

1 **Title**

2 Zonal human hepatocytes are differentially permissive to *Plasmodium falciparum* malaria
3 parasites

4

5 **Authors**

6 Annie S.P. Yang^{1*}, Youri M. van Waardenburg¹, Marga van de Vegte-Bolmer¹, Geert-Jan A. van
7 Gemert¹, Wouter Graumans¹, Johannes H.W. de Wilt², and Robert W. Sauerwein^{1,3*}

8

9 **Affiliations**

10 ¹ Research Center for Infectious Diseases, Department of Medical Microbiology, Radboud
11 University Medical Center, Nijmegen, the Netherlands

12 ² Department of surgery, Radboud University Medical Center, Nijmegen, the Netherlands

13 ³ Current address: TropIQ Health Sciences, Nijmegen, the Netherlands

14

15 Annie S.P. Yang: annie.yang@radboudumc.nl

16 Robert W. Sauerwein: robert.sauerwein@radboudumc.nl

17

18 **Abstract (150/150 words)**

19 *Plasmodium falciparum* (*Pf*) is a major cause of malaria. The mosquito-borne parasite
20 asymptotically infects hepatocytes in the liver. The resulting schizonts undergo massive
21 replication to generate blood-infective merozoites. Liver lobules are zonated: hepatocytes in
22 different zones perform differential metabolic functions. In search for specific host conditions that
23 affect infectability, we studied the *Pf* parasite liver stage development in relation to the metabolic
24 heterogeneity of fresh human hepatocytes. We show selective preference of different *Pf* strains for
25 a minority of zone 3 hepatocytes characterized by the particular presence of glutamine synthetase
26 (hGS). Parasite schizont growth is significantly enhanced by hGS uptake early in development,
27 which showcases an import system at this stage of the parasite life-cycle. In conclusion, *Pf*
28 development is strongly determined by the differential metabolic status in hepatocyte subtypes.
29 These findings underscore the importance of detailed understanding of hepatocyte host-*Pf*
30 interactions and may delineate novel pathways for intervention strategies.

31

32

33 **MAIN TEXT**

34

35 **Introduction**

36 Malaria is a devastating mosquito-borne disease responsible for approximately 220 million clinical
37 cases and 430,000 deaths annually [1]. It is caused by the parasites of the *Plasmodium* genus, of
38 which *P. falciparum* (*Pf*) is responsible for most of the disease burden. The infection begins with
39 deposition of sporozoites in the skin by blood-feeding infected mosquitoes. Subsequently low
40 numbers of deposited sporozoites invade, differentiate and massively multiply (as schizont forms)
41 inside hepatocytes followed by release of blood-infective merozoites into the circulation [2]. Cycles
42 of asexual parasite multiplication in circulating red blood cells are responsible for malaria morbidity
43 and mortality [2].

44

45 Interaction between host hepatocytes and parasites, especially intracellular host factors that
46 influence parasite development are poorly understood. Studies of *Pf* parasites and host cells,
47 primarily studied with the NF54 strain, are hampered by low parasite infection rates of *in vitro*
48 cultured hepatocytes [3]. Large “omics-based” approaches have been previously applied in rodent
49 malaria models [4, 5], but translational relevance to *Pf* parasites suffers from important biological
50 differences between the two species i.e. the much shorter liver stage of 48 hours (rodent models) as
51 compared to 7 days (*Pf*).

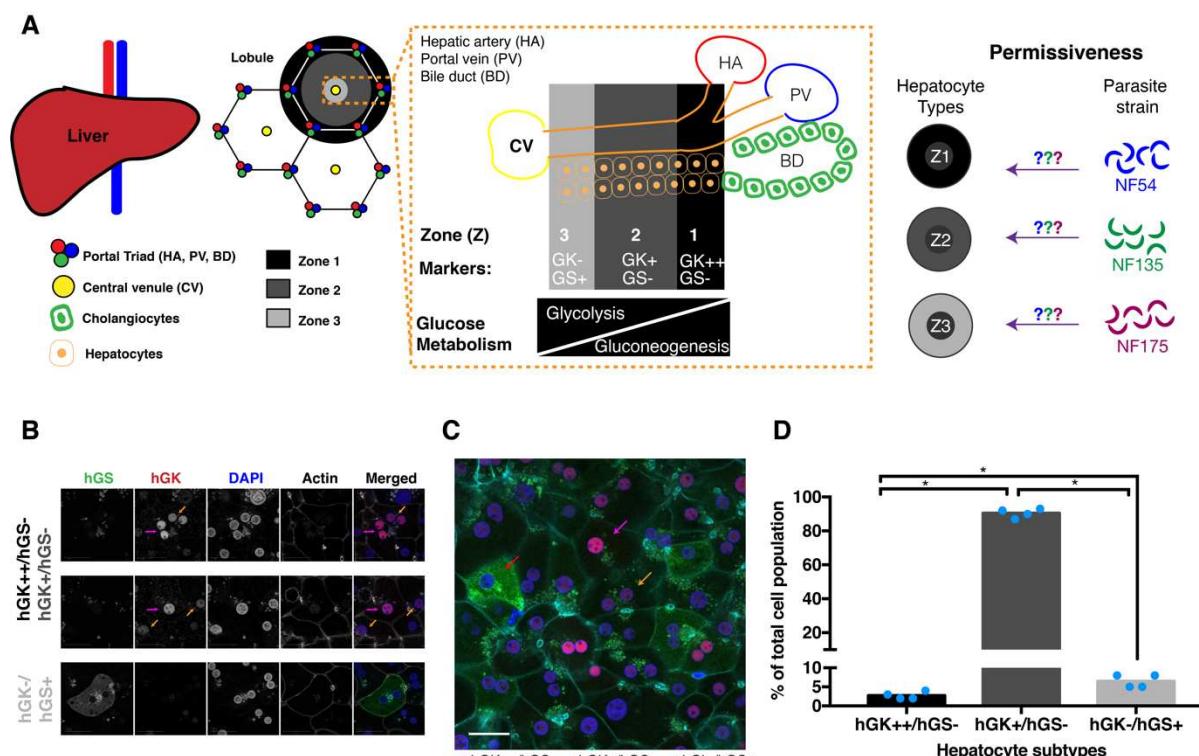
52

53 The liver is a complex organ, composed of functional lobules where hepatocytes express distinct
54 metabolic functions related to their zonal location (Z) [6]. Hepatocytes of a particular zone do
55 express specific sets of genes reflective of their differential tasks related to glucose metabolism [7-
56 9]. As such, periportal Z1 is involved in gluconeogenesis during homeostasis while Z3 generates
57 energy through glycolysis [10, 11]. Glucokinase (GK) is an important cytoplasmic enzyme of
58 glycolysis, catalyzing the first step of converting glucose to glucose-6-phosphate [12, 13]. In a
59 gluconeogenic state i.e. Z1, GK are sequestered away from the cytoplasm, being inhibited by its

60 regulatory protein (GKRP) and adopt nuclear localization [14-16]. Contrastingly in Z3, GK
61 translocates from the nucleus to the cytoplasm to participate in glycolysis. Additionally, Z3
62 hepatocytes are characterized by the exclusive presence of glutamine synthetase (GS), the only so-
63 called stable marker of liver zonation i.e. not affected by the glucose availability of the host [6]. Z2
64 are located in between Z1 and 3 with apparent limited ability to perform both gluconeogenesis and
65 glycolysis.

66

67 The unique intracellular environments present in hepatocytes of different zones may influence the
68 developmental kinetics of obligate intracellular microbes, including *Pf* parasites. *Pf* liver-stages
69 represent an attractive target for vaccine and/or drug development but progress is hindered by
70 limited knowledge of the molecular and cellular events that occur during this stage [2]. While host-
71 *Pf* interactions have been mostly focused on hepatocyte membrane receptors allowing for *Pf* entry
72 [17-20], the intracellular milieu may have major impact on parasite development. Here, we
73 examined whether freshly isolated zonal hepatocytes characterized by hGK and/or hGS expression
74 express differential permissiveness to a panel of clinical *Pf* isolates and explored possible
75 mechanisms involved.


76

77 **Results**

Quantification of zonal hepatocytes from freshly isolated primary human hepatocytes

79 (fPHH)

80 Using specific antibodies against glucokinase (hGK) and glutamine synthetase (hGS) we
81 quantified the proportion of hepatocyte subpopulations fPHH (Supplementary FigS1 for anti-
82 hGS characterization). Z1 was defined by a stronger nuclear hGK signal compared to Z2 with
83 concomitant lack of hGS signals; Z3 was defined by strong cytoplasmic hGS expression
84 combined with an absence of nuclear hGK (Fig 1A). The fPHH monolayers (Fig 1B) from four
85 different human donors were characterized: the vast majority of cells (90%) were Z2
86 hepatocytes (hGK+/GS-) with the remaining 10% being made up by Z1 (3%; hGK++/GS-) and
87 Z2 (7%; hGK-/GS+).

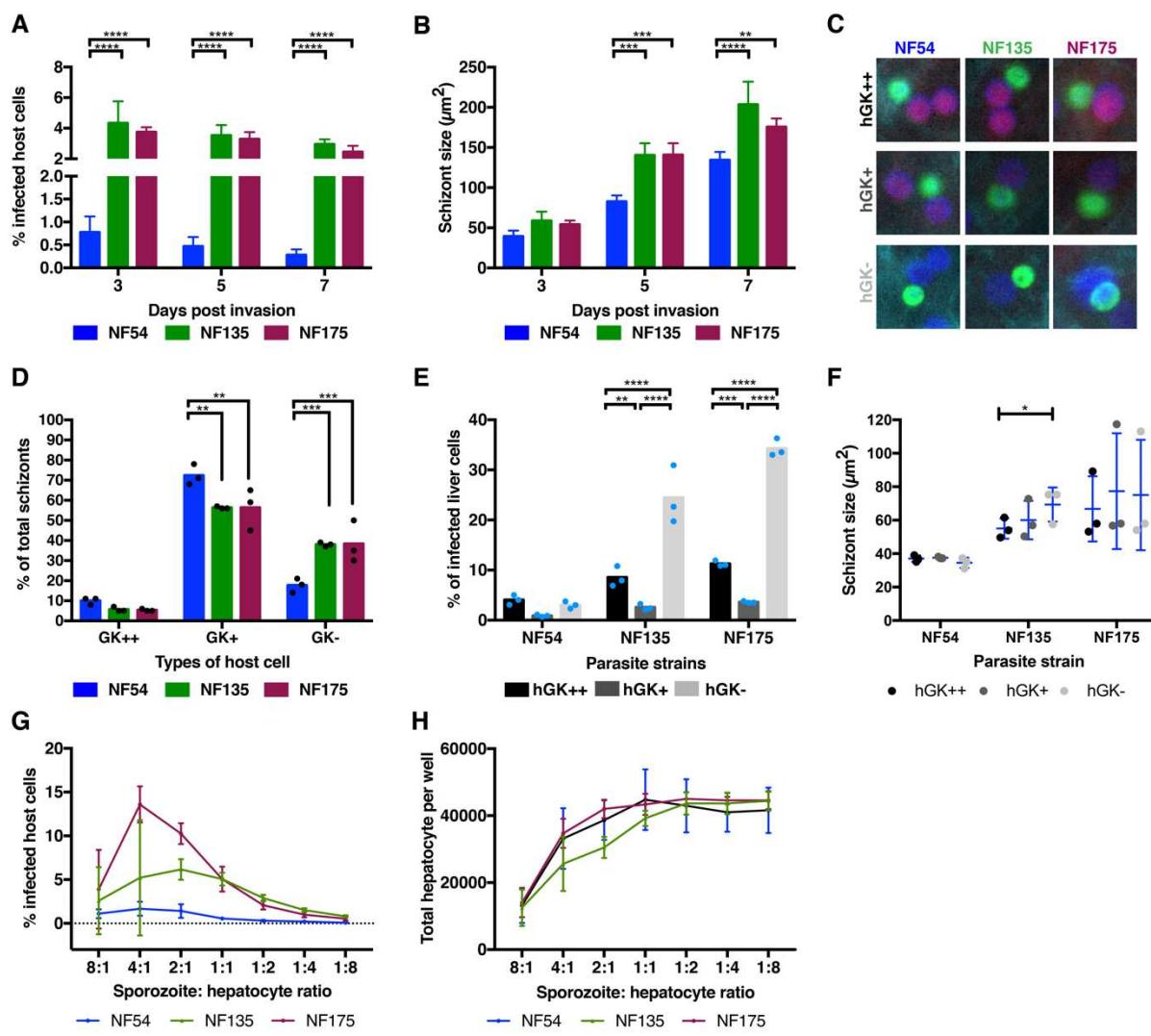
89 Figure 1: Characterization of zonal hepatocytes from freshly isolated human hepatocytes (fPHH)

90 A) Schematic of liver architecture and underlying objective of the study.

91 **B)** Confocal immunofluorescence image of fPHH at 5 days post plating stained with hGK (red), hGS (green), DAPI (blue)
92 and phalloidin (grey). Objective 63x; zoom 2x; scale bar 25 microns.

93 C) Confocal immunofluorescence image of a fPHH monolayer at 5 days post plating, stained with hGK (red), hGS (green),
94 DAPI (blue) and phalloidin (cyan). Arrow point towards a typical hepatocyte subpopulation shown by different colours.
95 Objective 40x; scale bar 25 microns.

96 D) Percentage of zone 1-3 uninfected hepatocytes day 5 post plating of 4 different donors (blue dots). For each donor, >500
97 cells were characterized for the final percentages. All different hepatocytes subpopulations are significantly different from
98 each other (Mann-Whitney test: $p = 0.0286$).


99

100 ***Permissiveness of hepatocyte subsets for Pf strains***

101 Established *Pf* strains differed genotypically at a selection of gene loci (Supplementary Fig
102 S2A, B) but did express typical markers used to characterize *Pf*-liver stages (Supplementary
103 Fig S2C). Both NF135 [21, 22] and NF175 [23] showed approximately 4-fold higher numbers
104 of infected fPHH at multiple time points post invasion (p.i.) (Fig 2A) and were significantly
105 larger in size (Fig 2B) compared to NF54.

106

107 Next we determined the percentage of *Pf* strains located in different hepatocyte subpopulations
108 on day 3 p.i. (Fig 2C). The percentages of schizonts in hGK++/hGS- (Z1) were similar for all
109 3 strains. Most schizonts were found in hGK+/hGS- (Z2) cells, representing the majority of
110 cells (Fig 2D). NF135 and NF175 showed relatively higher preference for hGK-/hGS+ (Z3)
111 with up to 35% infection of these cells (Fig 2E). Furthermore, NF135 schizonts present in
112 hGK++ hepatocytes were significantly smaller than those present hGK- (Fig 2F). NF54 showed
113 slight preference for both hGK-/hGS+ (Z3; 3%) and hGK++/hGS- (Z1; 4%) hepatocytes, but
114 overall infection rates and schizont size across the zones were low (Fig 2E, F). The observed
115 distribution of infection may be the reflection of limited availability of preferred fPHHs.
116 Therefore, graded numbers of sporozoites were added to fPHHs and infection rates were
117 determined on day 5 p.i.. Infection rates peaked at sporozoites: hepatocytes ratio of 4:1 for all
118 three strains with higher ratios resulting in a decrease in the number of infected cells, most
119 likely due to deterioration of the monolayer (Fig 2G, H).

121 **Figure 2: *P. falciparum* development in fPHH and their preference for different hepatocyte subpopulations.**

122 A) Percentage of hepatocytes with schizonts and B) size of schizonts for NF54 (blue), NF135 (green), and NF175 (purple) on
123 days 3, 5 and 7 p.i. with sporozoites to hepatocyte ratio of 1:1. Three biological replicates were performed with two technical
124 replicates in each. At least 100 schizont sizes were measured for each of three biological replicates and the median is plotted
125 above. Tukey's multiple comparison: ** = 0.0024; *** = 0.0003; and **** = <0.0001.

126 C) Representative immunofluorescence images showing the different sub-population of infected fPHH: hGK (red), Dapi (blue)
127 and phalloidin (cyan). Parasites are stained with PfGAPDH (green). Images taken on the Leica High Content at 20x
128 magnification and then cropped in Adobe Photoshop.

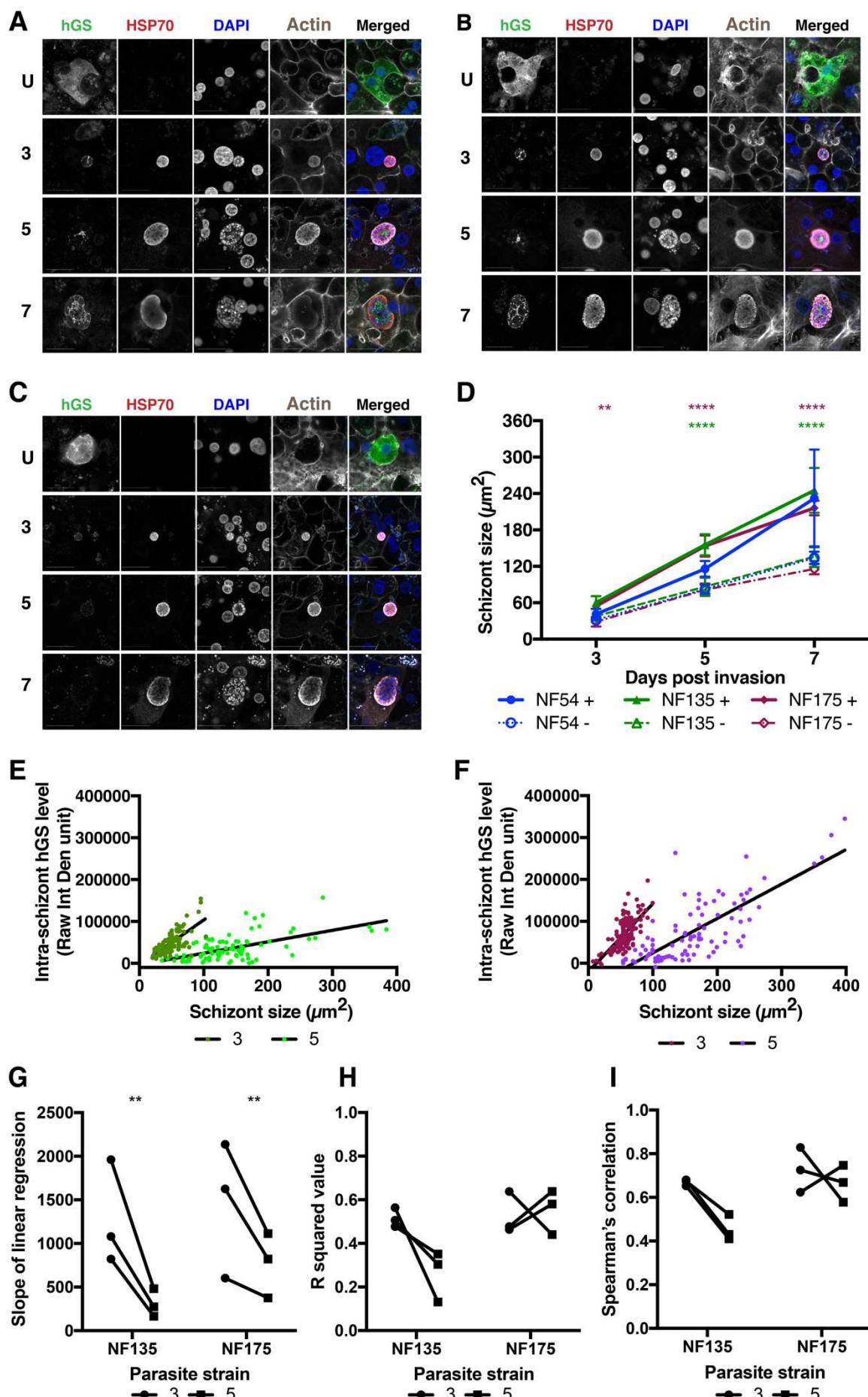
129 D) Percentage schizonts (from total number of schizonts in a well) located in the different hepatocyte sub-populations by
130 NF54, NF135, NF175 on day 3 p.i.. Each dot represents a biological replicate. For each parasite line, at least 100 schizonts
131 were characterized for the final percentage. Tukey's multiple comparison test was performed. Percentage of schizonts in
132 hGK++ hepatocytes is not different between the three parasite strains. Percentage of schizonts in hGK+ for NF54 is
133 significantly different from NF135 ($p = 0.0049$) and NF175 ($p = 0.0049$). Percentage of schizonts in hGK- hepatocytes for
134 NF54 is significantly different from NF135 ($p = 0.0006$) and NF175 ($p = 0.0005$).

135 **E)** Percentage of hGK++ (black), hGK+ (dark grey) and hGK- (light grey) hepatocytes that are infected with different *Pf*
136 strains on day 3 p.i.. This is calculated by dividing the number of schizonts by the actual number of hepatocytes in each
137 subpopulation. Each dot represents a different liver donor (same as used in Figure 2D). The percentage of hGK++ (Z1) and
138 hGK- (Z3) hepatocytes infected with parasites were significantly different for NF135 (Dunnett's multiple comparison: $p =$
139 0.0404 and $p = 0.0001$) and NF175 (Dunnett's multiple comparison: $p = 0.0015$ and $p = 0.0001$) compared to NF54. The
140 percentage of hGK+ (Z2) hepatocytes infected with parasites were not significantly different between the strains. Tukey's
141 multiple comparison test was used for comparisons within a strain. For NF135, there are significant differences between the
142 percentage of infected hepatocytes within the different zones (hGK++ versus hGK+ $p = 0.0021$, hGK+ versus hGK- $p =$
143 <0.0001 , and hGK++ versus hGK- $p = <0.0001$). For NF175, there are also significant differences between the percentage of
144 infected hepatocytes within the different zones (hGK++ versus hGK+ - $p = 0.0003$, hGK+ versus hGK- $p = <0.0001$, and
145 hGK++ versus hGK- $p = <0.0001$). There is no difference in the percentage of infected hepatocytes in the different zones for
146 NF54.

147 **F)** Size of schizonts in hGK++, hGK+ and hGK- hepatocytes on day 3 post invasion for the different *Pf* strains. Tukey's
148 multiple comparison test was used to show that NF135 hGK++ and hGK- parasites are significantly different ($p = 0.0430$).

149 **G)** Percentage of fPHH with NF54, NF135, and NF175 schizonts on day 5 p.i., under different parasite to hepatocyte ratios
150 (starting from 8 sporozoites to 1 hepatocyte to 1 sporozoites to 8 hepatocytes). Two biological replicates were performed with
151 two technical replicates in each.

152 **H)** Total number of hepatocytes per well for NF54, NF135 and NF175 on day 5 p.i., under different parasite to hepatocyte
153 ratios (starting from 8 sporozoites to 1 hepatocyte to 1 sporozoites to 8 hepatocytes). Two biological replicates were performed
154 with two technical replicates in each.


155

156 ***Differential usage of human glutamine synthetase by Pf strains***

157 As the majority of the parasite strains appeared to show a strong preference for hGK-/hGS+
158 (Z3) cells, we further investigated a possible role of hGS in parasite development because of
159 its exclusive presence in this subset. In uninfected hepatocytes, hGS molecules were uniformly
160 distributed in the cytoplasm but in infected cells, they clustered around the periphery and center
161 of developing NF135 and NF175 schizonts (Fig 3A, B). This condense and centralized
162 accumulation of intra-parasitic hGS further transformed into network-like structures between
163 days 5 to 7. Interestingly, such distribution was not found for NF54 schizonts (Fig 3C).

164

165 Developing schizonts were categorized by strain for the presence and distinctive staining
166 pattern of hGS (Fig 3D). hGS+ NF135 and NF175 schizonts were significantly larger than their
167 hGS- counterparts at any timepoint p.i.. This could not be studied for NF54 given only very
168 few GS+ schizonts were found from day 5 p.i. onwards. The relationship between intra-
169 schizont hGS levels and size was examined for NF135 and NF175 (Fig 3E, F). Linear
170 regression lines for each strain showed steeper slopes on day 3 than 5 (Fig 3G). Similarly, hGS
171 levels strongly correlated with schizont size (Fig 3H, I) in particular on day 3.

173 **Figure 3: Distribution of human glutamine synthetase (hGS) in different *Pf* strains**

174 **A-C**) hGS interaction with NF135 (A), NF175 (B) and NF54 (C) schizonts on days 3 (top), 5 (middle) and 7 (bottom) p.i..
175 hGS (green), *Pf*HSP70 (red), DAPI (blue) and phalloidin (grey). The U panel is composed an uninfected zone 3 hepatocyte on
176 day 3 p.i.. Scale bar is 25 microns.

177 **D**) Median size of NF135 (green), NF175 (purple) and NF54 (blue) schizonts, divided based on the presence (solid line) or
178 absence (dashed line) of hGS staining pattern. At least 100 schizonts were measured for each of three biological replicates and
179 the median is plotted above. Sidak's multiple comparison test was performed (** = p is 0.0052; **** = p is < 0.0001). See
180 Supplementary Fig S4 for raw measurements.

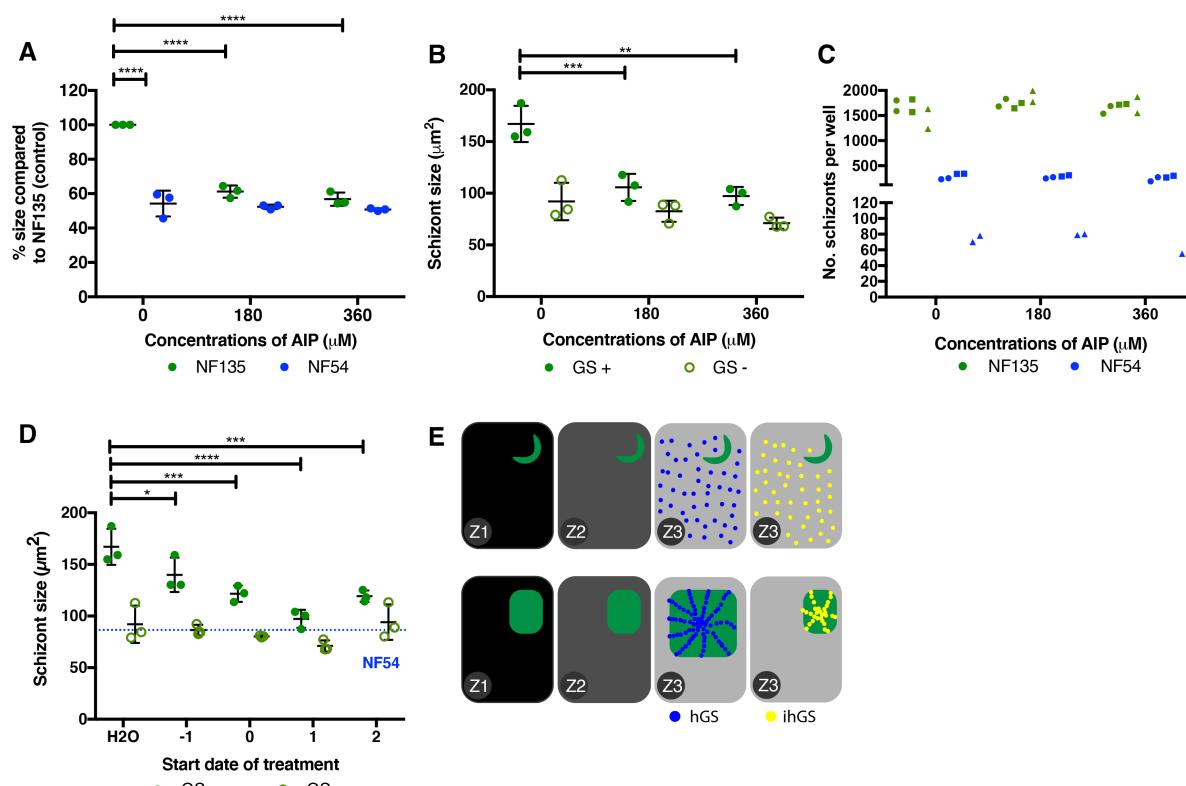
181 **E**) The total hGS signal within intracellular NF135 and **F**) NF175 schizonts on day 3 and 5. Each graph represents a biological
182 replicate where each dot represents an individual schizont.

183 **G**) The slope of the linear regression of the **E**) and **F**) of NF135 and NF175 on day 3 (circle) and day 5 (square) p.i..

184 **H**) The R squared value of the predicted linear relationship of hGS levels versus schizont size on day 3 and day 5 p.i..

185 **I**) The Spearman's correlation coefficient between hGS levels and schizont size of NF135 and NF175 on day 3 and day 5 p.i..

186 (For G-I: Each dot represents one biological replicate. See Supplementary Figure 3-5 for raw data).


187

188 **Effect of GS inhibitors on intra-hepatic parasite development**

189 To confirm the functionality of intra-schizont hGS and its involvement in size regulation, fPHH
190 monolayers infected with either NF135 (hGS benefit) or NF54 (no hGS benefit) were incubated
191 with a panel hGS inhibitors with different modes of action including Glufosinate-ammonium
192 (GA – also known as phosphinothricin) [24, 25], L-methionine sulfoximine (LMS) and 3-
193 aminoimidazole [1,2-a] pyridine (AIP) [26, 27]. LMS and GA compete with the substrate
194 glutamate for the active site; the more recently discovered inhibitor AIP [28, 29] binds to the
195 ATP binding site of the enzyme. AIP significantly reduced the size of developing NF135
196 schizonts whereas both GA and LMS were inactive (Figure 4A; Supplementary Fig S6, 7).
197 NF54 schizonts were not affected. Importantly, the AIP-induced size reductions were
198 exclusively observed in hGS positive schizonts, strengthening the functionality of hGS for
199 parasite growth (Fig 4B). Both GA and LMS showed no activity (Supplementary Figure S6,
200 7), which may be due to active metabolism in Z3 hepatocytes [30].

201

202 Finally, we examined the timing of functional hGS on schizont size. AIP was added for 48
203 hours to NF135 infected fPHH culture before and after parasite invasion p.i.. There was a
204 steady decrease of intracellular schizont size from day -1 onwards with maximum reduction on
205 day 1 p.i. (Fig 4D). Similarly, size differences between hGS positive and negative schizonts
206 gradually decreased from day -1 onwards (Fig 4D). The relative larger effect of AIP on day 1
207 p.i. suggests early modulation of schizonts size by hGS; it fits well with the
208 immunofluorescence data regarding localization (Figure 3A) and the strong correlation of hGS
209 positive NF135 and NF175 parasites on day 3 rather than day 5 (Fig 3G-I).

210
211 **Figure 4: Effect of GS inhibitors on NF54 and NF135**

212 A) Normalized percentage of intracellular schizont size of NF54 (blue) and NF135 (green) after treatment of GS inhibitors at
213 different concentrations of AIP. Median size of the schizonts were normalized to that of H₂O-treated NF135 (which is set at
214 100%). AIP was added one day post invasion and kept on for 48 hours. Each dot represents a biological replicate where ≥ 100
215 schizonts were measured on day 5 p.i.. For comparisons between NF54 and NF135, Sidak's multiple comparison test was
216 performed where *** = 0.0005 and **** = <0.0001. Tukey's multiple comparison test was used for comparisons between
217 conditions within NF135 where * = 0.0135 (LMS) and 0.0401 (GA); and **** = <0.0001.

218 **B)** Size difference between the GS positive (closed circle) and negative (open circle) NF135 schizonts after treatment of AIP.
219 Each dot represents the median of a biological replicate where ≥ 100 schizonts were measured. Dunnett's multiple comparison
220 test with *** = 0.0001.
221 **C)** Number of schizonts per well for NF135 (green) and NF54 (blue). Three biological replicates (circle, square and triangle),
222 each with two technical replicates were performed.
223 **D)** The difference in size between GS positive (closed circle) and negative (open circle) NF135 schizonts (day 5 p.i.) after
224 treatment of AIP (360 μ M) on different days pre - and post-invasion. Each dot represents the median size of ≥ 100 schizonts.
225 The GS positive schizont size when treated with AIP were significantly smaller than the water control for day -1 ($p = 0.0348$),
226 day 0 ($p = 0.0005$), day 1 ($p = <0.0001$) and day 2 ($p = 0.0003$) using Tukey's multiple comparison test. The blue line
227 represents the median schizont size of NF54 when treated with the water control.
228 **I)** Summary of observed effects of hGS on parasite development. Parasites disproportionately prefer Z3 hepatocytes to make
229 use of exclusive presence of hGS. Ability to uptake functional hGS early after invasion results in relatively larger schizonts;
230 uptake of inhibited hGS (ihGS) reduces schizont size. (See Supplementary Figures S7-9 for raw measurements)

231

232 **Discussion**

233 In this study, we show that intra-cellular *Pf* development in the liver is strongly guided by the
234 glucose metabolic status of particular hepatocyte subpopulations. The glycolytic mode and the
235 exclusive presence of hGS in Z3 hepatocytes are beneficial for intra-hepatic stages of particular
236 *Pf* strains as reflected by the larger schizont sizes (NF135 and NF175). The importance of host
237 glucose metabolic status is in agreement with previous findings where *Plasmodium* parasites
238 modulate the host energy sensor, AMP-activated protein kinase (AMPK) to presumably
239 modulate glucose metabolism during liver stage development [31]. Furthermore, the anti-
240 diabetic drug metformin effectively reduces the size of *Pf* liver schizonts. Metformin promotes
241 binding of hGK to GKRP, resulting in a nuclear localization reminiscence of a Z1/2 phenotype
242 [32], shown to result in smaller schizonts in this study.

243

244 The observed differences in schizont size of NF135 and NF175 versus NF54 can be explained
245 by the larger number of hGS+ schizonts of the former strains. hGS negative schizonts of all
246 three strains are comparable in size at all time points p.i.. NF54 differs in infectivity, schizont

247 size, host cell preference and hGS utilization from NF135 and NF175. Despite being able to
248 reach Z3 hepatocytes on day 3 pi, NF54 seems unable to make use of host hGS. This is clearly
249 shown in Figure 2D where the sizes of NF54 parasites are similar, irrespective of the host cell
250 type. Additionally, the lack of hGS positive NF54 on day 5 and 7 is actually suggestive for
251 poor survival in the Z3 environment. It remains elusive why NF54 while present in Z3 cells
252 apparently lacks the capacity to mobilize hGS for its own benefit. Furthermore, NF54 parasite
253 development in all hepatocyte subtypes are inferior than NF135 and NF175. Together, it
254 suggests that the observed differences in intracellular parasite numbers between NF54 and
255 NF135/NF175 is due to an inability to make use of hGS that boost schizont development.

256

257 Glutamine, as end product of hGS, has been shown to be critical for rapidly proliferating cells;
258 its nitrogen is needed for purines (adenosine and guanine) involved in DNA replication and as
259 building block for newly synthesized proteins and lipids [33, 34]. In this study, this results in
260 the generation of larger schizonts presumably due to more robust DNA, protein and lipid
261 production. The uptake of hGS by certain parasite strains is indicative of an import pathway
262 which may also be involved in the direct transport of other host factors into the parasite.
263 Understanding the timing and mechanism of this pathway may prove to be useful as a direct
264 delivery platform of anti-malarials, bypassing the parasitophorous and parasite membranes.
265 This may be particularly important as *Pf* liver stages represent an attractive target for clinical
266 interventions.

267

268 The parasite-induced redistribution of intracellular hGS, may also have direct consequences
269 for hepatocyte survival. Mammalian host cells are equipped with intrinsic detection systems
270 that prevent existence and/or replication of pathogens. Upon detection of the invader, host cells
271 are programmed to create an “anti-microbial defense state” in their cytoplasm [35]. Recently,

272 it has been shown that rodent malaria parasites upregulate cellular inhibitors of apoptosis
273 proteins (cIAPs) in infected hepatocytes [36]. While prevention of cell death by the presence
274 of intracellular parasites has been established in rodent malaria models [37-39], it remains
275 unknown for *Pf* where the development period in hepatocytes takes much longer. High
276 intracellular glutamine concentrations can lead to cell death known as glutamoptosis [40]. It is
277 compelling to speculate that parasites may use hGS both to benefit their own growth and to
278 prevent induction of host death through the accumulation of the glutamine product until their
279 development has been completed.

280

281 Schizonts in Z3 grow to larger sizes and would presumably be more likely successfully release
282 larger numbers of infectious progenies into the circulation. It is unknown whether there are
283 zonal differences in maturation, leading to successful release of the parasites into the
284 circulation. Eickel and colleagues previously showed that the majority of the rodent malaria
285 schizonts do not complete their maturation in hepatocytes [41]. Potential zonal differences in
286 successful growth of liver-stages and infection of red blood cells may have implications for
287 therapeutic approaches: there is clear evidence that Z3 hepatocytes are involved in drug
288 metabolism and transport [30, 42]. It would be intriguing to study whether infected Z3 can still
289 maintain its drug metabolic function or whether pre-exposure to anti-malarial drugs has an
290 effect on the growing schizonts and their progenies.

291

292 In summary, the combined data show that the developmental kinetics of *Pf* strains is most
293 successful in a minority subset of hGS containing hepatocytes. Future identification of the
294 complete set of host proteins present in hGS positive Z3 hepatocytes will advance
295 understanding of *Pf* interaction with host and may accelerate clinical development of novel
296 intervention strategies against *Pf* liver stages.

297 **Materials and Methods**

298 **Ethics statement**

299 Primary human liver cells were freshly isolated from remnant surgical material. The samples
300 are anonymized and general approval for use of remnant surgical material was granted in
301 accordance to the Dutch ethical legislation as described in the Medical Research (Human
302 Subjects) Act, and confirmed by the Committee on Research involving Human Subjects, in
303 the region of Arnhem-Nijmegen, the Netherlands

304 **Antibodies:**

Antibody	Company	Catalogue no.	Species	Dilution factor
PfHSP70	StressMarq Biosciences	SPC-186	Rabbit	1:75
PfCSP (2A10)	MR4	2A10	Mouse	1:500
PfEXP2	European malaria reagent repository	7.7	Mouse	1:1000
PfGAPDH	European malaria reagent repository	7.2	Mouse	1:50000
PfMSP1	Sanaria and NIH/NIAID	AD233	Mouse	1:100
Human Glucokinase	Abcam	Ab88056	Rabbit	1:100
Human Glutamine Synthetase	Abcam	Ab64613	Mouse	1:100

Alexa Fluor™ 647 Phalloidin	Thermofisher Scientific	A22287	NA	1:45
Anti-Rabbit Alexa Fluor 594	Thermofisher Scientific	A11012	Goat	1:200
Anti-mouse Alexa Fluor 488	Thermofisher Scientific	A11029	Goat	1:200
DAPI	Thermofisher	D1306	NA	1:300

305 **Table 1: Reagents needed for immunofluorescence analysis**

306 **Characterization of genotype of parasite strains:**

307 Genomic DNA from different parasite strains were analysed for the presence/absence of
308 GLURP; K1, MAD20, R033 allelic variant of MSP1; and the ICI and FC27 variant of MSP2
309 as described by McCall et al [22].

310

311 **Generation of sporozoites for liver infection**

312 *Pf* asexual and sexual blood stages were cultures in a semi-automatic system as described in
313 [43-45]. *A. stephensi* mosquitoes were reared in the Radboud University Medical Center
314 insectary (Nijmegen, the Netherlands) according to standard operating procedures. Salivary
315 glands from infected mosquitoes were hand dissected and collected in complete William's B
316 medium (William's E medium with Glutamax [Thermo Fisher, 32551-087], supplemented
317 with 1X insulin/transferrin/selenium [Thermo Fisher, 41400-045], 1mM sodium pyruvate
318 [Thermo Fisher, 11360-070], 1X MEM-NEAA [Thermo Fisher, 11140-035], 2.5 ug/ml
319 Fungizone [Thermo Fisher 15290-018], 200U/ml penicillin/streptomycin [Thermo Fisher
320 15140-122] and 1.6 μ M dexamethasone [Sigma Aldrich D4902-100MG]) without serum.
321 After homogenization using home-made glass grinders, sporozoites were counted in a
322 Burker-Turk chamber using phase contrast microscopy. Immediately before infection of

323 human hepatocytes, the sporozoites are supplemented with heat inactivated human sera
324 (HIHS) at 10% of total volume.

325

326 **Primary human hepatocyte infection**

327 Primary human hepatocytes were isolated from patients undergoing elective partial
328 hepatectomy as described by Walk and colleagues [46]. Freshly isolated hepatocytes
329 suspended in complete Williams' B media were plated in 96 wells at 62.500 cells per well
330 and kept in a 37 degrees Celsius (5% CO₂) incubator with daily media refreshments. Two
331 days after plating, dissected sporozoites (day 16-21 post blood meal) were added to the wells
332 at 1:1 ratio in duplicates/triplicates and spun down at 3.000 rpm for 10 minutes on low
333 brakes. Media is refreshed after 3 hours to remove non-invaded sporozoites and then on a
334 daily basis. The sporozoite-infected culture was maintained for 3 or 5 or 7 days after which
335 the cells were fixed with 4% paraformaldehyde (ThermoFisher Scientific: catalogue number
336 28906) for 10 minutes. The samples were permeabilized using 1% Triton and stained with the
337 various *P. falciparum* or human antibodies listed above.

338

339 **GS inhibition**

340 Three GS inhibitors were used to study the effect of GS on parasite infectivity and growth
341 during liver stage development: 3-aminoimidazo[1,2-a]pyridine (Sigma Aldrich; Cat no.
342 685755; AIP), Glufosinate Ammonium (Sigma Aldrich; Cat no. 45520; GA) and L-
343 Methionine sulfoximine (Sigma Aldrich; Cat no. M5379; LMS). They were tested in two
344 concentrations: AIP (0.18 and 0.36 mM), GA (0.20 and 0.40 mM) and LMS (0.14 and 0.28
345 mM). Treatment period is for 48 hours with one media refreshment in between after which
346 the culture is returned to complete William's B media with 10% HIHS until day 5 post
347 invasion where the samples are fixed and stained for analysis by microscopy.

348

349 **Microscopy**

350 For this study, the Leica DMI6000B high content microscope was used for tiling 96 wells for
351 determination of infection rate. For each well, a tile size of 9x9 were obtained at 20x
352 objectives. The Zeiss LSM880 with Airyscan at 63x objectives (oil) and 2x zoom were used
353 for detailed images.

354

355 **Data analysis using FIJI [47]:**

356 ***Infection rate:*** the tile consisting of 81 smaller images were merged in FIJI and saved as tiff
357 files. Merged tiff files were opened in Adobe Photoshop and manually counted based on
358 PfHSP70 positivity. For NF135 and NF175, only half the final tile (i.e. 40.5 images) were
359 counted and then number of parasites were multiplied by two to get a final total number of
360 parasites per well. Due to the lower infection rate of NF54, the whole tile is counted. Number
361 of hepatic nuclei were counted for 1% of the total image and then multiplied by 100 to get
362 final figure. Infection rate is calculated as total number of parasites (per well) divided by total
363 number of host cells multiplied by 100.

364

365 ***Measurement of schizont size:*** Images obtained on the high content microscope were opened
366 in FIJI. Random images were chosen until 100 parasites were measured. Parasites were
367 selected via the region of interest (ROI) tool using PfHSP70 positivity (red channel) and
368 measured. In the cases, where the hGS intensity is required, the ROIs determined using
369 PfHSP70 are masked onto the hGS channel (green) and then the measured. The RawIntDen
370 values give the total signal measured in the ROI.

371

372 **Quantifying intracellular hGS by immunofluorescence:** For each of the image measured in
373 the previous section, a total background intensity in the green channel (as hGS is labelled
374 with Alexa-488) was determined using the region of interest (ROI). A background intensity
375 per area (x) was determined (total intensity of whole image divided by area size of the
376 image). A total background intensity for the parasite was determined by using the formula x
377 multiplied by the measured size of the parasite. This is shown as the background (brown line)
378 in Supplementary Fig S4A, B, D, E, G, H – the larger the parasite, the more total background
379 in theory. Actual green intensity within a parasite is determined by using the ROI tool to just
380 select the parasite in question (the “measured” line in Supplementary Fig S4A, B, D, E, G,
381 H). The final “real” intensity of the parasite is calculated by subtracting the Background
382 value from the Measured value and is what is plotted in Supplementary Fig S5.

383

384 **Statistical Analysis**

385 For the majority of the experiments, three biological replicates were performed with either
386 two or three technical replicates (depending on the availability of host cells and parasites).
387 All statistical tests were performed using Prism 7. This includes calculating slope and
388 correlation relationships. See figure legends for details of statistical tests.

389

390 **References and Notes**

- 391 1. Organization, W.H., *World Malaria Report 2018*. 2018.
- 392 2. Mo, A.X. and G. McGugan, *Understanding the Liver-Stage Biology of Malaria*
393 *Parasites: Insights to Enable and Accelerate the Development of a Highly Efficacious*
394 *Vaccine*. Am J Trop Med Hyg, 2018. **99**(4): p. 827-832.
- 395 3. Roth, A., et al., *A comprehensive model for assessment of liver stage therapies*
396 *targeting Plasmodium vivax and Plasmodium falciparum*. Nat Commun, 2018. **9**(1):
397 p. 1837.
- 398 4. Tarun, A.S., et al., *A combined transcriptome and proteome survey of malaria*
399 *parasite liver stages*. Proc Natl Acad Sci U S A, 2008. **105**(1): p. 305-10.
- 400 5. Shears, M.J., et al., *Proteomic Analysis of Plasmodium Merosomes: The Link between*
401 *Liver and Blood Stages in Malaria*. J Proteome Res, 2019. **18**(9): p. 3404-3418.
- 402 6. Jungermann, K. and T. Kietzmann, *Zonation of parenchymal and nonparenchymal*
403 *metabolism in liver*. Annu Rev Nutr, 1996. **16**: p. 179-203.

404 7. Ben-Moshe, S., et al., *Spatial sorting enables comprehensive characterization of liver*
405 *zonation*. *Nat Metab*, 2019. **1**(9): p. 899-911.

406 8. Halpern, K.B., et al., *Single-cell spatial reconstruction reveals global division of*
407 *labour in the mammalian liver*. *Nature*, 2017. **542**(7641): p. 352-356.

408 9. Aizarani, N., et al., *A human liver cell atlas reveals heterogeneity and epithelial*
409 *progenitors*. *Nature*, 2019. **572**(7768): p. 199-204.

410 10. Jungermann, K., *Functional significance of hepatocyte heterogeneity for glycolysis*
411 *and gluconeogenesis*. *Pharmacol Biochem Behav*, 1983. **18 Suppl 1**: p. 409-14.

412 11. Gumucio, J.J. and D.L. Miller, *Functional implications of liver cell heterogeneity*.
413 *Gastroenterology*, 1981. **80**(2): p. 393-403.

414 12. Fischer, W., M. Ick, and N.R. Katz, *Reciprocal distribution of hexokinase and*
415 *glucokinase in the periportal and perivenous zone of the rat liver acinus*. *Hoppe*
416 *Seylers Z Physiol Chem*, 1982. **363**(4): p. 375-80.

417 13. Katz, N., et al., *Heterogeneous reciprocal localization of fructose-1,6-bisphosphatase*
418 *and of glucokinase in microdissected periportal and perivenous rat liver tissue*. *FEBS*
419 *Lett*, 1977. **83**(2): p. 272-6.

420 14. Toyoda, Y., et al., *Tissue and subcellular distribution of glucokinase in rat liver and*
421 *their changes during fasting-refeeding*. *Histochem Cell Biol*, 1995. **103**(1): p. 31-8.

422 15. Toyoda, Y., et al., *Nuclear location of the regulatory protein of glucokinase in rat*
423 *liver and translocation of the regulator to the cytoplasm in response to high glucose*.
424 *Biochem Biophys Res Commun*, 1995. **215**(2): p. 467-73.

425 16. Jetton, T.L., et al., *Substrate-induced nuclear export and peripheral*
426 *compartmentalization of hepatic glucokinase correlates with glycogen deposition*. *Int*
427 *J Exp Diabetes Res*, 2001. **2**(3): p. 173-86.

428 17. Zeisel, M.B., et al., *Scavenger receptor class B type I is a key host factor for hepatitis*
429 *C virus infection required for an entry step closely linked to CD81*. *Hepatology*, 2007.
430 **46**(6): p. 1722-31.

431 18. Kaushansky, A., et al., *Malaria parasites target the hepatocyte receptor EphA2 for*
432 *successful host infection*. *Science*, 2015. **350**(6264): p. 1089-92.

433 19. Silvie, O., et al., *Cholesterol contributes to the organization of tetraspanin-enriched*
434 *microdomains and to CD81-dependent infection by malaria sporozoites*. *J Cell Sci*,
435 2006. **119**(Pt 10): p. 1992-2002.

436 20. Silvie, O., et al., *Expression of human CD81 differently affects host cell susceptibility*
437 *to malaria sporozoites depending on the Plasmodium species*. *Cell Microbiol*, 2006.
438 **8**(7): p. 1134-46.

439 21. Langenberg, M.C.C., et al., *Controlled Human Malaria Infection with Graded*
440 *Numbers of Plasmodium falciparum NF135.C10- or NF166.C8-Infected Mosquitoes*.
441 *Am J Trop Med Hyg*, 2018. **99**(3): p. 709-712.

442 22. McCall, M.B.B., et al., *Infectivity of Plasmodium falciparum sporozoites determines*
443 *emerging parasitemia in infected volunteers*. *Sci Transl Med*, 2017. **9**(395).

444 23. Graumans, W., et al., *Plasmodium falciparum Gametocyte Enrichment in Peripheral*
445 *Blood Samples by Magnetic Fractionation: Gametocyte Yields and Possibilities to*
446 *Reuse Columns*. *Am J Trop Med Hyg*, 2019. **100**(3): p. 572-577.

447 24. Gill, H.S. and D. Eisenberg, *The crystal structure of phosphinothricin in the active*
448 *site of glutamine synthetase illuminates the mechanism of enzymatic inhibition*.
449 *Biochemistry*, 2001. **40**(7): p. 1903-12.

450 25. Seabra, A.R., et al., *Inhibition of glutamine synthetase by phosphinothricin leads to*
451 *transcriptome reprogramming in root nodules of *Medicago truncatula**. *Mol Plant*
452 *Microbe Interact*, 2012. **25**(7): p. 976-92.

453 26. Ronzio, R.A., W.B. Rowe, and A. Meister, *Studies on the mechanism of inhibition of*
454 *glutamine synthetase by methionine sulfoximine*. *Biochemistry*, 1969. **8**(3): p. 1066-
455 75.

456 27. Rowe, W.B., R.A. Ronzio, and A. Meister, *Inhibition of glutamine synthetase by*
457 *methionine sulfoximine. Studies on methionine sulfoximine phosphate*. *Biochemistry*,
458 1969. **8**(6): p. 2674-80.

459 28. Mowbray, S.L., et al., *Inhibition of glutamine synthetase: a potential drug target in*
460 *Mycobacterium tuberculosis*. *Molecules*, 2014. **19**(9): p. 13161-76.

461 29. Odell, L.R., et al., *Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of*
462 *drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors*. *Bioorg Med*
463 *Chem Lett*, 2009. **19**(16): p. 4790-3.

464 30. Tachikawa, M., et al., *Liver Zonation Index of Drug Transporter and Metabolizing*
465 *Enzyme Protein Expressions in Mouse Liver Acinus*. *Drug Metab Dispos*, 2018. **46**(5):
466 p. 610-618.

467 31. Ruivo, M.T.G., et al., *Host AMPK Is a Modulator of Plasmodium Liver Infection*. *Cell*
468 *Rep*, 2016. **16**(10): p. 2539-2545.

469 32. Guigas, B., et al., *5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and*
470 *metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein*
471 *kinase-independent effect on glucokinase translocation*. *Diabetes*, 2006. **55**(4): p. 865-
472 74.

473 33. Cory, J.G. and A.H. Cory, *Critical roles of glutamine as nitrogen donors in purine*
474 *and pyrimidine nucleotide synthesis: asparaginase treatment in childhood acute*
475 *lymphoblastic leukemia*. *In Vivo*, 2006. **20**(5): p. 587-9.

476 34. Curi, R., et al., *Molecular mechanisms of glutamine action*. *J Cell Physiol*, 2005.
477 **204**(2): p. 392-401.

478 35. Tam, J.C. and D.A. Jacques, *Intracellular immunity: finding the enemy within--how*
479 *cells recognize and respond to intracellular pathogens*. *J Leukoc Biol*, 2014. **96**(2): p.
480 233-44.

481 36. Ebert, G., et al., *Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes*
482 *Clearance of Plasmodium Liver Infection*. *Cell Rep*, 2020. **30**(13): p. 4343-4354 e4.

483 37. Agop-Nersesian, C., et al., *Host cell cytosolic immune response during Plasmodium*
484 *liver stage development*. *FEMS Microbiol Rev*, 2018. **42**(3): p. 324-334.

485 38. Kaushansky, A., et al., *Suppression of host p53 is critical for Plasmodium liver-stage*
486 *infection*. *Cell Rep*, 2013. **3**(3): p. 630-7.

487 39. Real, E., et al., *Plasmodium UIS3 sequesters host LC3 to avoid elimination by*
488 *autophagy in hepatocytes*. *Nat Microbiol*, 2018. **3**(1): p. 17-25.

489 40. Villar, V.H. and R.V. Duran, *Glutamoptosis: A new cell death mechanism inhibited*
490 *by autophagy during nutritional imbalance*. *Autophagy*, 2017. **13**(6): p. 1078-1079.

491 41. Eickel, N., et al., *Features of autophagic cell death in Plasmodium liver-stage*
492 *parasites*. *Autophagy*, 2013. **9**(4): p. 568-80.

493 42. Ahn, J., et al., *Human three-dimensional in vitro model of hepatic zonation to predict*
494 *zonal hepatotoxicity*. *J Biol Eng*, 2019. **13**: p. 22.

495 43. Ifediba, T. and J.P. Vanderberg, *Complete in vitro maturation of Plasmodium*
496 *falciparum gametocytes*. *Nature*, 1981. **294**(5839): p. 364-6.

497 44. Ponnudurai, T., et al., *Cultivation of fertile Plasmodium falciparum gametocytes in*
498 *semi-automated systems. 1. Static cultures*. *Trans R Soc Trop Med Hyg*, 1982. **76**(6):
499 p. 812-8.

500 45. Ponnudurai, T., et al., *Infectivity of cultured Plasmodium falciparum gametocytes to*
501 *mosquitoes*. *Parasitology*, 1989. **98 Pt 2**: p. 165-73.

502 46. Walk, J., et al., *Modest heterologous protection after Plasmodium falciparum*
503 *sporozoite immunization: a double-blind randomized controlled clinical trial.* BMC
504 *Med*, 2017. **15**(1): p. 168.

505 47. Schindelin, J., et al., *Fiji: an open-source platform for biological-image analysis.* *Nat*
506 *Methods*, 2012. **9**(7): p. 676-82.

507

508

509 **Acknowledgments**

510

511 We are grateful for R. Stoter, R. Heutink, J. Klaasen, A. Pouwelsen, L. Pelser-Posthumus and
512 J. Kuhnen of the Malaria Unit at the Radboud University Medical Center for parasite, mosquito
513 and sporozoite production. We would like to thank the Microscopic Imaging Center (MIC) of
514 the Radboud University for access to the facilities. Additionally, we would like to thank T.
515 Kooij, N. Proellocchs and M. McCall for providing critical feedback on the project as well as
516 R.P. van Rij, K. Dechering and T. Bousema for reviewing the manuscript.

517

518 **Funding:**

519 This work is partially funded from the European Union's Horizon 2020 research and
520 innovation program under grant agreement No.733273 (A.S.P.Y, Y.M.W, G.J.G, and R.W.S).
521 A.S.P.Y is further supported by the Dutch Research Council (NWO) talent program veni
522 (VI.Veni.192.171). W.G is supported by a fellowship from the European Research Council
523 (ERC-2014-StG 639776). M.V is funded by the European Union's Horizon 2020 research and
524 innovation programme under grant agreement No. 731060.

525

526 **Author contributions:**

527 A.S.P.Y, Y.M.W, G.J.G, M.V, and W.G performed the experiments. J.H.W dW coordinated
528 the collection of fresh human liver segments. A.S.P.Y and Y.M.W collected the data and
529 performed the analysis. A.S.P.Y, Y.M.W and R.W.S were involved in the conceptualization
530 and writing of the manuscript

531

532 **Competing interests:** NA

533

534