

1 **Title**

2 An Age-Specific Atlas for Delineation of White Matter Pathways in Children Aged 6-8 Years

3 **Short Title**

4 Age-Specific White Matter Atlas

5 **Author names and affiliations**

6 Arthur P.C. Spencer^{a*}, Hollie Byrne^a, Richard Lee-Kelland^b, Sally Jary^b, Marianne
7 Thoresen^{b,c}, Frances M. Cowan^{b,d}, Ela Chakkarapani^b, Jonathan C.W. Brooks^{a,e}.

8 ^aClinical Research and Imaging Centre, University of Bristol, Bristol, UK

9 ^bFaculty of Health Sciences, Translational Health Sciences, Bristol Medical School,
10 University of Bristol, Bristol, UK

11 ^cFaculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway

12 ^dDepartment of Paediatrics, Imperial College London, London, UK

13 ^eSchool of Psychological Science, University of Bristol, Bristol, UK

14 *Corresponding author; arthur.spencer@bristol.ac.uk; Clinical Research and Imaging Centre,
15 University of Bristol, 60 St Michael's Hill, Bristol, BS2 8DX

16 **Data Availability Statement**

17 This atlas is available at Neurovault (<https://neurovault.org/collections/LWTAAST/>). The
18 raw data that support the findings of this study are available from the corresponding author
19 upon reasonable request.

20 **Funding Statement**

21 This work was supported by the Baily Thomas Charitable Fund [grant number
22 TRUST/VC/AC/SG4681-7596]. AS is supported by the Wellcome Trust [grant number
23 220070/Z/20/Z]. JCWB is supported by the UK Medical Research Council [grant number
24 MR/N026969/1].

25 **Conflict of Interest Disclosure**

26 The authors declare no potential conflict of interest.

27 **Ethics Approval Statement**

28 Ethics approval was obtained from the North Bristol Research Ethics Committee and the
29 Health Research Authority (REC ID: 15/SW/0148).

30 **Patient Consent Statement**

31 Informed and written consent was obtained from the parents of participants before collecting
32 data.

33 **Permissions**

34 Permission was obtained from the relevant publisher for any reused content.

35 **Acknowledgements**

36 We thank the children and their families for participating, Ngoc Jade Thai for the assistance
37 with MR sequences, Aileen Wilson for her radiographical expertise, and James Tonks,
38 Charlotte Whitfield and Emily Broadbridge for their assistance with neuropsychological
39 assessment. We also thank Peter Green for statistical advice via the University of Bristol
40 Statistics Clinic.

41 **Abstract**

42 Diffusion MRI allows non-invasive assessment of white matter maturation in typical
43 development and of white matter damage due to brain injury or pathology. Probabilistic
44 white matter atlases provide delineation of white matter tracts, allowing diffusion metrics to
45 be measured in specific white matter pathways. However, given the known age-dependency
46 of developmental change in white matter it may not be optimal to use an adult template when
47 assessing data acquired from children. This study develops an age-specific probabilistic white
48 matter atlas for delineation of 12 major white matter tracts in children aged 6-8 years. By
49 comparing to subject-specific tract tracing in two validation cohorts, we demonstrate that this
50 age-specific atlas gives better overall performance than simply registering to the Johns
51 Hopkins University adult white matter template. Specifically, when normalising diffusion
52 data acquired from children to an adult template, estimates of fractional anisotropy (FA)
53 values for corticospinal tract, uncinate fasciculus, forceps minor, cingulate gyrus part of the
54 cingulum and anterior thalamic radiation were all less accurate than those obtained when
55 using an age-specific atlas, potentially leading to false negatives when performing group
56 comparisons. We then applied the newly developed atlas to compare FA between children
57 treated with therapeutic hypothermia for neonatal encephalopathy and age-matched controls,
58 which revealed significant reductions in the fornix, the left superior longitudinal fasciculus,
59 and both the hippocampal and cingulum parts of the left cingulate gyrus. To our knowledge,
60 this is the first publicly available probabilistic atlas of white matter tracts for this age group.

61

62 **Keywords**

63 White matter; development; diffusion MRI; neuroimaging; tractography; atlas; anatomy.

64 1 Introduction

65 Tract-level analysis of diffusion weighted imaging (DWI) data is used extensively to
66 investigate white matter microstructure in both typical (Asato et al., 2010; Hüppi and Dubois,
67 2006; Lebel et al., 2008) and atypical brain development (for a review, see (Dennis and
68 Thompson, 2013)). In children and adolescents, atypical brain development may lead to
69 physical and intellectual disabilities including e.g. cerebral palsy (CP) (Arrigoni et al., 2016),
70 autistic spectrum behaviours (Ameis and Catani, 2015; Dimond et al., 2019) and attention
71 deficit hyperactivity disorder (Konrad and Eickhoff, 2010). Diffusion metrics such as
72 fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial
73 diffusivity (AD) (Assaf and Pasternak, 2008) are sensitive to changes in the underlying white
74 matter structure. These metrics are widely investigated in studies of brain development
75 (Dennis and Thompson, 2013; Lebel et al., 2008), as well as having clinical relevance in
76 patient cohorts (Assaf et al., 2019; Assaf and Pasternak, 2008; Horsfield and Jones, 2002).

77 To measure tract-level diffusion metrics, white matter tracts can be delineated by registering
78 to a standard template with a probabilistic atlas of tract locations. Using a white matter atlas
79 eliminates the need for computationally intensive methods of delineating tracts by
80 segmenting streamlines generated by tractography (Lawes et al., 2008; Sydnor et al., 2018;
81 Wakana et al., 2007; Wassermann et al., 2010; Zhang et al., 2018). This is beneficial in
82 clinical settings or when studying large datasets. Additionally, data which have been acquired
83 with shorter, more simplistic diffusion tensor acquisitions may not facilitate accurate
84 tractography. Such acquisitions may be favoured in an effort to minimise scan times (and
85 therefore minimise risk of movement during the scan) when studying children, including
86 those with disabilities who would benefit from investigating white matter development (Phan
87 et al., 2018).

88 The widely used Johns Hopkins University (JHU) white matter tract atlas (Hua et al., 2008) is
89 constructed from adult data. Numerous developmental studies demonstrate white matter
90 alterations continuing into adolescence (Cascio et al., 2007; Hagmann et al., 2010; Lebel et
91 al., 2008; Simmonds et al., 2014), and white matter development varies widely across the
92 brain (Lebel et al., 2019), therefore an atlas constructed from adult scans is by design and
93 definition not representative of children. There are several publicly available age-specific
94 structural templates (Altaye et al., 2008; Fonov et al., 2011; Richards et al., 2016; Sanchez et
95 al., 2012), however none of these provide diffusion data.

96 Using robust tract reconstruction protocols (Hua et al., 2008; Wakana et al., 2007) this study
97 develops an age-specific probabilistic white matter atlas for 12 major tracts in children aged
98 6-8 years. To assess whether this atlas accurately delineates tracts, we measured both
99 volumetric overlap and the diffusion metrics sampled by the tract mask in comparison with
100 subject-specific tractography-based tract delineation. We then assess the utility of this age-
101 specific tract atlas by comparing it to results obtained using an adult atlas (JHU). The atlas is
102 then further validated against an open data source (i.e. different scanner and acquisition
103 protocol), and against a different tractography algorithm.

104 As a demonstration, we then investigate tract-level differences in children treated with
105 therapeutic hypothermia (TH) for neonatal encephalopathy (NE) at birth, compared with
106 healthy controls, and compare results obtained using the age-specific atlas to those from the
107 JHU atlas. The children who had TH, do not have CP and are in mainstream education still
108 exhibit significantly reduced performance on cognitive tests (Jary et al., 2019; Lee-Kelland et
109 al., 2020) and have slower reaction times and reduced visuo-spatial processing abilities
110 (Tonks et al., 2019), compared to the typically developing controls.

111 **2 Material and Methods**

112 **2.1 Participants**

113 Ethics approval was obtained from the North Bristol Research Ethics Committee and the
114 Health Research Authority (REC ID: 15/SW/0148). Informed and written consent was
115 obtained from the parents of participants before collecting data. The cohort was made up of
116 36 healthy children aged 6-8 years with no evidence of neurological disease, originally
117 recruited as controls for a study of the long-term effects of TH (“CoolMRI”) on behavioural
118 and imaging outcomes. The 36 controls were split randomly into 28 atlas and 8 validation
119 subjects such that the group were matched for age, sex, socio-economic status (SES) and full-
120 scale intelligence quotient (FSIQ). For the demonstrative case study, data from 33 children
121 treated with TH following NE at birth were compared to the control data.

122 **2.2 Image Acquisition**

123 DWI data were acquired with a Siemens 3 tesla Magnetom Skyra MRI scanner at the Clinical
124 Research and Imaging Centre (CRiCBristol), Bristol, UK. Subjects were placed supine within
125 the 32-channel receive only head-coil by an experienced radiographer, and head movement

126 minimised by means of memory-foam padding. Children wore earplugs and were able to
127 watch a film. A multiband echo-planar imaging (EPI) sequence was used with the following
128 parameters: TE = 70 ms; TR = 3150 ms; field of view 192×192 mm; 60 slices; 2.0 mm
129 isotropic voxels; phase encoding in the anterior-posterior direction, in-plane acceleration
130 factor = 2 (GRAPPA (Griswold et al., 2002)), through-plane multi-band factor = 2 (Moeller
131 et al., 2010; Setsompop et al., 2012b, 2012a).

132 For the purpose of data averaging and eddy-current distortion correction, two sets of
133 diffusion weighted images were acquired with $b = 1,000$ s mm^{-2} in 60 diffusion directions,
134 equally distributed according to an electrostatic repulsion model, as well as 8 interspersed $b =$
135 0 images, with one data set acquired with positive phase encoding steps, then repeated with
136 negative steps (so-called, “blip-up”, “blip-down”), giving a total of 136 images.

137 **2.3 Quality Control**

138 The quality of the diffusion data was assessed using the EddyQC tool (Bastiani et al., 2019)
139 from FSL (Smith et al., 2004). This provides several measures of the amount of movement
140 and eddy current induced distortion present in the data. For each participant, metrics were
141 normalised, then the root-mean-square was calculated, giving a score which increases
142 monotonically with the amount of movement and eddy current distortion. Scans were rejected
143 if their score was more than one standard deviation above the mean of all participants.

144 **2.4 Image Processing & Atlas Construction**

145 DWI data were corrected for eddy current induced distortions and subject movements using
146 EDDY (Andersson and Sotropoulos, 2016) and TOPUP (Andersson et al., 2003), part of
147 FSL. Subsequent DWI processing and tractography steps were performed using MRtrix
148 (Tournier et al., 2019). The response function (the DWI signal for a typical fibre population)
149 was estimated from the data (Tournier et al., 2013). The fibre orientation distribution (FOD)
150 was then calculated by performing constrained spherical deconvolution of the response
151 function from the measured DWI signal (Tournier et al., 2007). Deterministic tractography
152 was run in each subject using the “SD Stream” algorithm (Tournier et al., 2012). Streamlines
153 were seeded randomly in the brain and generated with a step size of 0.2 mm, then terminated
154 if the FOD amplitude dropped below 0.2 or the angle between successive steps exceeded 40
155 degrees. 10 million streamlines were generated, which were then filtered to 1 million using

156 spherical-deconvolution informed filtering of tractograms (SIFT) (Smith et al., 2013) to give
157 better reconstruction of FODs, improving anatomical accuracy.

158 The process of generating probability maps from the whole-brain tractograms is summarised
159 in Figure 1. White matter tracts were segmented from whole-brain tractograms using the
160 protocols described in Wakana et al., whereby regions of interest (ROI) are drawn to include
161 or exclude streamlines passing through them (Wakana et al., 2007). For a given tract, any
162 streamlines which pass through all inclusion ROIs and no exclusion ROIs belong to that tract,
163 and all other streamlines are removed. Inclusion and exclusion ROIs were manually drawn in
164 each subject to delineate 12 major fibre tracts: anterior thalamic radiation (ATR); cingulate
165 gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal tract
166 (CST); forceps major (Fmajor); forceps minor (Fminor); inferior fronto-occipital fasciculus
167 (IFOF); inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF);
168 temporal projections of the superior longitudinal fasciculus (SLFt); uncinate fasciculus (UF);
169 and the fornix. The locations of ROIs for all tracts apart from the fornix are described in
170 Wakana et al. as shown in Figure 2 (Hua et al., 2008; Wakana et al., 2007).

171 To delineate the fornix, streamlines were included which pass through the body of the fornix
172 and either of the posterior limbs which project to the hippocampus (Figure 3). These were
173 isolated by first selecting an axial level at the lower edge of the splenium of the corpus
174 callosum, as seen in the mid-sagittal plane (Figure 3, left); in this axial level, the first ROI
175 was drawn around the body of the fornix. Viewing the streamlines which are delineated by
176 the first ROI, additional bilateral ROIs were defined to include only those which project
177 posteriorly from the fornix body (Figure 3, right).

178 For spatial normalisation, the average diffusion weighted image (aDWI), created for each
179 subject by averaging all DWI images, was registered to the JHU aDWI template by 12-degree
180 of freedom affine registration using FSL's FLIRT (Jenkinson et al., 2002). The resulting
181 transformation was then applied to the segmented streamlines. Any voxel containing one or
182 more of these streamlines was then labelled, to create a binary mask for the tract for each
183 individual. The average, across 28 subjects, of these binary masks was taken to give a
184 probability map for each tract. The aDWI was then created for the group by averaging
185 transformed aDWIs from all 28 subjects, and the group FA image was created from the
186 group-average tensor map.

187 This atlas is available at Neurovault (<https://neurovault.org/collections/LWTAAAST/>).

188 **2.5 Validation**

189 The age-specific atlas was assessed by comparison with subject-specific tracts, delineated by
190 applying the ROI-based tract-tracing method, described above, to each validation subject.
191 These tracts were transformed to the atlas space by nonlinearly registering each subject's FA
192 image to the group FA template, constructed from the 28 atlas subjects, using FSL's FNIRT
193 (Andersson et al., 2007). We used three methods to assess accuracy of the atlas: i) volumetric
194 overlap; ii) slice-wise correlation of FA measurements; and iii) correlation of whole-tract FA
195 measurements. The same methods were also applied to the JHU atlas for comparison.

196 **2.5.1 Volumetric Overlap**

197 To compare spatial similarity between normalised data we tested the volumetric overlap
198 between the probabilistic atlas (age-specific or JHU) and each individually traced tract by
199 measuring the Dice score (Dice, 1945) over a range of probability thresholds. The amount of
200 volumetric overlap between the atlas data and the individually traced tract depends on both i)
201 the quality of registration of the individual to the template, and ii) the agreement between the
202 atlas data and the results from tractography in the individual. Thus, if the template is a closely
203 matched target for registration, and if the underlying anatomy and diffusion process captured
204 by the atlas is a good match to the validation subjects, we expect the Dice scores to be high.

205 **2.5.2 Slice-wise Correlation**

206 We assessed the ability of the atlas to reproduce individually traced DWI metrics by
207 calculating the mean FA in the tract in every slice along the major axis of each tract (coronal
208 slices for tracts which project anterior/posterior; axial slices for tracts which project
209 dorsal/ventral). In individually traced tracts, average FA was calculated by taking the mean
210 FA in all masked voxels. In the probabilistic atlases (age-specific or JHU), the FA was
211 weighted by the probability in each voxel using the following equation:

$$FA = \frac{\sum_i FA_i \times P_i}{\sum_i P_i} \quad (1)$$

212 where FA_i is the FA in voxel i and P_i is the probability in voxel i . We then calculated the
213 correlation between the probabilistic FA and individual FA (see Section 2.7).

214 **2.5.3 Whole-tract Correlation**

215 Whole-tract average FA was calculated in each subject, using both probabilistic and
216 individually traced tracts. Average FA was calculated in probabilistic tracts using equation
217 (1) and in individually traced tracts by averaging FA in all masked voxels. We then
218 calculated the correlation between the probabilistic FA and individual FA (see Section 2.7).

219 **2.5.4 Healthy Brain Network (HBN) Data**

220 In order to alleviate bias associated with using same-site scans for validation, we used an
221 additional validation dataset obtained from the Healthy Brain Network (HBN,
222 http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/) (Alexander et al.,
223 2017), a data-sharing biobank from the Child Mind Institute. Scans were obtained from 15
224 subjects, aged 6-8 years, from release 7.0 from the CitiGroup Cornell Brain Imaging Centre
225 dataset. These multi-shell DWI data were acquired on a Siemens 3 tesla Prisma scanner using
226 using an echo-planar pulse sequence with the following parameters: TE = 100.2 ms; TR =
227 3320 ms; 81 slices; 1.8 x 1.8 x 1.8 mm resolution; multi-band acceleration factor = 3; b =
228 1,000 s mm⁻² and b = 2,000 s mm⁻², each with 64 directions, and one b = 0 image.
229 Preprocessing and quality control pipelines were applied as described above, followed by
230 calculation of FODs using multi-shell multi-tissue constrained spherical deconvolution
231 (Jeurissen et al., 2014) and tractography as described above. This allowed validation using
232 subjects scanned in a different scanner, and with different scanning parameters. To further
233 alleviate bias associated with using the same tractography algorithm for atlas construction
234 and validation we also ran tractography in this cohort using a deterministic tensor-based
235 algorithm (Basser et al., 2000), in addition to the FOD-based tractography algorithm
236 described above. To give an overall indication of the accuracy of the atlas in these datasets,
237 we applied the whole-tract correlation method described above. For completeness, in-depth
238 results of the volumetric overlap and slice-wise correlation for the HBN data are given in the
239 Supporting Information.

240 **2.6 CoolMRI Study**

241 As a demonstration, the age-specific atlas was used to investigate tract-level differences in
242 white matter microstructure between the case and control children of the CoolMRI study. In
243 each of the tracts delineated by the age-specific atlas, the average whole-tract FA was
244 calculated for each individual using equation (1). We then tested for group differences in

245 whole-tract FA. Bilateral tracts were tested separately. For comparison, we repeated the
246 analysis using the JHU adult atlas. In the absence of ground truth, only a qualitative
247 comparison of results obtained with the two atlases was performed.

248 **2.7 Statistical Methods**

249 To assess whether the age-specific atlas gave better volumetric agreement with individually
250 traced tracts than the JHU adult atlas, we performed a two-tailed, paired t-test comparing the
251 peak Dice scores.

252 In the slice-wise FA analysis and whole-tract FA analysis, we measured the correlation
253 between atlas measurements and individual measurements using a repeated measures
254 correlation coefficient (Bland and Altman, 1995), which uses an analysis of variance to
255 calculate the correlation coefficient between residuals of the repeated measurements. This
256 method was used in slice-wise FA analysis to calculate the correlation coefficient without
257 variation due to different subjects, and in the whole-tract FA analysis to calculate the
258 correlation coefficient without variation due to different tracts.

259 For each validation method, we compared the correlation coefficient given by the age-
260 specific atlas with that given by the JHU adult atlas, by applying Fisher's z-transform to each
261 correlation coefficient and estimating the 95% confidence intervals of the difference between
262 these z-transformed correlation coefficients. The confidence intervals were estimated with a
263 percentile bootstrap method (Wilcox and Muska, 2002). In the slice-wise correlations, a
264 moving block bootstrap method was used to account for the spatial dependence of repeated
265 measurements in each subject (Politis and Romano, 1992).

266 In the CoolMRI demonstration, Mann-Whitney U tests were applied to test for differences in
267 the median FA between cases and controls in each tract, with Bonferroni correction applied
268 to correct for family-wise error. Significant results have corrected $p < 0.05$.

269 **3 Results**

270 **3.1 Participant Demographics**

271 The CoolMRI study recruited 51 children, without CP, treated with TH for NE at birth and 43
272 control children matched for age, sex and SES (Lee-Kelland et al., 2020). Of the recruited
273 children, 7 cases and 4 controls did not want to undergo scanning. A further 4 cases had

274 incomplete data due to movement during the scan. Quality control led to the rejection of a
275 further 6 cases and 2 controls. One further case and one control were rejected due to incorrect
276 image volume placement. This left 33 cases and 36 controls. These controls were split into 28
277 (15 male) for atlas construction and 8 (4 male) for validation. Data for each set of
278 participants, as well as for HBN subjects, is shown in Table 1.

279 **3.2 Atlas**

280 Figure 4 shows the probabilistic map for each tract, as well as the aDWI and FA images for
281 the group of 28 children.

282 **3.3 Validation**

283 **3.3.1 Volumetric Overlap**

284 The Dice score at a range of thresholds is plotted for each tract for the same-site validation
285 data in Figure 5. The peak Dice scores for the age-specific atlas was significantly higher than
286 for the JHU atlas in every tract ($p < 0.05$; see Table S1 for all p-values). The Dice scores for
287 the HBN data are shown in Figures S1 and S2.

288 **3.3.2 Slice-wise Correlation**

289 The correlation between slice-wise FA measured by the age-specific atlas and that measured
290 by subject-specific tract tracing is shown for the same-site validation data in Figure 6, with
291 correlation coefficients measured using a repeated measures correlation (Bland and Altman,
292 1995). The correlations for the HBN data are shown in Figures S3 and S4. A correlation
293 coefficient of one indicates perfect slice-wise agreement between the gold-standard (FA
294 extracted from subject-specific tract tracing) and the FA estimated for each tract by
295 registration to the either age-specific or JHU adult atlas. In the same-site data, most tracts
296 showed strong correlation between FA measured by the age-specific atlas and that measured
297 by subject-specific tract tracing, with all tracts having $r > 0.8$ apart from the CG ($r = 0.625$),
298 SLF ($r = 0.468$) and SLFt ($r = 0.546$). The correlation coefficient for the age-specific atlas
299 was higher than for the JHU adult atlas in all tracts, and this difference was significant in the
300 ATR, CG, CST, Fminor and UF (indicated by the 95% confidence intervals of the difference
301 between z-transformed correlation coefficients, see Table S2).

302 **3.3.3 Whole-tract Correlation**

303 Figure 7 shows the whole-tract FA measured by the atlas plotted against that given by
304 subject-specific tract tracing for the same-site data, the HBN data with FOD-based
305 tractography, and the HBN data with tensor-based tractography. The fornix is not included in
306 these plots to allow valid comparison with the JHU atlas. Correlation coefficients, and
307 confidence intervals of the difference between z-transformed correlation coefficients, are
308 shown in Table 2. The age-specific atlas gave significantly stronger correlation of whole-tract
309 FA measurements than the JHU adult atlas in all validation datasets.

310 **3.4 CoolMRI Study**

311 Numerous tracts in children treated with TH for NE had reduced FA compared to controls
312 (see Table S5). After Bonferroni correction, only the left CG ($p = 0.0056$), left CH ($p =$
313 0.0081), left SLF ($p = 0.0383$), and fornix ($p = 0.0121$) had significantly reduced FA in cases
314 compared to controls. The same analysis was run with the JHU atlas for comparison (see
315 Table S6). Figure 8 shows box plots for both atlases for tracts in which at least one of the
316 atlases revealed group differences in FA. Significant differences were found in the left SLF
317 with the age-specific atlas but not the JHU adults atlas. Differences were found in the left CG
318 and left CH with both atlases. Differences in the right CH were found with the JHU adult
319 atlas but not with the age-specific atlas. Differences were found in the fornix with the age-
320 specific atlas, but it is not available in the JHU atlas so could not be tested.

321 **4 Discussion**

322 This study introduces an age-specific probabilistic white matter atlas constructed from
323 children aged 6-8 years, providing a method of delineating white matter tracts without
324 tractography. We have shown that this atlas accurately delineates tracts in children from a
325 same-site cohort, and a cohort from a different site, imaged with different scanner and
326 acquisition protocol. The strong correlation between FA sampled by the atlas and that
327 measured in each individual (i.e. the “gold standard”), at both a whole-tract level and slice-
328 wise level, shows that the atlas provides an accurate estimate for the underlying white matter
329 microstructure. Additionally, the Dice scores between tracts in the atlas and those delineated
330 by subject-specific tract tracing were higher with the age-specific atlas than with the JHU
331 adult atlas, demonstrating improved anatomical accuracy of the age-specific atlas. In these

332 validation methods, the age-specific atlas performed better than simply registering to an
333 existing adult white matter tract atlas, as is routinely done in the literature. As a
334 demonstration, we applied the age-specific atlas to the CoolMRI study, revealing
335 significantly reduced FA in several major white matter tracts in children treated with TH for
336 NE at birth compared to healthy controls.

337 The correlation of whole-tract FA measured by the atlas with that given by subject-specific
338 tract tracing offers quantification of the performance of the atlas as a whole. In the same-site
339 validation data, the HBN data traced with FOD-based tractography and the HBN data traced
340 with tensor-based tractography, the age-specific atlas exhibited stronger correlation with the
341 individual measurements than for the JHU atlas (Figure 7, Table 2). This shows that the age-
342 specific atlas can accurately characterise the distribution of tract-level diffusion metrics in a
343 study group, facilitating more sensitive group comparison and investigation of associations
344 between these metrics and neuropsychological and behavioural measures.

345 Those tracts which exhibit low correlation between atlas and individual slice-wise FA
346 measurements (namely the CG, SLF and SLFt) have very little spread in FA values, resulting
347 in tightly grouped measurements with a low correlation coefficient (Figure 6). For these
348 tracts, the Dice scores in Figure 5, as well as the tract-wise validation in Figure 7 demonstrate
349 improved performance of the age-specific atlas at the level of whole tracts.

350 Long, thin tracts, such as the CST, IFOF and ILF, are particularly susceptible to partial
351 volume effects when measuring volumetric overlap; a small radial translation will result in a
352 large change to the Dice score. In these tracts, the high correlation in sampled FA values
353 shows that the age-specific atlas gives accurate measurement of the tract microstructure.

354 Multi-site validation alleviates bias associated with using the same scanner for validation data
355 and atlas construction, thus validation with the HBN data demonstrates that the age-specific
356 atlas generalises to data from a different site, acquired with a different scanning protocol. In
357 this dataset, the age-specific atlas gave better correlation of whole-tract FA measurements
358 (Figure 7, Table 2). Additionally, the volumetric overlap in this dataset is significantly higher
359 with the age-specific atlas than with the JHU adult atlas in all tracts apart from the CST and
360 Fmajor, in which neither atlas performed significantly better than the other (Figure S1, Table
361 S1). The age-specific atlas gave higher slice-wise correlations than the JHU adult atlas in all
362 tracts; this difference was significant in the ATR, CST, Fminor, IFOF, ILF and UF (Figure

363 S3, Table S3). There were no tests in which the JHU adult atlas performed significantly better
364 in this dataset.

365 Further bias may be introduced by the use of the same tractography algorithm for both atlas
366 generation and in estimating diffusion metrics for the validation data. Therefore, we also
367 included a validation dataset in which subject-specific tract tracing was performed using a
368 tensor-based tractography algorithm. Whereas the FOD-based tractography algorithm used to
369 construct the age-specific atlas uses spherical deconvolution to find the peak FOD in the
370 closest orientation to the propagating streamline, the tensor-based algorithm propagates the
371 streamline along the principal eigenvector of the diffusion tensor at each step. This is
372 comparable to the tensor-based tractography algorithm used in the construction of the JHU
373 adult atlas, thus providing a conservative test case for validation. Despite this bias towards
374 the JHU atlas, the age-specific atlas still gave stronger correlation of whole-tract FA
375 measurements. In the tests of volumetric overlap (Figure S2, Table S1) and slice-wise
376 correlation (Figure S4, Table S4) in this dataset, the age-specific atlas performed significantly
377 better than the JHU adult atlas in at least one of these tests in six tracts (ATR, CH, ILF, UF,
378 Fmajor, Fminor). In four tracts (CG, IFOF, SLF, SLFt) neither atlas performed significantly
379 better in either test. In one tract (CST) the JHU atlas gives better volumetric overlap.

380 This introduces the question of how to provide the “gold-standard” of fibre tracking; the
381 tensor-based algorithm was used in one of the HBN datasets in order to eliminate bias
382 towards the age-specific atlas (by introducing bias towards the JHU adult atlas). However,
383 this category of fibre tracking algorithm is widely acknowledged to give poor
384 characterisation of diffusion in brain white matter due to its inability to resolve crossing
385 fibres (Behrens et al., 2007; Tournier et al., 2012). Thus, the FOD-based algorithm used in
386 the other validation datasets and in the construction of the atlas, which facilitates more
387 comprehensive tracing due to its superior performance in regions of crossing fibres (Tournier
388 et al., 2008), arguably gives a more accurate representation of the ground truth (i.e. the
389 underlying white matter fibres). Therefore, when comparing the atlas to individually traced
390 tracts in the validation data, the FOD-based algorithm likely gives a better indication of
391 performance overall. Consequently, we believe the HBN data with tensor-based tract tracing
392 provides a worst-case performance estimate, yet the age-specific atlas still out-performs the
393 adult JHU atlas in many tests.

394 In future, as well as providing coverage of other age ranges, atlases could offer more
395 extensive labelling of additional tracts and regions of white matter throughout development.
396 A comprehensive database of traced tracts across a range of ages, potentially constructed by
397 applying automated tractography-based white matter tract segmentation protocols (Lawes et
398 al., 2008; Verhoeven et al., 2009; Wassermann et al., 2010; Zhang et al., 2018) to data from
399 population studies such as the Human Connectome Project (Van Essen et al., 2013),
400 Developing Human Connectome Project (Hughes et al., 2017), or Baby Connectome Project
401 (Howell et al., 2019), would allow study-specific atlases to be built from subjects matched to
402 a given study cohort.

403 Applying the age-specific atlas to the CoolMRI study to investigate group differences in
404 tract-level FA revealed selective reduction in FA, that was significantly reduced in the left
405 CG, left CH, left SLF and the fornix (Table S5). For comparison, we performed the same
406 analysis with the JHU adult atlas (Table S6). Figure 8 demonstrates the differences in FA
407 measurements from the different atlases. These differences result in some tracts exhibiting
408 group differences in one atlas but not the other (right CH and left SLF). Due to the absence of
409 ground truth, these results do not support the use of one atlas over another. However, these
410 results demonstrate that the two atlases can give differing outcomes in a case-control study.
411 Quantitative results from the validation methods above indicate that the age-specific atlas
412 gives more accurate delineation of white matter tracts in this age group than the JHU adult
413 atlas, suggesting the CoolMRI results obtained with the age-specific atlas are more reliable.

414 Previous studies of neonates treated with TH for NE have investigated the relationship
415 between white matter diffusion properties, measured in the first weeks following birth, and
416 neurodevelopmental outcome at 2 years of age. These studies found a significant reduction in
417 FA in infants with adverse outcomes, compared to those with favourable outcomes, in
418 widespread areas of white matter including, but not limited to the corpus callosum, anterior
419 and posterior limbs of the internal capsule, external capsule, fornix, cingulum, and ILF (Lally
420 et al., 2019; Tusor et al., 2012). Many of these regions were also shown to have reduced FA
421 in the CoolMRI cases, indicating that the early structural alterations resulting from the brain
422 injury cause lasting changes to white matter development. These results also provide
423 evidence for an underlying white matter deficit which manifests as neuropsychological
424 differences seen at school-age (Jary et al., 2019; Lee-Kelland et al., 2020; Tonks et al., 2019).

425 Further investigation is required to link these structural impairments to specific components
426 of the cognitive and motor assessments, and to develop therapeutic intervention strategies.

427 **5 Conclusions**

428 The age-specific atlas provided by this study has been shown to robustly delineate white
429 matter tracts in children aged 6-8 years. Diffusion metrics sampled by the atlas correlate
430 strongly with those measured by individual fibre tracking, allowing reliable investigation of
431 white matter microstructure in cohorts. The closer agreement between FA measured in
432 individually identified tracts and that estimated when registering to an age-specific atlas,
433 suggests that such an approach would increase sensitivity to group differences, and is
434 recommended for all studies performed in children.

435 **References**

436 Alexander LM, Escalera J, Ai L, Andreotti C, Febre K, Mangone A, Vega-Potler N, Langer
437 N, Alexander A, Kovacs M, Litke S, O'Hagan B, Andersen J, Bronstein B, Bui A,
438 Bushey M, Butler H, Castagna V, Camacho N, Chan E, Citera D, Clucas J, Cohen S,
439 Dufek S, Eaves M, Fradera B, Gardner J, Grant-Villegas N, Green G, Gregory C, Hart
440 E, Harris S, Horton M, Kahn D, Kabotyanski K, Karmel B, Kelly SP, Kleinman K, Koo
441 B, Kramer E, Lennon E, Lord C, Mantello G, Margolis A, Merikangas KR, Milham J,
442 Minniti G, Neuhaus R, Levine A, Osman Y, Parra LC, Pugh KR, Racanello A, Restrepo
443 A, Saltzman T, Septimus B, Tobe R, Waltz R, Williams A, Yeo A, Castellanos FX,
444 Klein A, Paus T, Leventhal BL, Craddock RC, Koplewicz HS, Milham MP. 2017. An
445 open resource for transdiagnostic research in pediatric mental health and learning
446 disorders. *Sci Data* **4**:170181. doi:10.1038/sdata.2017.181

447 Altaye M, Holland SK, Wilke M, Gaser C. 2008. Infant brain probability templates for MRI
448 segmentation and normalization. *Neuroimage* **43**:721–730.
449 doi:10.1016/J.NEUROIMAGE.2008.07.060

450 Ameis SH, Catani M. 2015. Altered white matter connectivity as a neural substrate for social
451 impairment in Autism Spectrum Disorder. *Cortex* **62**:158–181.
452 doi:10.1016/j.cortex.2014.10.014

453 Andersson JLR, Jenkinson M, Smith S. 2007. Non-linear registration aka spatial
454 normalisation. *FMRIB Tech Rep* **TR07JA2**.

455 <http://fmrib.medsci.ox.ac.uk/analysis/techrep/tr07ja2/tr07ja2.pdf>

456 Andersson JLR, Skare S, Ashburner J. 2003. How to correct susceptibility distortions in spin-
457 echo echo-planar images: application to diffusion tensor imaging. *Neuroimage* **20**:870–
458 888. doi:10.1016/S1053-8119(03)00336-7

459 Andersson JLR, Sotiropoulos SN. 2016. An integrated approach to correction for off-
460 resonance effects and subject movement in diffusion MR imaging. *Neuroimage*
461 **125**:1063–1078. doi:10.1016/J.NEUROIMAGE.2015.10.019

462 Arrigoni F, Peruzzo D, Gagliardi C, Maghini C, Colombo P, Iammarrone FS, Pierpaoli C,
463 Triulzi F, Turconi AC. 2016. Whole-Brain DTI Assessment of White Matter Damage in
464 Children with Bilateral Cerebral Palsy: Evidence of Involvement beyond the Primary
465 Target of the Anoxic Insult. *Am J Neuroradiol* **37**:1347–1353. doi:10.3174/ajnr.A4717

466 Asato MR, Terwilliger R, Woo J, Luna B. 2010. White matter development in adolescence:
467 A DTI study. *Cereb Cortex* **20**:2122–2131. doi:10.1093/cercor/bhp282

468 Assaf Y, Johansen-Berg H, Thiebaut de Schotten M. 2019. The role of diffusion MRI in
469 neuroscience. *NMR Biomed* **32**:e3762. doi:10.1002/nbm.3762

470 Assaf Y, Pasternak O. 2008. Diffusion Tensor Imaging (DTI)-based White Matter Mapping
471 in Brain Research: A Review. *J Mol Neurosci* **34**:51–61. doi:10.1007/s12031-007-0029-
472 0

473 Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. 2000. In vivo fiber tractography using
474 DT-MRI data. *Magn Reson Med* **44**:625–632. doi:10.1002/1522-
475 2594(200010)44:4<625::AID-MRM17>3.0.CO;2-0

476 Bastiani M, Andersson JLR, Cordero-Grande L, Murgasova M, Hutter J, Price AN,
477 Makropoulos A, Fitzgibbon SP, Hughes E, Rueckert D, Victor S, Rutherford M,
478 Edwards AD, Smith SM, Tournier J-D, Hajnal J V., Jbabdi S, Sotiropoulos SN. 2019.
479 Automated processing pipeline for neonatal diffusion MRI in the developing Human
480 Connectome Project. *Neuroimage* **185**:750–763.
481 doi:10.1016/J.NEUROIMAGE.2018.05.064

482 Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. 2007. Probabilistic
483 diffusion tractography with multiple fibre orientations: What can we gain? *Neuroimage*
484 **34**:144–155. doi:10.1016/J.NEUROIMAGE.2006.09.018

485 Bland JM, Altman DG. 1995. Statistics notes: Calculating correlation coefficients with
486 repeated observations: Part 1--correlation within subjects. *BMJ* **310**:446–446.
487 doi:10.1136/bmj.310.6977.446

488 Cascio CJ, Gerig G, Piven J. 2007. Diffusion tensor imaging: Application to the study of the
489 developing brain. *J Am Acad Child Adolesc Psychiatry* **46**:213–223.
490 doi:10.1097/01.chi.0000246064.93200.e8

491 Dennis EL, Thompson PM. 2013. Typical and atypical brain development: a review of
492 neuroimaging studies. *Dialogues Clin Neurosci* **15**:359–84.

493 Dice LR. 1945. Measures of the Amount of Ecologic Association Between Species. *Ecology*
494 **26**:297–302. doi:10.2307/1932409

495 Dimond D, Schuetze M, Smith RE, Dhollander T, Cho I, Vinette S, Ten Eycke K, Lebel C,
496 McCrimmon A, Dewey D, Connelly A, Bray S. 2019. Reduced White Matter Fiber
497 Density in Autism Spectrum Disorder. *Cereb Cortex* **29**:1778–1788.
498 doi:10.1093/cercor/bhy348

499 Fonov V, Evans AC, Botteron K, Almlí CR, McKinstry RC, Collins DL. 2011. Unbiased
500 average age-appropriate atlases for pediatric studies. *Neuroimage* **54**:313–327.
501 doi:10.1016/j.neuroimage.2010.07.033

502 Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A.
503 2002. Generalized autocalibrating partially parallel acquisitions (GRAPPA). *Magn
504 Reson Med* **47**:1202–1210. doi:10.1002/mrm.10171

505 Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, Meuli R, Thiran J-P,
506 Grant PE. 2010. White matter maturation reshapes structural connectivity in the late
507 developing human brain. *Proc Natl Acad Sci* **107**:19067–19072.
508 doi:10.1073/pnas.1009073107

509 Horsfield MA, Jones DK. 2002. Applications of diffusion-weighted and diffusion tensor MRI
510 to white matter diseases - a review. *NMR Biomed* **15**:570–577. doi:10.1002/nbm.787

511 Howell BR, Styner MA, Gao W, Yap P-T, Wang L, Baluyot K, Yacoub E, Chen G, Potts T,
512 Salzwedel A, Li G, Gilmore JH, Piven J, Smith JK, Shen D, Ugurbil K, Zhu H, Lin W,
513 Elison JT. 2019. The UNC/UMN Baby Connectome Project (BCP): An overview of the
514 study design and protocol development. *Neuroimage* **185**:891–905.

515 doi:10.1016/J.NEUROIMAGE.2018.03.049

516 Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PCM,
517 Mori S. 2008. Tract probability maps in stereotaxic spaces: Analyses of white matter
518 anatomy and tract-specific quantification. *Neuroimage* **39**:336–347.
519 doi:10.1016/j.neuroimage.2007.07.053

520 Hughes EJ, Winchman T, Padormo F, Teixeira R, Wurie J, Sharma M, Fox M, Hutter J,
521 Cordero-Grande L, Price AN, Allsop J, Bueno-Conde J, Tusor N, Arichi T, Edwards
522 AD, Rutherford MA, Counsell SJ, Hajnal J V. 2017. A dedicated neonatal brain imaging
523 system. *Magn Reson Med* **78**:794–804. doi:10.1002/mrm.26462

524 Hüppi PS, Dubois J. 2006. Diffusion tensor imaging of brain development. *Semin Fetal
525 Neonatal Med* **11**:489–497. doi:10.1016/j.siny.2006.07.006

526 Jary S, Lee-Kelland R, Tonks J, Cowan FM, Thoresen M, Chakkarapani E. 2019. Motor
527 performance and cognitive correlates in children cooled for neonatal encephalopathy
528 without cerebral palsy at school age. *Acta Paediatr Int J Paediatr* **108**:1773–1780.
529 doi:10.1111/apa.14780

530 Jenkinson M, Bannister P, Brady M, Smith S. 2002. Improved Optimization for the Robust
531 and Accurate Linear Registration and Motion Correction of Brain Images. *Neuroimage*
532 **17**:825–841. doi:10.1006/NIMG.2002.1132

533 Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J. 2014. Multi-tissue
534 constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI
535 data. *Neuroimage* **103**:411–426. doi:10.1016/j.neuroimage.2014.07.061

536 Konrad K, Eickhoff SB. 2010. Is the ADHD brain wired differently? A review on structural
537 and functional connectivity in attention deficit hyperactivity disorder. *Hum Brain Mapp*
538 **31**:904–916. doi:10.1002/hbm.21058

539 Lally PJ, Montaldo P, Oliveira V, Soe A, Swamy R, Bassett P, Mendoza J, Atreja G,
540 Kariholu U, Pattnayak S, Sashikumar P, Harizaj H, Mitchell M, Ganesh V, Harigopal S,
541 Dixon J, English P, Clarke P, Muthukumar P, Satodia P, Wayte S, Abernethy LJ,
542 Yajamanyam K, Bainbridge A, Price D, Huertas A, Sharp DJ, Kalra V, Chawla S,
543 Shankaran S, Thayyil S. 2019. Magnetic resonance spectroscopy assessment of brain
544 injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre

545 cohort study. *Lancet Neurol* **18**:35–45. doi:10.1016/S1474-4422(18)30325-9

546 Lawes INC, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA. 2008.
547 Atlas-based segmentation of white matter tracts of the human brain using diffusion
548 tensor tractography and comparison with classical dissection. *Neuroimage* **39**:62–79.
549 doi:10.1016/J.NEUROIMAGE.2007.06.041

550 Lebel C, Treit S, Beaulieu C. 2019. A review of diffusion MRI of typical white matter
551 development from early childhood to young adulthood. *NMR Biomed* **32**:e3778.
552 doi:10.1002/nbm.3778

553 Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. 2008. Microstructural maturation of
554 the human brain from childhood to adulthood. *Neuroimage* **40**:1044–1055.
555 doi:10.1016/j.neuroimage.2007.12.053

556 Lee-Kelland R, Jary S, Tonks J, Cowan FM, Thoresen M, Chakkarapani E. 2020. School-age
557 outcomes of children without cerebral palsy cooled for neonatal hypoxic–ischaemic
558 encephalopathy in 2008–2010. *Arch Dis Child - Fetal Neonatal Ed* **105**:8–13.
559 doi:10.1136/archdischild-2018-316509

560 Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K. 2010.
561 Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel
562 imaging with application to high spatial and temporal whole-brain fMRI. *Magn Reson
563 Med* **63**:1144–1153. doi:10.1002/mrm.22361

564 Phan TV, Smeets D, Talcott JB, Vandermosten M. 2018. Processing of structural
565 neuroimaging data in young children: Bridging the gap between current practice and
566 state-of-the-art methods. *Dev Cogn Neurosci* **33**:206–223.
567 doi:10.1016/j.dcn.2017.08.009

568 Politis DN, Romano JP. 1992. A circular block-resampling procedure for stationary data In:
569 LePage R, Billard L, editors. *Exploring the Limits of Bootstrap*. Wiley. pp. 263–270.

570 Richards JE, Sanchez C, Phillips-Meek M, Xie W. 2016. A database of age-appropriate
571 average MRI templates. *Neuroimage* **124**:1254–1259.
572 doi:10.1016/J.NEUROIMAGE.2015.04.055

573 Sanchez CE, Richards JE, Almli CR. 2012. Age-specific MRI templates for pediatric
574 neuroimaging. *Dev Neuropsychol* **37**:379–399. doi:10.1080/87565641.2012.688900

575 Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL.
576 2012a. Improving diffusion MRI using simultaneous multi-slice echo planar imaging.
577 *Neuroimage* **63**:569–580. doi:10.1016/j.neuroimage.2012.06.033

578 Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. 2012b. Blipped-
579 controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging
580 with reduced g-factor penalty. *Magn Reson Med* **67**:1210–1224.
581 doi:10.1002/mrm.23097

582 Simmonds DJ, Hallquist MN, Asato M, Luna B. 2014. Developmental stages and sex
583 differences of white matter and behavioral development through adolescence: A
584 longitudinal diffusion tensor imaging (DTI) study. *Neuroimage* **92**:356–368.
585 doi:10.1016/J.NEUROIMAGE.2013.12.044

586 Smith RE, Tournier J-D, Calamante F, Connelly A. 2013. SIFT: Spherical-deconvolution
587 informed filtering of tractograms. *Neuroimage* **67**:298–312.
588 doi:10.1016/j.neuroimage.2012.11.049

589 Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H,
590 Bannister PR, De Luca M, Drobniak I, Flitney DE, Niazy RK, Saunders J, Vickers J,
591 Zhang Y, De Stefano N, Brady JM, Matthews PM. 2004. Advances in functional and
592 structural MR image analysis and implementation as FSL. *Neuroimage* **23**:S208–S219.
593 doi:10.1016/J.NEUROIMAGE.2004.07.051

594 Sydnor VJ, Rivas-Grajales AM, Lyall AE, Zhang F, Bouix S, Karmacharya S, Shenton ME,
595 Westin C-F, Makris N, Wassermann D, O'Donnell LJ, Kubicki M. 2018. A comparison
596 of three fiber tract delineation methods and their impact on white matter analysis.
597 *Neuroimage* **178**:318–331. doi:10.1016/j.neuroimage.2018.05.044

598 Tonks J, Cloke G, Lee-Kelland R, Jary S, Thoresen M, Cowan FM, Chakkarapani E. 2019.
599 Attention and visuo-spatial function in children without cerebral palsy who were cooled
600 for neonatal encephalopathy: a case-control study. *Brain Inj* **33**:894–898.
601 doi:10.1080/02699052.2019.1597163

602 Tournier J-D, Calamante F, Connelly A. 2013. Determination of the appropriate b value and
603 number of gradient directions for high-angular-resolution diffusion-weighted imaging.
604 *NMR Biomed* **26**:1775–1786. doi:10.1002/nbm.3017

605 Tournier J-D, Calamante F, Connelly A. 2012. MRtrix: Diffusion tractography in crossing
606 fiber regions. *Int J Imaging Syst Technol* **22**:53–66. doi:10.1002/ima.22005

607 Tournier J-D, Calamante F, Connelly A. 2007. Robust determination of the fibre orientation
608 distribution in diffusion MRI: Non-negativity constrained super-resolved spherical
609 deconvolution. *Neuroimage* **35**:1459–1472. doi:10.1016/j.neuroimage.2007.02.016

610 Tournier J-D, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D,
611 Jeurissen B, Yeh C-H, Connelly A. 2019. MRtrix3: A fast, flexible and open software
612 framework for medical image processing and visualisation. *Neuroimage* **202**:116137.
613 doi:10.1016/j.neuroimage.2019.116137

614 Tournier J-D, Yeh C-H, Calamante F, Cho K-H, Connelly A, Lin C-P. 2008. Resolving
615 crossing fibres using constrained spherical deconvolution: Validation using diffusion-
616 weighted imaging phantom data. *Neuroimage* **42**:617–625.
617 doi:10.1016/J.NEUROIMAGE.2008.05.002

618 Tusor N, Wusthoff C, Smee N, Merchant N, Arichi T, Allsop JM, Cowan FM, Azzopardi D,
619 Edwards AD, Counsell SJ. 2012. Prediction of neurodevelopmental outcome after
620 hypoxic–ischemic encephalopathy treated with hypothermia by diffusion tensor imaging
621 analyzed using tract-based spatial statistics. *Pediatr Res* **72**:63–69.
622 doi:10.1038/pr.2012.40

623 Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. 2013. The WU-
624 Minn Human Connectome Project: An overview. *Neuroimage* **80**:62–79.
625 doi:10.1016/J.NEUROIMAGE.2013.05.041

626 Verhoeven JS, Sage CA, Leemans A, Van Hecke W, Callaert D, Peeters R, De Cock P,
627 Lagae L, Sunaert S. 2009. Construction of a stereotaxic DTI atlas with full diffusion
628 tensor information for studying white matter maturation from childhood to adolescence
629 using tractography-based segmentations. *Hum Brain Mapp* NA-NA.
630 doi:10.1002/hbm.20880

631 Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J,
632 Jiang H, Dubey P, Blitz A, van Zijl P, Mori S. 2007. Reproducibility of quantitative
633 tractography methods applied to cerebral white matter. *Neuroimage* **36**:630–644.
634 doi:10.1016/j.neuroimage.2007.02.049

635 Wassermann D, Bloy L, Kanterakis E, Verma R, Deriche R. 2010. Unsupervised white
636 matter fiber clustering and tract probability map generation: Applications of a Gaussian
637 process framework for white matter fibers. *Neuroimage* **51**:228–241.
638 doi:10.1016/J.NEUROIMAGE.2010.01.004

639 Wilcox RR, Muska J. 2002. Comparing Correlation Coefficients. *Commun Stat - Simul
640 Comput* **31**:49–59. doi:10.1081/SAC-9687281

641 Zhang F, Wu Y, Norton I, Rigolo L, Rathi Y, Makris N, O'Donnell LJ. 2018. An
642 anatomically curated fiber clustering white matter atlas for consistent white matter tract
643 parcellation across the lifespan. *Neuroimage* **179**:429–447.
644 doi:10.1016/J.NEUROIMAGE.2018.06.027

645

646

647 **Figure Legends**

648 **Figure 1.** Methodology for generating probabilistic tract maps from whole-brain tractography
649 data, shown here for the corticospinal tract (CST). ROIs were manually drawn in each
650 subject, as defined by (Wakana et al., 2007) (in the case of the CST, inclusion ROIs were
651 drawn in the cerebral peduncle and the primary motor cortex), and tracts were segmented by
652 including streamlines passing through the inclusion ROIs. Streamlines were transformed to
653 standard space (JHU template) and a binary mask was created for each subject indicating all
654 voxels containing streamlines. The average of these masks (across N = 28 subjects) gives the
655 probability map.

656 **Figure 2.** ROIs used to delineate the following major white matter tracts: anterior thalamic
657 radiation (ATR); cingulate gyrus part of the cingulum (CG); hippocampal part of the
658 cingulum (CH); cortico-spinal tract (CST); forceps major (Fmajor); forceps minor (Fminor);
659 inferior fronto-occipital fasciculus (IFOF); inferior longitudinal fasciculus (ILF); superior
660 longitudinal fasciculus (SLF); temporal part of the superior longitudinal fasciculus (SLFt);
661 uncinate fasciculus (UF). Streamlines are included in a given tract if they pass through both 1
662 AND 2. The following abbreviations indicate anatomical landmarks used to draw the ROIs:
663 internal capsule (IC); decussation of the superior cerebellar peduncle (DSCP); central sulcus
664 (CS); parieto-occipital sulcus (POS); anterior commissure (AC); sagittal stratum (SS). ROIs
665 are drawn in white with streamlines in yellow, overlaid on FA images with principal
666 diffusion directions indicated by the colour ball; blue = superior-inferior (S-I), green =
667 anterior-posterior (A-P) and red = right-left (L-R). Adapted from Hua et al., 2008, with
668 permission from Elsevier.

669 **Figure 3.** ROIs used to delineate the fornix, shown here on the group FA template. Yellow
670 voxels contain streamlines which pass through the body of the fornix (1) AND bilateral
671 posterior limbs of fornix (2a OR 2b).

672 **Figure 4.** Age-specific probabilistic atlas for the 12 major white matter tracts: anterior
673 thalamic radiation (ATR); inferior fronto-occipital fasciculus (IFOF); forceps minor
674 (Fminor); forceps major (Fmajor); cingulate gyrus part of the cingulum (CG); hippocampal
675 part of the cingulum (CH); cortico-spinal tract (CST); fornix; inferior longitudinal fasciculus
676 (ILF); superior longitudinal fasciculus (SLF); temporal part of the superior longitudinal
677 fasciculus (SLFt); and uncinate fasciculus (UF). Probabilities are indicated by the colour bar.
678 Also shown are the aDWI and FA maps.

679 **Figure 5.** Same-site validation of tract overlap with “gold-standard” subject specific tract
680 tracing. For each tract, the plot on the left shows the Dice score of volumetric overlap (y axis)
681 against probability threshold (x axis) when using the age-specific atlas (blue) or the JHU
682 adult atlas (red), with lines showing the mean score for the 8 validation subjects not included
683 in the formation of the atlas, and shaded regions show the 95% confidence interval of the
684 mean. Also shown for each tract is a paired plot of the peak Dice scores calculated with each
685 atlas. P-values, given in Table S1, are indicated by: * $p < 0.05$; ** $p < 0.001$; *** $p < 0.0001$.
686 Note that the age-specific atlas outperformed the JHU (adult) atlas in all tracts. The tract
687 representing the fornix is not available in the JHU atlas so only the new mask was tested.

688 **Figure 6.** Same-site validation of slice FA values. Plots show slice FA measured from
689 individually traced tracts (i.e. the “gold-standard”) plotted against corresponding values
690 extracted from the age-specific and JHU atlases. Each plot shows a point for every slice in
691 each of the 8 validation subjects and the regression. Correlation coefficients are shown on
692 each plot, measured using a repeated measures correlation (Bland and Altman, 1995). All
693 tracts exhibit higher correlation when measured with the age-specific atlas than with the JHU
694 adult atlas. This difference is significant in the ATR, CG, CST, UF and Fminor, as indicated
695 by † next to the tract abbreviation. Confidence intervals and regression parameters are given
696 in Table S2. * $p < 10^{-20}$.

697 **Figure 7.** Comparison of mean FA extracted from whole tracts traced in individuals (“gold-
698 standard”) and that estimated using each atlas. Whole-tract FA was measured by subject-
699 specific tracing in the same-site validation data (left), the HBN data with FOD-based
700 tractography (middle), and the HBN data with tensor-based tractography (right), then plotted
701 against whole-tract FA measurements given by the age-specific atlas (top) or JHU adult atlas
702 (bottom). The solid line shows the regression, and the dotted line represents exact equality
703 between individual and the age-specific or JHU data. Correlation coefficients are given in
704 Table 2.

705 **Figure 8.** Box plots of significant differences in whole-tract average FA between children
706 treated with TH for NE and healthy controls. Measurements obtained with both the age-
707 specific atlas (blue) and the JHU adult atlas (red) are shown for tracts in which at least one of
708 the atlases revealed significant differences between cases and controls; * $p < 0.05$, ** $p < 0.01$,
709 Bonferroni corrected. The fornix is not available in the JHU atlas so was only tested with the
710 age-specific atlas. In each box, the point shows the median, the box shows the 25th to 75th

711 percentiles, and the lines extend to the maximum and minimum data points, excluding
712 outliers which are displayed as circles.

713 **Table 1.** Demographics of participants in the atlas dataset, same-site validation dataset, HBN
714 validation dataset, and the CoolMRI dataset. Mean (range) is shown for age; median (range)
715 is shown for SES and FSIQ in the CoolMRI cohort. Also shown are p-values of t-tests
716 between atlas data and validation data for validation cohorts, and between cases and controls
717 for the CoolMRI cohort. SES is defined as follows: A= upper middle class, B = middle class,
718 C1 = lower middle class, C2 = skilled working class, D = working class, E = casual worker or
719 unemployed.

720 **Table 2.** Validation of whole-tract FA correlations, corresponding to Figure 7. Columns
721 show the parameters of the best-fit line $y = mx + c$ and the correlation coefficient, r , between
722 slice FA values from individual tracing and that from each atlas, measured using a repeated
723 measures correlation (Bland and Altman, 1995). Also shown is the difference between the z-
724 transform of the correlation coefficients for the age-specific atlas and the JHU atlas, and the
725 95% confidence intervals (CI) for this difference. Positive differences indicate a higher
726 correlation with the age-specific atlas. These are shown for the same-site validation data, the
727 HBN data with FOD-based tractography and the HBN data with tensor-based tractography.

728 $*p < 10^{-10}$.

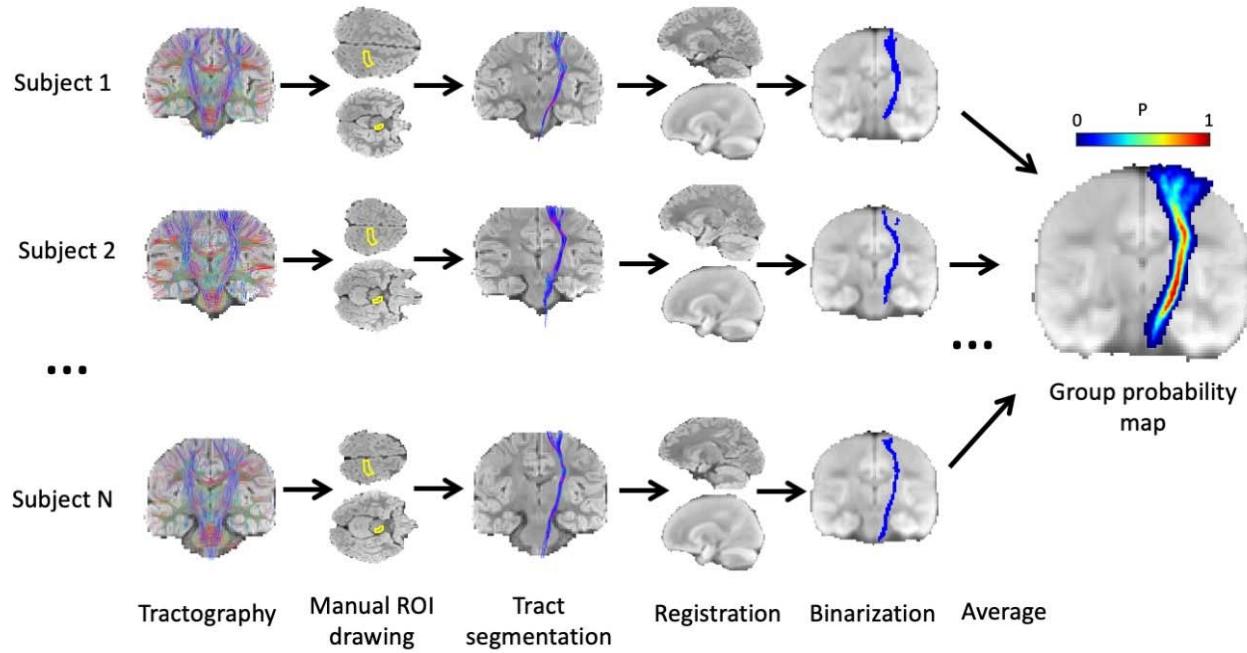


Figure 1: Methodology for generating probabilistic tract maps from whole-brain tractography data, shown here for the corticospinal tract (CST). ROIs were manually drawn in each subject, as defined by (Wakana et al., 2007) (in the case of the CST, inclusion ROIs were drawn in the cerebral peduncle and the primary motor cortex), and tracts were segmented by including streamlines passing through the inclusion ROIs. Streamlines were transformed to standard space (JHU template) and a binary mask was created for each subject indicating all voxels containing streamlines. The average of these masks (across $N = 28$ subjects) gives the probability map.

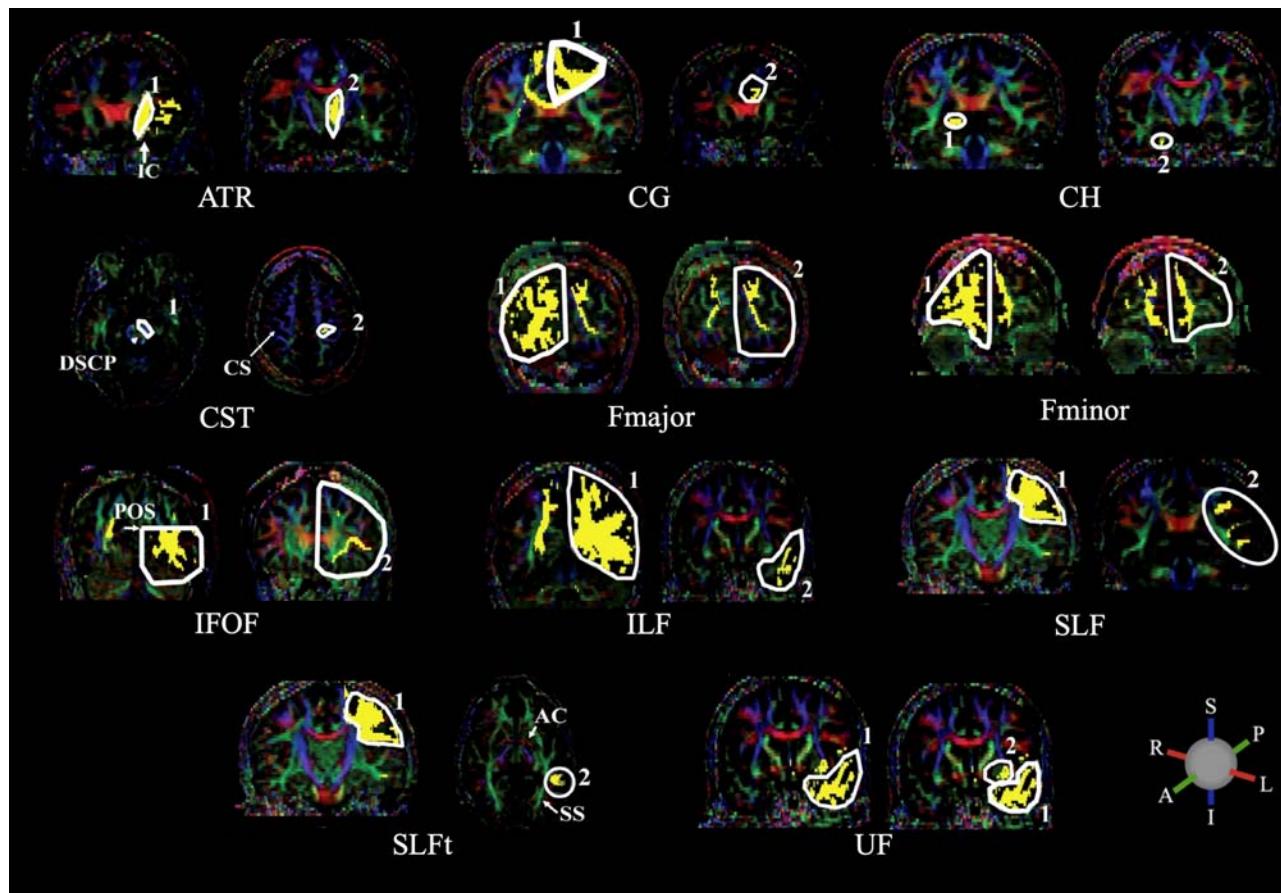


Figure 2: ROIs used to delineate the following major white matter tracts: anterior thalamic radiation (ATR); cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal tract (CST); forceps major (Fmajor); forceps minor (Fminor); inferior fronto-occipital fasciculus (IFOF); inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); temporal part of the superior longitudinal fasciculus (SLFt); uncinate fasciculus (UF). Streamlines are included in a given tract if they pass through both 1 AND 2. The following abbreviations indicate anatomical landmarks used to draw the ROIs: internal capsule (IC); decussation of the superior cerebellar peduncle (DSCP); central sulcus (CS); parieto-occipital sulcus (POS); anterior commissure (AC); sagittal stratum (SS). ROIs are drawn in white with streamlines in yellow, overlaid on FA images with principal diffusion directions indicated by the colour ball; blue = superior-inferior (S-I), green = anterior-posterior (A-P) and red = right-left (L-R). Adapted from Hua et al., 2008, with permission from Elsevier.

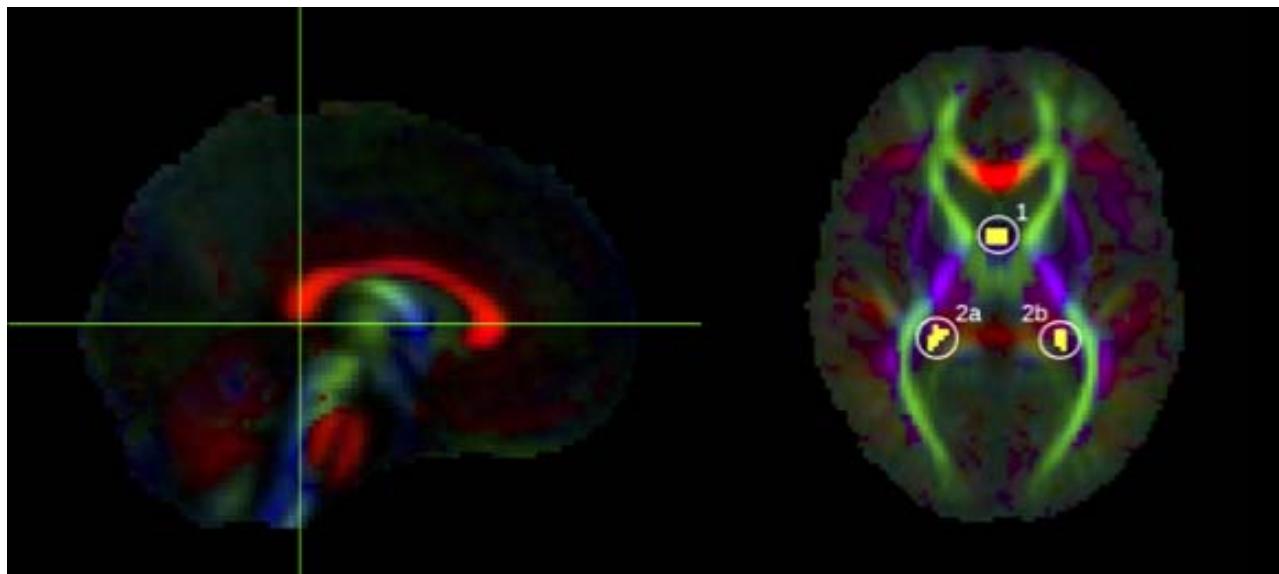


Figure 3: ROIs used to delineate the fornix, shown here on the group FA template. Yellow voxels contain streamlines which pass through the body of the fornix (1) AND bilateral posterior limbs of fornix (2a OR 2b).

	Atlas	Same-site Validation		HBN Validation		CoolMRI		
			p		p	Cases	Controls	p
n =	28	8		15		33	36	
Age	7.0 (6.1-7.9)	7.0 (6.1-7.8)	0.9392	7.0 (6.0-7.9)	0.8684	6.9 (6.0-7.9)	7.0 (6.1-7.9)	0.5595
M/F	15/13	4/4	0.8776	9/6	0.7002	18/15	19/17	0.8894
SES						C1 (A-E)	B (A-D)	0.1568
FSIQ						93 (62-115)	108 (75-137)	<0.0001

Table 1: Demographics of participants in the atlas dataset, same-site validation dataset, HBN validation dataset, and the CoolMRI dataset. Mean (range) is shown for age; median (range) is shown for SES and FSIQ in the CoolMRI cohort. Also shown are p-values of t-tests between atlas data and validation data for validation cohorts, and between cases and controls for the CoolMRI cohort. SES is defined as follows: A= upper middle class, B = middle class, C1 = lower middle class, C2 = skilled working class, D = working class, E = casual worker or unemployed.

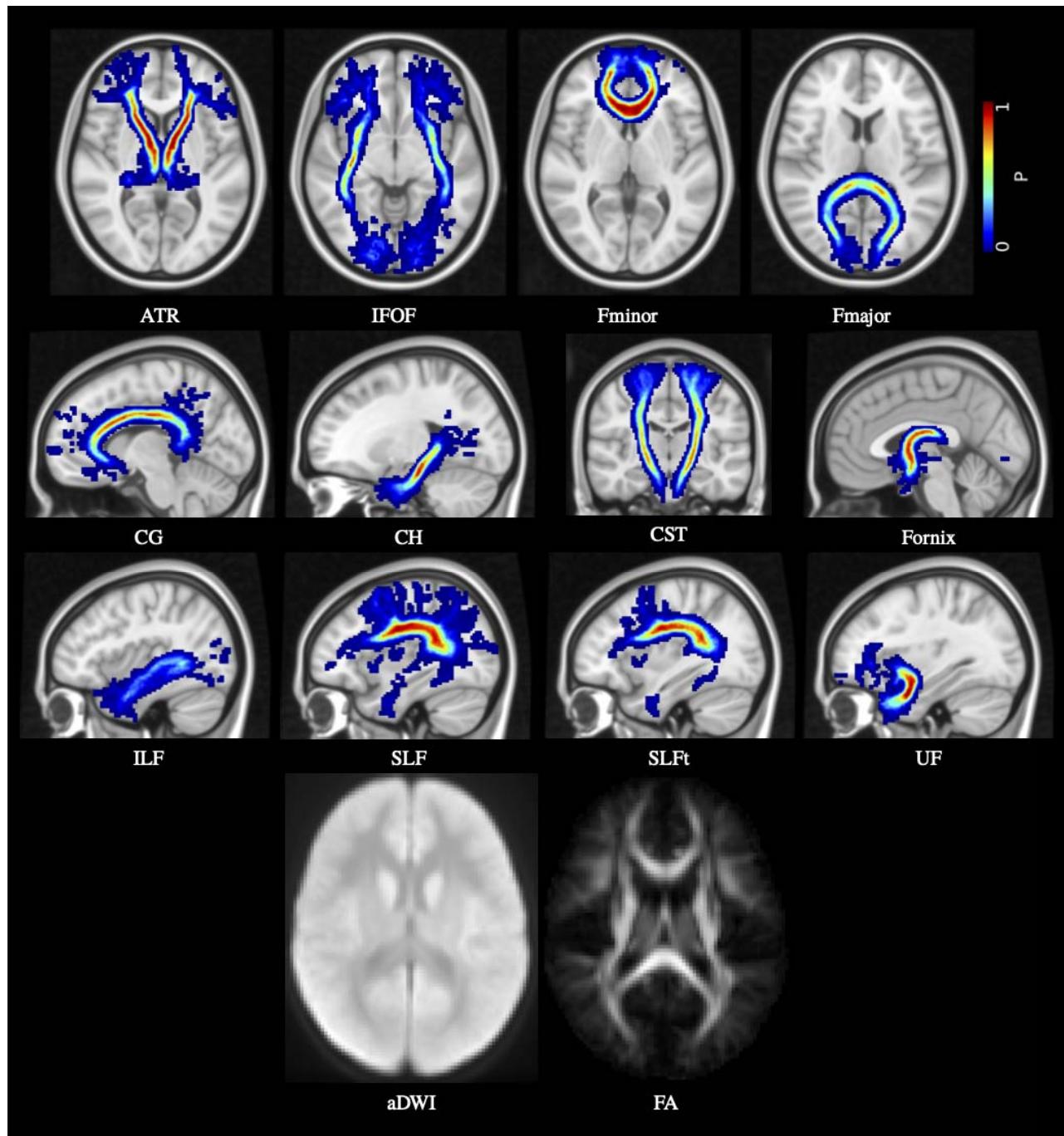


Figure 4: Age-specific probabilistic atlas for the 12 major white matter tracts: anterior thalamic radiation (ATR); inferior fronto-occipital fasciculus (IFOF); forceps minor (Fminor); forceps major (Fmajor); cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal tract (CST); fornix; inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); temporal part of the superior longitudinal fasciculus (SLFt); and uncinate fasciculus (UF). Probabilities are indicated by the colour bar. Also shown are the aDWI and FA maps.

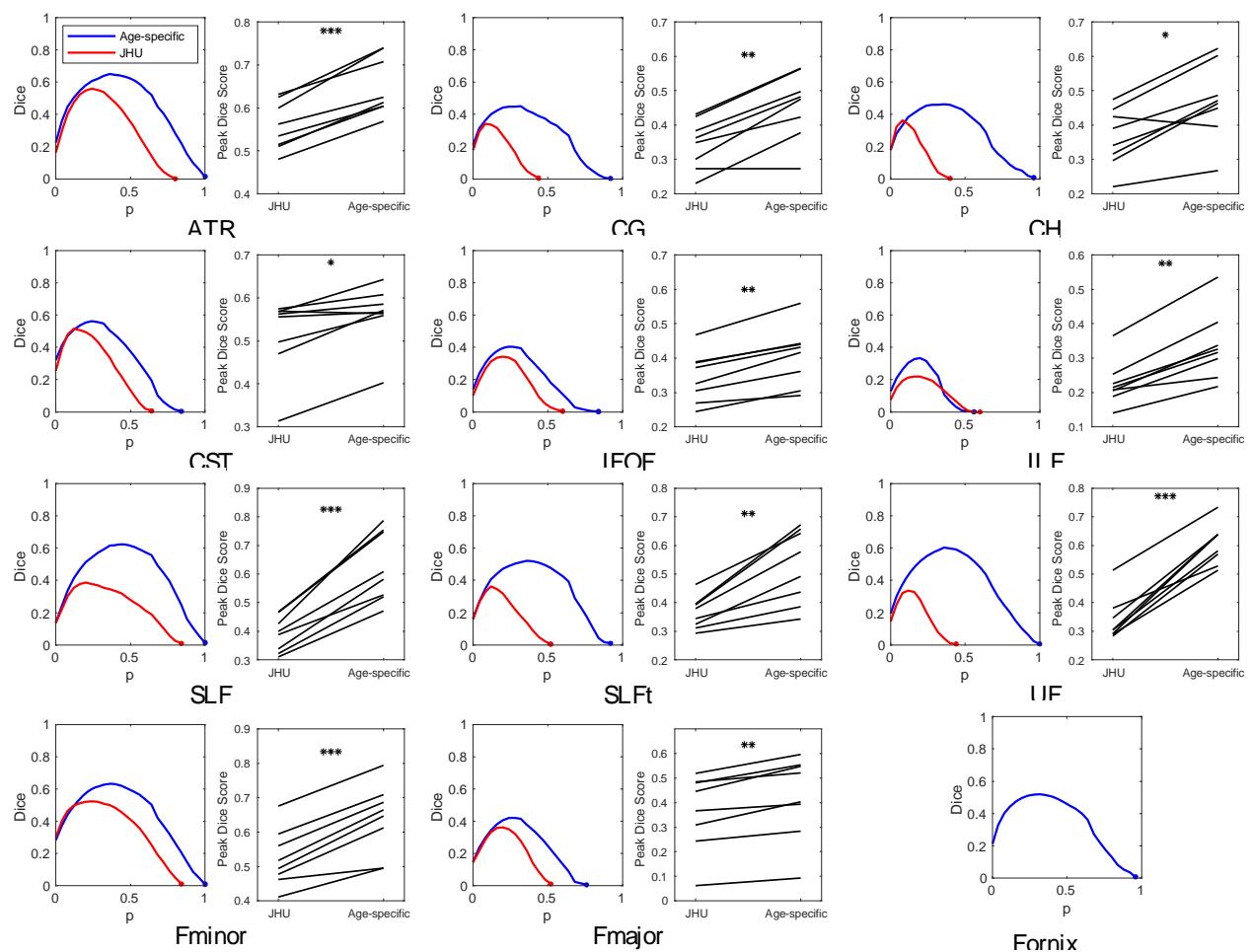


Figure 5: Same-site validation of tract overlap with “gold-standard” subject specific tract tracing. For each tract, the plot on the left shows the Dice score of volumetric overlap (y axis) against probability threshold (x axis) when using the age-specific atlas (blue) or the JHU adult atlas (red), with lines showing the mean score for the 8 validation subjects not included in the formation of the atlas, and shaded regions show the 95% confidence interval of the mean. Also shown for each tract is a paired plot of the peak Dice scores calculated with each atlas. P-values, given in Table S1, are indicated by: * $p < 0.05$; ** $p < 0.001$; *** $p < 0.0001$. Note that the age-specific atlas outperformed the JHU (adult) atlas in all tracts. The tract representing the fornix is not available in the JHU atlas so only the new mask was tested.

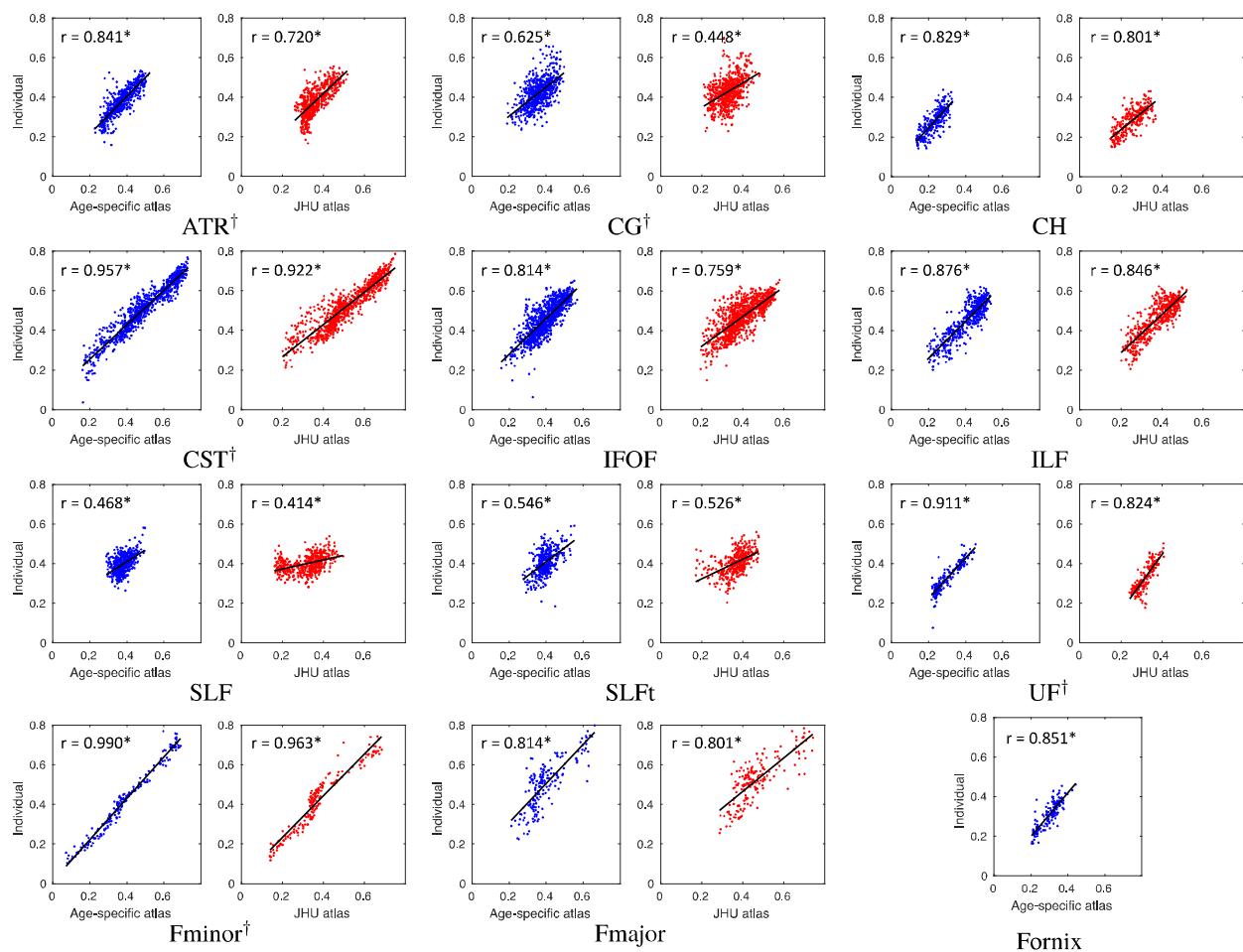


Figure 6: Same-site validation of slice FA values. Plots show slice FA measured from individually traced tracts (i.e. the “gold-standard”) plotted against corresponding values extracted from the age-specific and JHU atlases. Each plot shows a point for every slice in each of the 8 validation subjects and the regression. Correlation coefficients are shown on each plot, measured using a repeated measures correlation (Bland and Altman, 1995). All tracts exhibit higher correlation when measured with the age-specific atlas than with the JHU adult atlas. This difference is significant in the ATR, CG, CST, UF and Fminor, as indicated by [†] next to the tract abbreviation. Confidence intervals and regression parameters are given in Table S2. * $p < 10^{-20}$.

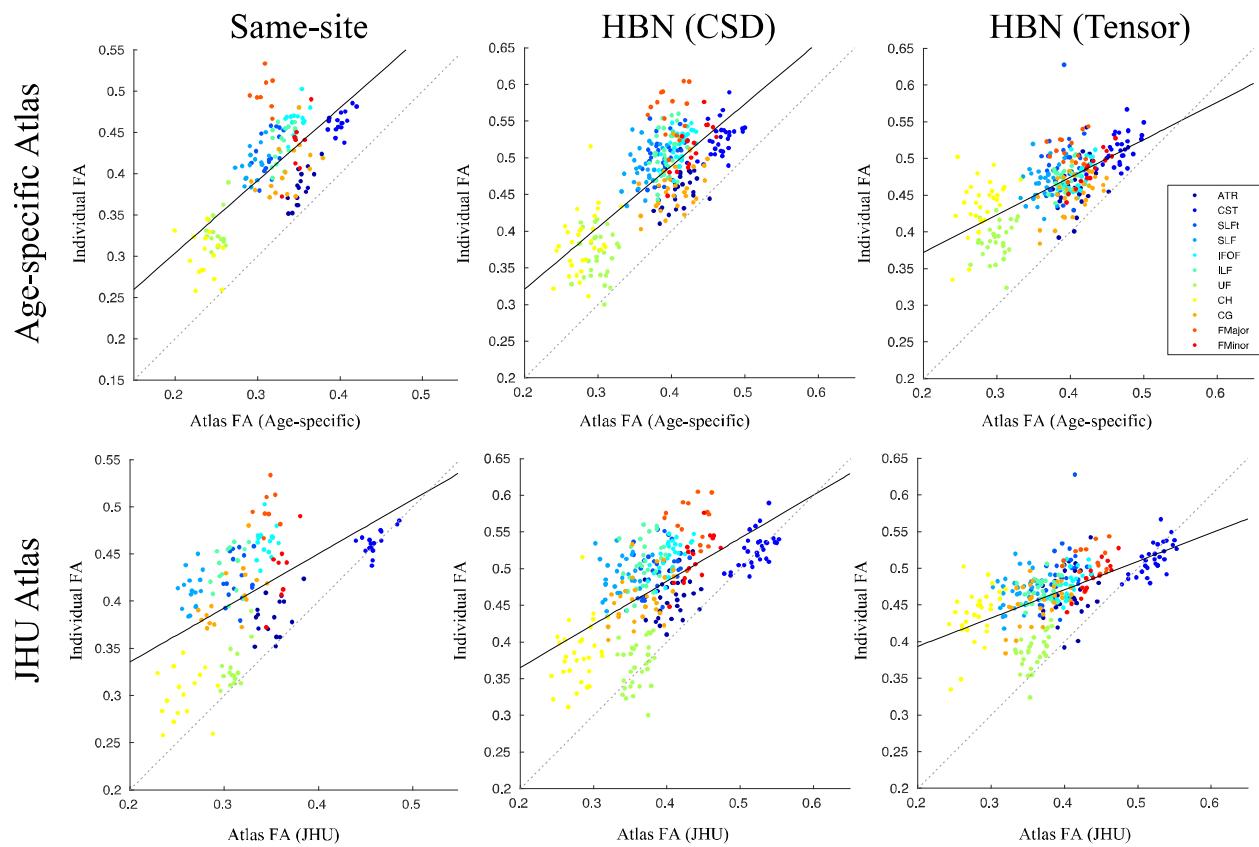


Figure 7: Comparison of mean FA extracted from whole tracts traced in individuals (“gold-standard”) and that estimated using each atlas. Whole-tract FA was measured by subject-specific tracing in the same-site validation data (left), the HBN data with FOD-based tractography (middle), and the HBN data with tensor-based tractography (right), then plotted against whole-tract FA measurements given by the age-specific atlas (top) or JHU adult atlas (bottom). The solid line shows the regression, and the dotted line represents exact equality between individual and the age-specific or JHU data. Correlation coefficients are given in Table 2.

Dataset	Age-specific Atlas			JHU Atlas			Difference between z-transformed correlation coefficients (95% CI)
	m	c	r	m	c	r	
Same-site	0.88	0.13	0.715*	0.57	0.22	0.536*	+0.298 (+0.115, +0.300)
HBN (FOD)	0.84	0.15	0.781*	0.59	0.25	0.617*	+0.328 (+0.231, +0.412)
HBN (Tensor)	0.51	0.27	0.697*	0.39	0.32	0.595*	+0.176 (+0.087, +0.281)

Table 2: Validation of whole-tract FA correlations, corresponding to Figure 7. Columns show the parameters of the best-fit line $y = mx + c$ and the correlation coefficient, r , between slice FA values from individual tracing and that from each atlas, measured using a repeated measures correlation (Bland and Altman, 1995). Also shown is the difference between the z-transform of the correlation coefficients for the age-specific atlas and the JHU atlas, and the 95% confidence intervals (CI) for this difference. Positive differences indicate a higher correlation with the age-specific atlas. These are shown for the same-site validation data, the HBN data with FOD-based tractography and the HBN data with tensor-based tractography. * $p < 10^{-10}$.

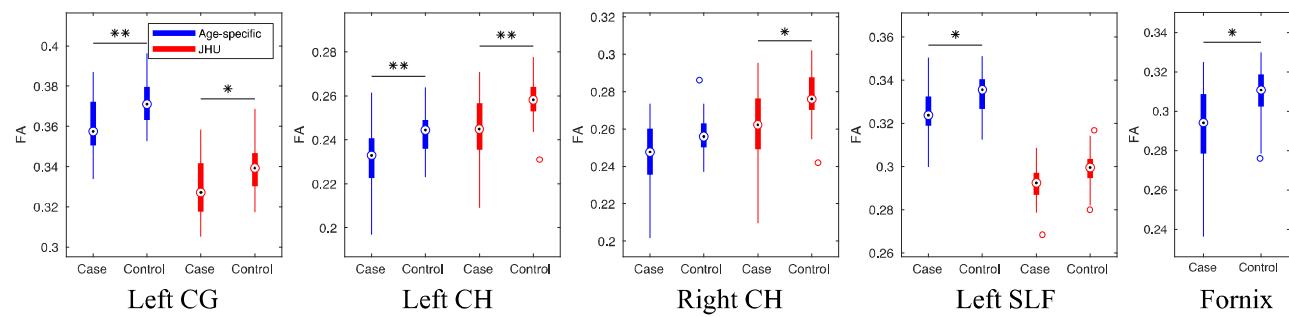


Figure 8: Box plots of significant differences in whole-tract average FA between children treated with TH for NE and healthy controls. Measurements obtained with both the age-specific atlas (blue) and the JHU adult atlas (red) are shown for tracts in which at least one of the atlases revealed significant differences between cases and controls; * $p < 0.05$, ** $p < 0.01$, Bonferroni corrected. The fornix is not available in the JHU atlas so was only tested with the age-specific atlas. In each box, the point shows the median, the box shows the 25th to 75th percentiles, and the lines extend to the maximum and minimum data points, excluding outliers which are displayed as circles.