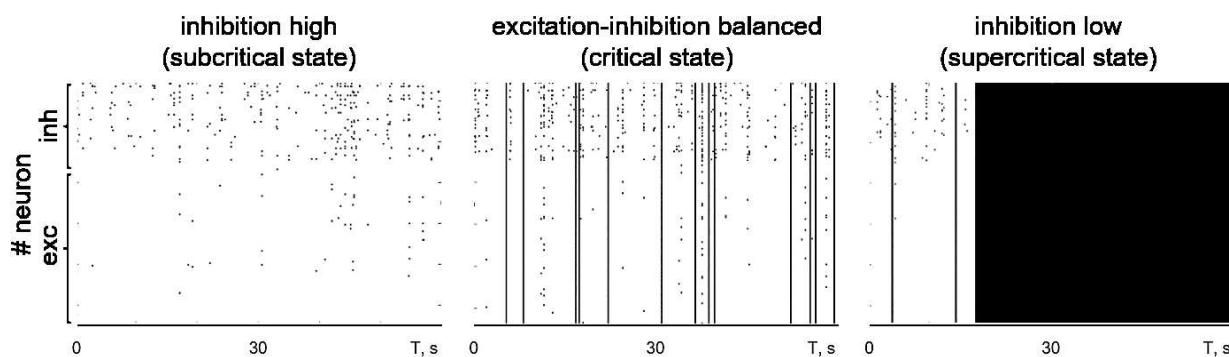
Figure S5. Postsynaptic expression of GABA_B receptors. (A) The panel illustrates the analysis of GABA_B receptor expression in inhibitory postsynapses (that is, gephyrin⁺ areas). The outlined areas (green) depict the regions in which the immunoreactivity of GABA_B receptors was measured. Scale bars, 2 μ m. (B) ECM depletion does not alter the postsynaptic of GABA_B receptors. The average pixel intensity was quantified for each neuron examined (n \geq 30 cells per condition, results obtained from 5 independent experiments). Data are medians (lines inside boxes)/ means (filled squares inside boxes) \pm IQR (boxes) with 10/ 90% ranks as whiskers. Open diamonds are data points.

8

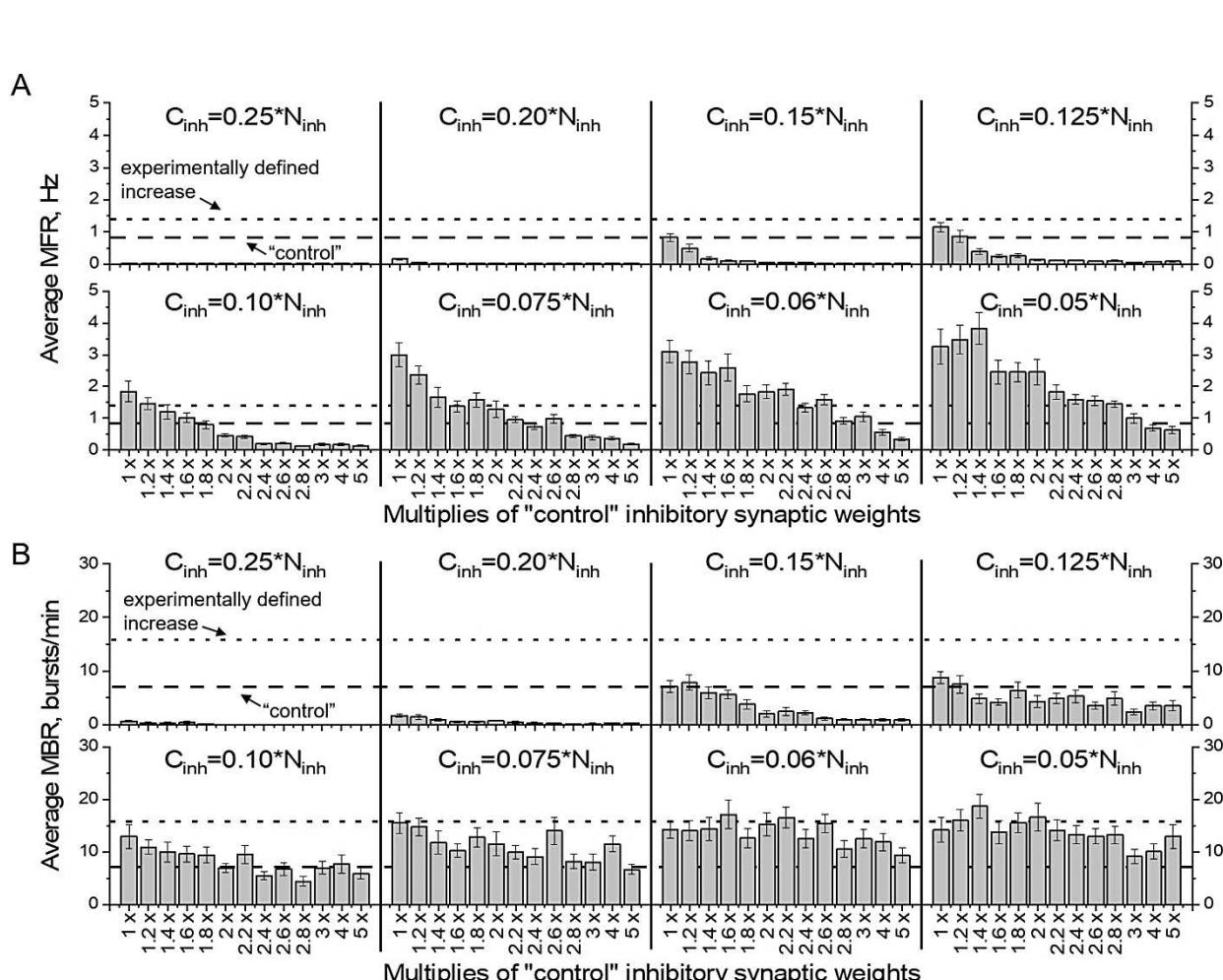
9

10

11


12

13


14

15

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 36

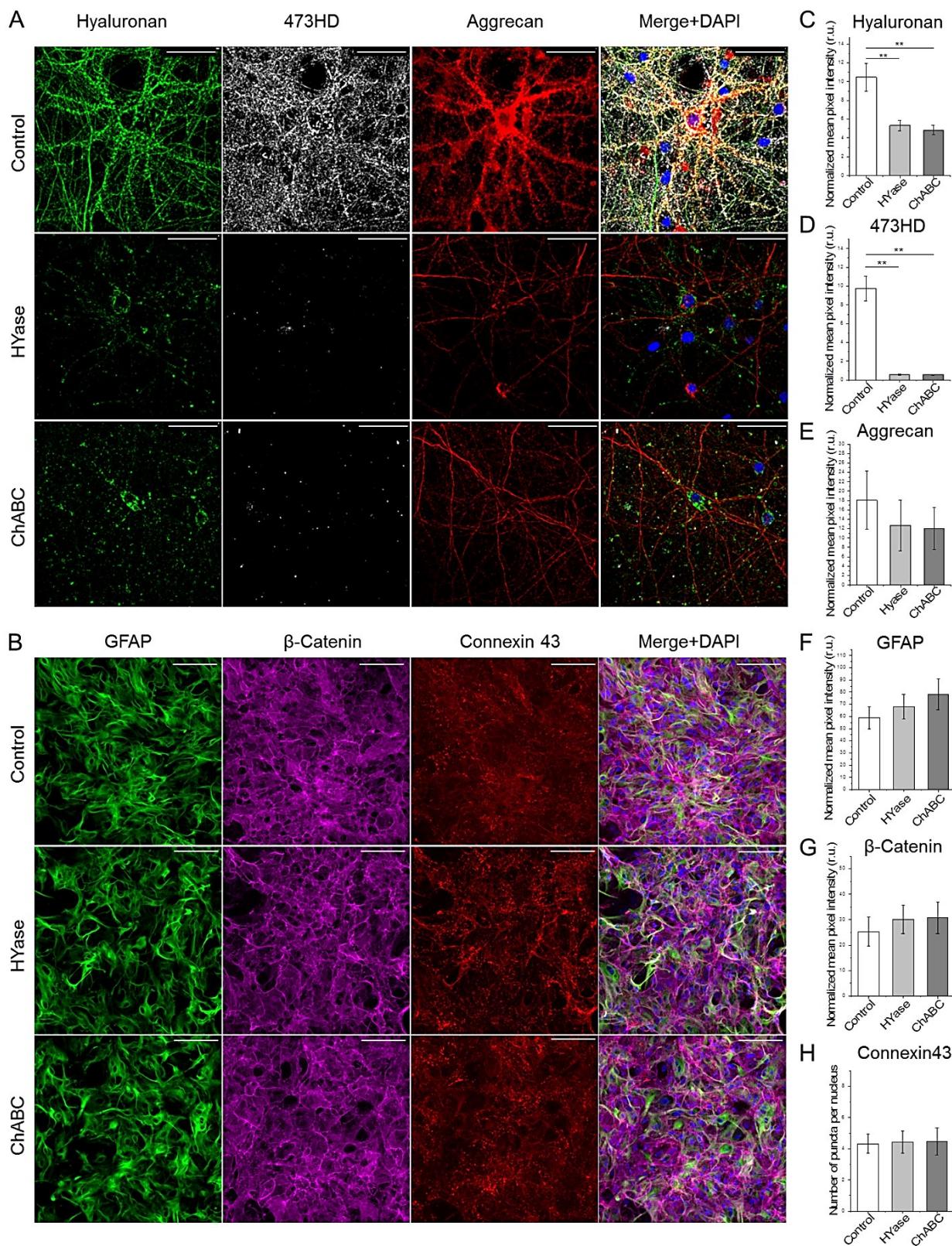
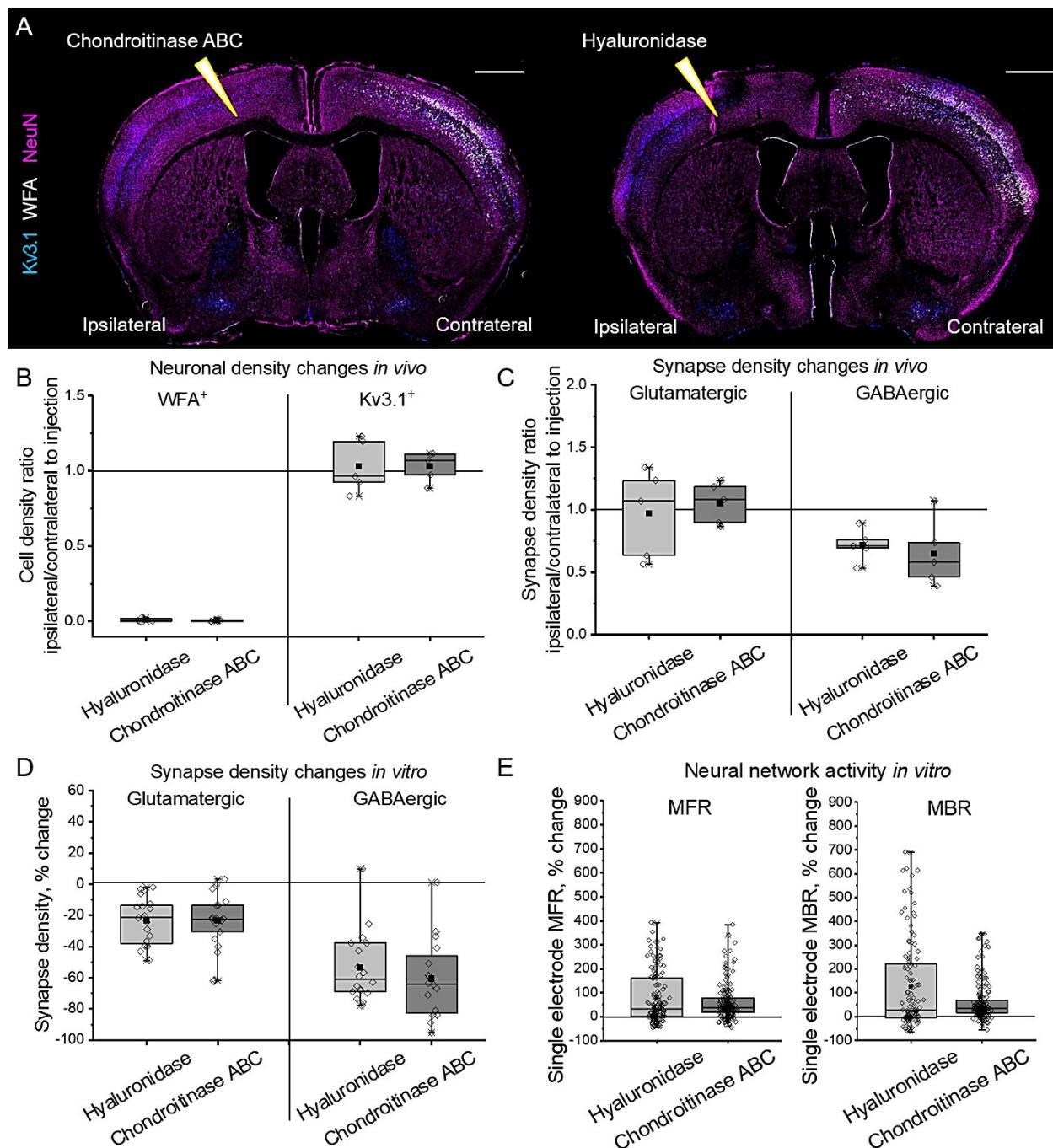


Figure S6. Criticality of in silico neuronal networks. The balance between excitatory and inhibitory inputs results in the stable spiking-bursting transitions characteristic for the critical state of the network. The disruption of E-I balance can result in network silencing (subcritical state) or uncontrolled synchronous firing (supercritical state). exc, excitatory; inh, inhibitory.

Figure S7. Impact of inhibitory connectivity and synapse strength changes on network activity. Quantifications of average (A) MFR and (B) MBR are shown for a range of C_{inh} and W_{inh} parameters. The dashed line indicates the average value in "control" simulations, the dotted line shows the experimentally observed increase of network activity after ECM depletion *in vitro*. The bars are mean±s.e.m. For each condition, $n=15$ independent simulation experiments were performed.

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 37



1
2 **Figure S8. Enzymatic digestion removes neuronal ECM, but does not alter astrocyte**
3 **morphology.** (A) Representative immunostainings of hyaluronan, 473HD chondroitin sulfate epitope
4 and aggrecan are shown under control condition and after treatment with hyaluronidase (Hyase) and
5 chondroitinase ABC (ChABC). Scale bars, 50 μ m. Both enzymatic treatments were equally efficient

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 38

1 in depleting ECM components, as indicated by the quantifications of hyaluronan (C), 473HD
2 chondroitin sulfate epitope (D) and aggrecan (E) labeling intensity. The results of quantification ($n \geq 15$
3 ROIs per condition, results obtained from 5 independent experiments) are expressed as
4 mean \pm s.e.m. Asterisks indicate statistically significant differences, based on Kruskal-Wallis tests
5 ($**p < 0.01$). (B) Representative immunostainings of astrocytic monolayers expressing glial fibrillary
6 acidic protein (GFAP), β -catenin and connexin 43 are shown under control condition and after
7 treatment with Hyase and ChABC. Scale bars, 100 μ m. The quantifications indicate that the
8 expression of GFAP (F), β -catenin (G) and connexin 43 (H) was not altered after ECM digestion.
9 The results of quantification (minimum 15 ROIs per condition, $n=5$) are expressed as mean \pm s.e.m.

10

11

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 39

1 **Figure S9. Enzymatic depletion of ECM with chondroitinase ABC or hyaluronidase induces**
2 **similar synapse density and network activity alterations.** (A) Representative immunolabelling of
3 neuronal nuclei (NeuN, magenta), fast spiking interneurons (Kv3.1, blue) and PNNs (WFA, *Wisteria*
4 *floribunda* agglutinin, white) is shown. Sharp triangles indicate intracortical injection sites. Squares
5 indicate the regions in which cell and synapse densities were analyzed. Scale bars, 1 mm. (B) The
6 loss of PNN expression and fast spiking interneurons was examined *in vivo*. Changes in PNN⁺ and
7 Kv3.1⁺ neuron densities are expressed as ipsilateral to contralateral ratios. (C) Synapse density
8 alterations *in vivo*. Changes in glutamatergic and GABAergic synapse densities are expressed as
9 ipsilateral to contralateral ratios. Ratios in (B) and (C) are shown for each animal examined (n=5
10 animals per condition). (D) Synapse density alterations *in vitro*. Changes in glutamatergic and
11 GABAergic synapse densities are expressed as differences with mean values of corresponding
12 control experiments. Differences are shown for each neuron examined (n≥20 cells per condition,
13 results obtained from 5 independent experiments). (E) Neural network activity changes *in vitro*. Mean
14 firing rate (MFR) and mean bursting rate (MBR) changes are shown for single electrodes as
15 differences with baseline activities of the same electrodes before treatment (n≥169 electrodes per
16 condition, results obtained from 5 independent experiments). Data are medians (lines inside boxes)/
17 means (filled squares inside boxes) ± IQR (boxes) with 10/ 90% ranks as whiskers. Open diamonds
18 are data points. No significant differences were detected, based on Kruskal-Wallis tests.

19

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 40

1 **Supplementary Code 1.**

2 The following code is a ready-to use MatLab script for performing network activity
3 simulations

```
4 %clear      % don't forget to save workspace if needed after simulation
5 conninh=[0.25, 0.2, 0.15, 0.125, 0.1, 0.075, 0.06, 0.05];
6 strengthinh=[0, -6.6, -7.92, -9.24, -10.56, -11.88, -13.2, -14.52, -15.84, -
7 17.16, -18.48, -19.8, -26.4, -33];
8
9 for m=1:length(conninh)
10    for n=1:length(strengthinh)
11        EEcon = 0.25;           % excitatory->excitatory connectivity sparseness
12        EIcon = 0.25;           % excitatory->inhibitory connectivity sparseness
13        IEcon = conninh(m);    % inhibitory->excitatory connectivity sparseness
14        IIcon = conninh(m);    % inhibitory->inhibitory connectivity sparseness
15        swee = 3.3;            % excitatory->excitatory synaptic weights (mV)
16        swei = 3.3;            % excitatory->inhibitory synaptic weights (mV)
17        swie = strengthinh(n); % inhibitory->excitatory synaptic weights (mV)
18        swii = strengthinh(n); % inhibitory->inhibitory synaptic weights (mV)
19        % swie = 0;            % +Bicuculine
20        % swii = 0;            % +Bicuculine
21
22    for k=1:5                  % repeats
23        tsim = 300000;          % simulation time, ms
24        % 1. Define the basic parameters of the network composition and model parameters
25        % exc neurons          % inh neurons          % all neurons
26        Ne=450;                 Ni=200;                 N=Ne+Ni;           % 780 excitatory neurons
27        420 inhibitory neurons
28        % assign spiking neuron model parameters according to Izhikevich 2003
29        a=[0.05*ones(Ne,1);0.08+0.02*rand(Ni,1)]; % 0.05; 0.08+0.02 C % The parameter a
30        describes the time scale of the recovery variable u. Smaller values result in
31        slower recovery
32        b=[0.2*ones(Ne,1);0.23-0.03*rand(Ni,1)]; % The parameter b describes the
33        sensitivity of the recovery variable u to the subthreshold fluctuations of the
34        membrane potential v. Greater values couple v and u more strongly resulting in
35        possible subthreshold oscillations and low-threshold spiking dynamics.
36        res=[-65+15*rand(Ne,1).^2; -65*ones(Ni,1)]; % After spike reset potential
37        d=[8-2*rand(Ne,1).^2; 2*ones(Ni,1)]; % 8-2; 2 C % The parameter d describes
38        after-spike reset of the recovery variable u caused by slow high-threshold Na+
39        and K+ conductance
40        v = -65*ones(N,1);           % Membrane potential (mp): initial v values of mp
41        u = b.*v;                  % initial values recovery
42        Imax = 100;                % set the cut-off currents
43        Imin =-100;
44        vtrack=[];
45        firings=[];
46        firetimes=zeros(N,tsim);   % empty indexes of fired neurons
47        mfr=zeros(N,1);            % empty timestamps of firings
48        away=0.1;                 % empty mean firing rate of i-th neuron
49        % part of neurons receiving outside stimulation
50
51        % 2. Generate network connections
52        % generate indexes of neurons, which provide the input to i-th neuron
53        % (excitatory neurons), write into "connindex" matrix
54        for i=1:Ne
55            shuffleE=randperm(Ne);
56            connE=shuffleE(1:ceil(EEcon*Ne)); % received exc connections
```

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 41

```
1     shuffleI=randperm(Ni)+Ne;
2     connI=shuffleI(1:ceil(IEcon*Ni));    % received inh connections
3     connindex(i,1:ceil(EEcon*Ne)+ceil(IEcon*Ni))=[connE,connI];
4 end
5 % generate indexes of neurons, which provide the input to i-th neuron
6 % (inhibitory neurons), write into "connindex" matrix
7 for i=Ne+1:N
8     shuffleE=randperm(Ne);
9     connE=shuffleE(1:ceil(EIcon*Ne));    % received exc connections
10    shuffleI=randperm(Ni)+Ne;
11    connI=shuffleI(1:ceil(IIIcon*Ni));    % received inh connections
12    connindex(i,1:ceil(EIcon*Ne)+ceil(IIIcon*Ni))=[connE,connI];
13 end
14 % generate connectivity matrices for the 4 connection types separately
15 % get excitatory->excitatory connections
16 connindex_EtoE = connindex(1:Ne,:);
17 connindex_EtoE = connindex_EtoE.* (connindex_EtoE<=Ne);
18 resiz = zeros(size(connindex));
19 resiz(1:Ne,:) = connindex_EtoE;           % Adjust matrix size
20 connindex_EtoE = resiz;                   % to connindex size
21 % get excitatory->inhibitory connections
22 connindex_EtoI = connindex(Ne+1:end,:);
23 connindex_EtoI = connindex_EtoI.* (connindex_EtoI<=Ne);
24 resiz = zeros(size(connindex));
25 resiz(Ne+1:end,:) = connindex_EtoI;       % Adjust matrix size
26 connindex_EtoI = resiz;                   % to connindex size
27 % get inhibitory->excitatory connections
28 connindex_ItoE = connindex(1:Ne,:);
29 connindex_ItoE = connindex_ItoE.* (connindex_ItoE>Ne);
30 resiz = zeros(size(connindex));
31 resiz(1:Ne,:) = connindex_ItoE;           % Adjust matrix size
32 connindex_ItoE = resiz;                   % to connindex size
33 % get inhibitory->inhibitory connections
34 connindex_ItoI = connindex(Ne+1:end,:);
35 connindex_ItoI = connindex_ItoI.* (connindex_ItoI>Ne);
36 resiz = zeros(size(connindex));
37 resiz(Ne+1:end,:) = connindex_ItoI;       % Adjust matrix size
38 connindex_ItoI = resiz;                   % to connindex size
39
40 % 3. Simulation!
41 tic
42 for t=1:tsim
43     %I=zeros(N,1);
44     % Random input received by the network from outside at each time step
45     I=[5*rand(Ne*away,1); 1*rand(Ne*(1-away),1); 1*randn(Ni,1)];
46     % Fired neurons
47     fired = find(v>=30);           % indexes of fired cells
48     firings = [firings; t+0*fired, fired];
49     firetimes(fired,t) = 1;         % timestamps of firings
50     v(fired) = res(fired);         % reset mp of fired neurons
51     u(fired) = u(fired)+d(fired);  % and set their refractoriness
52     % Received input
53     EtoE = sum(ismember(connindex_EtoE,fired),2); %excitatory->excitatory
54     EtoI = sum(ismember(connindex_EtoI,fired),2); %excitatory->inhibitory
55     ItoE = sum(ismember(connindex_ItoE,fired),2); %inhibitory->excitatory
56     ItoI = sum(ismember(connindex_ItoI,fired),2); %inhibitory->inhibitory
57     % update I according to the received input
58     I = I + swee*EtoE + swei*EtoI + swie*ItoE + swii*ItoI;
```

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 42

```
1      % adjust too strong currents
2      overmax    = find(I>Imax);
3      undermin   = find(I<Imin);
4      I(overmax) = Imax;
5      I(undermin)= Imin;
6      % Change membrane potential (Izhikevich 2003)
7      v=v+0.5*((0.04*v+5).*v+140-u+I);           % for numerical stability
8      v=v+0.5*((0.04*v+5).*v+140-u+I);           % time step is 0.5 ms
9      u=u+a.* (b.*v-u);
10     %vtrack=[vtrack,v];                         % optionally can create v(t)
11 end
12 toc
13 % 4. Analysis
14 % Calculate mean firing rate for i-th neuron
15 for i=1:N
16     mfr(i)=sum(firetimes(i,:))*1000/tsim;
17 end;
18 % optionally can plot histograms
19 %excmfrhist=mfr(1:Ne);
20 %inhmfhist=mfr(Ne+1:N);
21 %figure;
22 %histogram(excmfrhist,10);
23 %figure;
24 %histogram(inhmfrhist,10);
25 % Statistics of mfr
26 excfiringrate(1,k)=mean(mfr(Ne*away+1:Ne));
27 sdex(1,k)=std(mfr(Ne*away+1:Ne));
28 inhfiringrate(1,k)=mean(mfr(Ne+1:N));
29 sdin(1,k)=std(mfr(Ne+1:N));
30 % Analyse spiking rate
31 shift      = 100;                                % set 1 sec time window
32 spikerate = zeros(ceil(tsim/shift),2);
33 Tvecspr   = zeros(ceil(tsim/shift),1);
34     for t=1:ceil(tsim/shift)
35         Tvecspr(t,1)=t*shift;
36     end;
37 spikerate(:,1) = Tvecspr(:,1);
38     for t=1:tsim/shift
39         spikerate(t,2)=mean(sum(firetimes(Ne*away+1:N, (t-1)*shift+1:t*shift)));
40     end;
41 meanspikerate(1,k)=mean(spikerate(:,2));
42
43 % Analyse synchronous activity events
44 synchevent =zeros(ceil(tsim/shift),1);
45     for t=2:(tsim-1)/shift
46         if spikerate(t,2)== max (spikerate(t-1:t+1,2)) &&
47 spikerate(t,2)>10*meanspikerate(1,k) && spikerate(t,2)>1
48             synchevent(t,1) = 1;
49         else
50             synchevent(t,1) = 0;
51         end
52     end
53 NumberSynchEvent(1,k) = sum(synchevent(:,1));
54
55 clearvars -except meanspikerate NumberSynchEvent inhfiringrate excfiringrate
56 sdex sdin conninh strengthinh m n EEcon EIcon IEcon IIcon swei swie swii
57 resultsMFR resultsNSE resultsEF resultsIF
58 end
```

Extracellular matrix supports excitation-inhibition balance in neuronal networks/ 43

```
1 row=4*m+n; %4 rows will be written consequently. If adding new metrics, add rows
2 too
3 resultsMFR(:,row)=meanspikerate;
4 resultsNSE(:,row)=NumberSynchEvent;
5 resultsEF(:,row)=excfiringrate;
6 resultsIF(:,row)=inhfiringrate;
7     end
8 end
9
10
```