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ABSTRACT

Genome size of plants has long piqued the interest of researchers due to the vast differences among
organisms. However, the mechanisms that drive size differences have yet to be fully understood. Two
important contributing factors to genome size are expansions of repetitive elements, such as transposable
elements (TEs), and whole-genome duplications (WGD). Although studies have found correlations
between genome size and both TE abundance and polyploidy, these studies typically test for these
patterns within a genus or species. The plant order Brassicales provides an excellent system to test if
genome size evolution patterns are consistent across larger time scales, as there are numerous WGDs.
This order is also home to one of the smallest plant genomes, Arabidopsis thaliana - chosen as the model
plant system for this reason - as well as to species with very large genomes. With new methods that allow
for TE characterization from low-coverage genome shotgun data and 71 taxa across the Brassicales, we
find no correlation between genome size and TE content, and more surprisingly we identify no significant
changes to TE landscape following WGD.

KEYWORDS Brassicales, Repetitive Elements, Whole-genome duplication, Genome size, Evolution

INTRODUCTION

Genome sizes across flowering plants (angiosperms) vary from 65 Mbp in Lentibulariaceae (Fleischmann
et al. 2014), a family of carnivorous plants, to approximately 150 Gbp in Paris japonica (Pellicer et al.
2010), making it not only the largest genome in the angiosperms but also within all Eukaryotes (Hidalgo
et al. 2017). In the Brassicales, an economically important order of plants in the angiosperms, genome
sizes range from 156 Mbp to 4.639 Gbp, with both extremes coming from the Brassicaceae family
(Arabidopsis thaliana; Bennett et al. 2003 and Crambe cordifolia; Lysak et al. 2007). This incredible
breadth in genome size among plant species cannot be explained solely by the number of protein-coding
genes, a discrepancy known as the “C-value paradox” (Thomas, 1971). Instead, genome size and its
evolution are largely influenced by the amount of non-coding sequences and repetitive elements (Elliott
and Gregory, 2015). There are several theories trying to explain what gave rise to this paradox. Some
suggest that lack of natural selection, possibly due to small effective population sizes, allowed
accumulation of DNA material that would otherwise get purged from the genome (Lynch and Conery
2003; Doolittle 2013). Others postulate that non-coding DNA was selectively expanded to enable increase
in cell size, thus lowering the metabolic rate, and permitting overall increase in body size at a lower cost
(Kozlowski et al. 2003). Indeed, the question of the factors driving genome size connects to deep
questions regarding the structure of genomes, the interplay of the natural selection and population size,
and even the relationship between body size to metabolic rate.

Large portions of plant genomes are made up of a particular type of repetitive elements, known as
transposable elements (TEs). These are mobile repetitive elements which are dispersed throughout the
genome (Kubis et al. 1998). TEs are grouped in two major classes, based on their mechanism of
transposition. Each of the two classes is further resolved into superfamilies, which vary in repeat domain
structure. Class I TEs (or retrotransposons) move to a new genomic location via an RNA intermediate, a
mechanism commonly called “copy-paste” (Wicker et al. 2007; Negi et al. 2016). This copy-paste
mechanism results in an increased copy number of a retrotransposon (Wicker et al. 2007).
Retrotransposons code for a reverse transcriptase, which is a defining component of their transposition
mechanism. Plant genomes are often dominated by the two high-copy Class I TE superfamilies: Copia
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and Gypsy (Macas et al. 2015; Wicker et al. 2018).

Class II TEs (or DNA transposons) are defined by a “cut-paste” mechanism of transposition, which
utilizes a DNA intermediate. The majority of Class II elements are characterized by two main features:
terminal inverted repeats (TIRs) and a transposase enzyme (Wicker et al. 2007; Negi et al. 2016). One
such superfamily is Mutator. In order for Mutator elements to move from one genomic location to
another, a transposase needs to first recognize the TIRs and then cut both DNA strands on either end of
the TE (Wicker ef al. 2007). Insertion of the TE into a new location results in a small target site
duplication (TSD). A TSD is a signature typical of DNA element transposition, as the target site will
remain duplicated when the TE is excised and moves to another location in the genome (Mufoz-Lopez
and Garcia-Pérez, 2010). Although they typically move in a cut-paste fashion, transposition of Class II
elements can lead to an increase in their copy number when they are inserted in front of a replication fork
(Wicker et al. 2007).

The effects of TE movement are not necessarily deleterious and have been shown to cause maize kernel
variegation (McClintock, 1950). TE insertions have also been found to be the source of other
economically important phenotypic variation such as grape berry color, morning glory flower variegation,
and parthenocarpic apple fruit (Kobayashi ez al. 2004; Cadle-Davidson and Owens, 2008; Shimazaki et
al. 2011; Bennetzen, 2005; Clegg and Durbin, 2000; Habu et al. 1998; Yao et al. 2001). All of these
effects point to TEs as large contributors to genome evolution and plasticity.

The abundances of TEs in genomes have also been shown to be informative when inferring phylogenetic
relationships among taxa, especially in groups rife with polyploidy, such as those in the Brassicales,
because it adds an analysis complementary to species tree phylogenies (Dodsworth et al. 2015; Harkess et
al. 2016; Dodsworth et al. 2017; Vitales et al. 2020). Several studies have used maximum parsimony
methods to reconstruct phylogenetic trees, treating TE abundances as continuous characters (Dodsworth
et al. 2015; Dodsworth et al. 2017). The resulting trees are largely concordant to those produced via
traditional phylogenetic methods (i.e., using protein-coding genes). More recently, a study has shown the
power of combining TE sequence similarity with TE abundance to understand evolutionary relationships
(Vitales et al. 2020). Generally, Copia and Gypsy are the most informative elements due to their high
abundance in the genomes, whereas low-abundant TEs are insufficient to resolve the phylogenetic
relations with these approaches (Dodsworth et al. 2015; Harkess et al. 2016; Dodsworth et al. 2017,
Vitales et al. 2020).

Polyploidy or whole-genome duplication (WGD) is typically followed by extensive chromosomal
rearrangements, gene loss, and epigenetic remodeling during the process of diploidization (Schranz and
Mitchell-Olds 2006, Madlung et al. 2005). This genome restructuring has been associated with both
expansion and loss of TEs (Agren et al. 2016; Parisod et al. 2010; Vicient and Casacuberta, 2017). TE
mobilization and proliferation following WGD have been recorded in tobacco, wheat, as well as many
Brassicaceae species (Ben-David et al. 2013; Petit et al. 2010; Sarilar et al. 2011; Agren et al. 2016;
Vicient and Casacuberta, 2017). TE amplification in wheat, however, seems to be family specific, as there
is no evidence of massive reactivation of TEs (Wicker et al. 2018). In fact, TE abundance, landscape in
gene vicinity, and the proportion of different TE families show surprising levels of similarity between the
three wheat subgenomes. While there is evidence of large TE turnovers after the divergence of the A, B,
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and D subgenomes, these turnovers seem to have happened prior to hybridization (Wicker et al. 2018).
Following polyploidization, TEs can accumulate in regions proximal to genes and gene-regulatory
clements, leading to dynamic variation in gene expression (Agren et al. 2016; Sarilar et al. 2011; Negi et
al. 2016).

The Brassicales is a particularly valuable order as a model in which to elucidate the connection between
whole genome duplication and repetitive element proliferation. First, there are at least four major
polyploid events in the Brassicales: “At - a” at the base of the Brassicaceae, the Brassiceaec whole-genome
triplication (“WGT”), “Th - @” in the Cleomaceae (Schranz and Mitchell-Olds 2006; Barker ef al. 2009;
Mabry et al. 2020), and “At - B” at the base of the order (Edger ef al. 2015; 2018). Second, genomes
within the Brassicales are typically small, less than 500 Mb. Several genome projects have produced
highly contiguous genome assemblies with accurate gene and repeat annotations, such as Arabidopsis
thaliana (The Arabidopsis Genome Initiative 2000; Michael et al. 2018), several Brassica sp. genomes
(Wang et al. 2011; Liu et al. 2014; Parkin et al. 2014; Chalhoub et al. 2014), Cleome violacea (Emery et
al. 2018), Carica papaya (Nagarajan et al. 2008), and Thlaspi arvense (Dorn et al. 2015).

Complex dynamics of TEs have been studied for a variety of species, but most studies focus on one or a
few closely-related species. More robust comparative studies are vital for understanding large-scale
patterns of TE behavior in response to evolutionary pressures. Highly contiguous, whole-genome
assemblies and annotations are the gold standard for repetitive element annotation and their quantification
within a genome, but this is a cost-prohibitive approach as the sample number increases. Several
approaches, such as RepeatExplorer (Novak et al. 2013) and Transposome (Staton and Burke 2015), have
been developed to use low-cost Illumina genome shotgun data to assess repetitive element content and
abundance. Here, we leverage low coverage, genome shotgun data to examine both the relationship
between 1) TE abundance and genome size, and 2) TE dynamics and WGD, in a dataset consisting of 71
taxa across the Brassicales.

MATERIALS AND METHODS

Taxon sampling, RNA and DNA isolation, and sequencing

Sampling of 71 taxa across the Brassicales spanned seven families and 57 genera, with a focus on the
families Brassicaceae (47 taxa) and Cleomaceae (15 taxa; Table S1). Seeds were grown at the University
of Missouri - Columbia or the University of Alberta in a sterile growth chamber environment. Leaf tissue
from mature plants was collected for both RNA and DNA extraction followed by isolation and
sequencing as in Mabry et al. (2020).

Genome sizing

For estimation of genome size by flow cytometry, single leaves from 69 taxa were cut and placed in a wet
paper towel and shipped to the Benaroya Research Institute at Virginia Mason (Seattle, WA). Nuclei
isolations from a single mature leaf were analyzed in four technical replicates for each sample. Analyses
were carried out using the Partec PAS flow cytometer (Partec, http://www.partec.de/), equipped with a
mercury lamp. Leaves (0.1 g) were chopped in a nuclei extraction buffer (CyStain ultraviolet Precise P
Nuclei Extraction Buffer; Partec, Miinster, Germany) and filtered through a 30 mm Cell-Trics disposable
filter (Partec), followed addition of 1.2 ml of staining solution containing 4,6-diamidino-2- phenylindole.
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The relative fluorescence intensity of stained nuclei was measured on a linear scale, and 4000 to 5000
nuclei for each sample were analyzed (Galbraith ef al. 1998).

Repetitive element analysis
Prior to repeat identification, DNA sequencing reads were paired to corresponding paired-end sequence
files using a stand-alone Pairfq script, version 0.16.0 (https://github.com/sestaton/Pairfq) followed by

removal of any reads that matched custom databases of mitochondrial and chloroplast genomes,
comprised of sequences downloaded from NCBI (Table S2). Subsequently, low quality and short reads
were removed with Trimmomatic v 0.39, with MINLEN of 70 and LEADING and TRAILING thresholds
set to 3 (Bolger ef al. 2014). Repeats were identified using Transposome v 0.12.1 (Staton and Burke
2015), which uses graph-based clustering, with 90% identity and fraction coverage of 0.55. Transposome
was chosen over other similar software due to its speed, accessibility (i.e., open source), and ability to
annotate repetitive elements from sequence data without the need for an assembled genome. For all but
five species, repeat identification was performed with 500,000 random read pairs (see Table S3 for
details). These five samples had to be further downsampled due to script limitations (see How to choose
the appropriate genome coverage section; https://github.com/sestaton/Transposome/wiki/). A database

containing all repetitive elements previously annotated in the Viridiplantae was obtained from RepBase v
21.10 and used as reference for Transposome cluster annotation. The reported genomic fraction of each
TE family represents the abundance of that family that has been corrected for by the number of
unclustered reads (see Specifications and example usage section;
https://github.com/sestaton/Transposome/wiki/).

Correlation between genome size and TE content

The pic function from the ape package was used to calculate phylogenetically independent contrasts (PIC)
(Paradis and Schliep 2018). The /m function from the stats package in R (version 3.6.1) was then used to
perform linear regression analysis using the computed PIC values (R Core Team 2019). Correlation
between genome size and total TE abundance, Gyspy abundance, and Copia abundance was studied on a
subset of data, excluding species with genomes larger than 1.3Gbp (Cakile maritima, Farsetia aegyptia,
Hesperis matronalis, Matthiola longipetala, Physaria acutifolia, Schizopetalum walkeri). These genomes
were removed to avoid the bias caused by a small group of very large genomes present in Brassicaceae.
Further, two other species were not included in these analyses, Cleomella serrulata due to the lack of
DNA sequence and genome size data for this species, and Sisymbrium brassiformis due to lack of genome
size data .

Transcriptomics, phylogeny estimation, and hierarchical clustering

Transcriptome assembly and alignment follow Mabry et al. (2020), but in brief, reads were quality
filtered and adapter-trimmed using Trimmomatic v 0.35 (Bolger et al. 2014) and assembled using Trinity
v 2.2 (Grabherr et al. 2011) followed by translation to protein sequences using TransDecoder v 3.0
(github.com/TransDecoder/TransDecoder). Orthology was determermined using OrthoFinder v.2.2.6
(Emms and Kelly 2018) followed by filtering for taxon occupancy and alignment quality
(github.com/MU-IRCF/filter by ortho group, github.com/MU-IRCF/filter by gap fraction). Gene trees
were estimated using RAXML v 8 (Stamatakis 2014) followed by PhyloTreePruner v 1.0 (Kocot ef al.
2013) to remove any potentially remaining paralogous genes. Final alignments were again run through
RAxML v 8 (Stamatakis 2014), followed by species tree estimation using ASTRAL-III v.5.6.1 (Zhang et
al. 2018).


https://doi.org/10.1101/2020.06.15.153296
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.153296; this version posted June 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To test for phylogenetic signal in repetitive element abundance, hierarchical clustering using dist and
hclust functions from the stats package in R was conducted (R Core Team 2019). To construct a
consensus dendrogram, hierarchical clusters produced with Copia, Gypsy, and total TE abundances were
used. The consensus dendrogram was calculated using the mergeTree v.0.1.3 package in R (Hulot et al.
2019). Cleomella serrulata was not included in these analyses, due to the lack of DNA sequencing data
for this species.

Comparative genomics

To produce an ultrametric tree necessary for comparative genomic analyses, final alignments were
concatenated (those without paralogous genes) using scripts from the Washburn et al. (2017) Genome-
Guided Phylo-Transcriptomic pipeline (‘concatenate_matrices.py’), followed by tree estimation in
RAXML v8 (Stamatakis 2014) with 100 bootstrap replicates and Moringa and Carica as outgroups.
Branch lengths and model parameters were optimized using the ASTRAL phylogeny as a fixed input tree.
Dating of the resulting tree was calculated in TreePL v. 1.0 (Smith and O’Meara 2012) using two fossils.
Palaeocleome lakensis was used to date the node between the Cleomaceae and Brassicaceae (minimum
age = 47.8, 95% highest posterior density = 52.58; Cardinal-McTeague, Sytsma, and Hall 2016);
Dressiantha bicarpellata was used to date the node between the Caricaceae and Moringaceae, and the
remaining Brassicales (minimum age = 89.9, 95% highest posterior density = 98.78; Cardinal-McTeague,
Sytsma, and Hall 2016).

To test for the placement and magnitude of possible adaptive shifts in the data, Bayou v 2.0 was used
(https://github.com/uyedaj/bayou/blob/master/tutorial.md; Uyeda and Harmon, 2014). Cleomella
serrulata was again dropped from analyses due to lack of DNA sequence data for this sample. Analyses

were run on total TE, Gyspy, and Copia abundances. Priors for all three analyses were as follows:
lognormal distributions were used for alpha (the strength of the pull toward trait optima) and sigma
squared (rate of phenotypic evolution) both with default parameters, a conditional Poisson distribution for
the number of shifts using default parameters, a normal distribution for theta (the value of the optima)
with mean equal to the mean of the observed data and standard deviation equal to two times the standard
deviation of the data, and a uniform distribution for branch shifts with default parameters. Analyses were
run for 1,000,000 generations and then checked for lack of convergence with a burn in of 0.3. Heatmaps
of reconstructed values were plotted on tree branches using the plotBranchHeatMap function in Bayou.
For Simmap trees, a posterior probability of 0.3 was used as a cutoff for shift identification.

To test the likelihood of WGDs being associated with identified shifts in TE abundances, OUwie v 2.1
was used (www.rdocumentation.org/packages/OUwie/; Beaulieu et al. 2012). Four separate selective
regimes were used: 1) At - a at the base of the Brassicaceae versus all other Brassicales, 2) the tribe

Brassiceae WGT versus all other Brassicaceae, 3) Th - a versus all other Cleomaceae, and 4) a reduced
subset of 19 taxa for which we were confident in determining ploidy level, for which we tested diploids
vs polyploids (Table S1). All seven models (single-rate Brownian motion; BM1, Brownian motion with
different rate parameters for each state on a tree; BMS, Ornstein-Uhlenbeck model with a single optimum
for all species; OU1, Omstein-Uhlenbeck model with different state means and a single alpha and
sigma”2 acting all selective regimes; OUM, Ornstein-Uhlenbeck model that assumes different state
means as well as multiple sigma”2; OUMYV, Ornstein-Uhlenbeck model that assumes different state
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means as well as multiple alpha; OUMA, Ornstein-Uhlenbeck model that assumes different state means
as well as multiple alpha and sigma”2 per selective regime; OUMVA) were run for Total TE, Gyspy, and
Copia abundances and compared using the weighted Akaike information criterion corrected for sample-
size (AICc).

Data availability

The authors state that all data necessary for confirming the conclusions presented in the article are
represented fully within the article. Both RNA and DNA sequence data from this article can be found in
the NCBI SRA data libraries under BioProject accession number PRINAS542714. Scripts are available at
https://github.com/mmabry/BrassicalesRepetitiveElements.

RESULTS AND DISCUSSION

Sequence matrices and genome size patterns across the Brassicales

In order to investigate and interpret the evolution of genome size across the Brasicales, we first needed to
construct a reliable phylogenetic framework based on our transcriptome assemblies. After determining
orthology using OrthoFinder2, we recovered 35,522 orthogroups, with a final 1,404 orthogroups
remaining after filtering. The resulting phylogeny had all but eight nodes recovered with a local posterior
probability of 0.7 or greater (Figure 1). Next, repetitive element clustering and quantification using
Transposome was performed for each species and mapped onto the species tree. After clustering, less than
2.1% of reads remain unannotated for any given species, likely reflective of the high quality of
Brassicales genome annotations in RepBase (see Table S3 for details). Total repeat content of species
across the Brassicales ranged from 35.5% to 72.5% (mean 52.7, SD +/- 9.35; Figure 1). Overall, DNA-
type “cut and paste” transposons comprise between 0.6% and 14.8% of genomes, largely dominated by
MuDR and Helitron elements (Figure 1). In contrast, long terminal repeat (LTR) retrotransposons, mostly
composed of Ty3-Gypsy and TyI-Copia elements, tend to make up most of the total repeat content
(Figure S1). Genome sizes ranged from 195.6 Mbp in Descurainia sophioides to 3261.63 Mbp in
Hesperis matronalis. For two samples, Cleomella serrulata and Sisymbrium brassiformis, we were unable
to obtain leaf tissue for genome sizing. The genome sizes recovered represent well the diversity and range
of genome size that is found across the Brassicales (https://cvalues.science.kew.org/; Release 7.1, Leitch

et al. 2019). The median and mean for families which were represented by more than one sample were as
follows: Brassicaceae - 557.5 Mbp, 735.4 Mbp; Capparaceae - 511.0 Mbp, 605.1 Mbp; Cleomaceae -
479.2 Mbp, 549.1 Mbp, and Resedaceae - 684.6 Mbp, 684.6 Mbp (Figure 1).

To test the accuracy of clustering of whole genome shotgun data to assess transposon content, we
baselined the Transposome method against several of the published genomes in the Brassicales that were
sampled in this study. Our estimates were largely concordant with those in Carica papaya, differing by
only 1.12% (Nagarajan et al. 2008), while they seem to be overestimates compared to the TE abundances
found in the Thlaspi arvense genome (Dorn et al. 2015). The difference in Thlaspi estimates is likely the
result of the genome assembly and scaffolding strategy, for which the read length and insert size are
important for assembling repetitive elements. When insert sizes are small, repetitive elements may
collapse, preventing their annotation, evident by the discrepancy between true genome size and assembly
size of T. arvense (Dorn et al. 2015). One benefit of the Transposome and similar RepeatExplorer
algorithm approaches is that they do not rely on genome assemblies, for which accurate and complete
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assembly of repetitive regions is still complicated. Overall, we treated these estimates as a good
approximation of TE abundances within their respective genomes.

Genome size does not correlate to repetitive element content

We next performed regression analysis to test the relationship between genome sizes and their respective
TE abundances. The issue with simple regression is that it assumes independence between data points
(Felsenstein 1985). To account for phylogenetic relationships between species, and lack of independence
thus present in our data, we calculated PIC values for both genome sizes and TE abundances. These
values were then used as input for linear regression. Across all the species in this study, there was no
significant trend between genome size and repeat content (R?=0.0025, p-value=0.698; Figure 2A). There
was no evidence for a strong overall correlation between genome size and any particular class of
transposable elements. However, when we analyze individual families, we identify a strong correlation
between genome size and the abundance of Gypsy elements in Capparaceae (R*=0.99, p-value=0.048;
Figure 2C). Although, we believe that more extensive sampling is needed to confirm this result, as our
sampling only includes four species from the Capparaceae family. The lack of interdependence between
genome size and TE abundance was not entirely surprising and has been hinted at by Lysak et al. (2009).
They found that, while there are exceptions, most Brassicaceae species have relatively small genomes.
This was an interesting discovery, as Brassicaceae genomes have undergone multiple polyploidization
events and TE proliferation, both of which are expected to lead to an increase in genome size (Jhonston et
al. 2005; Lysak et al. 2009).

TE content does not reflect phylogenetic relationships

To test the congruence of the ASTRAL tree with a repeat clustering based tree, we performed hierarchical
clustering of TE abundances for Copia and Gypsy elements, as well as total TE content. We specifically
highlight these superfamilies since previous studies which have used TE abundances to reconstruct
phylogenetic trees found that Copia and Gypsy elements bear the strongest signal (Dodsworth ef al. 2015;
Harkess et al. 2016; Dodsworth et al. 2017; Vitales et al. 2020). However, we were unable to reproduce
the species tree using our TE abundance data (Figure S2). While a few relationships were established
correctly, none of the resulting dendrograms mirrored the tree obtained through ASTRAL using
transcriptome data. At the family level, similar to previous publications, we did observe mirroring
relationships within some clades (Figure S3), while the overall dendrogram was still in conflict with the
species phylogeny (Dodsworth ef al. 2015; Vitales et al. 2020). Overall, we observed more agreement
within genera, with the level of conflict increasing in higher taxonomic ranks, resulting in a poorly
resolved tree across the Brassicales. Our data indicate that this approach does not have enough resolution
to elucidate the complex evolutionary history of the Brassicales order.

While some of the disagreement between the species phylogeny and TE abundance analyses could come
from the different methods used, we speculate that, on a large scale, other factors driving genome
evolution in the Brassicales dilute the phylogenetic signal coming from TE abundances. One possibility is
related to certain technical compromises that were necessary in order to run such a large number of
species in Transposome. We did not attempt to pool all 71 species into a single clustering analysis, such
as performed in smaller species groups like eight species of Asparagus (Harkess et al. 2016), six
Nicotiana species (Dodsworth et al. 2015; Dodsworth ef al. 2017; Vitales et al. 2020), and nine Fabeae
species (Dodsworth et al. 2015; Vitales et al. 2020). Similarly, we did not adjust for genome size due to
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the large number of sampled species and drastic genome size differences across the samples. Scaling
would here result in great underrepresentation of species with smaller genomes in the dataset, diminishing
our ability to identify less abundant repeat types. Other studies which have identified phylogenetic signals
in their TE content have used much smaller sample sizes and have a much narrower focus on taxa of
study (Dodsworth et al. 2015; Harkess et al. 2016; Dodsworth et al. 2017; Vitales et al. 2020). Further, as
described in the documentation of RepeatExplorer (http://repeatexplorer.org/?page id=179), our sample

size should be able to well-represent highly abundant TEs, and genome size adjustments have more
significance for detection of low-copy repeats.

Polyploidy is not correlated to shifts in TE abundance

Previous work, restricted to neopolyploids, has indicated that WGD and TE abundance, both expansion
and loss, are correlated (Agren et al. 2016; Parisod et al. 2010; Vicient and Casacuberta, 2017). Here, we
did not recover any evidence to support such a correlation across the Brassicales, a much older timescale
(Figure 3). For total TE abundance, we identified a shift toward a higher abundance in a clade of the
Cleomaceae comprising the genus Polanisia and three species of Cleome. Surprisingly, this clade is sister
to the clade recently characterized by the Cleomaceae specific WGD, Th - a (Mabry et al. 2020). For
Gypsy elements alone, we identified a single shift in Lunaria annua; this was unsurprising, as in Figure
1, clear differences in the proportion of these elements can be seen. Two shifts were identified for Copia
abundance, one for Hesperis matronalis, which has a very large genome, and one for the Polanisia clade.
In the Polanisia clade, Copia elements comprised, on average, 31.5% of the genome, which can be
compared to its sister clade, in which Copia elements make up on average 8.5% of the genome. For all
three TE categories, we did not recover any shifts that overlap with known polyploidy events in the
Brassicales (Figure 3).

To further test the hypothesis that WGD and TE abundances are correlated, we constrained our analyses
to implicitly test for shifts at known WGD events using OUwie. All analyses indicated that there is no
correlation between TE proliferation and WGD (Table S4). Specifically, when testing for correlations
between At - a at the base of the Brassicaceae versus all Brassicales for total TE abundance, the BMS
model (Brownian motion, with different rate parameters for each state on a tree) was assigned the most
weight compared to the other models tested. The BMS model suggested that there is a single optima that
the taxa are moving toward, albeit with different rates (Sigma”2 = 0.0001378363 for no WGD and
0.0003516384 with the WGD). The OU1 model (Ornstein-Uhlenbeck model with a single optimum for
all species) was weighted highest for both Gyspy and Copia elements when constraining the selection
regium at At - a, again suggesting that there is a single optima that the plants are moving toward,
regardless if they have experienced the At - a event or not. For the tribe Brassiceaec WGT, the OU1 event
was again weighted highest when compared to the other models, meaning that for this event, taxa with or
without the WGT are moving toward a single optima in TE abundance (total TE, Gyspy, and Copia). For
the Th - a event of the Cleomaceae, the same conclusion was drawn, with total TE abundance recovering
the BM1 model with the most weight and Gyspy and Copia analyses weighing the OU1 model highest,
taxa with or without the WGD were again recovered as moving toward the same optima. This was
somewhat surprising, as Bayou did recover a shift for one clade of Cleomaceae when testing total TEs,
and then a shift was observed for just the Polanisa clade for Copia abundance alone. Since previous
studies that have shown a correlation between WGD and TE abundance have typically used neopolyploid
species, we further subsetted our dataset to include only taxa for which we had recently sequenced the
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genome (unplublished data) and therefore could confidently identify ploidy, allowing us to test
neopolyploids vs known diploids. These analyses also found no correlation between TE abundance and
WGD (Table S4). The BM1 model was most highly weighted for Total TE and Gyspy while the OU1
model was most highly rated for Copia.

Although it has been hypothesized that WGD may be correlated with genome size (Agren et al. 2016;
Vicient and Casacuberta 2017), we did not recover support for this correlation within the Brassicales, a
group characterized by multiple WGD events. One hypothesis for these patterns is that the genomes that
share the three events tested here (At - a, Th - a, and the tribe Brassiceae WGT) have already diploidized.
However, we were especially surprised to find no correlation between TE and WGD when testing
neopolyploidy events using the reduced subset of data. Many of the studies which have found evidence
for this correlation have typically assessed a single species with a recent WGD, for example Petit et al.
(2010) found TE proliferation after polyploidization in tobacco, Madlung et al. (2005) show increased
activity of several transposons in newly formed allopolyploid Arabidopsis, as did Kashkush et al. (2003)
and Lopes et al. (2013) in wheat and coffee respectively, with many more additional examples of
polyploidy correlated with TEs composed by Vicient and Casacuberta (2017). Yet, Agren et al. (2016)
suggest that for Capsella bursa-pastoris, TE abundance increased due to relaxed selection, while Hu et al.
(2010) and Charles et al. (2008) found no evidence of proliferation of TEs after WGD in cotton and
wheat, respectively. Looking more broadly for support for this WGD - TE abundance correlation, Staton
and Burke (2015) assessed 15 taxa across the Asteraceae. Although they place WGD events on their
phylogeny, they note that further work is needed to test if this is a true correlation. It seems that although
there is still this predominant theory that WGD and TE abundance are correlated, researchers have begun
to appreciate that the story is much more complex (Parisod et al. 2010; Sarilar et al. 2013).

In the absence of a technical explanation, another possibility relates to the genome stasis of species in the
Brassicales following polyploidy and subsequent diploidization. That is, there could exist a mechanism(s)
to suppress repetitive element proliferation and diversification enabling the tape of evolution to be
“replayed” (Bird et al. 2019). For example, when testing resynthesized polyploid Brassica napus lines,
Bird et al. (2019), found that the same parental subgenome was consistently more dominantly expressed
in all lines and generations. The subgenomes of wheat were also found to be surprisingly static after
hybridization (Wicker et al. 2018). Overall, results here and from others cited within provide support for a
type of punctuated equilibria, where evolutionary development is marked by isolated episodes of rapid
change as noted in many crop polyploid species, between long periods of little or no change, as a way to
explain the patterns we see here (Zeh, Zeh, and Ishida 2009).

Using 71 taxa across the Brassicales, we found no evidence for either a phylogenetic signal from TEs or a
correlation between WGD and TE abundance. This study is the first to assess TE abundance across an
entire plant order with this many samples. We suggest that although TE abundance may follow
phylogenetic signals at shallow phylogenetic levels, it should be used with caution for determining
relationships at deeper nodes of a phylogeny. We also suggest that, although TE abundance may be driven
by WGD at short time scales, TE expansion does not leave an overall lasting imprint on a genome and
that TE purging mechanisms, such as intrastrand homologous recombination and illegitimate
recombination, work efficiently to bring genomes to stability (Hawkins et al. 2009). As the cost of
genomes continues to decrease, the opportunities to test these patterns by annotating TEs in multiple
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assembled genomes per family will be possible, although hinging on computational limitations. These
analyses paired with others which test for patterns of TE evolution in other groups of organisms, such as
other plant orders and even larger groups across the tree of life will hopefully provide insight to further
understand the C-value paradox.
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FIGURE LEGENDS

Figure 1. Taxa sampled with corresponding transposable element (TE) abundance and genome size. (A)
Phylogeny with whole-genome duplications indicated by black stars. Support values are shown for those
branched with less than 0.7 local posterior probability. Asterisks (*) next to taxon indicate known samples
with known ploidy levels (** = polyploidy, *= diploid), (B) Abundance for each type of TE, and (C)
genome size. Red circles indicated those taxa not included in regression analyses.

Figure 2. Linear regression analysis of the relationship between genome size and (A) total TE, (B) Copia
and (C) Gypsy element abundance; PIC=phylogenetically independent contrasts.

Figure 3. Bayou analysis for detecting shifts in transposable element abundance. (A) Heatmap of total
TE, (B) Gyspy, and (C) Copia abundance with identified shifts plotted. Only shifts with a posterior
probability of 0.3 are plotted. Circle size corresponds to the posterior probability of having a shift. Whole
genome duplications are denoted by black stars with named events indicated.

SUPPLEMENTAL MATERIAL

Supplemental Figure 1. Proportion plots of transposable element abundance scaled to 100%. (A)
phylogeny of taxa, (B) by superfamily, (C) by order.

Supplemental Figure 2. Comparison of phylogenetic relationships across Brassicales in the ASTRAL
tree obtained from transcriptome data (left) and based on hierarchical clustering of TE abundances (right).

Supplemental Figure 3. Comparison of phylogenetic relationships in the ASTRAL tree obtained from
transcriptome data (black) and based on hierarchical clustering of TE abundances (red) in (A)
Brassicaceae, (B) Cleomaceae, and (C) Capparaceae.
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Supplemental Table 1. Taxon sampling with genome size, chromosome counts, and transposable
element abundance. Chromosome counts as in http://legacy.tropicos.org/Project/IPCN. Asterisks (*)
indicate samples with known ploidy level.

Supplemental Table 2. List of mitochondrial and chloroplast sequences used for data filtering.
Supplemental Table 3. Data processing summary.

Supplemental Table 4. OUwie weighted AICc scores. Tests conducted are specified below as selection
regime ~ modelled phenotype. BM1; single-rate Brownian motion, BMS; Brownian motion with different
rate parameters for each state on a tree, OU1; Ornstein-Uhlenbeck model with a single optimum for all
species, OUM; Ornstein-Uhlenbeck model with different state means and a single alpha and sigma”2
acting all selective regimes, OUMYV; Ornstein-Uhlenbeck model that assumes different state means as
well as multiple sigma”2, OUMA; Ornstein-Uhlenbeck model that assumes different state means as well
as multiple alpha, OUMVA; Ornstein-Uhlenbeck model that assumes different state means as well as
multiple alpha and sigma”2 per selective regime. Asterisk (*) indicated analyses which returned the
warning, “You might not have enough data to fit this model well”.
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Figure 1. Taxa sampled with corresponding transposable element (TE) abundance and genome
size. (A) Phylogeny with whole-genome duplications indicated by black stars. Support values are
shown for those branched with less than 0.7 local posterior probability. Asterisks (*) next to
taxon indicate known samples with known ploidy levels (** = polyploidy, *= diploid), (B)
Abundance for each type of TE, and (C) genome size. Red circles indicated those taxa not
included in regression analyses.
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Figure 2. Linear regression analysis of the relationship between genome size and (A) total TE, (B)
Copia and (C) Gypsy element abundance; PIC=phylogenetically independent contrasts.
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Figure 3. Bayou analysis for detecting shifts in transposable element abundance. (A) Heatmap of total TE, (B) Gyspy, and (C) Copia
abundance with identified shifts plotted. Only shifts with a posterior probability of 0.3 are plotted. Circle size corresponds to the
posterior probability of having a shift. Whole genome duplications are denoted by black stars with named events indicated.
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