

1

2 Antifungal activity of 2,3-diphenyl-2,3-dihydro-1,3-thiaza-4-ones against *two* human
3 pathogenic fungi

4

5 Livia Liporagi-Lopes,^{a,d,#} Hany F. Sobhi,^b Lee J. Silverberg,^c Radames J.B. Cordero,^d and
6 Arturo Casadevall^d

7

8 ^aFaculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de
9 Janeiro, Rio de Janeiro, RJ, Brazil.

10 ^bCoppin Center for Organic Synthesis, Department of Natural Sciences, Coppin State
11 University, Baltimore, MD, USA.

12 ^cDepartment of Chemistry, Pennsylvania State University, Schuylkill Campus, 200
13 University Drive, Schuylkill Haven, PA, USA.

14 ^dDepartment of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg
15 School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

16

17 Running Head: Promising new class of antifungal agents

18

19 #Address correspondence to Livia Liporagi-Lopes. livialiporagi@yahoo.com.br

20

21

22

23 **ABSTRACT**

24 Invasive fungal diseases are prevalent in immunocompromised individuals in whom
25 current therapies often provide suboptimal results. Additionally, the increased resistance
26 to the available antifungal drugs necessitates a search for new compounds. This study
27 reports the antifungal activity of six 5-, 6-, and 7-membered 2,3-diphenyl-2,3-dihydro-
28 1,3-thiaza-4-ones against *Lomentospora prolificans* and *Cryptococcus neoformans*. Our
29 data showed that some of the compounds tested had a low MIC and damage on the cell
30 surface of the tested fungal species.

31

32 **INTRODUCTION**

33 The need for new antifungal compounds reflects the limitations of current
34 therapies, which include frequent therapeutic failures despite prolonged courses and
35 increasing drug resistance [1]. The long-term use of an antifungal drugs can increase the
36 problem of resistance, as already seen with liposomal amphotericin B in an AIDS patient
37 with relapsing/refractory cryptococcosis [2]. Mortality rates for invasive fungal infections
38 remain unacceptably high even when treated with existing drugs. A recent estimate puts
39 the annual death toll from fungal diseases at 1.5 million [3, 4]. The identification of new
40 antifungal compounds is complicated because of the similarities in cellular physiology
41 between fungal and animal cells, such that many compounds with antifungal activity are
42 unacceptably toxic to humans [5, 6]. Furthermore, several antifungals have significant
43 interactions with immunosuppressive cells, such as those used in patients after a solid
44 organ transplant (SOT), due to the inhibition of hepatic P450 enzymes [7, 8].

45 Current therapeutic choices for the treatment of invasive fungal infections are
46 limited to four classes of drugs: 5-fluorocytosine, polyenes including amphotericin B,
47 echinocandins such as anadulafungin, and triazoles [4]. The most recent class of
48 antifungals, the echinocandins, were developd two decades ago [9].

49 Two fungal pathogens that are very difficult to treat are *Lomentospora prolificans*
50 and *Cryptococcus neoformans*. *L. prolificans* systemic infections are notable for very
51 high morbidity and mortality rates [10]. Cryptococcal meningitis is a global problem
52 resulting in thousands of deaths annually [11]. Poor and late diagnosis, limited access to
53 antifungals, and drug resistance are directly associated with the high fatality rate of
54 cryptococcosis, especially in developing countries [12].

55 The five, six, and seven-membered 1,3-thiaza-4-ones heterocycles (Fig. 1) are a
56 biologically active group. The most studied are from the the five-membered 1,3-
57 thiazolidin-4-ones group. These compounds are easily prepared and have shown a wide
58 range of activities [29-30]. Derivatives of 1,3-thiazolidin-4-one exhibit antibacterial,
59 antitubercular, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidepressant,
60 antiviral and anti-HIV, trypanocidal (anti-epimastigote), antiarrhythmic, anti-
61 hyperlipidemic, cardiovascular and antidiabetic activities, as well as an agonist of FSH
62 and muscarinic receptors [18,20]. The 2,3-dihydro-1,3-thiazin-4-ones have also displayed
63 antifungal activity [44-49].

64 In this study, we evaluated the potential antifungal activity of six 2,3-diphenyl-
65 2,3-dihydro-1,3-thiaza-4-ones **1-6** (Fig. 1) against conidia of *L. prolificans* and yeasts of
66 *C. neoformans*. The compounds are rings comprised of sulfur at the one position (S1),
67 carbon at two (C2), nitrogen at three (N3), and a carbonyl at four (C4). Each also has
68 benzene rings attached to C2 and N3. Compound **1** is a seven-membered ring that has a

69 spiro cyclopropane at C6. Compound **2** is a five-membered ring. Compounds **3-6** are six-
70 membered rings. Compound **3** has a benzene ring fused to C5-C6. Compound **5** similarly
71 has a pyridine ring fused to C5-C6. Compound **6** has an *N*-acetyl moiety attached to C5
72 and is a single enantiomer as a result of *N*-acetyl-L-cysteine being used in its preparation
73 [21,38]. Compounds **1-5** are racemic (Fig. 1).

74

75 METHODS, RESULTS AND DISCUSSION

76 Stock solutions of the six compounds were prepared at 1000 µg/ml with 100%
77 dimethyl sulfoxide (DMSO, Fisher Scientific Company, USA), followed by serial
78 dilutions to make working antifungal solutions. When combined with the inoculum
79 suspension, the final concentration series ranged from 50 to 0.39 µg/ml. Growth and
80 sterility controls were included for each tested isolate, and *Candida albicans* strain
81 SC5314 was used as a reference-quality control strain in every batch. Finally, the
82 microdilution plates were incubated at 37°C with 180 rpm during 48 (for *C. neoformans*
83 strain H99) or 72 (for *L. prolificans* strain ATCC90853) hours for minimum inhibitory
84 concentration (MIC) determination. The plates were analyzed by measuring the
85 absorbance at 492 nm using a spectrophotometer. Antifungal susceptibility testing was
86 performed to determine the minimal concentration of the compounds necessary to inhibit
87 50% of the *C. neoformans* and *L. prolificans* growth, according to the Clinical and
88 Laboratory Standards Institute (CLSI) guidelines contained in the M38-A2 document and
89 EUCAST protocol 9.3 [13, 14]. Fluconazole was used as a reference drug. *In vitro*
90 antifungal susceptibility testing is now standardized internationally and the MIC informs
91 the susceptibility or resistance of the organism to the antifungal agent, which can help in
92 treatment decisions [13, 15, 16]. In this context, we tested six 2,3-diphenyl-2,3-dihydro-

93 1,3-thiaza-4-ones against *L. prolificans* and *C. neoformans* and found that thiazepanone
94 1, thiazolidone 2, had better efficacy (lower MIC) against both fungi in comparison with
95 fluconazole. Thiazinone 4 and 5 had a good effect against *C. neoformans*, while
96 benzothiazinone 3 and *N*-acetyl-L-cysteine derived 6 showed no effect (or no effect better
97 than our control, fluconazole) on either fungus (Table 1). Thus, 5-, 6- and 7-membered
98 ring compounds exhibited strong antifungal activity.

99 Cytotoxicity for mammalian cells was tested using J774 macrophage-like cells.
100 J774 macrophages cells were plated in 96-well polystyrene tissue-culture plates and
101 incubated for 24 h at 37°C and 5% CO₂ prior to the addition of compounds 1-6 (final
102 concentration series ranged from 50 to 0.39 µg/ml). After 24 and 48 h incubations, the
103 cell viability was measured by XTT salt method, according to the Assay Guidance
104 Manual [17, 18]. Cytotoxicity assays were done to ascertain whether these compounds
105 could damage J774 macrophages. No significant effect was observed on the
106 macrophage's viability in the presence of different concentrations of compounds 1-6 at
107 24 and 48h (Fig. 2).

108 Since compounds 1 and 2 were more effective than fluconazole in both fungi, we
109 decided to evaluate the fungal cell surface after cells are incubated with the MIC 50
110 concentration of compounds 1 and 2 for 48 and 72 h, through SEM [19] and IF [20]
111 techniques. Cell surface damage was found on both *C. neoformans* (Fi. 3, pictures A and
112 C) and *L. prolificans* (Fig. 3, pictures B and D) cells after incubation with compounds 1
113 and 2. SEM analysis showed that treated *C. neoformans* cells were often partially
114 collapsed and/or folded (Fig. 3, picture A) while treated *L. prolificans* exhibited the
115 presence of small pores and wrinkles on the cell surface (Fig. 3, picture B).
116 Epifluorescence microscopy of both species using 0.5 mg/mL of Uvitex 2B cell wall

117 staining showed broken cell walls (Fig. 3, pictures C and D). *C. neoformans* yeasts were
118 collapsed and *L. prolificans* cells exhibited pores, suggesting that the inhibitory
119 mechanism of both compounds **1** and **2** may involve interaction with the fungal cell wall.

120 In summary, our findings suggest that 2,3-diphenyl-2,3-dihydro-1,3-thiaza-4-ones
121 compounds could represent a promising new class for the development of new antifungal
122 therapeutic agents. The mechanism of antifungal action is still under investigation.

123

124 **Acknowledgment**

125 We want to thank the Postdoc fellowship from CNPq, Conselho Nacional de
126 Desenvolvimento Científico e Tecnológico – Brasil. Coppin State University, Center for
127 Organic Synthesis, Baltimore, Maryland, USA. Johns Hopkins University, Department
128 of Molecular Microbiology, Bloomberg School of Public Health, Baltimore, Maryland,
129 USA. AC was supported in part by NIH grants AI052733, AI15207 and HL059842.

130

131 **References**

132

- 133 1. Scorzoni, L., et al., *Searching new antifungals: The use of in vitro and in vivo*
134 *methods for evaluation of natural compounds.* J Microbiol Methods, 2016. **123**:
135 p. 68-78.
- 136 2. de Carvalho Santana, R., et al., *Fluconazole Non-susceptible Cryptococcus*
137 *neoformans, Relapsing/Refractory Cryptococcosis and Long-term Use of*
138 *Liposomal Amphotericin B in an AIDS Patient.* Mycopathologia, 2017.

139 3. Brown, G.D., et al., *Hidden killers: human fungal infections*. Sci Transl Med,
140 2012. **4**(165): p. 165rv13.

141 4. Campoy, S. and J.L. Adrio, *Antifungals*. Biochem Pharmacol, 2017. **133**: p. 86-
142 96.

143 5. Ostrosky-Zeichner, L., et al., *An insight into the antifungal pipeline: selected new*
144 *molecules and beyond*. Nat Rev Drug Discov, 2010. **9**(9): p. 719-27.

145 6. Pierce, C.G., et al., *Antifungal therapy with an emphasis on biofilms*. Curr Opin
146 Pharmacol, 2013. **13**(5): p. 726-30.

147 7. Dodds-Ashley, E., *Management of drug and food interactions with azole*
148 *antifungal agents in transplant recipients*. Pharmacotherapy, 2010. **30**(8): p. 842-
149 54.

150 8. Denning, D.W., et al., *Micafungin (FK463), alone or in combination with other*
151 *systemic antifungal agents, for the treatment of acute invasive aspergillosis*. J
152 Infect, 2006. **53**(5): p. 337-49.

153 9. Pound, M.W., et al., *Overview of treatment options for invasive fungal infections*.
154 Med Mycol, 2011. **49**(6): p. 561-80.

155 10. Cortez, K.J., et al., *Infections caused by Scedosporium spp*. Clin Microbiol Rev,
156 2008. **21**(1): p. 157-97.

157 11. Park, B.J., et al., *Estimation of the current global burden of cryptococcal*
158 *meningitis among persons living with HIV/AIDS*. AIDS, 2009. **23**(4): p. 525-30.

159 12. Rodrigues, M.L., *Funding and Innovation in Diseases of Neglected Populations:*
160 *The Paradox of Cryptococcal Meningitis*. PLoS Negl Trop Dis, 2016. **10**(3): p.
161 e0004429.

162 13. Subcommittee on Antifungal Susceptibility Testing of the, E.E.C.f.A.S.T.,
163 *EUCAST Technical Note on the method for the determination of broth dilution*

164 *minimum inhibitory concentrations of antifungal agents for conidia-forming*
165 *moulds*. Clin Microbiol Infect, 2008. **14**(10): p. 982-4.

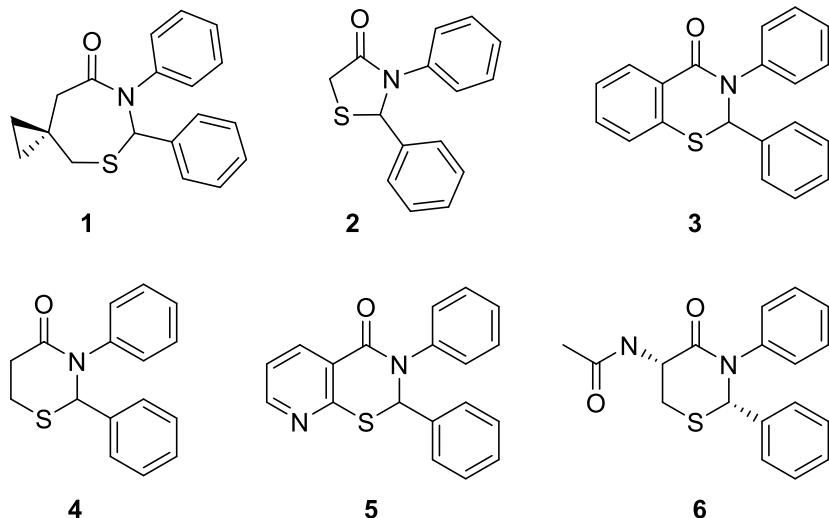
166 14. Rollin-Pinheiro, R., et al., *Characterization of Scedosporium apiospermum*
167 *glucosylceramides and their involvement in fungal development and macrophage*
168 *functions*. PLoS One, 2014. **9**(5): p. e98149.

169 15. Howard, S.J., et al., *Frequency and evolution of Azole resistance in Aspergillus*
170 *fumigatus associated with treatment failure*. Emerg Infect Dis, 2009. **15**(7): p.
171 1068-76.

172 16. Grossman, N.T. and A. Casadevall, *Physiological Differences in Cryptococcus*
173 *neoformans Strains In Vitro versus In Vivo and Their Effects on Antifungal*
174 *Susceptibility*. Antimicrob Agents Chemother, 2017. **61**(3).

175 17. Riss, T.L., R.A. Moravec, and A.L. Niles, *Cytotoxicity testing: measuring viable*
176 *cells, dead cells, and detecting mechanism of cell death*. Methods Mol Biol, 2011.
177 **740**: p. 103-14.

178 18. Riss, T.L., et al., *Cell Viability Assays*, in *Assay Guidance Manual*, G.S.
179 Sittampalam, et al., Editors. 2004: Bethesda (MD).


180 19. Camacho, E., et al., *The structural unit of melanin in the cell wall of the fungal*
181 *pathogen Cryptococcus neoformans*. J Biol Chem, 2019. **294**(27): p. 10471-
182 10489.

183 20. Fu, M.S., et al., *Cryptococcus neoformans urease affects the outcome of*
184 *intracellular pathogenesis by modulating phagolysosomal pH*. PLoS Pathog,
185 2018. **14**(6): p. e1007144.

186

187

188

189

190 **Figure 1.** Structures of 2,3-diphenyl-2,3-dihydro-1,3-thiaza-4-ones **1-6**.

191

192

193

194

195

196

197

198

199

200

201

202 **Table 1.** MIC 50 for *C. neoformans* and *L. prolificans* to compounds **1-6** and fluconazole.

	MIC 50 (μg/mL)						
	1	2	3	4	5	6	Fluconazole
<i>C. neoformans</i>	42.2	42.8	>100	47.5	27.5	>100	65.0
<i>L. prolificans</i>	31.6	28.6	>100	>100	95.0	>100	>100

203

204 MIC values were obtained from duplicate (compounds **3-6**) and triplicate (compounds **1-**
205 **2**) analysis.

206

207

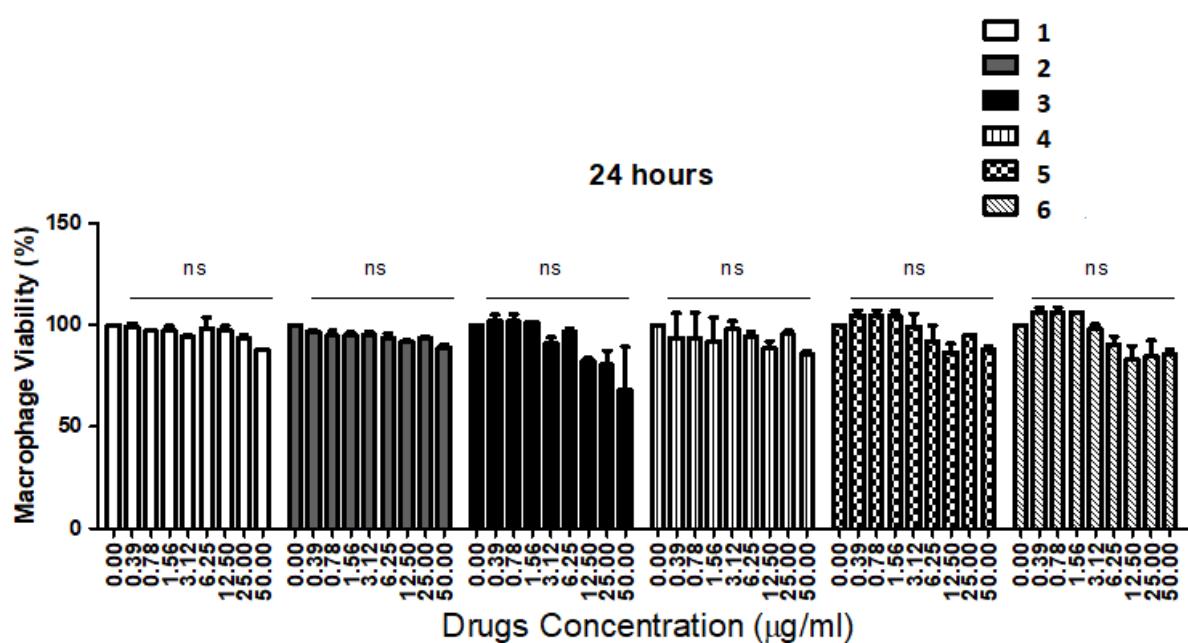
208

209

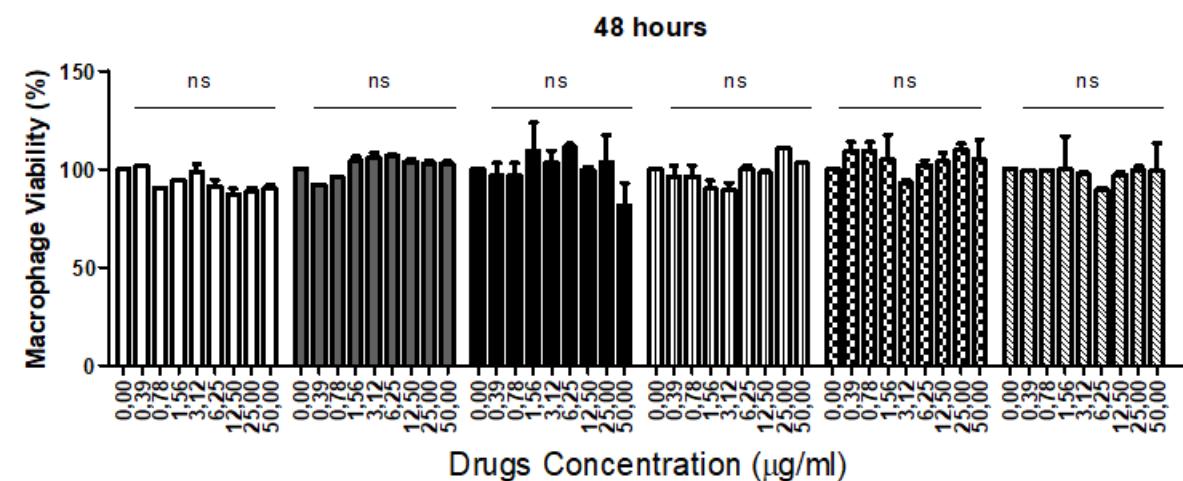
210

211

212


213

214


215

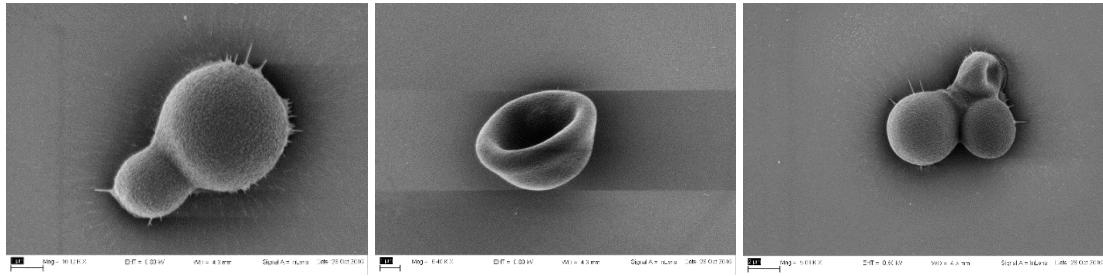
216

217

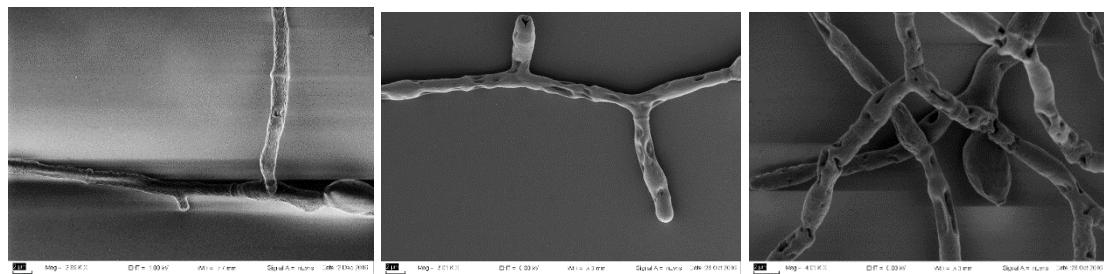
218

219

220 **Figure 2.** Cytotoxicity assay of macrophages in the presence of compounds **1-6** during
221 24 and 48h, performed according to the Assay Guidance Manual. Statistical analyses were
222 performed using GraphPad Prism version 8.00 for Mac X (GraphPad Software, San Diego
223 CA). One-way analysis of variance using a Kruskal-Wallis nonparametric test was used
224 to compare the differences between groups, and individual comparisons of groups were
225 performed using a Bonferroni post-test. ns: not significant.

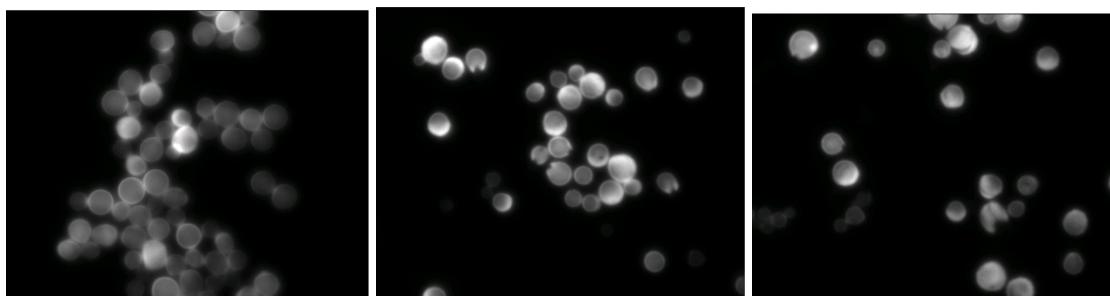

226 **A.**

227 **Control**


1

2

228


229

230

231 **C.**

232

233 **D.**

234

235 **Figure 3.** Cell wall damage in *C. neoformans* and *L. prolificans* by compounds **1** and **2**
236 as visualized by SEM and light microscopy. Pictures A and B show SEM of *C.*
237 *neoformans* and *L. prolificans*, respectively. Pictures C and D show Uvitex 2B staining
238 of fungal cell wall from *C. neoformans* and *L. prolificans*, respectively. Scale bar
239 represents 2 μ m.

240

241

242

243