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41 Abstract

42 Diffusion MRI alows non-invasive assessment of white matter maturation in typical
43 development and of white matter damage due to brain injury or pathology. Probabilistic
44  white matter atlases provide delineation of white matter tracts, allowing diffusion metrics to
45  be measured in specific white matter pathways. However, given the known age-dependency
46  of developmenta change in white matter it may not be optimal to use an adult template when
47  assessing data acquired from children. This study develops an age-specific probabilistic white
48  matter atlas for delineation of 12 mgor white matter tracts in children aged 6-8 years. By
49  comparing to subject-specific tract tracing in two validation cohorts, we demonstrate that this
50 age-specific atlas gives better overall performance than simply registering to the Johns
51  Hopkins University adult white matter template. Specifically, when normalising diffusion
52  data acquired from children to an adult template, estimates of fractional anisotropy (FA)
53  values for corticospinal tract, uncinate fasciculus, forceps minor, cingulate gyrus part of the
54  cingulum and anterior thalamic radiation were all less accurate than those obtained when
55 using an age-specific atlas, potentially leading to false negatives when performing group
56  comparisons. We then applied the newly developed atlas to compare FA between children
57  treated with therapeutic hypothermia for neonatal encephalopathy and age-matched controls,
58  which revealed significant reductions in the fornix, the left superior longitudinal fasciculus,
59  and both the hippocampal and cingulum parts of the left cingulate gyrus. To our knowledge,
60 thisisthefirst publicly available probabilistic atlas of white matter tracts for this age group.

61
62 Keywords

63  White matter; development; diffusion MRI; neuroimaging; tractography; atlas; anatomy.
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64 1 Introduction

65 Tract-level analysis of diffusion weighted imaging (DWI) data is used extensively to
66 investigate white matter microstructure in both typical (Asato et al., 2010; Hippi and Duboais,
67 2006; Lebel et al., 2008) and atypical brain development (for a review, see (Dennis and
68  Thompson, 2013)). In children and adolescents, atypical brain development may lead to
69 physica and intellectual disabilities including e.g. cerebral palsy (CP) (Arrigoni et al., 2016),
70 autistic spectrum behaviours (Ameis and Catani, 2015; Dimond et al., 2019) and attention
71  deficit hyperactivity disorder (Konrad and Eickhoff, 2010). Diffusion metrics such as
72  fractional anisotropy (FA), mean diffusivity (MD), radia diffusivity (RD) and axid
73 diffusivity (AD) (Assaf and Pasternak, 2008) are sensitive to changes in the underlying white
74  matter structure. These metrics are widely investigated in studies of brain development
75  (Dennis and Thompson, 2013; Lebel et al., 2008), as well as having clinical relevance in
76  patient cohorts (Assaf et a., 2019; Assaf and Pasternak, 2008; Horsfield and Jones, 2002).

77  To measure tract-level diffusion metrics, white matter tracts can be delineated by registering
78 to astandard template with a probabilistic atlas of tract locations. Using a white matter atlas
79 eliminates the need for computationally intensive methods of delineating tracts by
80  segmenting streamlines generated by tractography (Lawes et al., 2008; Sydnor et a., 2018;
81 Wakana et al., 2007; Wassermann et a., 2010; Zhang et al., 2018). This is beneficial in
82  clinical settings or when studying large datasets. Additionally, data which have been acquired
83 with shorter, more simplistic diffusion tensor acquisitions may not facilitate accurate
84  tractography. Such acquisitions may be favoured in an effort to minimise scan times (and
85 therefore minimise risk of movement during the scan) when studying children, including
86  those with disabilities who would benefit from investigating white matter development (Phan
87 etal., 2018).

88  The widely used Johns Hopkins University (JHU) white matter tract atlas (Huaet al., 2008) is
89 constructed from adult data. Numerous developmental studies demonstrate white matter
90 dterations continuing into adolescence (Cascio et al., 2007; Hagmann et al., 2010; Lebel et
91 4d., 2008; Simmonds et a., 2014), and white matter development varies widely across the
92  brain (Lebel et al., 2019), therefore an atlas constructed from adult scans is by design and
93  definition not representative of children. There are several publicly available age-specific
94  dructura templates (Altaye et al., 2008; Fonov et a., 2011; Richards et al., 2016; Sanchez et
95 a., 2012), however none of these provide diffusion data.
4
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96 Using robust tract reconstruction protocols (Hua et al., 2008; Wakana et al., 2007) this study
97  develops an age-specific probabilistic white matter atlas for 12 major tracts in children aged
98 6-8 years. To assess whether this atlas accurately delineates tracts, we measured both
99  volumetric overlap and the diffusion metrics sampled by the tract mask in comparison with
100  subject-specific tractography-based tract delineation. We then assess the utility of this age-
101  specific tract atlas by comparing it to results obtained using an adult atlas (JHU). The atlasis
102  then further validated against an open data source (i.e. different scanner and acquisition

103  protocal), and against a different tractography algorithm.

104 As a demonstration, we then investigate tract-level differences in children treated with
105 therapeutic hypothermia (TH) for neonatal encephalopathy (NE) at birth, compared with
106  hedlthy controls, and compare results obtained using the age-specific atlas to those from the
107  JHU atlas. The children who had TH, do not have CP and are in mainstream education still
108  exhibit significantly reduced performance on cognitive tests (Jary et al., 2019; Lee-Kelland et
109 4., 2020) and have slower reaction times and reduced visuo-spatial processing abilities
110 (Tonkset a., 2019), compared to the typically developing controls.

111 2 Material and Methods

112 2.1 Participants

113  Ethics approval was obtained from the North Bristol Research Ethics Committee and the
114 Health Research Authority (REC ID: 15/SW/0148). Informed and written consent was
115 obtained from the parents of participants before collecting data. The cohort was made up of
116 36 healthy children aged 6-8 years with no evidence of neurological disease, originaly
117  recruited as controls for a study of the long-term effects of TH (* CoolMRI”) on behavioural
118 and imaging outcomes. The 36 controls were split randomly into 28 atlas and 8 validation
119  subjects such that the group were matched for age, sex, socio-economic status (SES) and full-
120 scale intelligence quotient (FSIQ). For the demonstrative case study, data from 33 children
121  treated with TH following NE at birth were compared to the control data.

122 2.2 ImageAcquisition

123  DWI data were acquired with a Siemens 3 tesla Magnetom Skyra MRI scanner at the Clinical
124  Research and Imaging Centre (CRiCBristol), Bristol, UK. Subjects were placed supine within
125 the 32-channel receive only head-coil by an experienced radiographer, and head movement
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126  minimised by means of memory-foam padding. Children wore earplugs and were able to
127  watch afilm. A multiband echo-planar imaging (EPI) sequence was used with the following
128 parameters. TE = 70 ms; TR = 3150 ms; field of view 192 x 192 mm; 60 slices, 2.0 mm
129 isotropic voxels;, phase encoding in the anterior-posterior direction, in-plane acceleration
130 factor = 2 (GRAPPA (Griswold et a., 2002)), through-plane multi-band factor = 2 (Moeller
131 etal., 2010; Setsompop et al., 2012b, 2012a).

132 For the purpose of data averaging and eddy-current distortion correction, two sets of
133  diffusion weighted images were acquired with b = 1,000 s mm™ in 60 diffusion directions,
134  equaly distributed according to an electrostatic repulsion model, as well as 8 interspersed b =
135 0 images, with one data set acquired with positive phase encoding steps, then repeated with
136  negative steps (so-called, “blip-up”, “blip-down™), giving atotal of 136 images.

137 2.3 Quality Control

138 The quality of the diffusion data was assessed using the EddyQC tool (Bastiani et a., 2019)
139 from FSL (Smith et a., 2004). This provides several measures of the amount of movement
140 and eddy current induced distortion present in the data. For each participant, metrics were
141 normalised, then the root-mean-square was calculated, giving a score which increases
142  monotonically with the amount of movement and eddy current distortion. Scans were rejected

143  if their score was more than one standard deviation above the mean of all participants.
144 2.4 Image Processing & Atlas Construction

145 DWI data were corrected for eddy current induced distortions and subject movements using
146 EDDY (Andersson and Sotiropoulos, 2016) and TOPUP (Andersson et al., 2003), part of
147  FSL. Subsequent DWI processing and tractography steps were performed using MRtrix
148 (Tournier et al., 2019). The response function (the DWI signal for atypical fibre population)
149  was estimated from the data (Tournier et al., 2013). The fibre orientation distribution (FOD)
150 was then calculated by performing constrained spherical deconvolution of the response
151  function from the measured DWI signal (Tournier et al., 2007). Deterministic tractography
152  wasrun in each subject using the “SD Stream” algorithm (Tournier et a., 2012). Streamlines
153  were seeded randomly in the brain and generated with a step size of 0.2 mm, then terminated
154  if the FOD amplitude dropped below 0.2 or the angle between successive steps exceeded 40

155  degrees. 10 million streamlines were generated, which were then filtered to 1 million using
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156  spherical-deconvolution informed filtering of tractograms (SIFT) (Smith et al., 2013) to give

157  better reconstruction of FODs, improving anatomical accuracy.

158 The process of generating probability maps from the whole-brain tractograms is summarised
159 in Figure 1. White matter tracts were segmented from whole-brain tractograms using the
160 protocols described in Wakana et al., whereby regions of interest (ROI) are drawn to include
161 or exclude streamlines passing through them (Wakana et a., 2007). For a given tract, any
162  streamlines which pass through all inclusion ROIs and no exclusion ROIs belong to that tract,
163 and al other streamlines are removed. Inclusion and exclusion ROIs were manually drawn in
164  each subject to delineate 12 mgor fibre tracts: anterior thalamic radiation (ATR); cingulate
165 gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal tract
166 (CST); forceps major (Fmajor); forceps minor (Fminor); inferior fronto-occipital fasciculus
167 (IFOF); inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF);
168 temporal projections of the superior longitudinal fasciculus (SLFt); uncinate fasciculus (UF);
169 and the fornix. The locations of ROIs for all tracts apart from the fornix are described in
170  Wakanaet a. as shown in Figure 2 (Huaet a., 2008; Wakana et a., 2007).

171  To delineate the fornix, streamlines were included which pass through the body of the fornix
172  and either of the posterior limbs which project to the hippocampus (Figure 3). These were
173 isolated by first selecting an axia level at the lower edge of the splenium of the corpus
174  calosum, as seen in the mid-sagittal plane (Figure 3, left); in this axial level, the first ROI
175 was drawn around the body of the fornix. Viewing the streamlines which are delineated by
176 the first ROI, additional bilatera ROIls were defined to include only those which project
177  posteriorly from the fornix body (Figure 3, right).

178 For spatial normalisation, the average diffusion weighted image (aDWI), created for each
179  subject by averaging all DWI images, was registered to the JHU aDWI template by 12-degree
180 of freedom affine registration using FSL’s FLIRT (Jenkinson et al., 2002). The resulting
181 transformation was then applied to the segmented streamlines. Any voxel containing one or
182 more of these streamlines was then labelled, to create a binary mask for the tract for each
183 individual. The average, across 28 subjects, of these binary masks was taken to give a
184  probability map for each tract. The aDWI was then created for the group by averaging
185 transformed aDWIs from all 28 subjects, and the group FA image was created from the

186  group-average tensor map.

187 Thisatlasisavailable at Neurovault (https://neurovault.org/collections/ LWTAAAST/).
7
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188 2.5 Validation

189 The age-specific atlas was assessed by comparison with subject-specific tracts, delineated by
190 applying the ROI-based tract-tracing method, described above, to each validation subject.
191 These tracts were transformed to the atlas space by nonlinearly registering each subject’s FA
192  image to the group FA template, constructed from the 28 atlas subjects, using FSL’s FNIRT
193  (Andersson et al., 2007). We used three methods to assess accuracy of the atlas: i) volumetric
194  overlap; ii) slice-wise correlation of FA measurements; and iii) correlation of whole-tract FA

195 measurements. The same methods were also applied to the JHU atlas for comparison.
196 251 Volumetric Overlap

197 To compare spatial similarity between normalised data we tested the volumetric overlap
198  between the probabilistic atlas (age-specific or JHU) and each individualy traced tract by
199 measuring the Dice score (Dice, 1945) over arange of probability thresholds. The amount of
200  volumetric overlap between the atlas data and the individually traced tract depends on both i)
201 the quality of registration of the individual to the template, and ii) the agreement between the
202 atlas dataand the results from tractography in the individual. Thus, if the template is a closely
203  matched target for registration, and if the underlying anatomy and diffusion process captured
204 by theatlasis a good match to the validation subjects, we expect the Dice scores to be high.

205 25.2 Sliceewise Corrdation

206 We assessed the ability of the atlas to reproduce individually traced DWI metrics by
207  calculating the mean FA in the tract in every slice along the major axis of each tract (coronal
208 dlices for tracts which project anterior/posterior; axial slices for tracts which project
209  dorsal/ventral). In individually traced tracts, average FA was calculated by taking the mean
210 FA in all masked voxels. In the probabilistic atlases (age-specific or JHU), the FA was
211  weighted by the probability in each voxel using the following equation:

_ %FA; X P,

FA = b @

212  where FA| is the FA in voxel i and Pj is the probability in voxel i. We then calculated the
213  correlation between the probabilistic FA and individual FA (see Section 2.7).
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214 25.3 Wholetract Correation

215 Wholetract average FA was caculated in each subject, using both probabilistic and
216 individually traced tracts. Average FA was calculated in probabilistic tracts using equation
217 (1) and in individually traced tracts by averaging FA in all masked voxels. We then
218  calculated the correlation between the probabilistic FA and individual FA (see Section 2.7).

219 254 Healthy Brain Network (HBN) Data

220 In order to alleviate bias associated with using same-site scans for validation, we used an
221 additional validation dataset obtained from the Heathy Brain Network (HBN,
222  http://fcon_1000.projects.nitrc.org/indi/cmi_healthy brain_network/) (Alexander et al.,
223  2017), a data-sharing biobank from the Child Mind Institute. Scans were obtained from 15
224 subjects, aged 6-8 years, from release 7.0 from the CitiGroup Cornell Brain Imaging Centre

225  dataset. These multi-shell DWI data were acquired on a Siemens 3 tesla Prisma scanner using
226  using an echo-planar pulse sequence with the following parameters: TE = 100.2 ms; TR =
227 3320 ms; 81 slices; 1.8 x 1.8 x 1.8 mm resolution; multi-band acceleration factor = 3; b =
228 1,000 s mm? and b = 2,000 s mm? each with 64 directions, and one b = 0 image.
229  Preprocessing and quality control pipelines were applied as described above, followed by
230 calculation of FODs using multi-shell multi-tissue constrained spherical deconvolution
231  (Jeurissen et al., 2014) and tractography as described above. This allowed validation using
232  subjects scanned in a different scanner, and with different scanning parameters. To further
233 dleviate bias associated with using the same tractography algorithm for atlas construction
234  and validation we also ran tractography in this cohort using a deterministic tensor-based
235 algorithm (Basser et al., 2000), in addition to the FOD-based tractography agorithm
236  described above. To give an overall indication of the accuracy of the atlas in these datasets,
237  we applied the whole-tract correlation method described above. For completeness, in-depth
238  results of the volumetric overlap and slice-wise correlation for the HBN data are given in the

239  Supporting Information.
240 2.6 CoolMRI Study

241  As a demongtration, the age-specific atlas was used to investigate tract-level differences in
242  white matter microstructure between the case and control children of the CoolMRI study. In
243 each of the tracts delineated by the age-specific atlas, the average whole-tract FA was
244 calculated for each individual using equation (1). We then tested for group differences in

9
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245 whole-tract FA. Bilatera tracts were tested separately. For comparison, we repeated the
246  analysis using the JHU adult atlas. In the absence of ground truth, only a qualitative

247  comparison of results obtained with the two atlases was performed.
248 2.7 Statistical Methods

249  To assess whether the age-specific atlas gave better volumetric agreement with individually
250 traced tracts than the JHU adult atlas, we performed a two-tailed, paired t-test comparing the
251  peak Dice scores.

252 In the slice-wise FA anaysis and whole-tract FA analysis, we measured the correlation
253  between atlas measurements and individual measurements using a repeated measures
254  correlation coefficient (Bland and Altman, 1995), which uses an analysis of variance to
255 calculate the correlation coefficient between residuals of the repeated measurements. This
256 method was used in slice-wise FA analysis to calculate the correlation coefficient without
257 variation due to different subjects, and in the whole-tract FA analysis to calculate the

258 corréelation coefficient without variation due to different tracts.

259  For each validation method, we compared the correlation coefficient given by the age-
260  specific atlas with that given by the JHU adult atlas, by applying Fisher’s z-transform to each
261  correlation coefficient and estimating the 95% confidence intervals of the difference between
262  these z-transformed correlation coefficients. The confidence intervals were estimated with a
263  percentile bootstrap method (Wilcox and Muska, 2002). In the slice-wise correlations, a
264  moving block bootstrap method was used to account for the spatial dependence of repeated

265  measurementsin each subject (Politis and Romano, 1992).

266  In the CoolMRI demonstration, Mann-Whitney U tests were applied to test for differencesin
267  the median FA between cases and controls in each tract, with Bonferroni correction applied

268  to correct for family-wise error. Significant results have corrected p < 0.05.

269 3 Results

270 3.1 Participant Demographics

271  The CoolMRI study recruited 51 children, without CP, treated with TH for NE at birth and 43
272  control children matched for age, sex and SES (Lee-Kelland et al., 2020). Of the recruited

273  children, 7 cases and 4 controls did not want to undergo scanning. A further 4 cases had

10
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274  incomplete data due to movement during the scan. Quality control led to the rgjection of a
275  further 6 cases and 2 controls. One further case and one control were rejected due to incorrect
276  image volume placement. This left 33 cases and 36 controls. These controls were split into 28
277 (15 male) for atlas construction and 8 (4 male) for validation. Data for each set of

278  participants, aswell as for HBN subjects, isshown in Table 1.
279 3.2 Atlas

280  Figure 4 shows the probabilistic map for each tract, as well as the aDWI and FA images for
281  thegroup of 28 children.

282 3.3 Validation
283 3.3.1 Volumetric Overlap

284  The Dice score at a range of thresholds is plotted for each tract for the same-site validation
285 datain Figure 5. The peak Dice scores for the age-specific atlas was significantly higher than
286  for the JHU atlas in every tract (p < 0.05; see Table S1 for all p-values). The Dice scores for
287  the HBN data are shown in Figures S1 and S2.

288 3.3.2 Sliceewise Corrdation

289  The correlation between slice-wise FA measured by the age-specific atlas and that measured
290 by subject-specific tract tracing is shown for the same-site validation data in Figure 6, with
291  correlation coefficients measured using a repeated measures correlation (Bland and Altman,
292  1995). The correlations for the HBN data are shown in Figures S3 and S4. A correlation
293  coefficient of one indicates perfect slice-wise agreement between the gold-standard (FA
294  extracted from subject-specific tract tracing) and the FA estimated for each tract by
295 registration to the either age-specific or JHU adult atlas. In the same-site data, most tracts
296  showed strong correlation between FA measured by the age-specific atlas and that measured
297 by subject-specific tract tracing, with all tracts having r > 0.8 apart from the CG (r = 0.625),
298 SLF (r = 0.468) and SLFt (r = 0.546). The correlation coefficient for the age-specific atlas
299  was higher than for the JHU adult atlasin all tracts, and this difference was significant in the
300 ATR, CG, CST, Fminor and UF (indicated by the 95% confidence intervals of the difference
301  between z-transformed correlation coefficients, see Table S2).

11
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302 3.3.3 Wholetract Correlation

303 Figure 7 shows the whole-tract FA measured by the atlas plotted against that given by
304  subject-specific tract tracing for the same-site data, the HBN data with FOD-based
305 tractography, and the HBN data with tensor-based tractography. The fornix isnot included in
306 these plots to alow valid comparison with the JHU atlas. Correlation coefficients, and
307 confidence intervals of the difference between z-transformed correlation coefficients, are
308 shown in Table 2. The age-specific atlas gave significantly stronger correlation of whole-tract
309  FA measurements than the JHU adult atlasin all validation datasets.

310 3.4 CoolMRI Study

311  Numerous tracts in children treated with TH for NE had reduced FA compared to controls
312 (see Table S5). After Bonferroni correction, only the left CG (p = 0.0056), left CH (p =
313 0.0081), left SLF (p = 0.0383), and fornix (p = 0.0121) had significantly reduced FA in cases
314  compared to controls. The same anaysis was run with the JHU atlas for comparison (see
315 Table S6). Figure 8 shows box plots for both atlases for tracts in which at least one of the
316 atlases reveaed group differences in FA. Significant differences were found in the left SLF
317  with the age-specific atlas but not the JHU adults atlas. Differences were found in the left CG
318 and left CH with both atlases. Differences in the right CH were found with the JHU adult
319 atlas but not with the age-specific atlas. Differences were found in the fornix with the age-
320 gpecific atlas, but it is not available in the JHU atlas so could not be tested.

321 4 Discussion

322 This study introduces an age-specific probabilistic white matter atlas constructed from
323 children aged 6-8 years, providing a method of delineating white matter tracts without
324  tractography. We have shown that this atlas accurately delineates tracts in children from a
325 same-site cohort, and a cohort from a different site, imaged with different scanner and
326  acquisition protocol. The strong correlation between FA sampled by the atlas and that
327 measured in each individual (i.e. the “gold standard”), at both a whole-tract level and slice-
328 wise level, shows that the atlas provides an accurate estimate for the underlying white matter
329 microstructure. Additionally, the Dice scores between tracts in the atlas and those delineated
330 by subject-specific tract tracing were higher with the age-specific atlas than with the JHU
331 adult atlas, demonstrating improved anatomical accuracy of the age-specific atlas. In these
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332 validation methods, the age-specific atlas performed better than simply registering to an
333 existing adult white matter tract atlas, as is routinely done in the literature. As a
334 demonstration, we applied the age-specific atllas to the CoolMRI study, revealing
335 gignificantly reduced FA in several major white matter tracts in children treated with TH for
336  NE at birth compared to healthy controls.

337 The correlation of whole-tract FA measured by the atlas with that given by subject-specific
338 tract tracing offers quantification of the performance of the atlas as a whole. In the same-site
339 validation data, the HBN data traced with FOD-based tractography and the HBN data traced
340  with tensor-based tractography, the age-specific atlas exhibited stronger correlation with the
341 individual measurements than for the JHU atlas (Figure 7, Table 2). This shows that the age-
342  gpecific atlas can accurately characterise the distribution of tract-level diffusion metricsin a
343  study group, facilitating more sensitive group comparison and investigation of associations

344  between these metrics and neuropsychological and behavioural measures.

345 Those tracts which exhibit low correlation between atlas and individual slice-wise FA
346  measurements (namely the CG, SLF and SLFt) have very little spread in FA values, resulting
347 in tightly grouped measurements with a low correlation coefficient (Figure 6). For these
348 tracts, the Dice scores in Figure 5, as well as the tract-wise validation in Figure 7 demonstrate

349  improved performance of the age-specific atlas at the level of whole tracts.

350 Long, thin tracts, such as the CST, IFOF and ILF, are particularly susceptible to partial
351  volume effects when measuring volumetric overlap; a small radial translation will result in a
352 large change to the Dice score. In these tracts, the high correlation in sampled FA values

353 showsthat the age-specific atlas gives accurate measurement of the tract microstructure.

354  Multi-site validation alleviates bias associated with using the same scanner for validation data
355 and atlas construction, thus validation with the HBN data demonstrates that the age-specific
356 atlas generalises to data from a different site, acquired with a different scanning protocol. In
357 this dataset, the age-specific atlas gave better correlation of whole-tract FA measurements
358 (Figure 7, Table 2). Additionally, the volumetric overlap in this dataset is significantly higher
359  with the age-specific atlas than with the JHU adult atlas in all tracts apart from the CST and
360 Fmagjor, in which neither atlas performed significantly better than the other (Figure S1, Table
361 S1). The age-specific atlas gave higher slice-wise correlations than the JHU adult atlas in all
362 tracts; this difference was significant in the ATR, CST, Fminor, IFOF, ILF and UF (Figure
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363 S3, Table S3). There were no tests in which the JHU adult atlas performed significantly better
364 inthisdataset.

365  Further bias may be introduced by the use of the same tractography algorithm for both atlas
366 generation and in estimating diffusion metrics for the validation data. Therefore, we also
367 included a validation dataset in which subject-specific tract tracing was performed using a
368 tensor-based tractography algorithm. Whereas the FOD-based tractography algorithm used to
369 construct the age-specific atlas uses spherical deconvolution to find the peak FOD in the
370 closest orientation to the propagating streamline, the tensor-based algorithm propagates the
371 streamline along the principal eigenvector of the diffusion tensor at each step. This is
372  comparable to the tensor-based tractography algorithm used in the construction of the JHU
373  adult atlas, thus providing a conservative test case for validation. Despite this bias towards
374 the JHU atlas, the age-specific atlas still gave stronger correlation of whole-tract FA
375 measurements. In the tests of volumetric overlap (Figure S2, Table S1) and slice-wise
376  correlation (Figure $4, Table $4) in this dataset, the age-specific atlas performed significantly
377  Dbetter than the JHU adult atlasin at least one of these testsin six tracts (ATR, CH, ILF, UF,
378  Fmajor, Fminor). In four tracts (CG, IFOF, SLF, SLFt) neither atlas performed significantly
379  better in either test. In onetract (CST) the JHU atlas gives better volumetric overlap.

380 This introduces the question of how to provide the “gold-standard” of fibre tracking; the
381 tensor-based algorithm was used in one of the HBN datasets in order to eliminate bias
382 towards the age-specific atlas (by introducing bias towards the JHU adult atlas). However,
383 this category of fibre tracking algorithm is widely acknowledged to give poor
384  characterisation of diffusion in brain white matter due to its inability to resolve crossing
385 fibres (Behrens et al., 2007; Tournier et a., 2012). Thus, the FOD-based algorithm used in
386 the other validation datasets and in the construction of the atlas, which facilitates more
387  comprehensive tracing due to its superior performance in regions of crossing fibres (Tournier
388 et al., 2008), arguably gives a more accurate representation of the ground truth (i.e. the
389  underlying white matter fibres). Therefore, when comparing the atlas to individualy traced
390 tracts in the validation data, the FOD-based algorithm likely gives a better indication of
391 performance overall. Consequently, we believe the HBN data with tensor-based tract tracing
392  provides a worst-case performance estimate, yet the age-specific atlas still out-performs the
393  adult JHU atlasin many tests.
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394 In future, as well as providing coverage of other age ranges, atlases could offer more
395 extensive labelling of additional tracts and regions of white matter throughout development.
396 A comprehensive database of traced tracts across a range of ages, potentially constructed by
397  applying automated tractography-based white matter tract segmentation protocols (Lawes et
398 4., 2008; Verhoeven et al., 2009; Wassermann et al., 2010; Zhang et al., 2018) to data from
399 population studies such as the Human Connectome Project (Van Essen et a., 2013),
400 Developing Human Connectome Project (Hughes et al., 2017), or Baby Connectome Project
401 (Howell et al., 2019), would allow study-specific atlases to be built from subjects matched to
402  agiven study cohort.

403  Applying the age-specific atlas to the CoolMRI study to investigate group differences in
404  tract-level FA revealed selective reduction in FA, that was significantly reduced in the left
405 CG, left CH, left SLF and the fornix (Table S5). For comparison, we performed the same
406 analysis with the JHU adult atlas (Table S6). Figure 8 demonstrates the differences in FA
407  measurements from the different atlases. These differences result in some tracts exhibiting
408  group differencesin one atlas but not the other (right CH and left SLF). Due to the absence of
409  ground truth, these results do not support the use of one atlas over another. However, these
410 results demonstrate that the two atlases can give differing outcomes in a case-control study.
411  Quantitative results from the validation methods above indicate that the age-specific atlas
412  gives more accurate delineation of white matter tracts in this age group than the JHU adult
413  atlas, suggesting the CoolMRI results obtained with the age-specific atlas are more reliable.

414  Previous studies of neonates treated with TH for NE have investigated the relationship
415  between white matter diffusion properties, measured in the first weeks following birth, and
416 neurodevelopmental outcome at 2 years of age. These studies found a significant reduction in
417 FA in infants with adverse outcomes, compared to those with favourable outcomes, in
418 widespread areas of white matter including, but not limited to the corpus callosum, anterior
419  and posterior limbs of the internal capsule, external capsule, fornix, cingulum, and ILF (Lally
420 et al., 2019; Tusor et a., 2012). Many of these regions were aso shown to have reduced FA
421  in the CoolMRI cases, indicating that the early structural alterations resulting from the brain
422  injury cause lasting changes to white matter development. These results aso provide
423  evidence for an underlying white matter deficit which manifests as neuropsychological
424 differences seen at school-age (Jary et a., 2019; Lee-Kelland et al., 2020; Tonks et a., 2019).
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425  Further investigation is required to link these structural impairments to specific components

426  of the cognitive and motor assessments, and to develop therapeutic intervention strategies.

427 5 Conclusons

428 The age-specific atlas provided by this study has been shown to robustly delineate white
429  matter tracts in children aged 6-8 years. Diffusion metrics sampled by the atlas correlate
430 strongly with those measured by individual fibre tracking, allowing reliable investigation of
431  white matter microstructure in cohorts. The closer agreement between FA measured in
432 individualy identified tracts and that estimated when registering to an age-specific atlas,
433  suggests that such an approach would increase sensitivity to group differences, and is

434  recommended for all studies performed in children.
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647  FigureLegends

648 Figure 1. Methodology for generating probabilistic tract maps from whole-brain tractography
649 data, shown here for the corticospina tract (CST). ROIs were manually drawn in each
650 subject, as defined by (Wakana et al., 2007) (in the case of the CST, incluson ROIs were
651 drawn in the cerebral peduncle and the primary motor cortex), and tracts were segmented by
652 including streamlines passing through the inclusion ROIs. Streamlines were transformed to
653 standard space (JHU template) and a binary mask was created for each subject indicating all
654  voxels containing streamlines. The average of these masks (across N = 28 subjects) gives the
655  probability map.

656 Figure 2. ROIs used to delineate the following major white matter tracts: anterior thalamic
657 radiation (ATR); cingulate gyrus part of the cingulum (CG); hippocampal part of the
658 cingulum (CH); cortico-spinal tract (CST); forceps maor (Fmajor); forceps minor (Fminor);
659 inferior fronto-occipital fasciculus (IFOF); inferior longitudinal fasciculus (ILF); superior
660 longitudinal fasciculus (SLF); temporal part of the superior longitudinal fasciculus (SLFt);
661 uncinate fasciculus (UF). Streamlines are included in a given tract if they pass through both 1
662 AND 2. The following abbreviations indicate anatomical landmarks used to draw the ROIs:
663 internal capsule (IC); decussation of the superior cerebellar peduncle (DSCP); central sulcus
664 (CS); parieto-occipital sulcus (POS); anterior commissure (AC); sagittal stratum (SS). ROIs
665 are drawn in white with streamlines in yellow, overlaid on FA images with principal
666 diffusion directions indicated by the colour ball; blue = superior-inferior (S-I), green =
667  anterior-posterior (A-P) and red = right-left (L-R). Adapted from Hua et al., 2008, with

668  permission from Elsevier.

669 Figure 3. ROIs used to delineate the fornix, shown here on the group FA template. Y ellow
670 voxels contain streamlines which pass through the body of the fornix (1) AND bilateral
671  posterior limbs of fornix (2a OR 2b).

672 Figure 4. Age-specific probabilistic atlas for the 12 magor white matter tracts. anterior
673 thalamic radiation (ATR); inferior fronto-occipital fasciculus (IFOF); forceps minor
674  (Fminor); forceps major (Fmgjor); cingulate gyrus part of the cingulum (CG); hippocampal
675 part of the cingulum (CH); cortico-spinal tract (CST); fornix; inferior longitudinal fasciculus
676 (ILF); superior longitudina fasciculus (SLF); temporal part of the superior longitudina
677 fasciculus (SLFt); and uncinate fasciculus (UF). Probabilities are indicated by the colour bar.
678  Also shown are the aDWI and FA maps.
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679 Figure 5. Same-site validation of tract overlap with “gold-standard” subject specific tract
680 tracing. For each tract, the plot on the left shows the Dice score of volumetric overlap (y axis)
681 against probability threshold (x axis) when using the age-specific atlas (blue) or the JHU
682  adult atlas (red), with lines showing the mean score for the 8 validation subjects not included
683 in the formation of the atlas, and shaded regions show the 95% confidence interval of the
684 mean. Also shown for each tract is a paired plot of the peak Dice scores calculated with each
685 atlas. P-values, given in Table S1, are indicated by: *p < 0.05; **p < 0.001; ***p < 0.0001.
686 Note that the age-specific atlas outperformed the JHU (adult) atlas in all tracts. The tract
687  representing the fornix is not available in the JHU atlas so only the new mask was tested.

688 Figure 6. Same-site vaidation of dice FA values. Plots show slice FA measured from
689 individually traced tracts (i.e. the “gold-standard”) plotted against corresponding values
690 extracted from the age-specific and JHU atlases. Each plot shows a point for every slice in
691 each of the 8 validation subjects and the regression. Correlation coefficients are shown on
692 each plot, measured using a repeated measures correlation (Bland and Altman, 1995). All
693 tracts exhibit higher correlation when measured with the age-specific atlas than with the JHU
694  adult atlas. This difference is significant in the ATR, CG, CST, UF and Fminor, as indicated
695 by T next to the tract abbreviation. Confidence intervals and regression parameters are given
696 inTable S2. *p <10,

697  Figure 7. Comparison of mean FA extracted from whole tracts traced in individuals (“gold-
698 standard”) and that estimated using each atlas. Whole-tract FA was measured by subject-
699 gpecific tracing in the same-site validation data (left), the HBN data with FOD-based
700 tractography (middle), and the HBN data with tensor-based tractography (right), then plotted
701  against whole-tract FA measurements given by the age-specific atlas (top) or JHU adult atlas
702  (bottom). The solid line shows the regression, and the dotted line represents exact equality
703  between individual and the age-specific or JHU data. Correlation coefficients are given in
704 Table2.

705 Figure 8. Box plots of significant differences in whole-tract average FA between children
706 treated with TH for NE and healthy controls. Measurements obtained with both the age-
707  specific atlas (blue) and the JHU adult atlas (red) are shown for tracts in which at least one of
708 theatlases revealed significant differences between cases and controls; *p < 0.05, **p < 0.01,
709  Bonferroni corrected. The fornix is not available in the JHU atlas so was only tested with the
710 age-specific atlas. In each box, the point shows the median, the box shows the 25th to 75th
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711  percentiles, and the lines extend to the maximum and minimum data points, excluding

712 outliers which are displayed as circles.

713 Table 1. Demographics of participants in the atlas dataset, same-site validation dataset, HBN
714  vadidation dataset, and the CoolMRI dataset. Mean (range) is shown for age; median (range)
715 is shown for SES and FSIQ in the CoolMRI cohort. Also shown are p-values of t-tests
716  between atlas data and validation data for validation cohorts, and between cases and controls
717  for the CoolMRI cohort. SES is defined as follows: A= upper middle class, B = middle class,
718 C1 = lower middle class, C2 = skilled working class, D = working class, E = casua worker or

719  unemployed.

720 Table 2. Validation of whole-tract FA correlations, corresponding to Figure 7. Columns
721  show the parameters of the best-fit liney = mx + ¢ and the correlation coefficient, r, between
722  slice FA values from individual tracing and that from each atlas, measured using a repeated
723  measures correlation (Bland and Altman, 1995). Also shown is the difference between the z-
724  transform of the correlation coefficients for the age-specific atlas and the JHU atlas, and the
725 95% confidence intervals (Cl) for this difference. Positive differences indicate a higher
726  correlation with the age-specific atlas. These are shown for the same-site validation data, the
727 HBN data with FOD-based tractography and the HBN data with tensor-based tractography.
728  *p<10™°.
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Figure 1: Methodology for generating probabilistic tract maps from whole-brain tractography data,
shown here for the corticospina tract (CST). ROIs were manually drawn in each subject, as defined by
(Wakana et al., 2007) (in the case of the CST, inclusion ROIs were drawn in the cerebral peduncle and
the primary motor cortex), and tracts were segmented by including streamlines passing through the
inclusion ROIs. Streamlines were transformed to standard space (JHU template) and a binary mask was
created for each subject indicating all voxels containing streamlines. The average of these masks (across
N = 28 subjects) gives the probability map.
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Figure 2: ROIs used to delineate the following major white matter tracts: anterior thalamic radiation
(ATR); cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal
tract (CST); forceps mgor (Fmajor); forceps minor (Fminor); inferior fronto-occipital fasciculus (IFOF);
inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); temporal part of the superior
longitudinal fasciculus (SLFt); uncinate fasciculus (UF). Streamlines are included in a given tract if they
pass through both 1 AND 2. The following abbreviations indicate anatomical landmarks used to draw the
ROIs: internal capsule (IC); decussation of the superior cerebellar peduncle (DSCP); central sulcus (CS);
parieto-occipital sulcus (POS); anterior commissure (AC); sagittal stratum (SS). ROIs are drawn in white
with streamlines in yellow, overlaid on FA images with principal diffusion directions indicated by the
colour ball; blue = superior-inferior (S-1), green = anterior-posterior (A-P) and red = right-left (L-R).
Adapted from Hua et a., 2008, with permission from Elsevier.
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Figure 3. ROIs used to delineate the fornix, shown here on the group FA template. Yellow voxels

contain streamlines which pass through the body of the fornix (1) AND bilateral posterior limbs of fornix
(2a OR 2b).

Atlas Same-site Validation HBN Validation CoolMRI
p p Cases Controls p
n= 28 8 15 33 36
Age| 7.0(6.1-79) | 7.0(6.1-7.8) | 09392 | 7.0(6.0-7.9) | 0.8684 | 6.9(6.0-79) 7.0(6.1-7.9) | 0.5595
M/F 15/13 4/4 0.8776 9/6 0.7002 18/15 19/17 0.8894
SES C1(A-E) B (A-D) 0.1568
FSIQ 93(62-115) 108 (75-137) | <0.0001

Table 1. Demographics of participants in the atlas dataset, same-site validation dataset, HBN validation
dataset, and the CoolMRI dataset. Mean (range) is shown for age; median (range) is shown for SES and
FSIQ in the CoolMRI cohort. Also shown are p-values of t-tests between atlas data and validation data for
validation cohorts, and between cases and controls for the CoolMRI cohort. SES is defined as follows:
A= upper middle class, B = middle class, C1 = lower middle class, C2 = skilled working class, D =

working class, E = casual worker or unemployed.
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Figure 4: Age-specific probabilistic atlas for the 12 major white matter tracts: anterior thalamic radiation

(ATR); inferior fronto-occipital fasciculus (IFOF); forceps minor (Fminor); forceps major (Fmajor);
cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal tract
(CST); fornix; inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); temporal part
of the superior longitudinal fasciculus (SLFt); and uncinate fasciculus (UF). Probabilities are indicated by
the colour bar. Also shown are the aDWI and FA maps.
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Figure 5: Same-site validation of tract overlap with “gold-standard” subject specific tract tracing. For
each tract, the plot on the left shows the Dice score of volumetric overlap (y axis) against probability
threshold (x axis) when using the age-specific atlas (blue) or the JHU adult atlas (red), with lines showing
the mean score for the 8 validation subjects not included in the formation of the atlas, and shaded regions
show the 95% confidence interval of the mean. Also shown for each tract isa paired plot of the peak Dice
scores calculated with each atlas. P-values, given in Table S1, are indicated by: *p < 0.05; **p < 0.001;
***n < 0.0001. Note that the age-specific atlas outperformed the JHU (adult) atlas in all tracts. The tract

representing the fornix is not available in the JHU atlas so only the new mask was tested.
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Figure 6: Same-site validation of slice FA values. Plots show slice FA measured from individually traced
tracts (i.e. the “gold-standard”) plotted against corresponding values extracted from the age-specific and
JHU atlases. Each plot shows a point for every slice in each of the 8 validation subjects and the
regression. Correlation coefficients are shown on each plot, measured using a repeated measures
correlation (Bland and Altman, 1995). All tracts exhibit higher correlation when measured with the age-
specific atlas than with the JHU adult atlas. This difference is significant in the ATR, CG, CST, UF and
Fminor, as indicated by T next to the tract abbreviation. Confidence intervals and regression parameters
aregivenin Table S2. *p < 10%.
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Figure 7. Comparison of mean FA extracted from whole tracts traced in individuals (“gold-standard”)
and that estimated using each atlas. Whole-tract FA was measured by subject-specific tracing in the same-
site validation data (left), the HBN data with FOD-based tractography (middle), and the HBN data with
tensor-based tractography (right), then plotted against whole-tract FA measurements given by the age-
specific atlas (top) or JHU adult atlas (bottom). The solid line shows the regression, and the dotted line

represents exact equality between individual and the age-specific or JHU data. Correlation coefficients
aregivenin Table 2.
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Age-specific Atlas JHU Atlas Difference between z-transformed
Dataset m c r m c r correlation coefficients (95% Cl)
Same-site 0.88 | 0.13 | 0.715* | 0.57 | 0.22 | 0.536* | +0.298 (+0.115, +0.300)
HBN (FOD) 084 | 015 |0.781* | 059 | 0.25 | 0.617* | +0.328 (+0.231, +0.412)
HBN (Tensor) | 0.51 | 0.27 | 0.697* | 0.39 | 0.32 | 0.595* | +0.176 (+0.087, +0.281)

Table 2: Validation of whole-tract
parameters of the best-fit liney = mx + ¢ and the correlation coefficient, r, between slice FA values from

FA correlations, corresponding to Figure 7. Columns show the

individual tracing and that from each atlas, measured using a repeated measures correlation (Bland and
Altman, 1995). Also shown is the difference between the z-transform of the correlation coefficients for
the age-specific atlas and the JHU atlas, and the 95% confidence intervals (Cl) for this difference.
Positive differences indicate a higher correlation with the age-specific atlas. These are shown for the
same-site validation data, the HBN data with FOD-based tractography and the HBN data with tensor-
based tractography. *p < 10™%°.
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Figure 8. Box plots of significant differences in whole-tract average FA between children treated with
TH for NE and healthy controls. Measurements obtained with both the age-specific atlas (blue) and the
JHU adult atlas (red) are shown for tracts in which at least one of the atlases revealed significant
differences between cases and controls; *p < 0.05, **p < 0.01, Bonferroni corrected. The fornix is not
available in the JHU atlas so was only tested with the age-specific atlas. In each box, the point shows the
median, the box shows the 25" to 75" percentiles, and the lines extend to the maximum and minimum

data points, excluding outliers which are displayed as circles.


https://doi.org/10.1101/2020.06.21.157222
http://creativecommons.org/licenses/by/4.0/

