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Abstract

The biological mechanisms that allow the brain to balance flexibility and integration
remain poorly understood. A potential solution to this mystery may lie in a unique
aspect of neurobiology, which is that numerous brain systems contain diffuse
synaptic connectivity. In this manuscript, we demonstrate that increasing diffuse
cortical coupling within a validated biophysical corticothalamic model traverses the
system through a quasi-critical regime in which spatial heterogeneities in input noise
support transient critical dynamics in distributed sub-regions. We then demonstrate
that the presence of quasi-critical states coincides with known signatures of complex,
adaptive brain network dynamics. Finally, we demonstrate the presence of similar
dynamic signatures in empirical whole brain human neuroimaging data. Together,
our results establish that modulating the balance between local and diffuse synaptic
coupling in a thalamocortical model subtends the emergence of quasi-critical brain
states that act to flexibly transition the brain between unique modes of information

processing.
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Introduction

The brain is a complex, adaptive system that is organized across multiple spatial and
temporal scales. Systems arranged in this way must solve a number of competing
challenges. First, they must balance segregation — the need to retain precise,
specialist functional capacities — and integration — in which information from
segregated sub-regions is recombined at larger spatiotemporal scales (Shine et al.,
2019a; Sporns et al., 2000). Second, the brain must remain flexible enough to retain
sufficient sensitivity to fluctuations in evolving fitness landscapes (Kehagia et al.,
2010). Finally, the systems must coordinate these capacities in ways that are
energetically frugal (Bullmore and Sporns, 2012), which favours systems with
relatively low-dimensional architectures (Cunningham and Yu, 2014). How the brain
is arranged to achieve these distinct constraints, and what physical mechanisms

underpin them, remains poorly understood.

A solution to this challenge may be found in a somewhat over-looked principle of
neuroanatomy. A number of circuits in the brain, such as the ascending
neuromodulatory system (Edlow et al., 2012) and the non-specific, “matrix’ cells of
the thalamus (Jones, 2002), project their axons in a relatively diffuse pattern that
targets multiple distinct neural regions. These circuits are incompatible with the
traditional notion of ‘message passing’ between individual neurons that is typically
ascribed to targeted, feed-forward projections between neurons (Aertsen et al., 1996).
So why might these highly conserved, diffuse connections exist as such a prominent

feature of neuroanatomy?

A potential benefit of balancing targeted and diffuse coupling is that systems
structured in this way may be able to support multiple distinct modes of processing.
For instance, targeted connections between neural sub-regions will influence local
neighbours in a relatively segregated mode, whereas diffuse connections may force
distant regions into novel regimes that are impacted more strongly by the global
brain state. Crucially, by modulating the amount of global, diffuse connectivity, the

system could control its information processing capacity .

Systems that support multiple distinct modes often exhibit optimal functional
properties at the transition point (or critical point), such as maximizing information
transmission, the dynamic range, and the number of metastable states (Deco and
Jirsa, 2012; Mufioz, 2018). Rather than balancing precisely at a specific critical point,

there is now robust evidence to suggest that complex systems such as the brain may
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display an enlarged/stretched critical point. This stretched critical regime (quasi-
critical) allows the system to more readily utilise the optimal functional properties
bestowed at criticality (Cocchi et al., 2017; Tagliazucchi et al., 2012; Williams-Garcia
et al.,, 2014; Wilting and Priesemann, 2018). Near this quasi-critical region of state
space, heterogeneity within the brain should allow sub-regions to experience
transient excursions into the quasi-critical regime (Moretti and Mufioz, 2013; Voijta,
2006). This would allow the system to harness the benefits of criticality (e.g.,
divergence of correlation length), without the associated risk of transitioning en
masse into a pathological state of global synchronization (Breakspear et al., 2006;
Miiller et al., 2017).

In this manuscript, we propose that this mechanism could be exploited in the brain
by modulating the balance between local and diffuse synaptic coupling in the
thalamocortical system. This in turn would imbue the system with the capacity to

support the complex, adaptive system dynamics that support higher brain function.

Results

To test the hypothesis that diffuse coupling promotes a diversity of quasi-critical
neural states, a network of biophysically-plausible corticothalamic neural mass
models was used to simulate large-scale human brain activity (Fig. 1). Neural mass
models, which are a spatially discretised class of a neural field model, provide a
tractable framework for the analysis of large-scale neuronal dynamics by averaging
microscopic structure and activity (Jirsa and Haken, 1996; Nunez, 1974; Robinson et
al., 1997, 1998; Wilson and Cowan, 1973; Wright and Liley, 1996). These models are
flexible, physiologically realistic and inherently non-linear, (Deco et al., 2008; Rennie
et al.,, 1999; Robinson et al., 1997, 1998, 2001, 2002, 2005; Wilson and Cowan, 1973;
Wright and Liley, 1996), and have successfully accounted for many characteristic
states of brain activity (Bojak and Liley, 2005; Breakspear et al., 2006; Deco et al.,
2008; Jirsa and Haken, 1996; Roberts and Robinson, 2008; Robinson et al., 2002;
Steyn-Ross et al., 2004; Wilson and Cowan, 1973). Importantly, this work extends an
existing and validated biophysical model, which itself has been extensively
constrained by human electrophysiology data (Abeysuriya et al., 2015). This feature
ensures that we have oriented the system to a plausible region of state space, and
further implies that our results will lead to testable empirical predictions related to

the impact of diffuse inputs.
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The specific neural mass model used in our study contained four distinct neural
populations: an excitatory pyramidal cell, ¢, and an inhibitory interneuron, i,
population in the cortex; and an excitatory specific relay nuclei, s, and inhibitory
thalamic reticular nuclei, r, population in the thalamus. The parameters from the
model were fit to a region of state-space defined by the awake, human brain using
field potentials from human scalp EEG data (Abeysuriya et al., 2015; Robinson et al.,
2004). We simulated a 12x12 network of corticothalamic neural masses (Fig. 1a)
using the neural field simulation software, nftSim (Sanz-Leon et al., 2018). The
parameters for each neural mass were identically set to “eyes-closed” estimates
(Abeysuriya et al., 2015), which results in simulated activity with a characteristic 1/f
spectrum and a peak in the alpha frequency band (8 — 13 Hz).

Neural Mass Cortical Activity
" ... . "
Cerebral \“ —l
% ‘ Network Structure
£ ., K _Local 5 Py e
Glutamate _, R £ Y o == i iy
GAB# A % dh 6 G i A I % - ]
lT:h‘-v\ﬂ-nr.a\[.h (LD, '\.T.)' b /I(. A B > "\I* | 3{/____,,} ¥
. ’ - e - :_-_/.//
Diffuse
Thalamus .
c) d) Attractor Landscape
G — Stable
....... stable
T < T T - T unstal
1 /—.mm tor
—=d B i ]
. x E simmion
0 = ow attractor
r'd (=] [}
A L=
i ., 0
-
_ ge o
S o
o
o2
suberitical o @
quasi-critical
low high i
Network Firing Rates Diffuse coupling

Figure 1 — Model schema. (a) Corticothalamic neural mass model implemented at each node of the
network: each mass was comprised of four distinct cellular populations: an excitatory cortical
pyramidal cell (‘¢’), an inhibitory cortical interneuron (‘i’), an excitatory, specific thalamic relay
nucleus (’s’), and an inhibitory thalamic reticular nucleus ('r’), with intra-node corticothalamic neural
mass coupling defined according to known anatomical connectivity; (b) Connectivity schematic —
local and diffuse coupling with periodic boundary conditions (toroidal topology); (c) Distribution of
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nodal firing rates across the network - an increase in diffuse coupling subsequently increases the
standard deviation of firing rates, with the tails of this distribution having greater above (and below)
average values. (d) Qualitative effect of increasing diffuse coupling in the presence of heterogeneity
on the attractor landscape: increased diffuse coupling shifts all nodes towards their local saddle-node
bifurcation point. In the middle of this continuum, the heterogeneous inputs allow a particular subset
of nodes (shaded orange) to cross this point and the activity of these nodes begins to move towards
the high firing attractor.

In addition to the identical intra-node coupling, our model contained two classes of
connectivity: local coupling, which was defined as a connection between an
excitatory population in the cortex and its immediate neighbours (with diagonal
nodes additionally scaled by a spatial decay factor of 1/v2); and diffuse coupling,
which connected the pyramidal e populations’ activity to all other nodes in the
network (Fig. 1b). The diffuse coupling term, which is defined as y, was swept
through a range and was the only parameter changed in this work. Periodic
boundary conditions (i.e., a toroidal topological structure) were applied so that each

node had an equal number of local afferent connections.

The presence of structural heterogeneities in neural network models, such as the
human connectome and neural networks in the Caenorhabditis elegans, have been
shown to extend an idealized critical point into a region of state space that is known
in statistical mechanics as a “Griffiths phase” (Moretti and Mufioz, 2013; Vojta, 2006).
This form of quasi-criticality is analogous to the inherent balance present between
the liquid and gaseous phases of water at room temperature (Fig. 1c), during which
time the vast majority of the water molecules are in their liquid phase. As the
temperature rises towards water’s boiling point, a subset of these molecules may, for
a short time, collide with other energetic molecules in their immediate surroundings.
From the vantage point of this subset, it would appear as though the temperature of
the entire fluid had risen. Those regions with slightly more energy than others
would be able to cross their own locally-defined bifurcation (or critical boundary) —
i.e, ‘transition” into water vapour — while leaving the rest of the water molecules in
their liquid phase. This phenomenon will occur more often as the temperature

approaches the boiling point.

The brain may exploit a similar physical mechanism, whereby subregions cross
locally-defined critical boundaries while the bulk of the global brain state remains
subcritical. We hypothesized that the prevalence of these critical regions should be

modulated by diffuse inputs, in a manner analogous to increasing temperature in
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the fluid to gas transition. In other words, increasing diffuse coupling in the brain
could drive the system such that a subset of nodes can cross their locally-defined
critical boundaries (e.g., orange nodes in Fig. 1d), while ensuring that the rest of the
network remains in a sub-critical state (e.g., blue nodes in Fig. 1d). It is important to
note that this phenomenon only occurs when there are heterogeneities within the
system. In the model used here, only the simplest form of spatial heterogeneity was
included: namely, an independent white noise drive (uniquely sampled from an
identical Gaussian distribution) to each neural mass in the network. Based on these
factors, we hypothesized that the combination of heterogeneity and elevated diffuse
coupling, y, would be sufficient to transition a subset of nodes over their locally-
defined bifurcation, which in turn should alter the information processing dynamics
of the brain. In order to test this hypothesis, we needed to identify a way to track

transient, super-critical excursions at the nodal level in our model.

Quantifying regional dynamics through distance to local bifurcation

In dynamical systems, such as the brain, activity is often defined by the systems’
“attractors”, which are idealized states that a system evolves towards under a wide
variety of starting conditions (Miller, 2016). Multi-stable systems are those with
more than one attractor present for a single set of parameters: each attractor has
unique stability properties and can be explored by the system given appropriate
inputs and/or initial conditions. The biophysical model utilized in this study
describes a multi-stable system near a Hopf and a saddle-node bifurcation, both of
which occur when a smooth incremental change in a control parameter (in our case,

diffuse coupling) causes a qualitatively abrupt changes in the systems behaviour.

Knowledge of a nodes attractors is important for understanding the nodes
behaviour, however it can be challenging to extrapolate patterns from local nodes to
the activity of the whole network. This makes it difficult to define the presence (or
absence) of quasi-critical brain state dynamics in large-scale network models. To
solve this problem, we note that the bifurcation point for each corticothalamic neural
mass can be identified as a function of a constant postsynaptic potential induced by
incident activity from other nodes. Time independent solutions can then be
produced by sweeping over this induced potential change in order to find the neural
mass’ bifurcation point (i.e., the point where the two low-firing attractors meet and
annihilate each other, leaving only a stable high firing attractor). Furthermore, the
time-independent solutions can be used to determine the linear response gains

between each population within the neural mass (Fig. 52).
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As y is increased, individual nodes become increasingly sensitive to their own
inputs — that is, they have heightened ‘response gain’ (David Servan-Schreiber, 1990;
Shine, 2019; Shine et al., 2018). This effect is characterized by a sigmoidal function
that maps population average membrane potential to firing rate (Wilson and Cowan,
1973), as well as the slope (first derivative) of this function (Fig. S1). All of the
simulated data in our experiment lies on the left-hand side of the peak in the gain
curve (subpanel in Fig. 51), such that incremental increases in response gain have
large effects on the nodes” activity (i.e., the slope of the function is positive; orange in
the right side of Fig. S1), and hence, cause the region to cross its locally-defined
bifurcation (Fig. 1d).

Increasing diffuse coupling promotes quasi-critical states

Armed with this approach, at each simulation time point, inputs to a given node can
be translated into an instantaneous distance to the receiving nodes’ bifurcation
point. In this way, the strength of each nodes” attractor can be quantified, and the
duration of excursions across the point where the attractor is no longer present
during simulation can be accurately quantified. Here, the percentage of nodes that
have crossed their local bifurcation is defined as P.. As predicted by our hypothesis,
increasing the amount of diffuse network coupling caused a non-linear increase in P,
(Fig. 2). Based on the network-level activity patterns across y, we defined three
‘working zones”: a stable, subcritical zone (y < 1.20x10* mV's; blue in Fig. 2), where
P. =0; a quasi-critical zone (1.20< y < 1.27x10* mV-s; green in Fig. 2), where
0 < P.<100; and a saturated zone (y > 1.27 x10# mV-'s; red in Fig. 2), where
P, = 100 in the second half of the simulation.
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Figure 2 — Promoting quasi-critical states. (a) The time averaged percentage of nodes that have
crossed their bifurcation, P,, as a function of diffuse coupling, y. We identified three qualitative zones:
a low variability subcritical zone (blue), where no nodes crossed their bifurcation point for the full
duration of the simulation, a highly variable, quasi-critical zone (green) where at least one node was
below its bifurcation during the second half of the simulation , and a saturated, oscillatory zone (red).
The insets show steady state firing rates for each population within the neural mass model is

represented via colour intensity.

Another benefit of neural mass models over more abstract approaches (such as the
Kuramoto or Fitzhugh-Nagumo model; (Breakspear, 2017) is their superior physical
interpretability. Each parameter within the neural mass is, in principal, a measurable
biophysical quantity. We leveraged this feature to identify the relative firing rate of
each neural population in our model. The three zones in our model were associated
with qualitatively distinct steady state firing rate attractors for each population
within the corticothalamic neural mass (inset of Fig. 2). Of note, the subcritical zone
was associated with a higher firing rate in the r thalamic population relative to the s
population (i.e., relative thalamic inhibition), whereas this relationship is inverted in
the saturation zone (i.e., relative thalamic excitation). By construction, the quasi-
critical zone necessarily supports a mix of these two states, with the balance dictated
non-linearly by the value of P, (Fig. 2). These results suggest that increasing diffuse
coupling to the cortex had the effect of releasing a subset of excitatory thalamic s
neurons from inhibition, which in turn was reflected by the crossing of their local

bifurcation point (Fig. S3).

We also observed qualitatively distinct effects at the whole-network level. The
average regional correlations within each zone are displayed as a force-directed
graph in Fig. 3a. The subcritical zone is dominated by local coupling and the
saturation zone by diffuse coupling. Notably, the quasi-critical zone shows a mix of
both these integrated and segregated topological states, and their coincidence is
predicated on heterogeneity within the network. Somewhat trivially, if this
heterogeneity is removed and diffuse coupling is increased, the entire network will
cross the bifurcation point together with P, either 0% or 100, which is equivalent to
an isolated neural mass receiving increasing drive. In other words, confirming our
hypothesis, the presence of the quasi-critical regime was due entirely to the presence

of spatial heterogeneity and increasing the diffuse coupling term, y.
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Figure 3 — Properties of quasi-critical states. (a) Average regional correlations within each zone
shown as a force-directed graph; (b) For a given yx, each node was stimulated with an excitatory
rectangular pulse (amplitude = TmV; width = 10ms) at t = 10s. The target nodes activity was then
compared to simulated activity in the absence of the pulse using the same noise sequence in order to
quantify the perturbation induced. The pulse results are sorted based on their mean distance to
bifurcation in the preceding 8 time points. For visualization purposes we then average the activity
within the closest, middle, and farthest thirds based on this sorted distance, and low-pass filter with a
passband frequency of 0.001Hz. (i) y = 1.15x 10™* (ii) y = 1.21 x10™* (iii) y = 1.25 x 107* (iv)
x =13 %x107* mV.s; Note the vertical axis on (iv) differs from (i) - (iii); (c) Qualitative effect of
increasing diffuse coupling on the attractor landscape: in the sub-critical zone, the system was
enslaved to the lower attractor; increasing y into the quasi-critical zone had the effect of flattening the
attractor landscape, allowing noise-driven excursions to transition nodes across their local bifurcation

point; at high values of y, the system became enslaved to the higher attractor.

Based on previous literature (Fontenele et al., 2018; Moretti and Mufoz, 2013;
Williams-Garcia et al., 2014), we hypothesized that the quasi-critical regime should
augment the network’s sensitivity to incoming stimuli. To test this hypothesis, a
series of network simulations were run wherein an excitatory pulse stimulus was
applied separately to each node across several diffuse coupling values (see Fig. 3b:
panels i-iv). For visualization purposes, the nodes were grouped based on their
average distance to bifurcation in a brief window (40 ms) preceding stimulus. In line
with other critical phenomenon, the response duration and sensitivity of the

network increases with diffuse coupling as the system as a whole becomes more

10
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critical. This is equivalent to the lower attractor ‘flattening’, which in turn allows a
greater proportion of individual nodes to transition onto the higher attractor (Fig.
3¢).

In addition to the increased network sensitivity, flexibility is increased within the
quasi-critical zone, with a greater spread of stimulus response durations observed
(contrast Figs. 3b (i) and (ii)). This highlights the fact that within the quasi-critical
zone, the dynamic repertoire is extended (Kinouchi and Copelli, 2006) and could
provide a mechanistic description of the hierarchy of timescales inferred empirically
(Cocchi et al., 2016; Honey et al., 2012). Together, these results demonstrate that
increasing diffuse coupling transitions the network into a sensitive and complex
state, which would likely be further enriched by the known spatial heterogeneity
imbued by the white-matter of the structural connectome (Bullmore and Sporns,
2012).

Network signatures of quasi-criticality

When analysing empirical neuroimaging data, it is not possible to obtain direct
evidence of a nodes’ gain, nor it's distance from its’" own bifurcation. Instead the
putative signatures of complex, adaptive system dynamics must be estimated
indirectly from empirical neuroimaging data (McIntosh and Jirsa, 2019). Here, we
demonstrate that a number of these analytic measures show qualitative changes as a
function of x, and thus together provide empirically accessible signatures of
complex, adaptive dynamics (Fig. 4). For instance, the mean participation coefficient,
which quantifies the extent of cross-community integration across the brain network
(Shine et al., 2016), was low, yet regionally variable, in the sub-critical zone, rose
sharply in the quasi-critical zone, and reached a ceiling in the saturated zone (Fig.
4a). This pattern is consistent with previous neuroimaging work that showed an
increase in integration as function of cognitive task performance (Cohen and
D’Esposito, 2016; Hearne et al., 2017; Shine et al., 2016).

Time-series variability (Fig. 4b; black) showed a similar monotonic increase with y,
though with a more protracted course than network integration. In contrast, regional
diversity (Fig. 4b; orange) initially increased before dropping and wavering in the
quasi-critical zone, and ultimately increasing to its highest value in the saturated
zone. Interestingly, an increase of time-series variability within the quasi-critical
zone was preceded by two peaks in regional diversity, which was defined as the

variance in the upper triangle of the region-wise functional connectivity matrix. In

11
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other words, a promotion of unique functional architectures across the network
occurs within the quasi-critical zone and these appear distinct from an increase in

sustained local variability.

(a)

Mean Participation
| » explained variance

e

K10 ¥ (mV. s) x10+

x (mV. 5}

Figure 4 — Network topology and dimensionality. (a) Mean participation — which quantifies the
extent to which a region functionally connects across multiple modules (these were calculated using a
weighted version of the Louvain algorithm across all simulations); (b: left) Average time-series
variability; (b: right) Regional diversity — defined as the variance in the upper triangle of the region-
wise functional connectivity matrix; (c) PCi2 explained variance. k demarcates corresponding points
in all panels.

In previous work, we analysed human fMRI data to show that the brain reconfigures
into a low-dimensional brain state across a diverse array of cognitive tasks (Shine et
al., 2019). Similar patterns were observed here in the simulated data (Fig. 4c).
Specifically, the percentage of variance explained by the first two principal
components of the firing rate time series peaked in the quasi-critical zone, with the
second principal component rising in explanatory power at a higher level of y (Fig.
4c). Interestingly, the peak in the variance explained by the second principal
component coincided with the peak in integration (corresponding to x in Fig. 4), and
the peak in variance explained by the first principal component coincided with the
first peak in regional diversity. Together, these results suggest that the quasi-critical
zone is associated with an integrated, flexible and relatively low dimensional
network architecture, which is consistent with recent empirical whole-brain imaging
results (Shine et al., 2019a) and has implications for the information processing

capacities of both artificial and biological networks.

Orienting task and rest states from human fMRI data

We were next interested in whether the complex, adaptive network signatures
identified in our neural mass model would translate into differences in empirical,
whole brain neuroimaging data. Based on previous work (Shine et al., 2016, 2019a)

and the results of our biophysical model, we hypothesized that the network-wide
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effects of distinct cognitive states would be dissociable based on the measures that
were found to be have unique signatures in the quasi-critical zone. Specifically, we
predicted that task performance should be associated with increased diffuse network
coupling, reflective of increased ascending arousal neuromodulation (Shine et al.,
2018) and increased thalamic engagement (Shine et al., 2019b), thus allowing
information from functionally specialized regions, optimally formed in the

segregated state, to be integrated across broad spatiotemporal scales.

To test this hypothesis, we analysed whole-brain fMRI data from 100 unrelated
subjects from the Human Connectome Project while they performed a cognitively-
challenging two-back task (Barch et al., 2013). Regional BOLD fMRI data were
analysed using the same techniques that were applied to the simulated data (i.e.,
those in Fig. 4), and then independent-samples t-tests were used to contrast between
cognitive task engagement and relatively quiescent rest periods. The results of our
analysis demonstrated that, when compared to the resting state, task performance
was associated with an increase in integration (t = 83.8; p = 1.02 x 10%; Fig. 5a), a
drop in regional diversity (t = 29.1; p = 2.37 x 10°% Fig. 5b), increased time-series
variability (t =-31.1; p = 6.83 x 10°%; Fig. 5c), and less variance explained by the first
two principal components (PCi: t = 5.21; p =1.04 x 10 PC2: t = 9.06; p =1.23 x 104
Fig. 5d).
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Probability

J

(c) Timeseries Variability (d) PC, Explained Variance

.......

PC, Exp. Var.

3
74
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Figure 5 — Signatures of quasi-criticality across task and rest. fMRI data from 100 unrelated subjects
during a two-back task from the Human Connectome Project was analysed to determine whether the
task and rest states were associated with unique signatures of complex, adaptive brain dynamics. (a)
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Mean Participation was elevated during task performance (t = 83.8; p = 1.02 x 10*%); (b) Regional
diversity, defined as the variance in the upper triangle of the region-wise functional connectivity
matrix, was lower during task performance than rest (t = 29.1; p = 2.37 x 10*); (c) fMRI timeseries
variability (t =-31.1; p = 6.83 x 10%%); (d) Variance explained by first principal component (t =5.21; p =
1.04 x 106); (d - inset) Variance explained by second principal component (t = 9.06; p = 1.23 x 101%); (e)
Task and rest signatures were applied to a novel stochastic data-fitting algorithm to orient the brain
states at different levels of y: rest was associated with a lower diffuse coupling (y™*~1.22+0.1 mV.s)
than task states (x'***~1.26 £0.1 mV.s); (f) surface projection of Ay for each region (Schaefer et al.,
2018), generated by independently removing each region of the data, recalculating the signatures, and
refitting to generate a Ay.

To orient regional fMRI data onto the corticothalamic model outputs, we created a
novel data-fitting approach. Briefly, a cost-function was defined as the difference
between the task and rest values for each of the complex network signatures used to
analyse systems-wide time series dynamics (Fig. 5a-d). The algorithm then searches
for an interval of diffuse coupling, Ay, that minimizes this cost function — that is it
finds the [y, x2] that best explains the change in all complex network signatures
across task and rest states. Finally, a uniform random walk is performed on the
weightings of each metrics gradient to scale its contribution to the overall cost
function, effectively mitigating against bias for any one measure in the fitting
algorithm. In this way, we were able to estimate the dynamical fingerprint of the
underlying state in a manner that was robust to differences in the baseline statistics

of each measure.

This approach confirmed that quasi-critical signatures orient rest states to lower
levels of diffuse coupling (¥™*~1.22 + 0.1 x 10* mV's) than those of cognitive task
states (y™*~1.26 +0.1 x 104 mV-s; Fig. 5e). The y fit results in a probability
distribution (Fig. 5e) since an estimate is made for each new combination of
weightings generated per iteration of the algorithm (10*). The maximum likelihood
of the task estimates was found to be coincident with the second peak in regional
diversity and proximal to peak integration, suggesting that the brain is balancing
flexibility, in the form of high functional diversity, with increased large-scale

communication, in the form of network integration.

To aid neuroscientific interpretation, a variation of the group-level model fitting
approach was used to provide an estimate of Ay at the regional-level. To this end, we
performed a virtual lesioning of the network (albeit without the benefit of the
dimensionality measures, which are calculated across the whole system), in which

each of the measures was recalculated following the removal of each node (in turn).
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The algorithm then fits the resultant Ay which best captured their respective
changes, with the notable difference that the upper bound of this range was set to

the maximum likelihood of sk

, 50 as to ensure each nodes effect was compared to
a common baseline (i.e., it finds [x;, x®]). The Ay fits were diversely distributed
across predominantly frontal and sensory cortex (Fig. 4f), suggesting that diffuse
coupling allowed for integration across multiple distinct specialist sub-networks in
order to complete the cognitive task. Together, these results confirm the hypothesis
that brain activity during task is associated with greater quasi-critical brain
dynamics than during rest, and further extend this concept by suggesting a plausible

biological mechanism — namely increased diffuse coupling — for these differences.

Discussion

Here, we used a network of biophysical corticothalamic neural masses, previously fit
to human EEG data (Abeysuriya et al., 2015; Robinson et al., 2004), to demonstrate
that quasi-critical brain states can be facilitated by the combination of spatially
heterogeneous inputs and diffuse network coupling. Gradually increasing diffuse
connectivity shifted each region closer to their individually-defined bifurcation,
which maximized flexibility (Fig. 2) while also increasing the sensitivity of the
network to inputs (Fig. 3b) and system-wide topological integration (Fig. 4a). This
constellation of complex network signatures dissociated different cognitive
processing modes in empirical brain imaging data (Fig. 5). Together, these results
establish a plausible neurobiological implementation of criticality in the brain that is
driven by a known neuroanatomical principal. Crucially, the modulation of this
physical mechanism (diffuse coupling) is demonstrated to augment flexibility in
segregated and integrated operational modes, which in turn are reflected as changes

in several key measures of complex adaptive network dynamics.

In previous work, it has been shown that cognitive task performance leads to a more
integrated (Shine et al.,, 2016) and low-dimensional (Shine et al., 2019a) brain state.
Here, we demonstrate a simple neuroanatomical principle that may underpin these
patterns. Specifically, we showed that, in the presence of the simplest form of spatial
heterogeneity (independent noise to each region), increasing diffuse coupling across
the network led to the exploitation of multi-stable system dynamics, broadened the
systems dynamic repertoire, supported a hierarchy of input response sensitivity and
timescales, and maximised temporal flexibility. Indeed, the quasi-critical states that
we identified can facilitate functional integration across large spatial and temporal

scales through a diverging correlational length, while also retaining the stability of
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the whole system. As such, these mechanisms provide a robust starting point for
understanding the evolutionary mechanisms through which the brain learned to

augment its functional repertoire across a wide range of scales.

The quasi-critical brain states represented here extend previous ideas on the critical
brain hypothesis (Beggs, 2003; Tagliazucchi et al., 2012; Williams-Garcia et al., 2014;
Wilting & Priesemann, 2018), but cast them in a novel, large-scale biophysical brain
model. Conceptually, the quasi-critical zone identified in this work represents a state
of the system where the dynamic repertoire and flexibility are both maximised.
Here, we show that this state can be engaged and disengaged by modulating the
impact of diffuse network connectivity. Importantly, this modelling work includes
spatial heterogeneities in a minimal form (namely, noise inputs), which permit
quasi-critical states while retaining physiologically plausible neural activity. It is also
important to note that the quasi-critical state is not a single point but a well-defined
region in state space, and thus numerous parameter combinations could be
employed by the neurobiology in order to explore this physical niche, which agrees
with the extended critical region observed in both human and Caenorhabditis elegans

neural networks (Moretti and Mufoz, 2013).

A strength of the approach utilized here is that it relates directly to known
characteristics of neuroanatomy. Indeed, there are at least two major systems in the
human brain — the ascending arousal system (Samuels and Szabadi, 2008) and the
diffuse thalamocortical ‘Matrix’ projections (Jones, 2001) — that could readily
instantiate the diffuse brain signal modelled in our study in a relatively flexible
manner. Each of these highly inter-connected (Edlow et al., 2012; Varela, 2014)
systems is characterised by relatively diffuse patterns of axonal connectivity that
innervate the entire cortical mantle, along with a range of other subcortical,
cerebellar and brainstem structures (Jones, 2001; Samuels and Szabadi, 2008). These
two systems are also characterized by highly dynamic expression (Aston-Jones and
Cohen, 2005; Halassa and Kastner, 2017), suggesting that the relative amount of
diffuse coupling may be controlled and shaped as a function of systemic
requirements. Despite their relatively broad projection patterns, there is also
evidence for more targeted connectivity (Clasca et al, 2012) and segregated
processing modes (Totah et al., 2018) within these two systems, which in turn might
confer even more precise control over the highly dynamic, distributed neural
coalitions that define our waking brain state (Varela et al., 2001). In short, realistic

heterogeneity within these systems, such as synaptic, receptor, and cell densities,
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will support the formation of quasi-critical states, and hence the brain may have
evolved a way of using quasi-criticality to support distinct operational modes. This
would allow low dimensional control over the modes in an energy efficient manner,
i.e., functionally partition regions, allocate these to unique features of a task, and

then reintegrate their outputs at a later time (Shine et al., 2019a).

The modelling methodology used in this work is distinct from inversion methods,
wherein a generative model is fit to data and the resulting parameter estimates are
used to elucidate a mechanistic understanding of a phenomenon. Whilst this
approach is often informative, it can also result in the over-fitting of parameters. As
such, insights from these approaches are difficult to generalize to broader brain
states. A complimentary strategy often employed in statistical physics is to define a
model according to first principles. While abstract, this strategy affords much greater
control over the models” degrees of freedom, and in turn makes any identified
results more robust to parameter changes. These two modelling approaches
compliment one and other and represent distinct modes of questioning a
phenomenon: data-driven (why is the system changing in this way?) vs. hypothesis-
driven (i.e., how will the system change if I modify it in this way?). In this work, we
utilised a hybrid strategy: we exploited previous data fitting results (Abeysuriya et
al., 2015; Robinson et al., 2004) to orient the model in a plausible region of state-space
(eyes-closed wakefulness) and then gradually introduced a new feature (diffuse
cortical input) while keeping all other parameters constant. The model is thus a
predictive framework, in which all of the signatures we identified (Figs. 3 and 4) can
be directly attributed to the modulation of diffuse coupling. In addition, by orienting
our model in a previously defined state, our outputs can be directly compared with
data, though we predict that direct matches to data will require a more realistic

structural connectome (Moretti and Mufoz, 2013).

Conclusion

In summary, we have demonstrated a plausible benefit for the presence of an often-
overlooked quirk of neuroanatomy: namely, that increases in diffuse coupling can
orient the brain in a quasi-critical state that maximizes flexibility, low-dimensionality
and a balance between integration and segregation, and that these can explain
numerous features of human imaging data. Future work can utilize this model to
learn how the balance between targeted and diffuse coupling is disrupted across
neurodevelopmental and neurodegenerative disorders. It will also be of major

interest to determine how the mechanisms highlighted here interact with the

17


https://doi.org/10.1101/2020.06.09.141416
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.141416; this version posted June 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

complex, heterogeneous patterns of connectivity defined by the white-matter
structure of the human connectome, which would likely assign meaningful

functional specialization to specific brain regions.
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Materials and Methods

Corticothalamic neural mass

The corticothalamic neural mass model used in this work contains four distinct
populations: an excitatory pyramidal cell, ¢, and an inhibitory interneuron, i,
population in the cortex; and an excitatory specific relay nuclei, s, and inhibitory
thalamic reticular nuclei, r, population in the thalamus. The dynamical processes
that occur within and between populations in a neural field model are defined as

follows:

For each population, the mean soma potential results from incoming postsynaptic
potentials (PSPs):

(= ) Var(® (1)

where V,;, (t) is the result of a postsynaptic potential of type b onto a neuron of type

a and a,b € {e,i,r,s}. The postsynaptic potential response in the dendrite is given

by

DapVap @) = VapPap(t — Tap) (2)

where the influence of incoming spikes to population a from population b is
weighted by a connection strength parameter v, = N,;S,,, with the mean number
of connections between the two populations N,;, and s,; is the mean strength of
response in neuron a to a single spike from neuron b. 7, is the average axonal delay

for the transmission of signals, and ¢, is the mean axonal pulse rate from b to a.

The operator D, describes the time evolution of V,;, in response to synaptic input,

S L ®
@ qpdt? ' \a ' B/dt

where f and a are the overall rise and decay response rates to the synaptodendritic

and soma dynamics.

The mean firing rate of a neural population Q,(t) can be approximately related to its

mean membrane potential, V, (t), by
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Qu(®) = SalVu(®)] @
Qm

T T+ exp[—{V,(t) — 6,3/0]

which define a sigmoidal mapping function S, with a maximal firing rate Q;***, a

mean firing threshold 6,, and a standard deviation of this threshold ¢'m/+/3.

The mean axonal pulse rate is related to the mean firing rate by,

Da(t)a(t) = Qq(0) )
9?2 20
D,(t) = —zﬁﬁ'y—aﬁ-l ©)

Here, y, = v, /1, represents the damping rate, where v, is the propagation velocity

in axons, and 7, is the characteristic axonal length for the population.

Following the approach of previous neural field models, excitatory and inhibitory
synapses in the cortex are assumed proportional to the number of neurons
(Robinson et al, 2001, Wright and Liley, 1996). This random connectivity
approximation results in v,, = v;,, and v,; = v; which implies V, = V; and Q, = Q;.
Inhibitory population variables can then be expressed in terms of excitatory

quantities and are thus not neglected.

The fixed-point attractors, or steady states, of the corticothalamic neural mass are

found by setting all time derivatives in the above equations to zero. The steady-state

values ¢£0) of ¢, is then given by solutions of

_ 0
S 1( é )_ (Vee + Vei)qbé())
s — 7
vendy” |,
where q‘),(lo) is the steady state component of the input stimulus (Braitenberg and

Schuz, 2013; Wright and Liley, 1996). Roots of Eq. (7) are found using the fzero()
function from MATLAB.

20


https://doi.org/10.1101/2020.06.09.141416
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.141416; this version posted June 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The connection gains between populations, which represent the additional activity
generated in postsynaptic nuclei per additional unit input activity from presynaptic

nuclei, can be calculated by linearizing Eq. (4) which gives

Gap = PaVab 8)
where
L P ©)
S AR =

It is an important goal of this work to extend the ideas and phenomena already
present in an existing biophysical model, which has been compared to human data,
instead of a specific model of the phenomena with no bridge towards showing its

implementation in the biology.

Parameter Description Value Unit
Ye Cortical damping rate 116 st
Qmax Maximum firing rate 340 st
7 Firing threshold 12.9 mV
a' Threshold spread 3.8 mV
bn Input noise amplitude spectral 1x10°° st
density
Decay rate of cell-body potential 83 st

™= R

Rise rate of cell-body potential 769 s

Intra-node coupling strengths

Vee 15 mV s
Vei -3 mV s
Ves 0.57 mV s
Vse 3.4 mVs
Ver -1.5 mVs
Ven 3.6 mV s
Vre 0.17 mV s
Vs 0.05 mV s
Tes + Tge | Corticothalamic loop delay 85 ms

plocal Local network coupling strength 1.8 x 107* mV s
X Diffuse network coupling strength [1.15-135] x 100* mVs
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Table 1 - Corticothalamic neural mass parameters. Adapted from (Abeysuriya et al., 2015).

Numerical simulations

A 12x12 network of corticothalamic neural masses were simulated using the neural
tield simulation software, nftSim (Sanz-Leon et al., 2018). The parameters for each
neural mass were identically set to “eyes-closed” estimates given in Table 1
(Abeysuriya et al., 2015), which results in simulated activity with a 1/f spectrum and
a peak in the alpha frequency band (8-13 Hz) under moderate network coupling.
Each simulation was run for a total of 32s with 10s of initial transients removed

using an integration timestep of At = 27 3s.

Network connectivity and heterogeneity

The noise terms are individually generated for a node from an identical white noise
Gaussian distribution with a mean of 1 (s™*) and an amplitude spectral density of
1075(arb. units). This serves as the only spatial heterogeneity in the network. The
local coupling to each node is a nearest neighbour with diagonal nodes additionally
scaled by 1/v2. A sweep of the amplitude of these local connections was first
performed to determine the location of the ensemble bifurcation (phase transition)
point, and then a slightly smaller value was used to ensure the system was proximal
to this point but far enough away as to be stable under perturbations from the noise
terms. An additional level of network connectivity, called diffuse coupling and
represented by the symbol ), prescribes a given nodes connection to the entire

network. This is the only coupling parameter that changes in this work.

Distance to bifurcation

The network activity incident to each node at a given time point is purely excitatory
and as such can be considered as a constant positive post-synaptic potential. In line
with this, a constant potential is added to the cortical excitatory population and the
steady states of the neural mass are solved numerically. A sweep of this potential
change elucidates a saddle-node bifurcation which represents the necessary input, as
a first order approximation, required to drive a node to its locally defined critical
boundary. The bifurcation point can then be used as a reference for interpreting
simulation activity post hoc. That is, at each time point the incident network activity
to each node is translated into a distance to bifurcation time series for that target

node, which enables parallel analysis of local activity and network induced effects.
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Using this information, we defined three ‘working zones’: a stable, subcritical zone
(x < 1.20 mV:s; blue in Fig. 2), where P, = 0; a quasi-critical zone (1.20 < y < 1.27
mV:-s; green in Fig. 2), where 0 < P, < 100; and a saturated zone (y >1.27 mV's; red
in Fig. 2), where P. =100 in the second half of the simulation. The average
population-level firing rate and gain within each zone was used to create an ‘ideal’
corticothalamic population (Fig. 2). The Pearson’s correlation matrix within each
zone was then thresholded (r > 0), binarized and used to create a force-directed
embedding (Fig. 3).

Response to pulse stimulus

A simulation was first run with no applied pulse stimuli for comparison with
stimulus results. Then, N=144 trails were run where a pulse stimulus (amplitude =
1mV; width = 10ms) was applied to a single node at t = 10s. The cortical activity from
the no-stimuli simulation is subtracted from all pulse trails. Since the noise sequence
generated is the same for each trial, this allows a clear mapping of stimuli-induced
response. The trials are sorted based on the target nodes average distance to
bifurcation within the 8 timepoints pre-stimulus. For visualization purposes, the
stimulus-induced response of the targeted node in each trial is averaged across
upper, middle, and lower thirds of the sorted distance to bifurcation vector, and the
time series is low-pass filtered with a passband frequency of 0.001 Hz. As expected,
nodes closest to their bifurcation had the strongest response, and the longest

timescale for decaying back to pre-stimulus levels of activity.

Network signatures of criticality

The time series of the cortical ‘e’ population was used to create a weighted, un-
thresholded connectivity matrix. A weighted- and signed- version of the Louvain
modularity algorithm from the Brain Connectivity Toolbox (Rubinov and Sporns,
2010) was used to iteratively maximizes the modularity statistic, Q, for different
community assignments until the maximum possible score of Q) has been obtained
(Equation 4). The modularity estimate for a given network is, therefore, a
quantification of the extent to which the network may be subdivided into

communities with stronger within-module than between-module connections.

1 1 i €
Qr = 2 Zy(wij — ef)Oum; — 7= Ziy(Wij — €)0mum, (10)

where v is the total weight of the network (sum of all negative and positive

connections), wij is the weighted and signed connection between regions i and j, e is
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the strength of a connection divided by the total weight of the network, and Omivj is
set to 1 when regions are in the same community and 0 otherwise. ‘+" and ‘-~
superscripts denote all positive and negative connections, respectively. In our
experiment, the y parameter was set to 1.1 (tested within a range of 0.5-2.0 for
consistency across 100 iterations). Given that the community structure of the system
changed substantially as a function of x, a consensus partition was created across the

whole range using the ‘consensus_und.m’ script from the Brain Connectivity Toolbox.

The participation coefficient quantifies the extent to which a region connects across
all modules. This measure has previously been used to characterize diversely
connected hub regions within cortical brain networks (e.g., see Power 2013). Here,
the Participation Coefficient (B) was calculated for each of the 400 cortical parcels for
each subject, where «ist is the strength of the positive connections of region i to
regions in module s, and «ir is the sum of strengths of all positive connections of
region 1. The participation coefficient of a region is therefore close to 1 if its
connections are uniformly distributed among all the modules and 0 if all of its links

are within its own module:
N2
B =1-3m (%) an

Brain state variability was calculated by taking the standard deviation of the upper
triangle of the correlation matrix at each level of y. Time series variability was
estimated using the regional mean of the standard deviation of the cortical ‘e’
population over time. The percentage of explained variance for the top two principal
components was calculated by subjecting demeaned cortical ‘e’ population time-

series at each level of y to separate principal component analyses.

Whole-brain fMRI analysis

Minimally pre-processed fMRI data were obtained from 100 unrelated participants
(mean age 29.5 years, 55% female) from the HCP database. For each participant,
BOLD data from the left-right encoding session from the N-back task were acquired
using multiband gradient echo planar imaging, amounting to 4 min 51 sec of data
(405 individual TRs) per subject. Pre-processed (Shine et al.,, 2016, 2019a) but
temporally unfiltered data was extracted from 333 cortical parcels (Gordon et al,,
2016). The time points associated with each cognitively-challenging task-blocks and
the interspersed rest blocks were convolved with a canonical haemodynamic

response function (using the spm_hrf.m function from SPM12).
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To estimate functional connectivity between the 333 cortical ROIs, we used the
Multiplication of Temporal Derivatives (M) technique (Shine et al., 2015). M is
computed by calculating the point-wise product of temporal derivative of pairwise
time series (Equation 1). The resultant score is then averaged over a temporal
window, w, in order to reduce the contamination of high-frequency noise in the
time-resolved connectivity data. A window length of 20 TRs was used in this study,
though results were consistent across a range of w values (10-50 TRs). To ensure
relatively smooth transitions between each task, connectivity analyses were
performed on each individual task separately, and were subsequently concatenated.
In addition, all analyses involving connectivity (or the resultant topological

estimates) incorporated the junction between each task as a nuisance regressor.

o i t+w (titlxtjtl)
Mije = &t —(ffti’Xfft]-’) (12)

Where for each time point, f, the M for the pairwise interaction between region i and
j is defined according to equation 1, where t’ is the first temporal derivative (t+1 — f)
of the i or jh time series at time t, o is the standard deviation of the temporal
derivative time series for region i or j and w is the window length of the simple
moving average. This equation can then be calculated over the course of a time series
to obtain an estimate of time-resolved connectivity between pairs of regions. Time-
resolved values of Br are then calculated on each weighted, signed connectivity
matrix. Values of each measure were compared statistically using a series of non-
parametric permutation tests (Nichols and Holmes, 2003) in which the group
identity (i.e., rest vs. task) was randomly shuffled in order to populate a null
distribution (5,000 iterations).

Gradient fitting the model to whole-brain fMRI data

Firstly, participation, regional diversity, time-series variability and variance
explained by the first two principal components are calculated on the whole-brain
imaging data and the model outputs for each value of diffuse coupling. Since the
absolute values of these measures do not form a fair point of comparison with
outputs from our simplified corticothalamic model, we focus on their relative
differences across task and rest (i.e, what interval of diffuse coupling makes the
most sense of the metric changes). Thus, for each measure the difference between

rest and task is calculated to form 5 gradients that are fit to the corresponding
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gradients of the model outputs across levels of diffuse coupling. This is done by
subsampling the model outputs (Figs 4 (a), (b), and (c)) at progressively coarser steps
sizes, calculating the gradient numerically using diff() function from MATLAB, and
then finding the x value (which is a subsample interval) that minimizes the cost
function. The final estimate is the average across all subsampling scales. Finally, in
order to mitigate against bias for any one metric in the fit, a uniform random walk is
performed on the 0-1 weightings of each gradient metric to scale its contribution to

the cost function.

Two distinct approaches are used for the whole-brain and regional estimates,
respectively. For the whole-brain estimates, the algorithm is free to change the upper
and lower bounds of the diffuse coupling interval y,, x,. For the regional estimates,
we use the maximum likelihood from the task estimate of diffuse coupling x*%~1.26
+0.1 x 10 —4 mV:s as the upper bound for the search, and thus only the lower bound
is free to change [x;, x™"]. A virtual lesioning approach is then used, where each
node is removed from the data (only a single node is ever removed at a time) and the
algorithm is run to estimate the new diffuse value (relative to the task estimate). The
result is an estimate of the change in diffuse coupling facilitated by each node in the

network.
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Figure S1 —Population firing rate gain. (left: black) sigmoidal mapping of firing rate to soma
potential; (right: orange) first derivative of the sigmoid function. The inset shows the range of
postsynaptic potentials significant for the steady-state population firing rates as a function of induced
postsynaptic potential. Network coupling in this model is facilitated by connecting cortical excitatory
populations between each node. This means that as diffuse coupling increases, the network-induced
positive postsynaptic potential generated increases in the receiving nodes cortical population. The
effect of this increase can be seen in Fig. Sla where a sweep of constant postsynaptic potential shows
the deformation of steady state firing rate attractors. At ~0.12 mV, the low attractor is lost through a
saddle-node bifurcation leaving only the high firing attractor. Notably, the relative difference of the
thalamic reticular nuclei (TRN) and specific relay nuclei (SRN) firing rate attractors is inverted either
side of the bifurcation. The simulated time series of cortical firing rates, given in Fig. S1 (b), can then
be understood as a ‘smearing’ of the results in Fig. Sla.
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Figure S2—- Corticothalamic firing rate attractors across the critical point. (a) Steady-state population
firing rates as a function of induced postsynaptic potential. (Qe — cortical excitatory nuclei, Qs —
thalamic specific relay nuclei, Qr — thalamic reticular nucleus). (b) Simulated mean cortical firing rate
for each node as a function of diffuse coupling,.
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Figure S3 - Corticothalamic steady state gains across the critical point. (a) Excitatory cortical input
gains from the excitatory (G_ee), and inhibitory (G_ei) cortex, and the SRN (G_es). (b) SRN thalamic
input gains from the cortex (G_se), TRN (G_sr), and external stimuli (G_sn). (c) TRN thalamic input
gains from the cortex (G_re), and SRN (G_rs). (d) Cortico-thalamo-cortical loop gains as a function of
induced postsynaptic potential. The intra-node corticothalamic gains are given in Fig. S2. As the
system crosses the bifurcation point, both the TRN and SRN show a strengthened response to all
inputs. In addition, the cortico-SRN-cortical loop gain, which resonates to given the characteristic

alpha (~10 Hz) oscillation in wake, remains dominant.
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