

1 Urine metabolomics of rats with chronic atrophic gastritis

2 Urine metabolomics

3 Guo-Xiu Zu^{1¶}, Qian-Qian Sun^{1¶}, Jian-Chen^{1,4¶}, Xi-Jian Liu¹, Ke-Yun Sun¹, Liang-Kun Zhang¹,

4 Ling li¹, Tao Han^{2*}, Ha I-Liang Huang^{3*}

5

6 ¹ Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese
7 Medicine, Jinan, Shandong, China

8 ² Graduate Office ,Shandong University of Traditional Chinese Medicine, Jinan, Shandong,
9 China

10 ³ Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine,
11 Jinan, Shandong, China

12 ⁴Affiliated Central Hospital of Shandong First Medical University,Shandong First Medical
13 University, Jinan, Shandong, China

14 ¶ These authors contributed equally to this work.

15

16 * Corresponding author

17 E-mail: 60012002@sdu.edu.cn (TH)

18 E-mail: 06000031@sdu.edu.cn (HH)

19

20 **Abstract**

21 Background/Aim: To use liquid chromatography-mass spectrometry (LC-MS) to identify
22 endogenous differential metabolites in the urine of rats with chronic atrophic gastritis (CAG).
23 Materials and Methods: Methylnitronitrosoguanidine (MNNG) was used to produce a CAG model
24 in Wistar rats, and HE staining was used to determine the pathological model. LC-MS was used
25 to detect the differential metabolic profiles in rat urine. Diversified analysis was performed by the
26 statistical method. Results: Compared with the control group, the model group had 68 differential
27 metabolites, 25 that were upregulated and 43 that were downregulated. The main metabolic
28 pathways were D-glutamine and D-glutamic acid metabolism, histidine metabolism and purine
29 metabolism. Conclusion: By searching for differential metabolites and metabolic pathways in the
30 urine of CAG rats, this study provides effective experimental data for the pathogenesis and clinical
31 diagnosis of CAG.

32

33

34 **Introduction**

35 Chronic atrophic gastritis (CAG) is a type of atrophy of gastric mucosal epithelial cells and
36 glands where the number of glands is reduced, the mucosal layer thins, and the mucosal muscle
37 layer thickens and may be accompanied by intestinal metaplasia and dysplasia. Digestive system
38 diseases [1] mainly have the clinical manifestations of bloating, fullness of the stomach, belching,
39 pain in the upper abdomen, loss of appetite, weight loss, etc. CAG has a wide variety of factors
40 and is a common and frequently occurring clinical disease with a 2.55%- 7.46% canceration rate
41 [2]. In 1978, the World Health Organization officially defined chronic atrophic gastritis as a
42 precancerous state. The active treatment of CAG in clinical practice is an important node to block
43 its development into gastric cancer.

44 As an important branch of systems biology, metabolomics technology is unique because it
45 does not require the establishment of a large database of expressed gene sequences [3].
46 Metabolomics can express the physiological and biochemical state of the body through biological
47 metabolic structure to better analyze pathogenesis. Among its advantages, liquid chromatography-
48 mass spectrometry (LC-MS) technology can be directly used to analyze biological metabolites to
49 obtain final analysis results with the advantage of finding subtle changes in gene and protein
50 expression during biological metabolism. Thus, LC-MS has become the most commonly used
51 analytical technique in metabolomics research [4]. This study explains the molecular mechanism
52 of action and metabolic pathways of chronic atrophic gastritis through pharmacodynamics and LC-
53 MS.

54

55 **Materials and methods**

56

57 ***Animals***

58 Twenty SPF grade Wistar male rats, 6 weeks old, 180 ± 20 g, were provided by Shandong
59 Pengyue Experimental Animal Co., Ltd. [SCXK (Lu) 20140007]. The feeding environment was a
60 temperature of $26^{\circ}\text{C} \pm 2^{\circ}\text{C}$, humidity $50 \pm 10\%$, and light illumination/dark cycle 12 h. The
61 experiment started after 7 d of adaptive feeding from the time of purchase. During the period, the
62 animals has free access to food and drinking water, and the experiment met animal ethical
63 requirements.

64

65 ***Experimental reagents and instruments***

66 Methylnitrosoguanidine (manufactured by Tokyo Chemical Industry Co., Ltd.,
67 NH8JH-DR), vetylzyme tablets (Lepu Hengjiuyuan Pharmaceutical Co., Ltd., 20170401), ranitidine
68 hydrochloride capsules (Tianjin Pacific Pharmaceutical Co., Ltd., 20170601), and ammonium
69 hydroxide (Shanghai Wokai Biotechnology Co., Ltd., 20170220) were used. Anhydrous ethanol
70 (Tianjin Fuyu Fine Chemical Co., Ltd., 20170808), methanol (Woke), acetonitrile and formic acid
71 (Aladdin), ammonium formate (Sigma), hematoxylin staining solution, eosin staining solution,
72 differentiation solution, blue back solution (Hebei Bohai Biological Engineering Development

73 Co., Ltd.), and xylene (Tianjin Yongda Chemical Reagent Co., Ltd.) were also utilized in this
74 study.

75 A refrigerated centrifuge (Eppendorf, H1650-W), mixer (Vortex Mixer, QL-866), liquid
76 chromatograph (Thermo, UltiMate 3000) and mass spectrometer Thermo (Q Exactive Focus) were
77 instruments used in this study.

78

79 ***Animal model***

80 Twenty Wistar rats were prepared, and 10 rats were randomly selected as a blank group.
81 Normal diet was fed until the materials were collected. The remaining rats were model rats
82 according to the following method [5]: rats were given 120 µg/mL MNNG from the 1st day of
83 modeling, given 0.1% ammonia water freely for 24 h fed with 0.03% ranitidine feed using the
84 hunger and satiety method (full food for 2 d, fasting for 1 d), an each given 2 ml of 40% ethanol
85 on the fasting day. The above operation lasted for 16 weeks and each rat was weighed twice a
86 week during the modeling process. During the experiment, the weight, coat color and behavior of
87 the rats were observed.

88

89 ***Urine collection and preparation***

90 Before taking the material, the rats were fasted for 24 h while drinking water normally, and
91 urine was collected from the rats. Urine was centrifuged at 2500 rpm at room temperature for 1
92 hour in the morning, and the supernatant was divided into centrifuge tubes; each tube was > 0.3

93 ml. The urine samples were melted at 4 °C and 100 µL of each sample was placed into a 1.5 mL
94 centrifuge tube, 100 µL of ddH₂O was added followed by shaking for 5 min to fully absorb and
95 centrifugation at 10000 g and 4 °C for 10 min. Then, a 0.22 µm membrane was used to filter the
96 supernatant to obtain the samples to be tested; 20 µL of the synthetic QC samples were extracted
97 from each sample to be tested, and the remaining samples were tested by LC-MS.

98

99 ***LC-MS chromatographic mass spectrometry conditions***

100 A Thermo Ultimate 3000 chromatograph and an ACQUITY UPLC® HSS T3 1.8 µm (2.1
101 × 150 mm) chromatographic column were used with an autosampler temperature of 8 °C, a flow
102 rate of 0.25 mL/min, and a column temperature of 40 °C. The sample was eluted with an injection
103 volume of 2 µl, and the positive mode mobile phases were 0.1% formic acid in water (A) and 0.1%
104 formic acid in acetonitrile (B). The gradient elution program was 0 ~ 2 min, 2% B; 2 ~ 10 min,
105 2% ~ 50% B; 10 ~ 15 min, 50% ~ 98% B; 15 ~ 20 min, 98% B; 20 ~ 22 min, 98% ~ 2% B;
106 22 ~ 25 min, 2% B. The negative mode mobile phases were 5 mM ammonium formate (A) and
107 acetonitrile (B). The gradient elution program was 0 ~ 2 min, 2% B; 2 ~ 10 min, 2% ~ 50% B;
108 10 ~ 15 min, 50% ~ 98% B; 15 ~ 20 min, 98% B; 20 ~ 22 min, 98% ~ 2% B; 22 ~ 25 min,
109 2% B [6]. The Thermo Q Exactive Focus mass spectrometer was operated with the following
110 conditions: electrospray ion (ESI) source, positive and negative ion ionization mode, positive ion
111 spray voltage of 3.50 kV, negative ion spray voltage of -2.50 kV, sheath gas of 30 arb, auxiliary
112 gas of 10 arb, capillary temperature of 325 °C, full scan with a resolution of 70,000, scan range of

113 m/z 81-1000, secondary cracking with HCD, collision voltage of 30 eV, and dynamic exclusion to
114 remove unnecessary MS/MS information.

115

116 ***Data processing***

117 The obtained raw data was converted to mzXML format with ProteoWizard software
118 (v3.0.8789) [7] and the RCMS (v3.3.2) XCMS package was used for peak identification, peak
119 filtering, and peak alignment analysis. The main parameters were bw = 5, ppm = 15, peakwidth =
120 c (10, 20), mzwid = 0.015, mzdiff = 0.01, and method = centWave, which includes the mass to
121 charge ratio (m/z) and information data matrix such as retention time (rt) and intensity.

122

123 **Results**

124

125 ***General situation***

126 Control group: In good condition, sturdy body, strong limbs, neat, supple and shiny fur, mental
127 state is excellent, responsive to external conditions, body weight gradually increases, and the stool
128 is normal. Model group: Poor condition, thin body, weak limbs, messy fur, dryness, and dullness,
129 poor mental state, drowsiness, unresponsive to external conditions, insignificant changes in body
130 mass, slower rise, and less stool that is hard. Body mass changes are shown in Fig. 1.

131 **Fig. 1. Mass Variation Diagram of the Control Group and Model Group.**

132

133 ***Observation of pathological tissues***

134 As shown in Fig. 2A, the gastric tissue mucosa lamina propria in the blank group pathological
135 section is rich in gastric glands that are closely arranged with a normal structure, and the gastric
136 gland epithelial cells have a normal morphology. In the model group, the lamina propria were
137 loosely arranged, the lamina propria of the gastric mucosa was severely congested (black arrow),
138 and there were a large number of inflammatory cells (blue arrow) under the mucosa with edema,
139 as shown in Fig. 2B.

140 **Fig. 2. HE Staining Pathological Sections.** A. HE Staining Pathological Sections of Gastric
141 Mucosa in the Control Group ($\times 200$); 2-B: HE Staining Pathological Sections of Gastric Mucosa
142 in the Model Group ($\times 200$).

143

144 ***Chromatogram in total ion mode:***

145 The components separated by chromatography entered into mass spectrometry (MS)
146 analysis, and data collection was performed by continuous scanning of the mass spectrum. The
147 intensity is on the ordinate, and the time is on the abscissa. The resulting spectrum is the base peak
148 chromatogram (BPC); see Fig. 3A and B (G: model group, H: control group)

149 **Fig. 3. Chromatogram in Total Ion Mode.** 3-A: Typical Sample BPC in Positive Ion Mode, 3-
150 B: Typical Sample BPC in Negative Ion Mode.

151

152 ***Urine metabolomics analysis in positive ion mode***

153 CAG urine metabolomics analysis is corrected positive ion data. After the data were
154 preprocessed, the principal component analysis (PCA) method was used to explore CAG urine in
155 positive ion mode. Changes in the fluid metabolism profile yielded a model with three principal
156 components ($R^2 = 0.548$) and a score chart reflecting the degree of dispersion between groups, as
157 shown in Fig. 4A. The PCA score graph shows that most samples are within the ellipse of the 95%
158 confidence interval except for individual outliers. The PCA score graph shows that the urine
159 samples of the two groups are significantly separated and are statistically significant. Furthermore,
160 PLS-DA and OPLS-DA analysis methods (Fig. 4B and C) were used to remove information that
161 was not related to sample classification, and pattern discrimination analysis was performed on the
162 full spectrum of the urine. The results showed that the two groups of samples could be significantly
163 separated. In order to check whether the repeatability of the model is good and ensure the reliability
164 of the data model, a permutation test was performed on the model (Fig. 4D). The above results
165 show that the multivariate data model of urine samples meets the parameter standard, indicating
166 that the model has high stability and good predictive ability.

167 **Fig. 4. Urine Metabolism Profile of CAG Model Rats in Positive Ion Mode.** 4-A: PCA Scores,
168 4-B: PLS-DA Scores, 4-C: OPLS-DA Scores, 4-D: Replacement Test of the CAG Model Urine
169 Fit Model in Positive Ion Mode.

170

171 *Analysis of urine metabolomics in negative ion mode*

172 The PCA method was used to explore changes in the CAG urine metabolic spectrum. After
173 data preprocessing, a model with 3 principal components ($R^2 = 0.515$) and the degree of dispersion
174 between groups were obtained from the score chart. The PCA score graph shows that most samples
175 fall within the ellipse of the 95% confidence interval, with only a few outliers. The PCA score
176 (Fig. 5A) graph shows the spatial distribution of the urine samples of the two groups, which can
177 be significantly separated. PLS-DA and OPLS-DA analysis methods were used to further analyze
178 the full spectrum of urine, and the results showed that the two groups of samples could be
179 significantly separated (Fig. 5B and C). In order to test whether the repeatability of the model is
180 good and to ensure reliability of the data model, the model was replaced and verified (Fig. 5D).
181 The intercept of Q_2 is negative, indicating that the model is valid. The above results indicate that
182 the multivariate data model of urine samples meets the parameter standard, indicating that the
183 model has high stability and good predictive ability.

184 **Fig. 5. Urine Metabolism Profile of CAG Model Rats in Negative Ion Mode.** 5-A: PCA Scores,
185 5-B: PLS-DA Scores, 5-C: OPLS-DA Scores, 5-D: Replacement Test of the CAG Model Urine
186 Fit Model in Negative Ion Mode.

187

188 ***Extraction and analysis of differential metabolites***

189 From the PCA, PLS-DA, OPLS-DA analysis model group and blank group, the screening
190 conditions were in accordance with a P -value ≤ 0.05 , $VIP \geq 1$ [6], and molecular weight error < 20
191 ppm). According to the fragmentation information obtained from MS/MS mode, further matching

192 annotations were obtained in the HMDB, METLIN, MassBank, LipidMaps, and mzCloud
193 databases to obtain accurate metabolite information. A total of 68 differential metabolites were
194 screened, of which 25 were upregulated and 43 that were downregulated, compared with
195 metabolites with the same or similar metabolic modes clustered to obtain differential metabolite
196 heat maps and metabolite correlation heat maps (Fig. 6). These differential metabolites relied on
197 the Marker-view, KEGG, HMDB, MetaboAnalyst and other databases, which were searched and
198 identified, and the results are shown in Table 1.

199 **Fig. 6. Heat Map of the Differential Metabolites.** A: Heat Map of the Differential Metabolites
200 in CAG Rats; 6-B: Correlation Heat Map of Differential Metabolites in CAG Rats.

201 **Table 1. Differential Metabolic Markers in Urine of CAG Rats (Upregulated ↑,
202 Downregulated ↓).**

chemical compound	chemical formula	Model vs Control_VIP	log2 (FC)	p value
Arbutin	C12H16O7	1.771574784	2.3461	0.012648447↑
Inosine	C10H12N4O5	1.528975498	2.1558	0.037258488↑
Adenosine	C10H13N5O4	1.934286006	2.0713	0.004285334↑
5-S-Methyl-5-thioadenosine	C11H15N5O3S	2.284849647	1.8528	0.000234115↑
10-Hydroxy capric acid	C10H20O3	1.823597606	1.5684	0.008306808↑
7-Methylguanosine	C11H16N5O5	1.568140916	1.549	0.031843615↑
Pipecolic acid	C6H11NO2	1.781759339	1.5181	0.010438908↑
delta-Decalactone	C10H18O2	1.849847045	1.5177	0.007156206↑

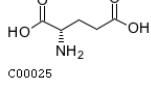
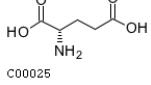
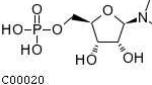
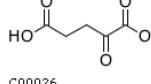
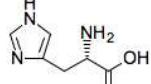
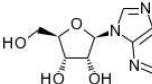
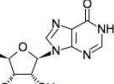
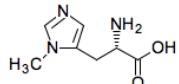
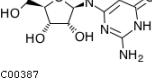
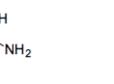
3-Methyl-L-histidine	C7H11N3O2	1.872481394	1.4212	0.00738418↑
Dihydro-3-coumaric acid	C9H10O3	1.528214666	1.394	0.037370134↑
Adipic acid	C6H10O4	2.113128751	1.3866	0.001516902↑
2-Methylguanosine	C11H15N5O5	1.751775025	1.367	0.012215874↑
Guanosine	C10H13N5O5	1.53671651	1.3507	0.032900583↑
Suberic acid	C8H14O4	1.612701672	1.3484	0.026434225↑
2-Deoxycytidine	C9H13N3O4	1.915004809	1.3307	0.004840515↑
D-Glucuronic acid	C6H10O7	2.241280415	1.2756	0.000512579↑
CMPF	C12H16O5	2.124552651	1.2416	0.001388456↑
Gentisic acid	C7H6O4	1.835909917	1.2406	0.009038573↑
TMCA	C12H14O5	1.954028191	1.161	0.003771041↑
2-Aminopteridine-4,7-Diol	C6H5N5O2	2.016289866	1.1144	0.003043425↑
4-Hydroxy nonenal Mercapturic acid	C14H25NO5S	1.548812817	1.0965	0.034435408↑
D-Biotin	C10H16N2O3S	1.515098427	1.0857	0.035928770↑
N-Acetylcadaverine	C7H16N2O	1.640234776	1.0602	0.020995681↑
Benzaldehyde	C7H6O	1.762739968	1.0398	0.011540491↑
Guanidinoacetic acid	C3H7N3O2	1.705152566	1.0027	0.015441198↑
3-Methylindole	C9H9N	1.876426797	0.9857	0.007221167↓
2-Oxoglutaric acid	C5H6O5	1.495118055	0.9552	0.042475723↓
Marmesin acetate	C16H16O5	1.720421852	0.9461	0.014319362↓

N-Lactoyl-phenylalanine	C12H15NO4	1.57132921	0.907	0.028460454↓
Taxifolin	C15H12O7	1.718717369	0.8785	0.016387198↓
3-(3,4-Dihydroxyphenyl)Propanoic acid	C9H10O4	2.070984986	0.8642	0.002077192↓
N(2)-Acetyl-L-Lysine	C8H16N2O3	2.049816081	0.8419	0.001930407↓
L-Phenylalanyl-L-Proline	C14H18N2O3	2.077282892	0.7931	0.001566615↓
O-Toluic acid	C8H8O2	1.805758215	0.7836	0.009169037↓
Quinaldic acid	C10H7NO2	1.669168777	0.7797	0.020624237↓
3-Hydroxy-3-methylglutaric acid	C6H10O5	1.480741362	0.7542	0.044849483↓
Dopamine	C8H11NO2	1.825498392	0.753	0.008218865↓
Syringic acid	C9H10O5	1.538159222	0.7057	0.035930624↓
N-Acetyl-Glutamic acid	C7H11NO5	1.606367357	0.6886	0.024447196↓
N,N-Diethyl-M-Toluamide	C12H17NO	1.658473782	0.6825	0.019299997↓
N-epsilon-Acetyl-L-lysine	C8H16N2O3	2.024611789	0.6354	0.00287668↓
Glutaric acid	C5H8O4	1.55606035	0.6234	0.033445496↓
3-Indoleacetic acid	C10H9NO2	1.490647745	0.5842	0.043203485↓
Homovanillic acid	C9H10O4	1.602561332	0.5841	0.027598265↓
L-Histidine	C6H9N3O2	1.603838417	0.5723	0.024721392↓
Hexanoylcarnitine	C13H25NO4	1.466692106	0.5425	0.043469353↓
Nonic acid	C9H16O4	2.208499912	0.5276	0.000690754↓
4-Acetamidobutanoic acid	C6H11NO3	1.641325837	0.526	0.02089112↓

N-Acetyl-beta-Alaninate	C5H9NO3	1.573650573	0.5139	0.028179966↓
(S)-2-Hydroxyglutarate	C5H8O5	1.464880663	0.5013	0.047581863↓
N-Acetyl-L-Histidine	C8H11N3O3	1.573531368	0.4979	0.028194318↓
2-Pyrrolidone-5-Carboxylic acid, Methyl Ester	C6H9NO3	1.868632508	0.4193	0.006413493↓
2-Hydroxypropanoic acid	C3H6O3	1.874058772	0.3997	0.00731866↓
3-Hydroxycapric acid	C10H20O3	1.944065438	0.3836	0.004843594↓
®-Noradrenaline	C8H11NO3	1.526685758	0.3797	0.037595251↓
Dacarbazine	C6H10N6O	1.587732534	0.2827	0.026523445↓
Phenacylamine	C8H9NO	1.489849766	-0.4527	0.039727046↓
Threonate	C4H8O5	1.547635686	-0.6082	0.034598259↓
Adenine	C5H5N5	1.792987662	-0.7032	0.011340028↓
Dodecanedioic acid	C12H22O4	1.66119894	-0.9546	0.021378107↓
2-Deoxyuridine	C9H12N2O5	1.943477192	-0.979	0.004861136↓
Formononetin	C16H12O4	2.025071834	-1.1042	0.002867682↓
L-Glutamic acid	C5H9NO4	1.777690879	-1.1167	0.010667276↓
Genkwanin	C16H12O5	2.062070851	-1.1857	0.002214871↓
Nicotinic acid	C6H5NO2	2.168087639	-1.2801	0.000737259↓
Guanine	C5H5N5O	2.476437968	-1.3203	3.25E-05↓
Adenosine 3-monophosphate	C10H14N5O7P	1.68169368	-1.3227	0.019481197↓
AMP	C10H14N5O7P	1.900260783	-1.5778	0.005302741↓

203

204 ***CAG model group urine differential metabolite pathway information***











205 This study mapped the differential metabolites to the KEGG database. There are 23
206 common metabolic pathways involved in the obtained differential metabolites, as shown in Fig. 7:
207 D-glutamine and D-glutamine histidine metabolism, histidine metabolism, purine metabolism,
208 nitrogen metabolism, tyrosine metabolism, arginine-proline metabolism, butyric acid metabolism,
209 biotin metabolism, alanine-aspartic acid-glutamic acid metabolism, ascorbic acid-bitter almond
210 metabolism, niacin-nicotinamide metabolism, pentose-glucuronate interconversion, pyrimidine
211 metabolism, lysine degradation, citric acid cycle (TCA cycle), starch-sucrose metabolism, Inositol
212 phosphate metabolism, glutathione metabolism, porphyrin and chlorophyll metabolism, cysteine-
213 methionine metabolism, glycine-serine-threonine metabolism, aminoacyl-tRNA biosynthesis, and
214 tryptophan metabolism. Among them, the metabolic pathways with * P <0.5 and Impact > 0 include
215 D-glutamine and D-glutamic acid metabolism, histidine metabolism, and purine metabolism, as
216 shown in Table 2.

217 **Fig. 7. Metabolic Pathways of CAG Rat Metabolites Mapped to KEGG.**

218 **Table 2. Differential Metabolic Pathways in Urine of CAG Rats**

D-Glutamine and D- glutamate metabolism	Histidine metabolism	Purine metabolism

p value	0.013036	0.016826	0.039418	
Impact	1	0.24194	0.076410	
constituent structures	 C00025	 C00025	 C00020	 C00147
	 C00026	 C00135	 C00212	 C00294
	 C01152	 C00387	 C00242	
Pathway links	http://www.kegg.jp/pathway/rno00471+C00025+C00026	http://www.kegg.jp/pathway/rno00340+C0025+C00135+C01152	http://www.kegg.jp/pathway/rno00230+C00020+C00212+C00294+C00242+C00387+C00147	

219

220 Discussion

221 Metabolomics is an emerging technology for different metabolic pathways of the products
222 by stimulating or disturbing the differences in metabolites displayed by organisms. It can
223 qualitatively, quantitatively and systematically study endogenous small molecules (including
224 blood, urine, and the overall and dynamic laws of tissue fluids) and is widely used in the early
225 diagnosis of diseases, biomarker discovery, pathogenesis research and pharmacological
226 mechanism research. This technology has obvious integrity and dynamic characteristics consistent
227 with the overall theory of traditional Chinese medicine. There is also great potential in explaining
228 the pathogenesis of diseases [8]. Combining pattern recognition and other informatics methods can

229 be used to analyze the changes in metabolic products caused by physiological and pathological
230 stimuli of organisms and genetic factors. PCA technology can reduce data dimensions and
231 maintain original data, which can improve the detection of abnormal data. It cannot, however,
232 ignore intragroup errors and eliminate random errors that are irrelevant to the content of the study,
233 while PLS-DA and OPLS-DA can maximize the specified sample differences in the analysis,
234 making it easier to find differential metabolic profiles. MetPA can find interfering metabolic
235 pathways and establish a regression model through the commonly used data processing methods
236 of topological analysis [9] and make a discriminant analysis of the regression results [10]. OPLS-
237 DA makes the difference between groups on the basis of PLS-DA useful to help analyze related
238 metabolic pathways [11]. Therefore, the combination of these four methods is a powerful tool for
239 determining disease biomarkers. Comparing the expression of urine metabolites from the level of
240 metabolomics and determining differential metabolites and metabolic pathways can provide an
241 objective basis for the clinical diagnosis of CAG.

242 Liquid chromatography-mass spectrometry (LC-MS) is based on the principle of high-
243 performance liquid chromatography (HPLC) adsorption combined with the analysis technique of
244 the mass-to-charge ratio of charged particles. It is used to determine the mass of particles and
245 determine the elemental composition of samples or molecules to elucidate the chemical structure
246 of the molecule. Compared with other chromatographic methods, the LC-MS sample preparation
247 time is short, has high selectivity, and is not affected by chromatographic resolution. It can carry
248 out the structural analysis of compounds to identify known and unknown compounds and can

249 quickly identify and elute metabolites. Analysis, through limited instrument optimization, easily
250 obtains quantitative and qualitative data [12].

251 In this study, the animal model of chronic atrophic gastritis was mainly prepared by MNNG
252 combined with ammonia-free drinking water and hunger and satiety. The process of MNNG
253 alkylating the DNA bases does not depend on enzymatic metabolism and can directly penetrate
254 into the pylorus and stomach to cause canceration [13]. Alcohol can trigger acute ischemic damage
255 to the gastric mucosa, causing damaged genes to fail to recover over time, which may be an
256 important factor for initiating oncogenes [14]. Moreover, alcohol can accelerate the dissolution of
257 MNNG and increase the mutation rate. Ammonia can simulate toxic damage to the stomach after
258 *Helicobacter pylori* infection and maintain acute inflammation of the gastric mucosa [15,16].
259 Ranitidine hydrochloride can inhibit gastric acid secretion, but hunger and satiety are the fusion of
260 spleen and stomach damage. CAG is a complex disease with multiple factors and multiple genes.
261 Compound factor modeling can simulate human disease characteristics to a greater extent and is
262 currently the most widely used and most mature CAG model application.

263 Through PCA, PLS-DA and OPLS-DA LC-MS diversified analysis, using statistics,
264 bioinformatics, chemometrics and other methods to analyze and compare the differential
265 metabolites, the model group and the blank group of rat urine had significant metabolic
266 differences. A total of 68 different metabolites were screened, and 23 metabolic disturbance
267 pathways were predicted. The metabolic pathways can regulate the growth, differentiation,
268 apoptosis and the immune system of tumor cells [17]. The statistically significant metabolic

269 pathways are D-glutamine and D-glutamic acid metabolism, histidine metabolism, and purine
270 metabolism. Among the metabolic pathways, the significantly different metabolites included L-
271 glutamic acid and 10 different products, including ketoglutaric acid, histidine, 3-methyl-L-
272 histidine, adenosine monophosphate, adenosine, adenine, hypoxanthine, guanosine and guanine.

273 L-Glutamic acid, which is in the metabolic pathway of D-glutamine and D-glutamic acid,
274 plays an important role in protein metabolism in organisms. Studies have found that L-glutamic
275 acid can inhibit cerebral cortex, hippocampal, gastric cancer cell and neural stem cell proliferation
276 and differentiation and induce apoptosis [18,19]. Decreased glutamate expression levels will cause
277 digestive system diseases. Based on this performance, L-glutamic acid is a commonly used
278 therapeutic drug for the digestive system, especially gastric cancer and pancreatic cancer.
279 Penicillin can induce the generation of glutamic acid and upregulate cycle-related expression genes
280 and sugar degradation process of glucose to 2-oxoglutaric acid [20].

281 In the histidine metabolism pathway, 3-methyl-L-histidine, histidine, and L-glutamic acid
282 play the role of substrate, intermediate, and product, respectively, and protein nutrition comes from
283 the content of 3-methyl-L-histidine. Each of these compounds are effective indicators of histidine
284 metabolic status [21]. Studies have confirmed that histidine can inhibit the proliferation and
285 migration of lung cancer cells, thereby exerting an antitumor effect [22]. Histamine formed after
286 the decarboxylation of histidine can relax blood vessels and is associated with inflammation. In
287 gastritis and in the duodenum, the reaction in ulcers is sensitive. Currently, histidine is mostly used
288 for the treatment of reducing gastric acid, relieving gastrointestinal pain and as a blood pressure

289 treatment. L-Glutamic acid is formed after a series of processes, such as phosphoester and propionic
290 acid formation, and its antagonists can reverse the abnormal expression of mGlu R5 and PSD-95 in
291 the striatum of LID rats [23].

292 Purine metabolism provides cells with the necessary energy and cofactors to promote the
293 growth and proliferation of cells. The most common disease with purine dysfunction is gout, and
294 purine metabolism and its metabolites include adenosine monophosphate, adenosine, adenine, and,
295 at times, the abnormal expression of xanthine, guanosine and guanine will promote the occurrence
296 of gastric cancer [24]. The decomposition of purine nucleotides will promote the
297 dephosphorylation of inosine or guanylic acid and generate inosine or guanosine, which can
298 decompose into xanthine or guanine. The CN-II enzyme is highly expressed in tumor cells [25].
299 Studies have shown that purine nucleotides are essential for metabolic functions. Hypoxanthine,
300 guanine phosphoribosyl transferase and other related purines can affect hematopoietic stem cell
301 cycle progression, proliferation kinetics and changes in mitochondrial membrane potential [26].
302

303 **Conclusions**

304 Metabolomics is an important technical means for studying the pathogenesis of diseases.
305 This experiment is the first to use LC-MS metabolomics to study the pathogenesis of CAG from
306 the perspective of urine metabolites. From the method (PCA) and supervised analysis method
307 (PLS-DA and OPLS-DA), differential metabolites of the model group and the control group were
308 screened. These differences were mainly distributed among 23 metabolic pathways, which were

309 glutamine metabolism with L-glutamic acid, 2-ketoglutarate in the D-glutamic acid metabolism
310 pathway, 3-methyl-L-histidine, histidine, L-glutamic acid and purine in the histidine metabolism
311 pathway. Adenosine monophosphate, adenosine, adenine, inosine, guanosine and guanine may be
312 potential biomarkers for the diagnosis of CAG.

313

314 **Acknowledgments**

315 The authors thank Suzhou BioNovoGene Biopharmaceutical Technology Co., Ltd., for their
316 technical assistance. And the Editing and Manuscript Formatting service provided by American
317 Journal Experts

318

319 **References**

320 1. Jiang Y, Qi X, Liu X, Zhang J, Ji J, Zhu Z, et al. Fbxw7 haploinsufficiency loses its
321 protection against DNA damage and accelerates MNU-induced gastric carcinogenesis.
322 *Oncotarget*. 2017;8: 33444-33456.

323 2. Hao H. Correlation between pathological classification of chronic atrophic gastritis
324 patients and TCM constitution types. *Shanxi Provincial Institute of Traditional Chinese
325 Medicine*; 2017.

326 3. Wu Q. CKD-MBD related biomarkers based on metabolomics biological screening and
327 research on the toxicity mechanism of bone metabolism. *Second Military Medical
328 University*; 2017.

329 4. Hu T. Research on new methods and strategies for the analysis of endogenous lipid
330 compounds based on chromatographic mass spectrometry. *Peking Union Medical College*;
331 2018.

332 5. Kong XR, Yang Y, Li HZ, Liu L, Zhao SM, Liu HY, et al. The effect of different routes
333 and doses of N-methyl-N-nitro N-nitrosoguanidine administration on pathological changes
334 of gastric mucosa in rats. *Chin J Integr Tradit West Med Dig*. 2015;23: 381-384, 389.

335 6. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, et al. Global
336 metabolic profiling of animal and human tissues via UPLC-MS. *Nat Protoc*. 2013;8: 17-
337 32.

338 7. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass
339 spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and
340 identification. *Anal Chem*. 2006;78: 779-787.

341 8. Zhao F, et al. Liquorice aqueous extract intervenes in the liver metabolomics of D-
342 galactose-induced aging rats. *Chin Herb Med*. 2017;48: 3545-3553.

343 9. Bai Z, Che Y. Application of BP neural network based on PCA in information security.
344 *Electron Technol Softw Eng*. 2019;206-207.

345 10. Li WX, Wang XY, Tang JF, Zhang SQ, Wang Y, Zhang H, et al. Comparative study on
346 the effect of Danggui-Chuanxiong herb pair on vasoactive substances and adhesion
347 molecules in the serum of acute blood stasis in rats using PLS-DA and multi-attribute
348 comprehensive index methods. *Acta Pharm Sin*. 2019;54: 1909-1917.

349 11. Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and
350 visualization. *Bioinformatics*. 2010;26: 2342-2344.

351 12. Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical
352 biochemistry. *Clin Biochem Rev*. 2009;30: 19-34.

353 13. Qi X, et al. Experimental study on the effect of MNNG compound method on the model
354 of gastric precancerous lesions on inflammatory factors. *Hubei J Tradit Chin Med*.
355 2019;41: 3-4.

356 14. Yuan X. Research progress of rat models of precancerous lesions. *J Anhui Tradit Chin Med*
357 *Coll*. 2004;23: 62-64.

358 15. Si J, Wu J, Cao Q, Zun JL. Establishment of rat model of chronic atrophic gastritis

359 discussion on the factors of atrophy. Chin J Dig. 2001; 7-10.

360 16. Geng Z, Huang Y, Chen J. Experimental study on the effect of Taibai rice n-butanol extract

361 on chronic gastritis in rats. Jilin Zhong Med. 2009;29: 527-528.

362 17. Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, et al. Hypoxia potentiates glioma-

363 mediated immunosuppression. PLoS One. 2011;6: e16195.

364 18. Gao C, Wang J, Zhou X. Changes of neuronal apoptosis in rat model of kidney yin

365 deficiency induced by L-monosodium glutamate. Chin J Med. 2003; 719-720.

366 19. Gao S, Wang J. Changes of neural stem cell proliferation and differentiation-related

367 proteins in L-monosodium glutamate rats. J Third Mil Med Univ. 2004; 1524-1526.

368 20. Hirasawa T, Saito M, Yoshikawa K, Furusawa C, Shmizu H. Integrated analysis of the

369 transcriptome and metabolome of corynebacterium glutamicum during penicillin-induced

370 glutamic acid production. Biotechnol J. 2018;13: 1700612.

371 21. Chen D, et al. Amino acid analyzer for rapid determination of 3-methylhistidine in urine.

372 Sichuan J Physiol Sci. 1988: 56-57.

373 22. Escobar-Reséndiz R, Reyes-Esparza J, Blake IO, Rodriguez-Fragoso L. Evaluation of

374 antitumoral effect of the combination of L-histidine methyl ester hydrochloride of

375 anfotericin B with antineoplastics on A549 cells. FASEB J. 2020;34: 1.

376 23. Shu H. Experimental study on the effect of metabolic glutamate receptor 5 antagonist

377 MPEP on rats with levodopa-induced Parkinson's disease dyskinesia. Suzhou University;

378 2015.

379 24. Feng X, Ma D, Zhao J, Song Y, Zhu Y, Zhou Q, et al. UHMW1 promotes gastric cancer

380 progression through reprogramming nucleotide metabolism. *EMBO J.* 2020;39: e102541.

381 25. Tozzi MG, Pesi R, Allegrini S. On the physiological role of cytosolic 5'-nucleotidase II

382 (cN-II): pathological and therapeutical implications. *Curr Med Chem.* 2013;20: 4285-4291.

383 26. Vogel M, Moehrle B, Brown A, Eiwen K, Sakk V, Geiger H. HPRT and purine salvaging

384 are critical for hematopoietic stem cell function. *Stem Cells.* 2019;37: 1606-1614.

385

386 **Supporting information**

387 S1 Fig. Mass Variation Diagram of the Control Group and Model Group.

388 S2 Fig. HE Staining Pathological Sections. A. HE Staining Pathological Sections of Gastric

389 Mucosa in the Control Group ($\times 200$); 2-B: HE Staining Pathological Sections of Gastric Mucosa

390 in the Model Group ($\times 200$).

391 S3 Fig. Chromatogram in Total Ion Mode. 3-A: Typical Sample BPC in Positive Ion Mode, 3-B:

392 Typical Sample BPC in Negative Ion Mode.

393 S4 Fig Urine Metabolism Profile of CAG Model Rats in Positive Ion Mode. 4-A: PCA Scores,

394 4-B: PLS-DA Scores, 4-C: OPLS-DA Scores, 4-D: Replacement Test of the CAG Model Urine

395 Fit Model in Positive Ion Mode.

396 S5 Fig Urine Metabolism Profile of CAG Model Rats in Negative Ion Mode. 5-A: PCA Scores,

397 5-B: PLS-DA Scores, 5-C: OPLS-DA Scores, 5-D: Replacement Test of the CAG Model Urine

398 Fit Model in Negative Ion Mode.

399 S6 Fig Heat Map of the Differential Metabolites. A: Heat Map of the Differential Metabolites in

400 CAG Rats; 6-B: Correlation Heat Map of Differential Metabolites in CAG Rats.

401 S7 Fig Metabolic Pathways of CAG Rat Metabolites Mapped to KEGG.