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Application of Oxford Nanopore Technologies’ long-read se-
quencing platform to transcriptomic analysis is increasing in
popularity. However, such analysis can be challenging due to
small library sizes and high sequence error, which decreases
quantification accuracy and reduces power for statistical test-
ing. Here, we report the analysis of two nanopore sequenc-
ing RNA-seq datasets with the goal of obtaining gene-level and
isoform-level differential expression information. A dataset of
synthetic, spliced, spike-in RNAs (“sequins”) as well as a mouse
neural stem cell dataset from samples with a null mutation of the
epigenetic regulator Smchdl were analysed using a mix of long-
read specific tools for preprocessing together with established
short-read RNA-seq methods. We used /imma-voom to perform
differential gene expression analysis, and the novel FLAMES
pipeline to perform isoform identification and quantification,
followed by DRIMSeq and limma-diffSplice (with stageR) to per-
form differential transcript usage analysis. We compared re-
sults from the sequins dataset to the ground truth, and results of
the mouse dataset to a previous short-read study on equivalent
samples. Overall, our work shows that transcriptomic analysis
of long-read nanopore data using short-read software and meth-
ods that are already in wide use can yield meaningful results.
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Introduction

Short-read sequencing technology has underpinned transcrip-
tomic profiling research over the past decade. The sequenc-
ing platforms offered by companies such as Illumina Inc.
provide high read accuracy (>99.9%) and throughput which
allows many samples to be profiled in parallel. One major
limitation of short-read sequencing technology is the modest
read lengths offered (currently up to 600 bases), which makes
accurate isoform quantification and novel isoform discovery
challenging. Long-read sequencing offers a distinct advan-
tage in this regard, with the ability to generate reads that are
typically in the 1-100 kilobase (kb) range(1), which spans
the typical length distribution of spliced genes in human (for
protein coding genes 1-3 kb is typical with outliers such as
Titin at more than 80kb) thereby allowing the sequencing of
entire isoforms. This however comes at the expense of lower
throughput and reduced accuracy compared to short-read se-
quencing. The two main technology platforms that dominate

the field of long-read sequencing are Pacific Biosciences’
Single-Molecule Real Time (SMRT) sequencing and Oxford
Nanopore Technologies’ (ONT) nanopore sequencing.

Previous work on long-read transcriptomic data focuses on
transcript-level analysis, especially in the discovery of novel
isoforms(2—4). Some long-read specific methods have been
developed for this task. Reference-based methods, such as
TALON(S), compares reads to existing gene and transcript
models to create novel models. Reference-free methods, such
as FLAIR(6), maps reads to the reference genome, clusters
alignments into groups and collapses them into isoforms.
Differential transcript usage (DTU) is another transcript-level
analysis that is of great interest(6—8). DTU analyses exam-
ine differences in the relative proportions of expressed iso-
forms between two conditions. The DRIMSeq(9) method
performs DTU analysis on transcript-level RNA-seq counts
using a Dirichlet-multinomial model. Alternatively, tools de-
veloped for differential exon usage analysis, such as the diff-
Splice function(10) in limma and edgeR packages have also
been adapted to DTU analyses(11). Both DRIMSeq and diffS-
plice methods were developed for short read data. The stageR
package(12) can be used to control the false discovery rate
(FDR) of DTU analyses through its stage-wise method which
screens potential DTU genes using gene-level p-values be-
fore selecting the transcripts with evidence of DTU.

Previous studies have looked at gene-level analysis of
nanopore data but study design limited the methods used.
Soneson et al.(13) concluded that read coverage in native
RNA libraries (~0.5 million aligned reads per flow cell) were
too low for gene-level analyses, resulting in low power and
high variability. Li et al.(7) worked around this by sim-
ply using fold-changes to identify differentially expressed
genes for three ONT MinlON direct RNA Caenorhabditis
elegans samples, however the lack of statistical testing could
lead to unreliable results. Jenjaroenpun et al.(14) used DE-
Seq2(15) to perform differential expression analysis on direct
RNA transcript-level counts, but gene-level expression was
not studied.

In this study, we performed gene- and isoform-level analyses
of two nanopore long-read transcriptome sequencing datasets
that follow a simple replicated experimental design: a syn-
thetic “sequins”’(16) PCR-cDNA dataset, and a mouse neu-
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ral stem cell direct-cDNA dataset. We obtained meaningful
results using an analysis pipeline that mostly comprised of
“off-the-shelf” methods developed for short-read data, de-
spite our datasets having only a few million long reads per
sample. We found our results for the common two-group
experimental design to be reliable in that they are broadly
consistent with the available ground-truth or findings from a
previous short-read experiment. We found existing methods
for isoform identification from long-read data to be unreli-
able, and introduce a novel method, FLAMES, as part of our
isoform-level analysis pipeline.

Materials and methods

Study design. Mouse neural stem cells (NSCs) from 4 wild
type (WT) and 3 MommeD1 mutated (Smchdl-null)(17)
samples were prepared and sequenced, together with 3
“other” samples from a different experiment. Samples were
sequenced in two batches, each containing 6 samples. One
WT and one “other” sample were sequenced in both batches
as technical replicates.

Technical replicates of synthetic “sequin” RNA
standards(16) from two mixes (A and B) were pre-
pared and sequenced. These samples contain the same
transcripts but at variable molar ratios to simulate biological
differences in gene expression and alternative splicing.
Among the 76 synthetic genes, 21 were up-regulated and
23 were down-regulated in mix B compared to mix A. The
corresponding transcripts of 28 genes were expressed at
different proportions between the two mixes, resulting in
DTU for 62 out of 160 transcripts.

Biological materials. Synthetic “sequin” RNA standards
were obtained from the Garvan Institute of Medical Re-
search.

NSCs were derived as described in Chen et al.(18). Cells
were grown in NeuroCult Stem Cell medium (StemCell
Technologies #05702) with cytokines: NeuroCult NSC Basal
Medium (Mouse) (StemCell Technologies #05700) supple-
mented with NeuroCult Proliferation Supplement (Mouse)
(StemCell Technologies #05701), 0.25 mg/mL rh EGF
(StemCell Technologies #02633) and 0.25 mg/mL rh bFGF
(StemCell Technologies #02634). We extracted total RNA
with Trizol and purified polyA RNA with the NEBNext
Poly(A) mRNA Magnetic Isolation Module (E7490).

Nanopore sequencing and data preprocessing. Sequin
cDNA libraries were constructed with SQK-PCS109 cDNA-
PCR sequencing and SQK-PBK004 PCR Barcoding kits us-
ing the supplied protocol. Briefly, duplicate libraries of each
mix (Al, A2, B1, and B2) were constructed using 15 ng as
input for cDNA synthesis. Samples were barcoded 1 to 4 us-
ing the supplied PCR barcodes. Transcripts were amplified
by 14 cycles of PCR with a 6-minute extension time.

Sequencing libraries were individually purified using Beck-
man Coulter 0.8x AMPure XP beads and quantified using
an Invitrogen Qubit 4.0 Fluorometer (ThermoFisher Scien-
tific). Equimolar amounts of each sample were pooled to

2 | bioRxiv

a total of approximately 160 fmol (assuming median tran-
script size is 1 kb), and quality control of the pooled li-
brary was performed using Agilent Technologies TapeStation
4200. The final library was loaded onto an R9.4.1 MinlON
flow cell and sequenced for 65 hours with a buffer refuel at
24 hours (using 250 mL buffer FB) using the ONT GridION
platform. The fast5 files were base-called by Guppy version
3.2.8 using configuration file dna_r9.4.1_450bps_hac.cfg to
obtain fastqg files. MinKNOW version 3.6.0 was used
to trim adaptor sequences and demultiplex barcoded reads.
Both Guppy and MinKNOW are only available to ONT cus-
tomers via the community site (https://community.
nanoporetech.com/).

For the NSC dataset we prepared direct-cDNA libraries
from 40 ng purified polyadenylated RNA. We combined
the ONT direct-cDNA sequencing (SQK-DCS108) proto-
col (version DCB_9036_v108_revG_30Jun2017) with the
one-pot native barcoding protocol(19) with extended incu-
bation times (using SQK-LSK109 and EXP-NBD103 kits)
for library preparation of the first batch, and used the up-
dated kits SQK-DCS109 and EXP-NBD114 for the second
batch (protocol PDCB_9093_v109_revA_04Feb2019). We
loaded 100 ng of the final libraries on one PromethION
flow cell (FLO-PROO002) per batch. The fast5 files were
base-called by Guppy version 3.1.5 using configuration file
dna_r9.4.1_450bps_hac_prom.cfg to yield fastq files. We
used Porechop(20) to trim adaptor sequences from reads and
demultiplex barcoded reads. The “other” samples were re-
moved in downstream analysis. For an overview of our anal-
ysis pipeline see Figure 1A.

Genomic alignment. The NSC reads were aligned to mouse
mml0 genome using minimap?2 version 2.17-r943-dirty(21)
to get bam files. The genome alignments were performed
with the arguments

-ax splice -uf -k14 —junc-bed, allowing spliced alignments
on the forward transcript strand to map with higher sensi-
tivity. It also uses annotated splice junctions to improve the
accuracy of mapping at junctions. Gencode release M23
(GRCm38.p6) annotation(22) was used to provide informa-
tion on known splicing junctions. The sequins ONT reads
were mapped to the artificial chromosome chrIS_R using
minimap2 with the arguments -ax splice -MD. The bam files
were sorted and indexed using samtools version 1.6(23).

Gene abundance estimation. Mapped reads were as-
signed to individual genes and counted by the feature-
Counts(24) function in the R(25)/Bioconductor(26) package
Rsubread version 1.34.4(27, 28). We used the in-built mml0
annotation for the NSC data, and sequins annotation GTF
file version 2.4 for the sequins data. Arguments isLon-
gRead=TRUE and primaryOnly=TRUE were used to indi-
cate that the input data contains long reads and to count pri-
mary alignments only.

Differential gene expression analysis.Genes in the
NSC dataset were annotated using R/Bioconductor pack-
age Mus.musculus(29), and read counts from technical repli-
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Fig. 1. Analysis workflow and quality metrics. (A) Overview of the analysis workflow used to process the mouse NSC direct-cDNA long-read and short-read RNA-seq data.
(B) The number of raw reads, trimmed and demultiplexed reads and gene-level counts in the NSC dataset, stratified by average base quality score (Pass: >7, turquoise; Fail:
<7, red). (C) Distribution of read quality in the NSC dataset, stratified by read length. Read quality is defined by the average base quality score of a read. (D) The total
number of reads assigned to each sample in the NSC dataset (green: Smchd1-null samples; orange: WT samples). (E) A hexagonal 2D density plot showing the correlation

between gene length and average gene expression (log-CPM) in the NSC dataset.

cates were combined. For both datasets, we organized
and preprocessed the count data using the R/Bioconductor
package edgeR version 3.26.8(30, 31). Lowly expressed
genes were removed using the filterByExpr function with de-
fault arguments. Normalization factors were calculated us-
ing the trimmed mean of M-values method(32). Differen-
tial gene expression (DGE) analysis was performed using
the limma-voom pipeline version 3.40.6(10, 33, 34), with
sample-specific quality weights(35). Linear models were fit-
ted with either genotype or sequin mix information to create
the design matrix, followed by empirical Bayes moderation
of t-statistics(36). Raw p-values were adjusted for multiple
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testing(37).

Mouse NSC short-read data. We obtained DGE results
from a previous Illumina short-read RNA-seq study compar-
ing mouse Smchdl-null and WT NSC samples(18, 38) avail-
able at http://bioinf.wehi.edu.au/folders/
smchdl/ and from GEO (accession number GSE65747).
Using a limma-voom pipeline, the study reported 1,197 dif-
ferentially expressed (DE) genes (adjusted p-value cutoff of
0.01). We further restricted this list (adjusted p-value cutoff
of 0.0001) to give us 218 up- and 54 down-regulated genes in
Smchdl-null samples when compared to WT samples. This
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cutoff resulted in similar numbers of significant genes be-
tween the short- and long-read datasets. The DE genes were
compared to that of the NSC long-read data using ROAST
gene set testing(39) with 9,999 rotations.

Transcript-level analysis. We used three different tools to
perform isoform detection and quantification: FLAIR ver-
sion 1.5.0(6) and TALON version 5.0.0(5) for the sequins
data, and FLAMES version 0.1.0 for both sequins and NSC
datasets. Default parameters were used to run FLAIR.
TranscriptClean(40) version 1.02 which performs reference-
based error correction was applied prior to running TALON
version 5.0. Transcripts identified by TALON were filtered
using default setting.

FLAMES (short for ‘Full-Length trAnscript quantification,
Mutation and Splicing analysis’) is a novel method and soft-
ware tool developed for long-read RNA-seq data, available
at https://github.com/LuyiTian/FLAMES. It re-
quires sorted bam files with reads aligned to the genome
as input. Scanning each gene, FLAMES groups reads that
are similar as isoforms (transcript start/end site differs by
<100bp and splice site differs by <10bp). The isoforms are
then compared against a reference annotation (Gencode re-
lease M23 (GRCm38.p6)(22)), and transcript sequences are
extracted from the isoform assembly. All reads are then re-
aligned to both the known and assembled transcripts and
quantified. High-confidence isoforms are those identified
with at least 10 supporting reads.

After running each isoform detection tool, SQANTI(41) was
used to classify identified isoforms by comparing them to the
annotation. Lowly expressed transcripts were removed from
downstream analysis. We kept transcripts with 10 or more
counts in at least 3 samples in the NSC data, and in at least
2 samples in the sequins data. For both datasets, genes in
every sample were also required to have an associated gene
count (obtained by summing counts across all transcripts for
a given gene) of 10 or more.

DTU analysis was performed using two methods: the
R/Bioconductor package DRIMSeq version 1.12.0(9), and
diffSplice from the limma package version 3.40.6. Origi-
nally, DRIMSeq was designed for use with transcript-level
counts in short-read data, giving adjusted p-values at both
the gene-level and feature-level (transcripts). DiffSplice anal-
yses exon-level counts in short-read data to indirectly call for
differences in isoform proportions, and reports adjusted p-
values at the gene-level (Simes adjustment and/or F-tests) and
exon-level (¢-tests). For long-read data, we applied the diffS-
plice to transcript-level counts rather than exon-level counts
as carried out by Love et al.(11). Additionally, the stage-
wise method from R/Bioconductor package stageR version
1.6.0(12) was also applied to the raw p-values from DRIMSeq
(gene- and transcript-level) and diffSplice (Simes and ¢-tests)
methods for FDR control to give stageR gene- and transcript-
level adjusted p-values.

Data and code availability. RNA-seq data can be accessed
from Gene Expression Omnibus (GEO) under accession
numbers GSE151984 (sequins) and GSE151841 (NSC data).
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All code used to perform these analyses are available from
https://github.com/XueyiDong/LongReadRNA.

Results

Data quality. To assess the quality of our long-read datasets,
raw long reads were pre-processed and assigned to gene-level
counts using an appropriate reference genome. Figure 1B
shows the number of reads (or amount of information) re-
tained after some crucial steps in processing the NSC data. A
total of ~81 million reads were successfully sequenced and
base-called. A relatively small proportion of those, ~60% or
~48 million reads, were detected with adaptor and barcode
sequences in the trimming and demultiplexing steps. Most
of the reads that did not pass these steps were of low quality
and marked as “fail” reads (average base quality score <7).
The reads were then mapped to the genome and assigned to
genes, producing ~28 million gene-level counts. For the se-
quins dataset, ~7.3 million raw “pass” reads yielded ~5.7
million gene-level counts (Supplementary Figure S1).

In the NSC dataset, median read length is about 800 bases,
where low quality “fail” reads are generally shorter (median
of ~300 bases). Figure 1C shows that short reads (< 500
bases) tend to have low read quality relative to longer reads,
similar to that observed in Soneson et al.(13). The quality
of “extra long” reads (> 3000 bases) were similar to that
of “long” (1000 to 2999 bases) and “medium” (500 to 999
bases) length categories, indicating Nanopore’s ability to de-
tect transcripts in this size range. A small proportion (< 1%)
of reads exceed 5 kilobases. Similar to the NSC dataset, the
sequins dataset had a median read length of 996 bases, which
is sightly longer than its expected value of 908 bases.

The library size (sum of gene counts) of samples in the NSC
dataset varied between 2.1 million to 5.6 million reads (Fig-
ure 1D). As comparison, the library size of samples in the
short-read NSC study(18) were ranging between 18.6 million
to 23.2 million reads.

Gene expression analysis. In short-read RNA-seq, tran-
scripts (or genes) are fragmented for sequencing, such that
longer transcripts can be over-represented relative to tran-
scripts that are shorter. As a consequence, DGE analyses
are biased towards the detection of genes (or transcripts)
that are relatively long(42). Also, DGE analyses may be
confounded by DTU, such that gene-level counts are af-
fected by the varying proportions of transcripts with varying
lengths. One advantage to long-read RNA-seq protocols is
that they do not include the fragmentation step, and should
theoretically be unbiased to gene length. To examine this,
we looked at the relationship between gene length and gene
expression using loga-counts-per-million (log-CPM) values.
Gene length is weakly associated with expression in both
long-read datasets; Pearson correlation of 0.10 for the NSC
dataset (Figure 1E), and -0.05 for sequins dataset (Supple-
mentary Figure S2). Whereas, correlation in the short-read
NSC study(18) is greater, at 0.20.

We applied the limma-voom workflow designed for short-
read DGE analysis to our long-read data. We first anal-
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ysed the sequins data to check whether the approach was
appropriate using the ground-truth available. The analysis
was carried out using voomWithQualityWeights to account
for sample-level heterogeneity by estimating sample-specific
quality weights based on similarity of gene expression within
the same group. The sample weights were combined with
voom precision weights that are based on the mean-variance
relationship estimated from the data. Even though there were
only 69 genes present in the dataset (as opposed to tens of
thousands in a typical dataset), the mean-variance trend ob-
served for the sequins data (Supplementary Figure S3) was
similar to that of short-read RNA-seq data(33).

Linear modelling on the gene-level counts were carried to ob-
tain estimated logofold-change (1ogFC) values between mix
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A and B. Estimated values were highly correlated (R?=0.933)
with expected logFCs (Figure 2A). Using an adjusted p-value
cutoff of 0.05, 21 down-regulated and 18 up-regulated genes
were detected between mix B and A. There were no false
discoveries, and only 2 of the truly differentially expressed
genes were not detected. Overall, results from the sequin
synthetic control data indicate that the limma-voom pipeline
is powerful and reliable when applied to long-read data, so
we applied it to the NSC dataset also.

Unsupervised clustering by multidimensional scaling (MDS)
was used to observe the relationships between NSC sam-
ples. Dimension 1 in the MDS plot roughly separates sam-
ples by genotype (Figure 2B), although a Smchdl-null sam-
ple (sample 7) is positioned more closely to WT samples.
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Fig. 3. Isoform identification and differential transcript usage analysis. (A) A bar plot showing the number of discovered isoform types in the sequins dataset. The bars are
separated into isoform categories (by colour), and the dashed line represents the true number of isoform types. (B) A bar plot showing the number of counts from isoforms in
the sequins dataset. The bars are separated into isoform categories (by colour) from which the counts are associated with. (C) A scatter plot showing the correlation between
the fraction of full-length reads assigned to a transcript and the length of the annotated transcript. Dots are coloured by log> count of transcripts. (D) A violin plot showing the
aligned fraction of reads (calculated as the aligned length divided by read length), stratified by whether the read is full-length. (E) The correlation between observed transcript
counts and expected transcript abundance of each gene from each sequins sample. (F) A box plot showing the distribution of adjusted p-values from different tests of DTU for
the true DTU genes or transcripts in sequins data. The dashed horizontal line shows the adjusted p-value cutoff of 0.05. Boxes are coloured by whether the test is performed
on gene level or transcript level. (G) A barplot showing the number of discovered isoforms in each category output by FLAMES in the NSC dataset. (H) A barplot showing
the number of counts from isoforms in each category output by FLAMES in the NSC dataset.

The mean-variance trend for this dataset is strikingly simi-
lar to that which is typically observed in short-read RNA-
seq experiments(33) (Figure 2C); even more so than in the
sequins dataset. Estimated sample weights favoured sam-
ples that distinguished groups across dimension 2 of the
MBDS plot, giving samples 2 and 3 in the SmchdI-null group
weights that are greater than 1, as well as samples 1 and 5
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in the WT group (Figure 2D). Using the default adjusted p-
value cutoff of 0.05, only 17 genes were detected as DE. Us-
ing a more liberal adjusted p-value cutoff of 0.25 to account
for the small library sizes, detected 413 down-regulated and
321 up-regulated genes between Smchdl-null and WT sam-
ples (Figure 2E). The Smchdl gene, which was depleted in
Smchdl-null samples, was detected as the most significantly
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down-regulated gene in the comparison (highlighted in Fig-
ure 2E) and serves as a positive control for our analysis.

In a previous short-read study on the same mouse NSC
groups(18, 38), the imprinted genes Ndn, Mkrn3 and Pegl2
were reported as up-regulated. These genes were also found
to be DE in the long-read dataset (highlighted in Figure 2E).
Further comparison between the short- and long-read datasets
was carried out using a barcode plot (Figure 2F). The bar-
code plot shows that most of the genes that were up-regulated
in the short-read dataset (red vertical lines in the plot) also
tend to be up-regulated in our long-read dataset (positioned
towards the right of the plot). Specifically, the genes that
were most highly up-regulated in the short-read dataset as
ranked by logFC (long red vertical lines), are also highly up-
regulated in the long-read data (further right in the plot). The
same goes for down-regulated genes in the short-read dataset
(blue vertical lines in the plot), which tend to be down-
regulated in the long-read dataset (positioned towards the left
of the plot). We tested concordance of the datasets formally
by applying the ROAST gene set testing method(39) to our
long-read data. Using both up- and down-regulated gene sets
from the short-read dataset, weighted on their logFC values,
ROAST returned an “up” p-value of 0.10, which indicates
that transcriptional changes for the comparison of Smchdl-
null versus WT are somewhat consistent between the two
datasets (up-regulated genes in the short-read data tend to be
up-regulated in the long-read data, and down-regulated genes
in the long-read data tend to be down-regulated in the long-
read data). The relatively large ROAST p-value and over-
all lack of power to detect differentially expressed genes is
likely due to relatively low sequencing levels per sample and
within-genotype sample heterogeneity in the long-read ex-
periment.

Transcript-level analysis. Transcript-level analysis of
nanopore RNA-seq data usually starts with isoform detec-
tion. To test which tool is best suited to nanopore data,
we compared two popular tools, FLAIR and TALON with
our novel FLAMES pipeline on the sequins dataset. Ideally,
all transcripts that appear in the sequins annotation should
be detected, and there should not be any novel isoforms.
Our results showed that FLAMES detected the most sequin
transcripts (Figure 3A, ‘full splice match’ category) and the
fewest artefactual isoforms (Figure 3A, other categories).
While most sequin transcripts were also detected by FLAIR, a
disproportionately large number of artefactual isoforms were
also identified, especially those classified as ‘novel in cata-
log’ for which we know there are none. TALON only detected
about half of the sequin transcripts, and many antisense iso-
forms. When we looked into the number of reads assigned
to transcripts in each category (Figure 3B), the majority of
counts in FLAMES were from known isoforms, while about
half of the counts in FLAIR were from artefactual isoforms.
The total number of read counts from FLAMES (~4M) and
FLAIR (~2.4M) are similar, while for TALON it was much
lower (~4.4K). Results from the sequins dataset indicated
that the novel FLAMES pipeline outperformed the other two
methods.
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To further assess the performance of FLAMES and the quality
of the dataset, we calculated the coverage fraction of tran-
scripts by individual reads. Here, reads covering 95% or
more of the bases of their corresponding transcript are de-
fined as “full-length”. In our sequins data, 48% of reads
were found to be full-length. Reads assigned to longer tran-
scripts are less likely to be full-length (Figure 3C), consis-
tent with findings from Jenjaroenpun et al.(14). We also ob-
served that full-length reads have a higher fraction of aligned
bases (Figure 3D). Looking further into the isoforms identi-
fied by FLAMES, we found that ‘full splice match’ isoforms
tend to be longer than those in the other categories (Supple-
mentary Figure S4), but they tend to miss some bases at the
transcription start sites and/or transcription termination sites.
This suggests that some reads may be truncated in our sequins
dataset, which presumably occurs during library preparation
of sequencing.

Next, we adapted DRIMSeq and the diffSplice function in
limma for DTU analysis of long-read data. We also com-
bined the methods with the stage-wise analysis from the
stageR(12) package since it was recommended in the DRIM-
Seq vignette for statistical improvement and enhanced bio-
logical interpretation of results. We expect good performance
of DTU analyses comparing mixes A and B since the ob-
served CPM values of sequin transcripts were highly cor-
related with their expected abundances (Figure 3E). Indeed,
all of the DTU methods performed well, with no false dis-
coveries for any of the methods (using an adjusted p-value
cutoff of 0.05) (Figure 3F, Supplementary Figure S5). The
true positive rate (TPR) (detecting genes/transcripts as hav-
ing DTU when they truly have DTU) was very high for all
of the methods (TPR>0.89), with DRIMSeq slightly out-
performing diffSplice (Supplementary Figure S6). StageR
transcript-level testing further improved the results of both
DRIMSeq and diffSplice (TPR=1). StageR gene-level testing
also improved the results from DRIMSeq, but not for diffS-
plice. We demonstrate that our pipeline and combination of
methods for transcript-level analysis produces accurate tran-
script quantification and identification of DTU, and provides
confidence for application to other long-read transcriptomic
datasets.

We then applied our transcript-level analysis workflow to the
NSC dataset. The FLAMES pipeline returned 40,221 unique
isoforms from 10,986 genes, of which 48% were classified
as novel (Figure 3G), which is a lot more than what was
observed in the sequins dataset. Since we observed a very
low level of falsely discovered isoforms in the sequins data,
we assume that that most of these novel isoforms are real.
This suggests that the current mouse transcript annotation is
incomplete. Of the mapped reads, 29.4% were assigned to
novel isoforms, the majority of which were from the ‘novel
not in catalog’ category (Figure 3H). Both DTU methods
(DRIMSeq and diffSplice) found only one gene Pisd as hav-
ing DTU for Smchdl-null versus WT using an adjusted p-
value cutoff of 0.25. Pisd was not DE at the gene-level (ad-
justed p-value=0.44). Transcript ENSMUST00000201980.4
in Pisd was identified to have differential usage between the
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two groups (Supplementary Figure S7 and S8).

Using limma-diffSplice applied to exon counts, we also per-
formed differential exon usage analysis on the NSC short-
read data and found 87 significant genes (adjusted p-value
cutoff of 0.05). The results, however, were discordant be-
tween short- and long-read datasets, with only 3 common
genes in the top 200 most significant genes identified by
limma-diffSplice for both datasets. Pisd was not identified
to have significant differential splicing in the short-read anal-
ysis (adjusted p-value=1.00).

Discussion

Our DGE analysis uses a limma-voom workflow and shows
that results from PCR-cDNA and direct-cDNA long-reads are
reliable, such that estimated results are comparable to the
known truth in the sequins synthetic control dataset, and con-
cordant with that of a previous short-read study for the NSCs.
Although the total library size in the sequins dataset is lower
than that of the NSC dataset, more reads were assigned per
gene since the dataset contains a small set of genes, which
improved power for DGE analysis. Overall, comparisons
using long-read experiments suffer from a lack of statistical
power due to low library sizes. It would be desirable for long-
read transcriptomic studies to have total read numbers that
are more comparable to what is routinely achieved in short-
read experiments (20-50M reads per sample is not unusual).
We expect this to occur in the near future as throughput of
long-read experiments increases.

We also looked into transcript-level analysis of long-read data
and found our novel FLAMES pipeline to be reliable in both
isoform detection and quantification. The high false pos-
itive rate of FLAIR for isoform detection suggests that its
reference-free algorithm needs further improvement to adapt
to high error rates in long-read sequencing. Despite methods
being designed originally for short-read data, DRIMSeq and
diffSplice (in combination with stageR or not) performed very
well in DTU analyses of our sequins data using transcript-
level counts. We believe these methods could be applied to
other datasets with confidence, but may lack power to de-
tect DTU genes if transcript counts are very low. A potential
issue in the application of the methods to our NSC dataset
is that altered expression of the gene (Smchdl) may not af-
fect RNA splicing mechanisms. Discordance between our
results for short- and long-read NSC studies may be a reflec-
tion of the differences in exon-level counting in short reads
versus transcript-level counting in long reads, rather than in-
consistencies in the diffSplice method itself. Notably, relative
to DGE analyses, a DTU analysis further splits gene-level
counts into associated isoforms which reduces power for sta-
tistical testing. For this reason, the power to detect DTU
genes in the NSC long-read dataset is reduced relative to the
sequins dataset since the latter contains far fewer expressed
genes and transcripts to begin with, such that transcripts have
higher counts on average.

Our study is the first to test a pipeline for gene-level DGE
analysis and transcript-level DTU analysis of nanopore long-
read RNA-seq data. Whilst the sequencing depth is relatively
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low, we are still able to obtain reasonable results using pre-
existing methods designed for short reads, namely the limma
and DRIMSeq software. We expect that other short-read tools
such as edgeR and DESeq2 may also be appropriate, although
this has not been tested. Exploring the strengths and weak-
nesses of different analysis methods on data arising from both
the Nanopore and PacBio long-read platforms using a spe-
cially designed benchmarking dataset is planned as future
work.

We hope that our analysis will encourage further research
into the potential for long-read RNA-seq to be used in place
of short-read RNA-seq, allowing for the simultaneous ex-
ploration of gene-level and isoform-level changes within the
same experiment in a more comprehensive way.
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Fig. S1. The number of pass (average base quality score >7) raw reads, trimmed and demultiplexed reads and assigned reads in the sequins dataset.
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Fig. S2. Correlation between gene length and average gene expression (log-CPM) in the sequins dataset.
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Fig. 3. Voom mean-variance trend in the sequins data where points represent genes, and sample-specific weights obtained from the voomWithQualityWeights function.
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Fig. S4. A box plot showing the length distribution of isoforms identified by FLAMES in the sequins dataset, stratified by isoform structural categories.
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Fig. S5. A box plot showing the distribution of adjusted p-values from different tests of DTU for the sequins data, faceted by whether the test is performed at the gene-level
or transcript-level and stratified by whether the gene or transcript has true DTU. The dashed horizontal line shows the adjusted p-value cutoff of 0.05.
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Fig. S6. A bar plot showing the true positive rate (TPR) from different tests of DTU for the sequins data.
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Fig. S7. Different isoforms of gene Pisd in the NSC dataset identified by FLAMES.
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Fig. S8. A ribbon plot showing the estimated isoform proportions for the gene Pisd in the NSC dataset.
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