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22

23 ABSTRACT

24 Invasive fungal diseases are prevalent in immunocompromised individuals in whom
25  current therapies often provide suboptimal results. Additionally, the increased resistance
26  to the available antifungal drugs necessitates a search for new compounds. This study
27  reports the antifungal activity of six 5-, 6-, and 7-membered 2,3-diphenyl-2,3-dihydro-
28  1,3-thiaza-4-ones against Lomentospora prolificans and Cryptococcus neoformans. Our
29  data showed that some of the compounds tested had a low MIC and damage on the cell

30 surface of the tested fungal species.

31

32 INTRODUCTION

33 The need for new antifungal compounds reflects the limitations of current
34  therapies, which include frequent therapeutic failures despite prolonged courses and
35 increasing drug resistance [1]. The long-term use of an antifungal drugs can increase the
36  problem of resistance, as already seen with liposomal amphotericin B in an AIDS patient
37  withrelapsing/refractory cryptococcosis [2]. Mortality rates for invasive fungal infections
38 remain unacceptably high even when treated with existing drugs. A recent estimate puts
39  the annual death toll from fungal diseases at 1.5 million [3, 4]. The identification of new
40  antifungal compounds is complicated becausee of the similarities in cellular physiology
41  between fungal and animal cells, such that many compounds with antifungal activity are
42 unacceptably toxic to humans [5, 6]. Furthermore, several antifungals have significant
43  interactions with immunosuppressive cells, such as those used in patients after a solid

44  organ transplant (SOT), due to the inhibition of hepatic P450 enzymes [7, 8].
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45 Current therapeutic choices for the treatment of invasive fungal infections are
46  limited to four classes of drugs: 5-fluorocytosine, polyenes including amphotericin B,
47  echinocandins such as anadulafungin, and triazoles [4]. The most recent class of

48  antifungals, the echinocandins, were developd two decades ago [9].

49 Two fungal pathogens that are very difficult to treat are Lomentospora prolificans
50 and Cryptococcus neoformans. L. prolificans systemic infections are notable for very
51  high morbidity and mortality rates [10]. Cryptococcal meningitis is a global problem
52  resulting in thousands of deaths annually [11]. Poor and late diagnosis, limited access to
53 antifungals, and drug resistance are directly associated with the high fatality rate of

54  cryptococcosis, especially in developing countries [12].

55 The five, six, and seven-membered 1,3-thiaza-4-ones heterocycles (Fig. 1) are a
56  biologically active group. The most studied are from the the five-membered 1,3-
57  thiazolidin-4-ones group. These compounds are easily prepared and have shown a wide
58 range of activities [29-30]. Derivatives of 1,3-thiazolidin-4-one exhibit antibacterial,
59 antitubercular, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidepressant,
60 antiviral and anti-HIV, trypanocidal (anti-epimastigote), antiarrhythmic, anti-
61  hyperlipidemic, cardiovascular and antidiabetic activities, as well as an agonist of FSH
62  and muscarinic receptors [ 18,20]. The 2,3-dihydro-1,3-thiazin-4-ones have also displayed

63  antifungal activity [44-49].

64 In this study, we evaluated the potential antifungal activity of six 2,3-diphenyl-
65  2,3-dihydro-1,3-thiaza-4-ones 1-6 (Fig. 1) against conidia of L. prolificans and yeasts of
66  C. neoformans. The compounds are rings comprised of sulfur at the one position (S1),
67  carbon at two (C2), nitrogen at three (N3), and a carbonyl at four (C4). Each also has

68  benzene rings attached to C2 and N3. Compound 1 is a seven-membered ring that has a
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69  spiro cyclopropane at C6. Compound 2 is a five-membered ring. Compounds 3-6 are six-
70  membered rings. Compound 3 has a benzene ring fused to C5-C6. Compound 5 similarly
71 has a pyridine ring fused to C5-C6. Compound 6 has an N-acetyl moiety attached to C5
72 and is a single enantiomer as a result of N-acetyl-L-cysteine being used in its preparation

73 [21,38]. Compounds 1-5 are racemic (Fig. 1).

74

75 METHODS, RESULTS AND DISCUSSION

76 Stock solutions of the six compounds were prepared at 1000 pg/ml with 100%
77  dimethyl sulfoxide (DMSO, Fisher Scientific Company, USA), followed by serial
78  dilutions to make working antifungal solutions. When combined with the inoculum
79  suspension, the final concentration series ranged from 50 to 0.39 pg/ml. Growth and
80  sterility controls were included for each tested isolate, and Candida albicans strain
81 SC5314 was used as a reference-quality control strain in every batch. Finally, the
82  microdilution plates were incubated at 37°C with 180 rpm during 48 (for C. neoformans
83  strain H99) or 72 (for L. prolificans strain ATCC90853) hours for minimum inhibitory
84  concentration (MIC) determination. The plates were analyzed by measuring the
85 absorbance at 492 nm using a spectrophotometer. Antifungal susceptibility testing was
86  performed to determine the minimal concentration of the compounds necessary to inhibit
87 50% of the C. neoformans and L. prolificans growth, according to the Clinical and
88  Laboratory Standards Institute (CLSI) guidelines contained in the M38-A2 document and
89  EUCAST protocol 9.3 [13, 14]. Fluconazole was used as a reference drug. In vitro
90 antifungal susceptibility testing is now standardized internationally and the MIC informs
91 the susceptibility or resistance of the organism to the antifungal agent, which can help in

92  treatment decisions [13, 15, 16]. In this context, we tested six 2,3-diphenyl-2,3-dihydro-
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93  1,3-thiaza-4-ones against L. prolificans and C. neoformans and found that thiazepanone
94 1, thiazolidone 2, had better efficacy (lower MIC) against both fungi in comparison with
95  fluconazole. Thiazinone 4 and 5 had a good effect against C. neoformans, while
96  benzothiazinone 3 and N-acetyl-L-cysteine derived 6 showed no effect (or no effect better
97  than our control, fluconazole) on either fungus (Table 1). Thus, 5-, 6- and 7-membered

98 ring compounds exhibited strong antifungal activity.

99 Cytotoxicity for mammalian cells was tested using J774 macrophage-like cells.
100  J774 macrophages cells were plated in 96-well polystyrene tissue-culture plates and
101  incubated for 24 h at 37°C and 5% CO: prior to the addition of compounds 1-6 (final
102  concentration series ranged from 50 to 0.39 pg/ml). After 24 and 48 h incubations, the
103 cell viability was measured by XTT salt method, according to the Assay Guidance
104  Manual [17, 18]. Cytotoxicity assays were done to ascertain whether these compounds
105 could damage J774 macrophages. No significant effect was observed on the
106  macrophage’s viability in the presence of different concentrations of compounds 1-6 at

107 24 and 48h (Fig. 2).

108 Since compounds 1 and 2 were more effective than fluconazole in both fungi, we
109  decided to evaluate the fungal cell surface after cells are incubated with the MIC 50
110  concentration of compounds 1 and 2 for 48 and 72 h, through SEM [19] and IF [20]
111 techniques. Cell surface damage was found on both C. neoformans (Fi. 3, pictures A and
112 C) and L. prolificans (Fig. 3, pictures B and D) cells after incubation with compounds 1
113  and 2. SEM analysis showed that treated C. neoformans cells were often partially
114  collapsed and/or folded (Fig. 3, picture A) while treated L. prolificans exhibited the
115  presence of small pores and wrinkles on the cell surface (Fig. 3, picture B).

116  Epifluorescence microscopy of both species using 0.5 mg/mL of Uvitex 2B cell wall
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staining showed broken cell walls (Fig. 3, pictures C and D). C. neoformans yeasts were
collapsed and L. prolificans cells exhibited pores, suggesting that the inhibitory

mechanism of both compounds 1 and 2 may involve interaction with the fungal cell wall.

In summary, our findings suggest that 2,3-diphenyl-2,3-dihydro-1,3-thiaza-4-ones
compounds could represent a promising new class for the development of new antifungal

therapeutic agents. The mechanism of antifungal action is still under investigation.
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190  Figure 1. Structures of 2,3-diphenyl-2,3-dihydro-1,3-thiaza-4-ones 1-6.
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202 Table 1. MIC 50 for C. neoformans and L. prolificans to compounds 1-6 and fluconazole.

MIC 50 (ug/mL)

1 2 3 4 5 6 Fluconazole
C. neoformans 422 | 42.8 >100 47.5 27.5 >100 65.0
L. prolificans 31.6 | 28.6 >100 | >100 95.0 >100 >100

203
204  MIC values were obtained from duplicate (compounds 3-6) and triplicate (compounds 1-

205  2)analysis.
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220  Figure 2. Cytotoxicity assay of macrophages in the presence of compounds 1-6 during
221 24 and 48h, performed according to the Assay Guidance Manual. Statistical analyses were
222 performed using GraphPad Prism version 8.00 for Mac X (GraphPad Software, San Diego
223 CA). One-way analysis of variance using a Kruskal-Wallis nonparametric test was used
224  to compare the differences between groups, and individual comparisons of groups were

225  performed using a Bonferroni post-test. ns: not significant.
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Figure 3. Cell wall damage in C. neoformans and L. prolificans by compounds 1 and 2
as visualized by SEM and light microscopy. Pictures A and B show SEM of C.
neoformans and L. prolificans, respectively. Pictures C and D show Uvitex 2B staining
of fungal cell wall from C. neoformans and L. prolificans, respectively. Scale bar

represents 2 um.
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