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Abstract

This paper describes an objective statistical approach that can be used to decide between two al-

ternate kinetic mechanisms of covalent enzyme inhibition from kinetic experiments based on the

standard “kobs” method. The two alternatives are either a two-step kinetic mechanism, which in-

volves a reversibly formed noncovalent intermediate, or a one-step kinetic mechanism, proceed-

ing in a single bimolecular step. Recently published experimental data [Hopper et al. (2020)

J. Pharm. Exp. Therap. 372, 331–338] on the irreversible inhibition of Bruton tyrosine ki-

nase (BTK) and tyrosine kinase expressed in hepatocellular carcinoma (TEC) by ibrutinib (PCI-

32765) and acalabrutinib are used as an illustrative example. The results show that the kinetic

mechanism of inhibition was misdiagnosed in the original publication for at least one of the four

enzyme/inhibitor combinations. In particular, based on the available kobs data, ibrutinib behaves

effectively as a one-step inhibitor of the TEC enzyme, which means that it is not possible to re-

liably determine either the inhibition constant Ki or the inactivation rate constant kinact, but only

the covalent efficiency constant keff = kinact/Ki. Thus, the published values of Ki and kinact for

this system are not statistically valid.

Key words: enzyme kinetics; inhibition; covalent; irreversible; mechanism; data fitting;

statistics; model discrimination
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1. Introduction

Covalent enzyme inhibitors form a chemical bond between a reactive functional group on the

molecule and the target protein. Even though there are examples of reversible covalent inhibitors

[1], the formation of the covalent bond is usually irreversible. This property has been used to de-

sign therapeutic agents purposely inhibiting overactive enzymes. Probably the most well known

covalent inhibitor drug in this category is Aspirin, an irreversible inhibitor of cyclooxygenase

(COX).

From the physical point of view, the irreversible inhibition mechanism must include two sep-

arate steps. In the first step, the enzyme and inhibitor associate reversibly to form a noncovalent

complex. In the second step, the noncovalent complex undergoes an irreversible transformation.

This two-step molecular mechanism can be schematically represented as E + I 
 E · I → EI.

However, from the point of view of formal kinetic analysis, many enzyme inhibitors outwardly

behave as if the initial noncovalent complex were absent. In those cases the experimental data

give the impression that the two-step mechanism is somehow fused into a single irreversible step,

E+ I→ EI. The occurrence of the one-step irreversible inhibition mechanism has been described

as “nonspecific affinity labeling” [2, sec. 7.2.1], involving generic inhibitors similar to iodoac-

etate and N-ethyl maleimide. These inhibitors are assumed to have negligibly low initial binding

affinity and to indiscriminately modify “many amino acid residues on the enzyme molecule” [3,

sec 9.1]. The lack of selectivity presumably explains the one-step kinetic behavior. In contrast,

highly selective inhibitors that precisely target the enzyme’s active site are assumed to follow the

two-step kinetic mechanism [2, 3]. However, anecdotal evidence from this investigator’s work-

shop suggests that numerous highly specific irreversible inhibitors also show one-step kinetics,

specifically in kinase inhibition assays.

The full understanding of this difficult subject has been hampered by the fact that the avail-

able literature on irreversible enzyme inhibition does not offer sufficient advice on how to prop-

erly distinguish between candidate kinetic mechanisms. The discussion usually starts from the

premise that that kinetic mechanism (either one-step or two-step) is known in advance. Math-

ematical formulas are then presented (for example, a certain linear equation or, alternately, a

certain hyperbolic equation) that can be used to analyze experimental data conforming to each

inhibition mechanism. What the textbook literature does not explain is how we can tell, on the

basis of a given set of experimental data, which kinetic mechanism is most likely to be operating.
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This question is the main subject of the present report. The data sets being investigated here are

of a certain type that is frequently encountered in drug discovery research. Raw experimental

data on the inhibition of BTK and TEC kinase enzymes by ibrutinib and acalabrutinib, recently

published by Hopper at al. [4], serve as an illustrative example.

2. Methods

This section describes the theoretical, mathematical, and statistical methods that were used to

analyze the experimental data originally published in ref. [4]. All computations were performed

by using the software package DynaFit [5, 6]. Explanation of all mathematical symbols is given

in the Appendix, see Table A.1 and Table A.2.

2.1. Kinetic mechanisms of irreversible inhibition

In this report we will consider in various contexts the kinetics mechanisms of substrate catal-

ysis and irreversible inhibition depicted in Figure 1. For details see ref. [7], which also contains

an in-depth discussion of the important difference between the equilibrium dissociation constant

Ki and the inhibition constant KI.

E + I E•I
Ki

EI"B":

"C": E + I EI
k1

E + I E•I
k1

k-1

EI
k2

"A":

E + S E•S
k1s

k-1s

E + P
k2s

k2 Ki = k-1 / k1

KM = (k-1s + k2s) / k1s

KI = (k-1 + k2) / k1

k2 << k-1

Figure 1: Kinetic mechanisms of substrate catalysis (top) and covalent inhibition (mechanisms

A – C).

2.2. Mathematical models

Under a number of simplifying assumptions first introduced into covalent inhibition analysis

by Kitz & Wilson [8], Tian & Tsou [9] showed that the time course of a irreversible inhibition

assay can be described by a rising exponential curve according to Eqn (1), where F is some

experimental signal such as fluorescence intensity; F0 is the experimental signal observed at

time zero (i.e., a baseline signal as a property of the instrument); Vi is the initial reaction rate
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in arbitrary instrument units, observed at the given inhibitor concentration [I]0; and kobs is an

apparent first-order rate constant.

F = F0 +
vi

kobs

[

1 − exp (−kobs t)
]

(1)

Assuming that the two-step kinetic mechanism B is operating, the apparent first-order rate

constant kobs depends on the inhibitor concentration according to the hyperbolic Eqn (2), where

K∗
i

is the apparent inhibition constant and kinact is the first-order inactivation rate constant. In the

case of the one-step mechanism C, kobs depends on [I]0 according to the linear equation Eqn (3),

where the slope parameter k∗
eff
≡ kinact/K

∗

i
is the apparent covalent efficiency constant.

kobs = kinact

[I]0

[I]0 + K∗
i

mechanism B (2)

kobs = k∗1 [I]0 mechanism C (3)

Assuming that the inhibitor is kinetically competitive with the substrate, the experimentally

observable apparent values of K∗
i

(two-step mechanism B) or k∗
eff

(one-step mechanism C) are

related to their true values Ki and keff as shown in Eqns (4)–(5), where KM is the Michaelis

constant.

K∗i = Ki

(

1 +
[S]0

KM

)

(4)

k∗1 = k1

(

1 +
[S]0

KM

)

−1

(5)

kinact ≡ k2 (6)

2.3. Model selection methods

We propose a multi-pronged approach relying on four independent statistical methods, re-

sulting in four independent model acceptance criteria. The more complex (two-step) kinetic

mechanism B will be accepted in favor of the simpler (one-step) mechanism C only if all four

types of statistical model selection criteria are satisfied at the given confidence level (for example,

99%).

2.3.1. Profile-t method for confidence intervals

For any given kobs vs. [I]0 data set, we will tentatively accept the two-step mechanism B in

favor of the one-step mechanism C only if the upper limits for both the inhibition constant K∗
i

and the inactivation rate constant kinact are well defined by the available data. These upper limits

(if they do exist) can be found at the given confidence level, e.g. 99%, by using the profile-t

method [10, 11].

4

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.06.08.140160doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140160
http://creativecommons.org/licenses/by-nd/4.0/


S crit = S +
(

tn−p , α × σ
)2

(7)

σ =

√

S

n − p
(8)

α = 1 −
P

100
(9)

Briefly, the least-squares regression analysis is repeated at multiple search points where either

K∗
i

or kinact is held constant while the remaining parameter is optimized. The systematic search

for the confidence interval limits proceeds until the residual sum of squares increases from its

best-fit value, S in Eqn (7), to the critical value, S crit. The critical value S crit is larger than the

best-fit value S by a specific increment defined by the additive factor in Eqn (7), where tn−p , α is

the Student-t statistic with n − p degrees of freedom at the confidence level α; n is the number

of data points and p is the number of adjustable model parameters. A suitable search algorithm,

implemented by the software package DynaFit [6], is described in ref. [10, p. 302], Appendix

A3.5.1.

2.3.2. Akaike Information Criterion and Akaike weights

The hyperbolic fitting Eqn (2) contains two adjustable model parameters (K∗
i

and kinact)

whereas the linear Eqn (3) contains only one parameter (k∗
eff

). Therefore, it is not possible to

decide which model is “better” solely on the basis of the residual sum of squared deviations. A

suitable correction for the difference in the number of parameters is provided by information-

theoretic model selection criteria, such as the Akaike Information Criterion (AIC) defined by

Eqn (10); see refs. [12–14] for details.

AIC = n ln

(

S

n

)

+ 2 (p + 1)

+
2 (p + 1)(p + 2)

n − p − 2
(10)

∆AICi = AICi − AICmin (11)

w
(AIC)

i
=

exp (−∆AICi/2)

N
∑

k=1

exp (−∆AICk/2)

(12)

In Eqn (10), S is the best-fit residual sum of squares; n is the number of data points; and p

is the number of adjustable parameters. The differential Akaike Information Criterion for the ith

fitting model, ∆AICi, is computed according to Eqn (11), where AICmin is the lowest AIC value.

Finally the Akaike weight for the ith model is defined by Eqn (12) [12, p. 75]. In this work we

will accept the more complex two-step inhibition mechanism if the Akaike weight associated

with Eqn (2) is larger than 0.99 or 0.95, corresponding to 99% or 95% likelihood.
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2.3.3. Bayesian Information Criterion and Bayesian weights

The Bayesian information criterion, BIC, defined by Eqn (13), is a complementary information-

theoretic alternative to the AIC [13, 14]. The Bayesian weight is defined by Eqn (15).

BIC = n ln

(

S

n

)

+ (p + 1) ln(n)

+
2 (p + 1)(p + 2)

n − p − 2
(13)

∆BICi = BICi − BICmin (14)

w
(BIC)

i
=

exp (−∆BICi/2)

N
∑

k=1

exp (−∆BICk/2)

(15)

The Bayesian weight for any given fitting model is a number between zero and one and

measures the statistical likelihood that the given candidate is the true model. We will accept the

two-step inhibition mechanism B represented by Eqn (2) if the corresponding Bayesian weight

is larger than 0.95 or alternately 0.99.

2.3.4. F-test for nested models

Mannervik [15] described a model selection procedure for two candidate fitting equations

in the special case where the equations represent two nested models. Note that Eqn (2) of the

general form Y = aX/(b + X) is an algebraic extension of Eqn (3), of the general form Y = aX.

In that sense Eqns (2)–(3) represent nested models.

Ftest =
S A − S B

S B

n − pB

pB − pA

(16)

Fcrit = Fα(pB − pA, n − pB) (17)

The general formula used for model selection is shown in Eqn (16), where subscript A rep-

resents the reduced (or smaller) fitting model and subscript B represents the full (or lager) fitting

model. In Eqn (16), n is the number of experimental data points; S A and S B are the residual sums

of squares; and pA and pB represent the number of adjustable model parameters. The ratio Ftest,

computed according Eqn (16), is compared with the upper critical value Fcrit of the F distribution

for pB − pA and n − pB degrees of freedom at the probability level α. If the variance ratio Ftest

is larger than the critical value Fcrit, the fitting equation with the larger number parameters is

accepted as plausible.

Ftest =
S linear − S hyperbolic

S hyperbolic

(n − 2) (18)

Fcrit = F0.01(1, n − 2) (19)

In the specific case of deciding between the linear Eqn (3) and the hyperbolic Eqn (2), the Ftest

ratio is computed according to Eqn (18), whereas the upper critical value Fcrit at 99% probability

level (α = 0.01) is computed according to Eqn (19).
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3. Results

In the remainder of this report, the kobs vs. [I]0 data sets originally published in ref. [4] are

numbered according to the numbering scheme displayed in Table 1.

dataset no. enzyme [E]0, nM inhibitor

1 BTK 0.35 ibrutinib

2 BTK 0.045 ibrutinib

3 BTK 0.35 acalabrutinib

4 BTK 0.045 acalabrutinib

5 TEC 0.3 ibrutinib

6 TEC 0.115 ibrutinib

7 TEC 0.3 acalabrutinib

8 TEC 0.2 acalabrutinib

Table 1: Data set numbering corresponding to Supplemental Tables and Supplemental Figures

in ref. [4].

3.1. Profile-t confidence intervals

The results of statistical model discrimination based on the profile-t method are summarized

in Table 2 for the apparent inhibition constant K∗
i

and in Table 3 for the inactivation rate constant

kinact. The dash (–) indicates that that upper limit of the given parameter could not be determined

at the given confidence level.

set no. K∗
i
, nM low95% high95% low99% high99%

1 28 12 430 9 –

2 33 16 510 13 –

3 250 170 370 140 460

4 270 200 370 180 440

5 130 23 – 15 –

6 36 10 – 6 –

7 3900 1200 – 840 –

8 2800 1700 7500 1400 22400

Table 2: Results of model discrimination analysis based on the profile-t method: non-

symmetrical confidence intervals for the apparent inhibition constant K∗
i
. For details see text.

The upper limit results listed in Table 2 and Table 3 can be interpreted mechanistically as

follows. At any given confidence level (95% or 99%), we can scan down the column labeled

“high” and check to see whether the upper limit of K∗
i

or kinact is defined. If the “high” column

does contain a defined upper limit, we can conclude that the hyperbolic Eqn (2) corresponding

to two-step mechanism B provides a good description of that data set. In contrast, if the “high”

column does not contain a defined value for the upper limit, we must conclude that the linear

Eqn (3) corresponding to the one-step mechanism C provides a better description of the available
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no. 103kinact, s−1 low95% high95% low99% high99%

1 10.8 5.7 129.4 4.8 –

2 13.6 7.1 188.9 6.0 –

3 1.8 1.5 2.4 1.4 2.7

4 2.4 2.0 3.1 1.9 3.5

5 35.4 8.2 – 6.2 –

6 13.7 4.8 – 3.8 –

7 13.3 5.2 – 4.1 –

8 11.6 7.3 28.7 6.3 84.0

Table 3: Results of model discrimination analysis based on the profile-t method: non-

symmetrical confidence intervals for the inactivation rate constant kinact. For details see text.

data. The results show that only the inhibition of BTK by acalabrutinib conclusively proceeds

by the two-step mechanism, because the upper limits of confidence intervals for K∗
i

and kinact are

defined for both available data sets (experiments no. 3 and 4) and also at both confidence levels

(95% and 99%).

The only other instance of a defined upper limit for either K∗
i

or kinact, at both confidence lev-

els, was observed in data set no. 8 (acalabrutinib inhibition of TEC, second replicate). However,

at the 99% confidence level the high/low ratio for K∗
i

is quite high, 22400/1400 = 16, spanning

more than an order of magnitude. Under such circumstances we might suspect that the defined

upper limit of the confidence interval might have arisen by random chance, rather than being

firmly supported by the data. The results for ibrutinib inhibition of BTK (data set no. 1 and 3)

are also ambiguous, in the sense that the upper limits of the confidence intervals are defined at

the 95% confidence level but undefined at the 99% confidence level. Note again that at the 95%

confidence level the confidence intervals for ibrutinib inhibition of BTK are exceedingly wide.

For example, for data set no. 1, the high/low ratio was 430/12 = 36. The two examples below

provide graphical illustrations of two distinct types of kinetic behavior, according to the results

listed in Table 2 and Table 3.

Example 1: Dataset No. 4. In this example representing acalabrutinib inhibition of BTK, the

upper limits of the confidence intervals for K∗
i

and kinact are clearly defined the 99% confidence

level, signifying a strong support for the two-step inhibition mechanism B. The results are shown

in Figure 2.

In Figure 2, the top panel displays the overlay of the experimental data (circles) on the best-fit

model curve and the corresponding residual plot. The dashed envelope curves in the upper panel

represent the model confidence bands. The bottom panel shows the results of the confidence

interval search for either the inhibition constant K∗
i

(blue profile curve on the right) or the inacti-

vation rate constant kinact (red profile curve on the left). The horizontal axis in the bottom panel of

Figure 2 represents the logarithm of the search-point values (blue triangles for K∗
i

and red circles

for kinact) that were visited according to the profile-t search algorithm [10]. The vertical axis rep-

resents the relative sum of squares, that is, a ratio of the best-fit residual squares corresponding

to the given search point, divided by the best-fit residual squares corresponding to the optimal

point. The thin dotted horizontal lines correspond to the critical value of the residual squares

defined by Eqn (7). Both confidence interval profiles depicted in Figure 2 have an approximately

parabolic shape, are relatively narrow (see Table 2 and Table 3), and, most importantly, have a
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Figure 2: Results of fit to the two-step hyperbolic Eqn (2), data set no. 4. Left: Experimental

data (circles), best-fit model curve, and the residual plot. Right: Confidence interval profiles for

the kinetic constants K∗
i

and kinact.

well defined upper limit.

Example 2: Dataset No. 6. In this example representing ibrutinib inhibition of TEC, the

upper limits of confidence intervals for K∗
i

and kinact are undefined at the given confidence level,

signifying that the two-step hyperbolic equation Eqn (2) is not supported by the data and therefore

we must chose the simpler linear fitting Eqn (2) for this data set. The results are shown in Figure

3. The bottom panel Figure 3 shows the results of the confidence interval search for either the

inhibition constant K∗
i

or the inactivation rate constant kinact. In contrast with the Example 1,

the confidence interval profiles are non-parabolic and show only a very shallow minimum. Most

importantly, the upper limits of the confidence intervals for either K∗
i

or kinact are undefined,

which signifies that the two-step hyperbolic equation Eqn (2) is not an adequate theoretical model

for data set no. 6.

3.2. Akaike and Bayesian information criteria

The results of statistical model discrimination based on the Akaike Information Criterion

are summarized in Table 4. The column labeled S 1/S 2 represents the ratio of sum of squares

obtained for the one-step linear fitting Eqn (3) (S 1) divided by the sum of squares obtained for

the two-step hyperbolic fitting Eqn (3) (S 2). As is expected from theory, the linear fitting equation

always produced a larger sum of squares than the hyperbolic fitting equation, simply because the

hyperbolic equation Eqn (3) contains an additional adjustable parameter.

The column labeled ∆AIC in Table 4 represents the differential AIC value for the two-step

fitting model represented by Eqn (2), corresponding to the two step mechanism B. The column
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Figure 3: Results of fit to the two-step hyperbolic Eqn (2), data set no. 6. Left: Experimental

data (circles), best-fit model curve, and the residual plot. Right: Confidence interval profiles for

the kinetic constants K∗
i

and kinact.

labeled wAIC represents the corresponding Akaike weight. The columns labeled model95% and

model99% in Table 4 contain the results of a decision in favor of either the two-step inhibition

mechanism B or, alternately, the one-step inhibition mechanism C. The decision was based on

whether or not the value in the Akaike weight for the two-step model is grater than 0.95 or 0.99,

respectively.

The results show that the two-step inhibition mechanism B is favored consistently (across

both replicated experiments and at both probability levels) only for acalabrutinib inhibition of

BTK. In the case of data set no. 8 (acalabrutinib inhibition of TEC, second replicate), the two-

step mechanism was favored at 95% probability level but not at the more stringent 99% prob-

ability level. In every other instance the one-step inhibition mechanism C was the preferred

theoretical model. The best-fit values of the Bayesian Information Criterion, BIC, produced to

exactly identical conclusions as those described above for the Akaike Information Criterion.

3.3. F-test for nested models

The results based on the F-test for nested models are summarized in Table 5. Larger values

of Ftest signify stronger support to the two-step inhibition mechanism B. The ∆F values represent

the difference Ftest − Fcrit at the given probability level. The corresponding critical values were

F0.01(1, 9) = 10.04 and F0.05(1, 9) = 4.96. At each probability level (95% or 99%), the two-step

mechanism B is preferred when ∆F > 0, meaning that the Ftest value exceeds the critical value

Fcrit.
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set no. S 1/S 2 ∆AIC wAIC model95% model99%

1 1.7 0 0.70 C C

2 1.7 0 0.69 C C

3 10.9 0 1.00 B B

4 12.7 0 1.00 B B

5 1.1 3.4 0.15 C C

6 1.2 2.3 0.24 C C

7 1.2 1.9 0.28 C C

8 2.6 0 0.96 B C

Table 4: Results of model discrimination analysis based on the Akaike information criterion

AIC. For details see text.

set no. Ftest ∆F99% model99% ∆F95% model95%

1 6.7 -3.4 C 1.7 B

2 6.6 -3.5 C 1.6 B

3 99.4 89.4 B 94.5 B

4 117.1 107.1 B 112.2 B

5 0.5 -9.6 C -4.5 C

6 1.6 -8.5 C -3.4 C

7 2.1 -8.0 C -2.9 C

8 15.7 5.6 B 10.7 B

Table 5: Results of model discrimination analysis based on F-test for nested models. For details

see text.

The results show that unambiguous conclusions could be reached for only two out of four

enzyme–inhibitor combinations. First, in the case of acalabrutinib inhibition of BTK, the two-

step mechanism B is strongly preferred for both replicated data sets and at both probability levels

(95% and 99%). Second, in the case of ibrutinib inhibition of TEC, the one-step mechanism C

is strongly preferred for both replicated data sets and at both probability levels.

In contrast, ibrutinib inhibition of BTK resulted in ambiguous results, because at 99% prob-

ability level the one-step mechanism C is favored, whereas at 95% probability level the two-step

mechanism B is favored, however weakly. Another type of ambiguity was encountered for acal-

abrutinib inhibition of TEC. In that case, on the basis of the first replicate (data set no. 7) the

one-step mechanism C is quite strongly favored, whereas on the basis of the second replicate

(data set no. 8) the opposite is true.

4. Discussion

Ever since the discovery of acetylsalicylate (Aspirin) in the 19th century, irreversible enzyme

inhibitors continue to be highly important as potential therapeutic agents [16, 17]. Abdeldayem

et al. [18] recently reviewed ten years of progress specifically in the field of protein kinases as tar-

gets, where irreversible inhibitors continue to emerge as viable therapeutics. However, rigorous
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evaluation of inhibitory potency of irreversible drug candidates presents a number of technical

and conceptual challenges, because the overall potency of irreversible inhibitors consists of two

separate components. First, the compound’s initial binding affinity (measured by the inhibition

constant Ki) is responsible for the reversible formation of a noncovalent complex. Second, the

inhibitor’s chemical reactivity (measured by the inactivation rate constant kinact) determines how

rapidly the initial complex is converted to the final covalent conjugate.

It has been proposed that the one-step inhibition mechanism C is characteristic for irre-

versible enzyme inhibitors that have extremely low initial binding affinity and a complete lack of

specificity [2, sec. 7.2.1] [3, sec 9.1]. Here we report on the basis of previously published exper-

imental data [4] that ibrutinib, a highly specific inhibitor presumably honing in on the active site

of certain protein kinases, inhibits the TEC enzyme apparently in a single step. If a reversibly

formed noncovalent complex is actually present, apparently its formation is undetectable by the

kobs method, in the sense that the plot of kobs vs. the inhibitor concentration [I]0 is essentially

linear (see Figure 3).

A commonly encountered reason for the plot of kobs vs. [I]0 being apparently linear is the

fact that the maximum inhibitor concentration used in the assay might not be high enough to be

sufficiently informative about the K∗
i

value. Eqn (2) describes a rectangular hyperbola. However,

if all inhibitor concentrations utilized in any given assay happen to be significantly lower than

the half-saturating point, which is by definition identical to the K∗
i

value, the hyperbolic Eqn (2)

essentially turns into a linear equation with slope equal to the ratio kinact/K
∗

i
. This was pointed out

already by Kitz & Wilson [8] in the original paper describing kobs method: “If [I]0 << K∗
i
, kobs =

(kinact/Ki)[I]0 and kinact/Ki can be set equal to keff ; i.e. the kinetics are then not distinguishable

from a simple bimolecular mechanism.” Geometrically speaking, it is as though all experimental

[I]0 values were located in the “initial linear portion” of the hyperbolic curve.

The key observation is that it is not feasible to increase the inhibitor concentration arbitrar-

ily, because the rate of covalent inactivation inevitably increases with the concentration of the

inhibitor. At a certain sufficiently high inhibitor concentration, which might still be significantly

lower than the K∗
i
, the inactivation reaction might become so fast that the enzyme is nearly fully

inhibited before the first time-point is even recorded. In other words, the chemical reactivity of

the initial noncovalent complex might be so high that the complex does not exist long enough for

us to reliably determine the inhibitor’s noncovalent binding affinity. More precisely, if the inac-

tivation rate constant k2 ≡ kinact happens to be higher than the dissociation rate constant k−1 in

Figure 1, the noncovalent complex will be pulled through the overall reaction path so rapidly that

it will not make a detectable appearance in the reaction mixture. Under those circumstances, the

experimental data might appear as though there were only a single irreversible step (mechanism

C).

There also exists a fundamental theoretical reason why the kobs method might provide grossly

misleading results. That reason is rooted in the simplifying assumptions that were used to derive

Eqn (1). The mathematical model for the reaction progress of a covalent enzyme assay was

derived by Kitz & Wilson [8] under the standard rapid equilibrium approximation in enzyme

kinetics [19]. Kitz & Wilson assumed that the microscopic rate constant for the inactivation step

(i.e., k2 in mechanism A, see Figure 1) is negligibly small when compared with the dissociation

rate constant of the noncovalent complex (k−1 in mechanism A). As was pointed out by Cornish-

Bowden [2, sec 7.2.2], “if k2 is not small enough to allow formation of E·I to be treated as

an equilibrium, [...] the loss of activity does not follow simple first-order kinetics; there is no

exact analytical solution, but the kinetics may still be analyzed by numerical methods.” Thus,

if the inactivation rate constant k2 happens to be comparable in magnitude with the dissociation
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rate constant k−1, the time course of the enzyme reaction does not actually follow Eqn (1) and

therefore all kobs values determined from it are by definition invalid.

Of course, without performing highly advanced rapid-kinetic measurements we cannot pos-

sibly know in advance what is the relationship between k2 and k−1 in any given case. However,

it is possible to make educated guesses. Let us assume for the sake of discussion that the results

obtained on the basis of the kobs method for the ibrutinib vs. TEC system are actually valid. The

reported values [4, Tab. 1] are kinact = 0.013 s−1; Ki = 1.8 × 10−9 M and kinact/Ki = 8 × 106

M−1s−1. The inactivation rate constant kinact is by definition equal to k2 in Figure 1. According

to the steady-state approximation introduced by Malcolm & Radda [20], the covalent inhibi-

tion constant is defined as KI = (k−1 + k2)/k1. Finally, let us take into account that the catalytic

efficiency constant keff ≡ kinact/KI represents the lower limit estimate for the second-order associ-

ation rate constant k1 [2]. Under these assumptions, we can obtain an approximate estimate of the

dissociation rate constant k−1, starting from the steady-state definition of KI, as k−1 = KI×k1−k2.

In this case, k−1 = 1.8 × 10−9
× 8 × 106

− 0.013 = 0.0014 s−1. Thus, based on the results re-

ported for the ibrutinib vs. TEC system, the lower limit estimate of the dissociation rate constant

k−1 = 0.0014 s−1 is approximately ten times lower than the observed inactivation rate constant

k2 = 0.013 s−1. But recall that according to the rapid-equilibrium approximation [19], on which

the standard kobs method is theoretically based, the rate constant k2 (inactivation) is supposed to

be negligibly small compared to k−1 (dissociation). Clearly this assumption is violated. There-

fore, in the specific case of ibrutinib inhibition of the TEC kinase enzyme, Eqn (1) is almost

certainly not a suitable fitting model specifically under the rapid-equilibrium approximation.

One possible remedy is to recast Eqn (2) such that the dissociation equilibrium constant Ki

is replaced by the steady-state inhibition constant KI, although this formal solution introduces its

own conceptual challenges discussed in detail by Cornish-Bowden [21]. Another possible solu-

tion is to follow Cornish-Bowden’s advice, which essentially suggests abandoning all simplistic

algebraic models for the analysis of irreversible inhibition data and rely instead on the fully

general “numerical methods” [2, sec 7.2.2]. These numerical methods are based on iteratively

solving systems of simultaneous first-order ordinary differential equations (ODEs) and, as such,

make no simplifying assumptions about the relative magnitude of microscopic rate constants that

appear in any given inhibition mechanisms. The software package DynaFit [5, 6] implements the

highly advanced numerical algorithm LSODE (Livermore Solver of Ordinary Differential Equa-

tions) [22, 23] and has been used profitably in the study of irreversible inhibition kinetics [24]

without any simplifying assumptions.

5. Summary and Conclusions

Previously published [4] experimental kobs values, generated by fitting reaction progress

curves from covalent inhibition assays to Eqn (1), were re-analyzed using four independent sta-

tistical criteria. Contrary to the conclusion of the original report [4], the two-step mechanism B

could be firmly established only for acalabrutinib inhibition of BTK, as one of the four possible

enzyme/inhibitor pairs. In this case, the best-fit values of Ki and kinact are fully supported by the

data. In the three remaining enzyme/inhibitor combinations the mechanistic conclusions differ

from the originally published results. In the specific case of ibrutinib inhibition of TEC, there

is virtually no support for the two-step mechanism, whereas in the cases of ibrutinib inhibition

of BTK and acalabrutinib of TEC the results are ambiguous. In these three cases, only the ratio

kinact/Ki and the lower limit estimates for the individual values of Ki and kinact can be known with

high degree of certainty.
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The model-selection methods, newly presented in this report as a unified statistical toolkit,

should prove useful in other research projects that also involve the mechanistic analysis of kobs

values arising in the study of covalent inhibition kinetics. The software package DynaFit [6],

utilized for all data analyses contained in this report, is available free of charge to all academic

institutions as a download from http://www.biokin.com.
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[5] P. Kuzmič, Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV

proteinase, Anal. Biochem. 237 (1996) 260–273.

URL http://doi.org/10.1006/abio.1996.0238
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Appendix

A. Explanation of symbols

Symbol Unit Explanation

k1s M
−1s−1 association rate constant for E+S→ E·S

k−1s s−1 dissociation rate constant for E·S→ E + S

k2s s−1 turnover number; k2s ≡ kcat

KM M Michaelis constant; KM = (k−1s + k2s)/k1

kS M
−1s−1 catalytic efficiency constant; specificity constant; kS ≡ kcat/KM

k1 M
−1s−1 association rate constant for E+I→ ...

k−1 s−1 dissociation rate constant for E·I→ E + I

k2 s−1 inactivation rate constant; k2 ≡ kinact

k∗
1

M−1s−1 apparent association rate constant:

competitive: k∗
1
= k1/(1 + [S]0/KM)

uncompetitive: k∗
1
= k1 (1 + [S]0/KM)

noncompetitive k∗
1
= k1

keff M−1s−1 second-order inhibition efficiency constant; keff ≡ “kinact/Ki”:

steady-state two-step mechanism A: keff = k1 k2/(k−1 + k2)

rapid-equilibrium two-step mechanism B: keff = k1 k2/k−1

one-step mechanism C: keff = k1

k∗
eff

M−1s−1 apparent inhibition efficiency constant:

competitive: k∗
eff
= keff/(1 + [S]0/KM)

uncompetitive: k∗
eff
= keff (1 + [S]0/KM)

noncompetitive k∗
eff
= keff

Ki M equilibrium dissociation constant of the E·I complex; Ki = k−1/k1

K∗
i

M apparent equilibrium dissociation constant:

competitive: K∗
i
= Ki (1 + [S]0/KM)

uncompetitive: K∗
i
= Ki/(1 + [S]0/KM)

noncompetitive K∗
i
= Ki

KI M inhibition constant; KI = (k−1 + k2)/k1

K∗
I

M apparent inhibition constant:

competitive: K∗
I
= KI (1 + [S]0/KM)

uncompetitive: K∗
I
= KI/(1 + [S]0/KM)

noncompetitive K∗
I
= KI

kobs s−1 apparent first-order rate constant for enzyme inactivation

Table A.1: Explanation of symbols: Microscopic rate constants and derived kinetic constants.
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Symbol Unit Explanation

[X] M concentration of reactant X, where X = S, P, I, or E

[X]0 M initial (total, analytic) concentration of reactant X

F AIU observed experimental signal in arbitrary instrument units (AIU)

F0 AIU baseline signal; baseline offset

rP AIU/M molar response coefficient of the reaction product P

v0 Ms−1 initial rate of the uninhibited enzyme reaction, at [I]0 = 0

V0 AIU s−1 observed uninhibited initial rate in arbitrary instrument units

vi Ms−1 initial rate of the inhibited enzyme reaction, at [I]0 > 0

Vi AIU s−1 observed inhibited initial rate in arbitrary instrument units

α, β, γ s−1 auxiliary variables (groupings of rate constants)

r1, r2 s−1 apparent bi-exponential rate constants

a1, a2 – bi-exponential amplitudes

Table A.2: Explanation of symbols: Concentrations, reaction rates, and auxiliary symbols.

18

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.06.08.140160doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140160
http://creativecommons.org/licenses/by-nd/4.0/

