

1 **Title:** Oxidative switch drives mitophagy defects in dopaminergic *parkin* mutant patient neurons.

2 **Authors:** Aurelie Schwartzentruber BSc¹, Camilla Boschian MSc¹, Fernanda Martins Lopes BSc, MSc,

3 PhD¹, Monika A Myszczynska MSc¹, Elizabeth J New BSc, MSc, PhD², Julien Beyrath MSc, PhD³, Jan

4 Smeitink MD, PhD³, Laura Ferraiuolo BSc, PhD¹, Heather Mortiboys BSc, PhD^{1*}

5 ¹ Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom

6 ² School of Chemistry, University of Sydney, Australia

7 ³ Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands

8 Contact details: Heather Mortiboys corresponding author H.Mortiboys@sheffield.ac.uk

9

10

11

12

13

14

15

16

17

18

19

20

21

22 **Abstract**

23 Background Mutations in parkin are the most common cause of early onset Parkinson's disease. Parkin
24 is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in parkin
25 mutant models. Patient derived neurons are a promising model in which to study pathogenic
26 mechanisms and therapeutic targets. Here we generate induced neuronal progenitor cells from parkin
27 mutant patient fibroblasts with a high dopaminergic neuron yield. We reveal changing mitochondrial
28 phenotypes as neurons undergo a metabolic switch during differentiation. Methods Fibroblasts from
29 4 controls and 4 parkin mutant patients were transformed into induced neuronal progenitor cells and
30 subsequently differentiated into dopaminergic neurons. Mitochondrial morphology, function and
31 mitophagy were evaluated using live cell fluorescent imaging, cellular ATP and reactive oxygen species
32 production quantification. Results Direct conversion of control and parkin mutant patient fibroblasts
33 results in induced neuronal progenitor and their differentiation yields high percentage of
34 dopaminergic neurons. We were able to observe changing mitochondrial phenotypes as neurons
35 undergo a metabolic switch during differentiation. Our results show that when pre-neurons are
36 glycolytic early in differentiation mitophagy is unimpaired by PRKN deficiency. However as neurons
37 become oxidative phosphorylation dependent, mitophagy is severely impaired in the PRKN mutant
38 patient neurons. These changes correlate with changes in mitochondrial function and morphology;
39 resulting in lower neuron yield and altered neuronal morphology. Conclusions Induced neuronal
40 progenitor cell conversion can produce a high yield of dopaminergic neurons. The mitochondrial
41 phenotype, including mitophagy status, is highly dependent on the metabolic status of the cell. Only
42 when neurons are oxidative phosphorylation reliant the extent of mitochondrial abnormalities are
43 identified. These data provide insight into cell specific effects of PRKN mutations, in particular in
44 relation to mitophagy dependent disease phenotypes and provide avenues for alternative therapeutic
45 approaches.

46

47

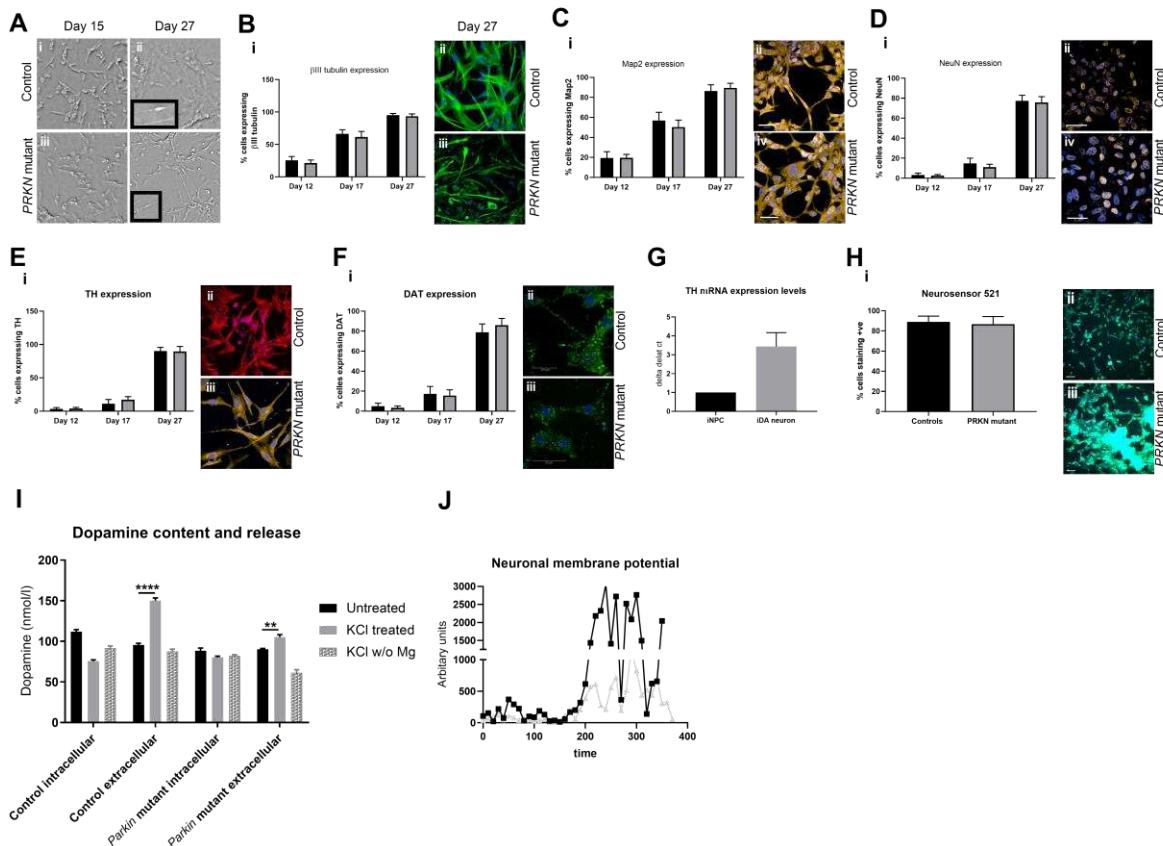
48 **Introduction**

49 Parkinson's disease (PD) is the second most common neurodegenerative disease, with
50 approximately 10 million people affected worldwide. Only symptomatic treatment options are
51 available. Mutations in *PRKN* are the most common cause of early onset PD (EOPD). Parkin is an E3
52 ubiquitin ligase and functions in the mitophagy pathway¹. Mitochondrial dysfunction is well
53 established in both familial and sporadic forms of PD (recently reviewed²). Mitochondrial
54 abnormalities are present in both *PRKN* null *Drosophila*³ and mice⁴. We and others have shown
55 mitochondrial abnormalities in peripheral cells from patients with *PRKN* mutations⁵⁻⁸; these include
56 cellular ATP defects, mitochondrial membrane potential deficiencies, complex I defect and altered
57 mitochondrial morphology. Recent work suggests mitophagy is defective across many PD types⁹.
58 Several reports have found alterations in the same mitochondrial parameters in iPSC derived *PRKN*
59 deficient neurons¹⁰⁻¹⁴. These studies provide insight into a mitochondrial phenotype in *PRKN*
60 deficient neurons. DA neurons are particularly vulnerable to mitochondrial abnormalities due to
61 their high basal oxidative load, tonic activity and highly complex arborisation of the dendritic
62 network¹⁵. The studies so far have utilised the iPSC reprogramming route and subsequent
63 differentiation into DA neurons, which generates a relatively poor yield of DA neurons. Therefore,
64 the specific role and importance of mitochondrial abnormalities in a *PRKN* deficient background in
65 DA neurons remains unclear.

66 The role of parkin in the mitophagy pathway is extremely well documented mainly in tumour cell
67 lines over expressing parkin with mitophagy induction due to treatment with uncoupling agents such
68 as CCCP. Limited studies have investigated the role of parkin dependent mitophagy in cells
69 expressing endogenous parkin and fewer still without the induction of mitophagy via uncoupling.
70 Recent findings from several *in vivo* models have called into question the relative importance of
71 parkin dependent mitophagy in adult DA neurons with studies in PINK1 deficient mice and *PRKN* and
72 PINK1 deficient *Drosophila* showing no difference in mitophagy rates in DA neurons^{16,17}. However an

73 age dependent increase in mitophagy in DA neurons which is absent in *PRKN* and *PINK1* deficient
74 *Drosophila* has also been identified ¹⁸. Therefore more studies are needed to elucidate the
75 importance of mitophagy in *PRKN* deficient EOPD.

76 Our study uses a direct conversion route from patient fibroblasts to induced neuronal progenitor
77 cells (iNPC's) and subsequently to DA neurons with a high yield. Direct reprogramming methods
78 result in cells that both retain the genetic background and the age phenotype of the donor
79 fibroblasts ¹⁹. With a high yield of DA neurons we are able to study the mitochondrial and mitophagy
80 phenotypes throughout differentiation in this specific cell population. We show that mitophagy
81 defects are dependent on the metabolic status of the cell; with high mitophagy rates in *PRKN*
82 deficient neurons early in differentiation when the cells are mainly glycolytic and mitophagy rates
83 which are extremely low in *PRKN* deficient neurons reliant upon oxidative phosphorylation. We also
84 show treatment with known potent intracellular redox-modulating agents improves the neuronal
85 phenotype of the neurons without restoring mitochondrial function or morphology.


86 **Results**

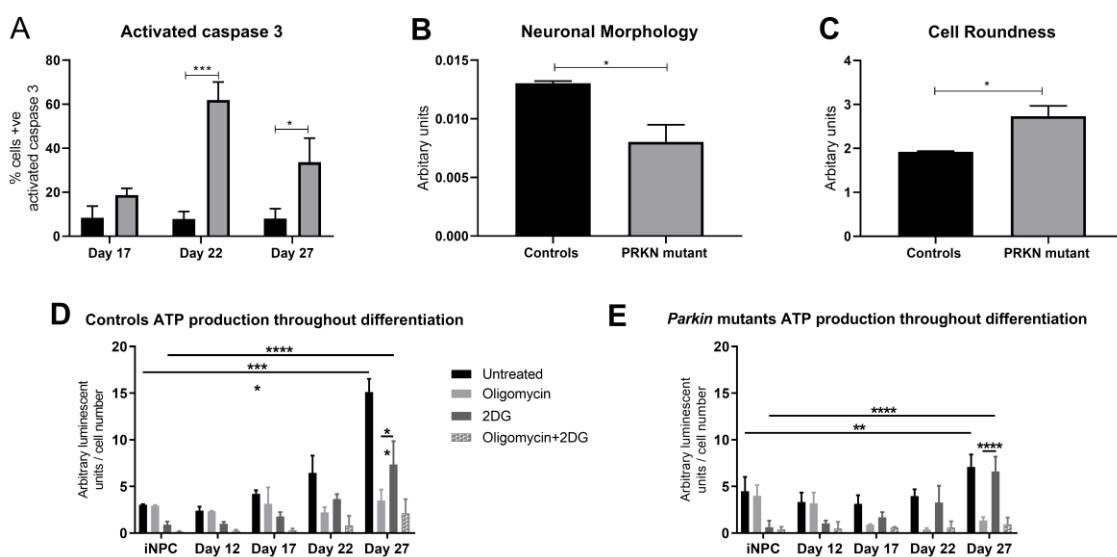
87 **iNPC derived DA neurons display high yield and purity**

88 Unlike iPSC reprogramming of fibroblasts, the direct conversion method first developed by Meyer et
89 al produces iNPC's which are tripotent and able to differentiate into neurons, astrocytes and
90 oligodendrocytes ²⁰. The iNPC's produced using this methodology can be differentiated into specific
91 neuronal populations with a high purity yield, as demonstrated for motor neurons ²¹. We
92 successfully converted fibroblasts from 4 control and 4 *PRKN* mutant patients producing iNPC's
93 which displayed a clear change in cell morphology, proliferation rate and stained positive for the
94 NPC markers, Pax6 and nestin as found previously for all iNPC's reprogrammed using this
95 methodology ²⁰⁻²³ (data not shown).

96 In order to be able to investigate biochemical parameters in DA neurons without other neuronal
97 types or non-neuronal cells contaminating the culture; a high yield of DA neurons is required. We
98 optimised the DA differentiation protocol based upon Swistowski and co-workers ²⁴. Differentiation
99 is in three stages, first iNPC's are treated with DAPT, a Notch inhibitor that enhances neuronal
100 differentiation; in stage 2 the cells are driven towards a rostral midbrain neuronal lineage and finally
101 in stage 3 DA neuron differentiation is complete. As differentiation proceeds the cellular morphology
102 alters; at day 15 of differentiation cells have become elongated and begun to form connections as
103 compared to iNPC morphology and by day 27 the cells have formed longer, larger connections
104 (Figure 1A shows brightfield images of cells at two stages of differentiation). The morphology is
105 distinct from the parental iNPC morphology. However, we note, the processes are shortened and
106 thicker than those usually seen in neurons differentiated from iPSC's or primary embryonic cultures.
107 Therefore, we sought to characterise the expression of several pan-neuronal markers and DA
108 specific markers throughout differentiation. We assessed expression of pan neuronal markers β III
109 tubulin, MAP2 and NeuN at various stages of differentiation (day 12, day 17 and day 27). The
110 amount of cells staining positive for each of these markers increases throughout differentiation,
111 resulting at day 27 in 94.5% of cells staining for β III tubulin, 87.9% for MAP2 and 76.5% for NeuN
112 (quantification throughout differentiation is shown in Figure 1B-D with representative images at day
113 27 shown for each marker in a control and a *PRKN* mutant line). Next, we investigated the
114 expression of two DA markers, tyrosine hydroxylase (TH) and the dopamine transporter (DAT).
115 Again, expression increases throughout differentiation; with undetectable levels of TH and DAT
116 expression at day 17 of differentiation. At day 27 of differentiation however 89.9% of cells stain
117 positive for TH and 82.4% for DAT (Figure 1E and F quantification throughout differentiation and
118 representative images at day 27 of differentiation). In addition, we quantified mRNA transcript level
119 for TH at day 27 as compared to iNPC's and found a 4.2 fold increase in DA neurons compared to
120 iNPC's (Figure 1G). Neurosensor 521 dye labels both noradrenaline and dopamine in live cells, and
121 we found that at end stage of differentiation 87.8% of cells stained positive with Neurosensor 521

122 (Figure 1H). We next sought to measure the dopamine content and stimulated release of dopamine
123 from our neuronal cultures. We found that the neurons had measurable intracellular dopamine and
124 the neurons could be stimulated to release dopamine using potassium chloride in a magnesium
125 containing buffer. *PRKN* mutant neurons contain less intracellular dopamine than controls (mean +/-
126 SD, controls 111.8 +/- 2.6, parkin mutants 88.4 +/- 3.4 nmol/l dopamine; $p < 0.001$; Figure 1I). Upon
127 stimulation with potassium chloride the amount of dopamine in the media increases in controls by
128 51% and only by 15% in *PRKN* mutant patients (Figure 1F). The neurons do not release dopamine
129 when stimulated with potassium chloride without magnesium present. Finally, we also assessed the
130 cellular membrane potential to assess neuronal properties of our cells in culture. We find positive
131 staining for membrane potential and fluctuations as expected in active neuronal cultures (Figure 1J);
132 however, the *PRKN* mutant neurons are less responsive to stimuli.

133


134 **Figure 1. Control and *PRKN* mutant iNPC derived dopaminergic iNeurons characterization**
135 **throughout differentiation.** A shows bright field images (scale bar = 100 μ m) at day 15 and day 27. The
136 insets show magnified regions highlighting the processes of the neurons. B-F shows (i) quantification
137 of each neuronal marker throughout differentiation in controls (black bars) and *PRKN* mutants (grey
138 bars) and (ii) shows representative images of a control and *PRKN* mutant at day 27. **B(ii)** green is β III
139 tubulin and blue nucleus. **C(ii)** red is MAP2 and blue the nucleus. **D(ii)** red is NeuN and blue nucleus.
140 **E(ii)** red is tyrosine hydroxylase and blue the nucleus. **F(ii)** green is DAT and blue the nucleus. **G** shows
141 the quantification of mRNA expression levels for tyrosine hydroxylase in iNPC's and day 27 neurons,
142 showing a 4 fold increase in expression (black bars controls and grey bars *PRKN* mutants). **H(i)** shows
143 the quantification at day 27 of Neurosensor staining which stains dopamine and noradrenaline
144 showing 90% of cells staining positive in both controls (black bars) and *PRKN* mutants (grey bars). (ii)
145 shows representative images of control and *PRKN* mutant at day 27. **I** shows the dopamine content
146 and release assay in control and *PRKN* patient neurons. Intracellular and extracellular dopamine
147 content assessed in neurons from three rounds of differentiation for each condition. Neurons are
148 either untreated, stimulated with potassium chloride or potassium chloride without magnesium in the
149 buffer. Extracellular dopamine levels increase when neurons are stimulated with potassium chloride
150 in both control (**** p < 0.001) and *PRKN* mutant patient neurons (** p = 0.0032). **J** shows neuronal
151 membrane potential in control (black line) and *PRKN* mutants (grey line) recorded at baseline and
152 after stimulation at time 200 seconds. All quantification was done on at least three different
153 differentiations of four control and four *PRKN* mutant neurons; two way ANOVA with Tukey multiple
154 comparisons correction was used.

155

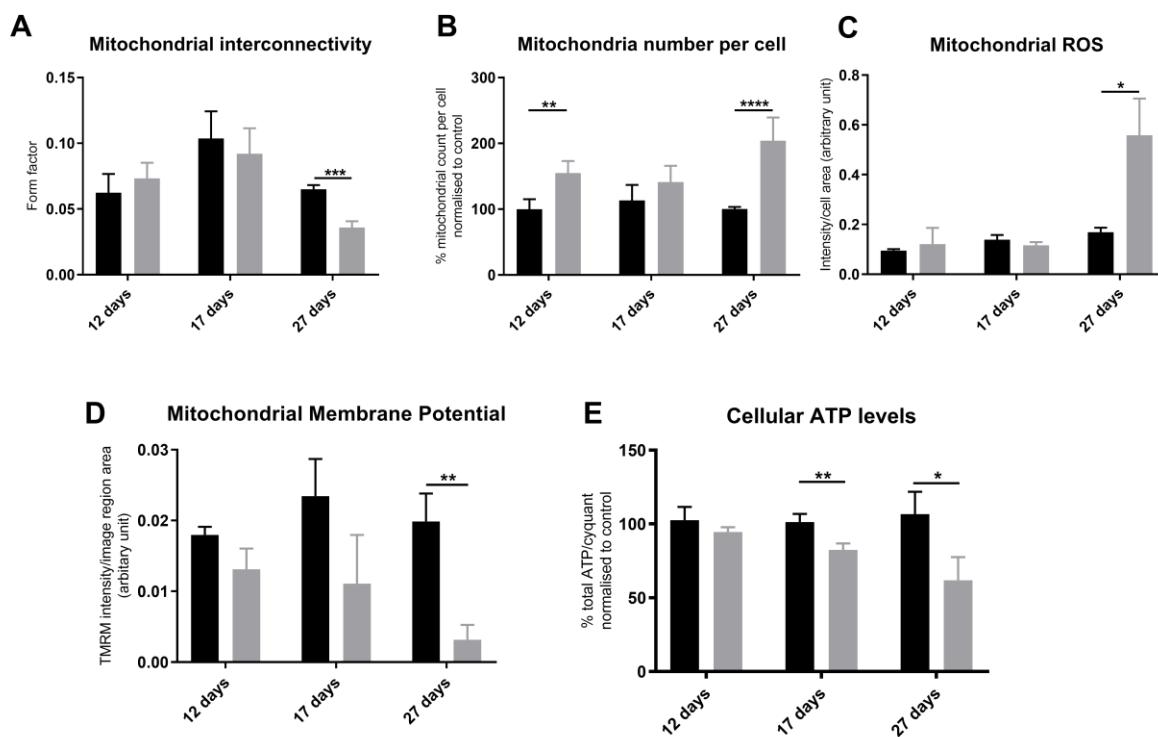
156 ***PRKN* mutant DA neurons display increased cell death and morphological abnormalities**

157 Others have previously reported fewer surviving neurons at the end of differentiation towards a DA
158 enriched population from iPSC's derived from *PRKN* mutant parental patient fibroblasts ¹⁴. We

159 investigated this during the differentiation from iNPC's to DA neurons. There was significant cell
160 death occurring throughout differentiation specifically in the *PRKN* mutant patient derived DA
161 neurons; the percentage of cells surviving until the end of the differentiation was significantly
162 reduced (mean +/- SD, controls 83.62 +/- 4.8; parkin mutants 52.72 +/- 11.98); however, the same %
163 yield of surviving neurons expressed DA markers between controls and *PRKN* mutants. We
164 quantified cell death using activated caspase 3 staining. The number of activated caspase 3 positive
165 spots was higher in *PRKN* mutant neurons compared to controls at day 17, with a subsequent
166 dramatic increase during the final stage of differentiation (% cells with activated caspase 3 staining
167 at day 17 15% and at day 27 64%); whereas in control neurons the level remains constant at
168 approximately 7.8% (Figure 2A). Furthermore, DA neurons from *PRKN* mutants displayed altered
169 neuronal morphology at end stage differentiation; being more round and less elongated (Figure 2B
170 and C; controls 1.92 +/- 0.02; *PRKN* mutants 2.74 +/- 0.2; p < 0.05 for cell roundness and controls
171 0.013 +/- 0.0002; *PRKN* mutants 0.008 +/- 0.001; p < 0.05 for cell elongation).

172
173 **Figure 2. Neuronal morphology and metabolic status during differentiation.** A Quantification of
174 activated caspase 3 in controls (black bars) and *PRKN* mutants (grey bars) throughout differentiation.
175 Significant increase in activated caspase 3 positive cells in *PRKN* mutants at day 22 (***) p = 0.0008
176 and at day 27 (* p = 0.036). B is a measure of neuronal branching; the *PRKN* mutant patient neurons

177 have reduced neuronal branching compared to controls (* p = 0.029). **C** is a measure of the roundness
178 of the cells. The *PRKN* mutant patient neurons are more round than control neurons (* p = 0.029). D
179 **and E** show ATP production dependent on glycolysis or oxidative phosphorylation throughout
180 differentiation (D shows control neurons and E shows *PRKN* mutant neurons). ATP levels increase
181 throughout differentiation for both control and *PRKN* mutant neurons. iNPC's rely wholly on glycolysis
182 for ATP generation; this switches throughout differentiation until at day 27 neurons are ~85%
183 dependent on oxidative phosphorylation for ATP production (iNPC total ATP vs day 27 total ATP p =
184 0.0001; iNPC 2DG ATP vs day 27 2DG ATP p = 0.0001; day 27 oligomycin ATP vs day 27 2DG ATP p =
185 0.005). This switch happens in both control and *PRKN* mutant neurons (iNPC ATP vs day 27 ATP p =
186 0.003; iNPC 2DG ATP vs day 27 2DG ATP p = 0.0001; day 27 2DG ATP vs day 27 oligomycin ATP p =
187 0.0001. All experiments were repeated on three separate rounds of differentiation in each control and
188 *PRKN* mutant patient line (four different controls and *PRKN* mutant patient lines are included). Bar
189 graphs represent mean with SD. All statistics done by two-way ANOVA test using Sidaks multiple
190 comparisons test.


191

192 **Metabolism shifts throughout differentiation; revealing mitochondrial morphology and functional**
193 **abnormalities in *PRKN* mutant DA neurons**

194 Recent work has shown direct reprogramming methods retain the age characteristics of the donor
195 fibroblasts; importantly this also includes the switch to oxidative phosphorylation during direct
196 reprogramming and reductions in mitochondrial function and gene expression in the neurons
197 generated from aged donors rather than those generated from younger donors¹⁹. We therefore
198 sought to understand the metabolism in our system, which utilises direct conversion of fibroblasts to
199 iNPCs rather than reprogramming to iPSCs. We assessed the contribution of glycolysis and oxidative
200 phosphorylation to the ATP levels in the cells from parental fibroblasts, to iNPC's and at various
201 stages throughout neuronal differentiation. Both the parental fibroblasts and the iNPC's are wholly

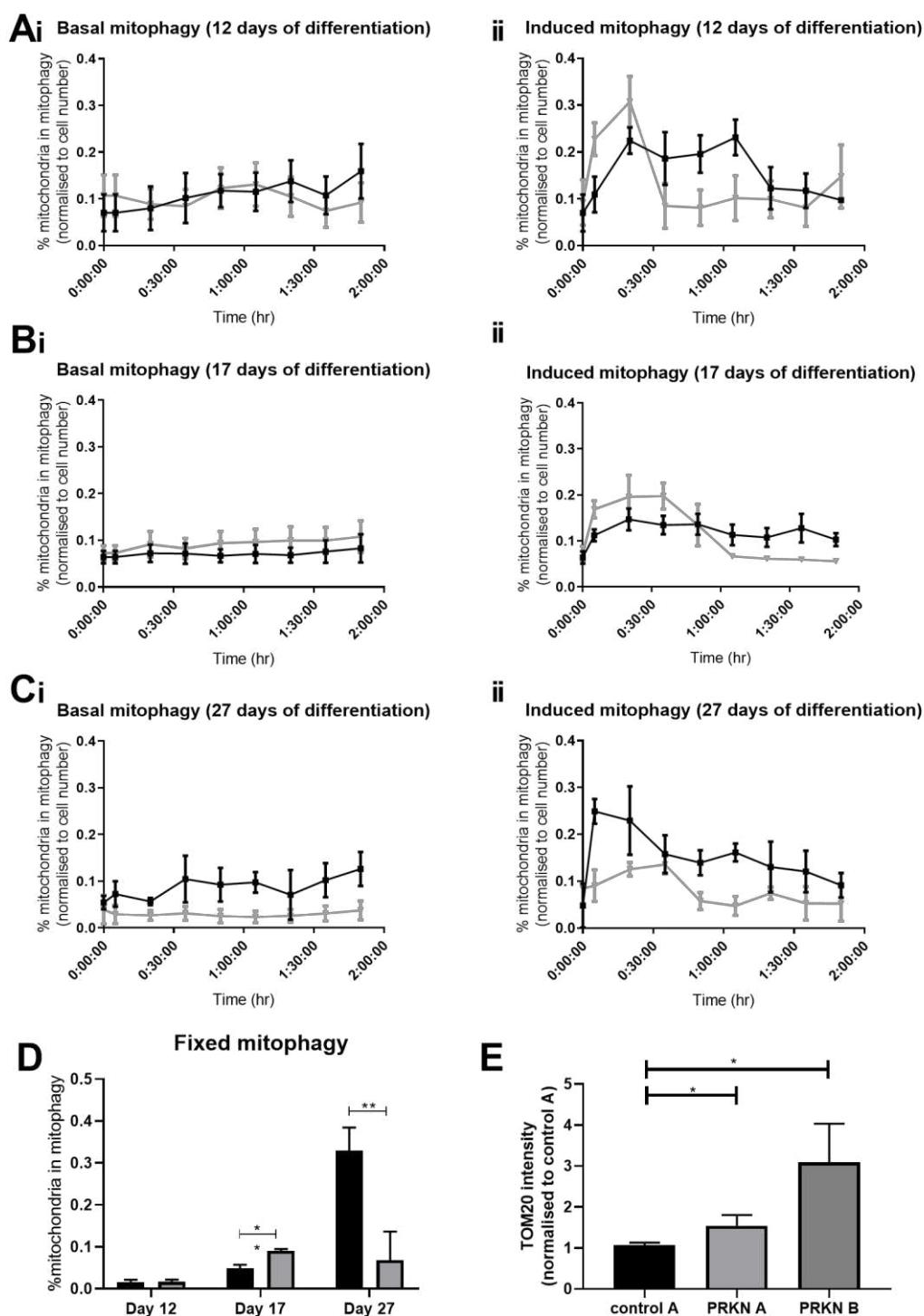
202 glycolytic with inhibition of complex V of the respiratory chain resulting in no decrease in energy
203 levels in the cells (Figure 2D; untreated 3.1 +/- 0.6; OXPHOS inhibited 2.9 +/- 0.7; glycolysis inhibited
204 0.9 +/- 0.3). However during neuronal differentiation the cells undergo a metabolic switch from
205 glycolysis to oxidative phosphorylation; such that by the end stage of differentiation neurons are
206 reliant on oxidative phosphorylation for 88% of their energy generation (Figure 2D, untreated 15.1
207 +/- 1.4; OXPHOS inhibited 3.5 +/- 1.2; glycolysis inhibited 8.5 +/- 2.5). This switch occurs in both
208 control and *PRKN* mutant DA neurons (Figure 2D and E). It is interesting to observe the time point at
209 which the dramatic increase in activated caspase 3 and cell death occurs in the *PRKN* mutant
210 neurons (day 22) correlates with the metabolic switch towards OXPHOS reliance.

211 In order to fully understand mitochondrial function and morphology as this metabolic switch occurs
212 and the role of parkin in this; we investigated mitochondrial function, morphology and mitophagy
213 throughout differentiation in control and *PRKN* mutant neurons. Previous reports have shown
214 mitochondrial fragmentation in *PRKN* mutant iPSC derived neurons^{25,26}. We observe the same
215 mitochondrial fragmentation at the end stage of differentiation accompanied by an increase in
216 mitochondrial number (Figure 3A mitochondrial interconnectivity: controls 0.07 +/- 0.003; *PRKN*
217 mutants 0.04 +/- 0.005 p < 0.05; Figure 3B mitochondrial number (% normalised to controls):
218 controls 100 +/- 3.4; *PRKN* mutants 204 +/- 35; p < 0.0001). In both control and *PRKN* mutant DA
219 neurons throughout differentiation mitochondria become more interconnected as the metabolic
220 switch occurs. The controls then return to a 'normal' morphology once this has happened (Figure
221 3A). The increase in mitochondrial number in *PRKN* mutant DA neurons does not seem to be driven
222 by increased biogenesis but rather the total mitochondrial content remains fairly constant however
223 mitochondria are smaller and more fragmented in the *PRKN* mutant DA neurons. There is much
224 debate in the literature as to whether the energy defect or increased ROS production is more
225 detrimental in PD. We found dramatically increased mitochondrial ROS levels at end stage of
226 differentiation (controls 0.17 +/- 0.018; *PRKN* mutants 0.6 +/- 0.15; * p < 0.05; Figure 3C). There is no
227 change in mitochondrial ROS levels at earlier stages of differentiation. In terms of mitochondrial

228 function, we show that mitochondrial membrane potential is significantly reduced only at end stage
229 differentiation (MMP controls 0.02 +/- 0.004, *PRKN* mutant 0.003 +/- 0.002, **** p < 0.001; Figure
230 3D). However, there is a worsening trend in MMP decreases as differentiation continues. A similar
231 pattern is observed for cellular ATP levels with increasing deficits as differentiation progresses. The
232 first significant decrease in ATP levels is observed when the neurons are becoming reliant on
233 oxidative phosphorylation at day 17 of differentiation (controls 100 +/- 5.5, parkin mutants 82 +/-
234 4.3, * p < 0.05; Figure 3E). At the end stage of differentiation the deficit is more severe (%
235 normalised to controls: controls 100 +/- 15, *PRKN* mutant 61 +/- 15; **** p < 0.01; Figure 3E). Taking
236 the above data together we see dramatic changes in mitochondrial function and morphology, which
237 are only revealed in *PRKN* mutant neurons as the metabolic switch occurs from glycolysis to
238 oxidative phosphorylation; accompanied by a dramatic increase in mitochondrial ROS levels once
239 this switch has taken place.

240

241 **Figure 3. Mitochondrial morphology and function in dopaminergic iNeurons throughout**
242 **differentiation**


243 **A** shows mitochondria in both control (black bars) and *PRKN* mutant patient neurons (grey bars)
244 elongate as the metabolic switch from glycolysis to oxidative phosphorylation begins at day 17 of
245 differentiation. By day 27 of differentiation mitochondria in *PRKN* mutant patient neurons are
246 fragmented compared to control neurons (** $p = 0.0004$). **B** shows mitochondrial number is
247 increased in *PRKN* mutant neurons (grey bars) compared to controls (black bars); (at day 12 ** $p =$
248 0.008 and day 27 **** $p < 0.0001$). **C** shows mitochondrial ROS production is significantly increased at
249 day 27 of differentiation in *PRKN* mutant neurons (grey bars) compared to controls (black bars; * $p =$
250 0.037). **D** shows mitochondrial membrane potential is decreased in *PRKN* mutant patient neurons
251 (grey bars) throughout differentiation, however the most dramatic and only significant reduction is at
252 day 27 of differentiation (** $p = 0.003$). **E** shows cellular ATP levels are reduced in *PRKN* mutant
253 patient neurons at day 17 (** $p = 0.005$) and day 27 (* $p = 0.01$) of differentiation. All experiments
254 were repeated on three separate rounds of differentiation in each control and *PRKN* mutant patient
255 line (four different controls and *PRKN* mutant patient lines are included). Bar graphs represent mean
256 with SD. All statistics done by two-way ANOVA test using Sidaks multiple comparisons test.

257

258 **Mitophagy rates are higher in *PRKN* mutant neurons with glycolytic capacity before becoming**
259 **defective when neurons undergo a metabolic switch**

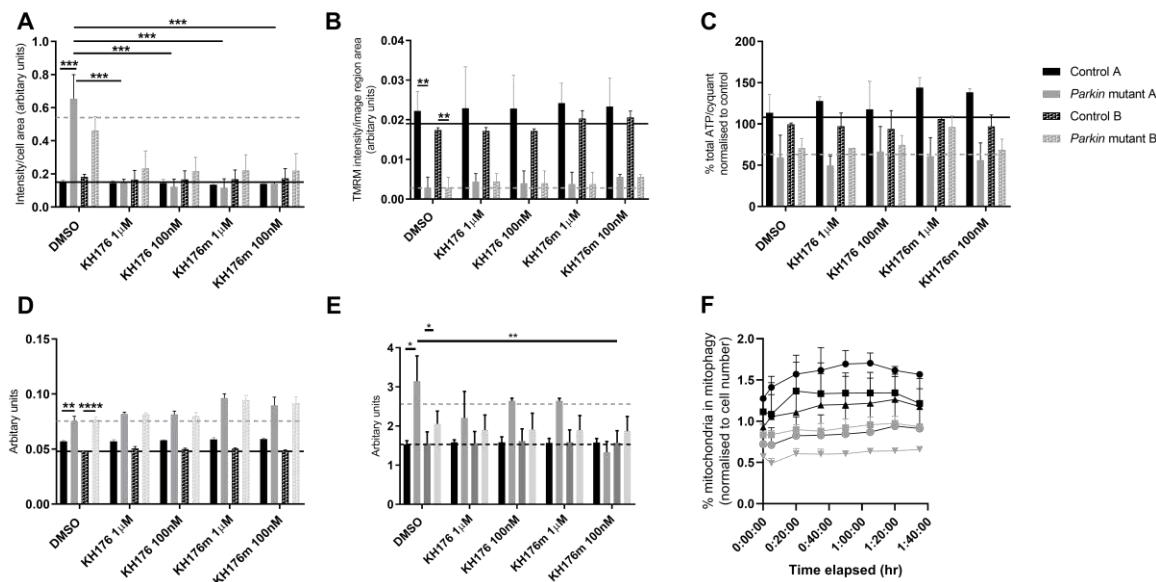
260 As parkin is known to function in a well characterised parkin dependent mitophagy pathway
261 targeting dysfunctional or damaged mitochondria for degradation; we developed a live imaging
262 assay to assess both basal and induced mitophagy rates in the neurons throughout differentiation.
263 This assay relies upon live staining of the total mitochondrial population and the lysosomal
264 population combined with advanced high content imaging acquisition, data processing and analysis.
265 At 12 days differentiation, when cells are positive for the pan neuronal marker β III tubulin but are
266 not yet DA and are glycolytic, *PRKN* mutant neurons have very similar rates of basal mitophagy as
267 controls (controls 0.08 +/- 0.4; *PRKN* mutants 0.09 +/- 0.6, Figure 4Ai). When mitophagy is induced in

268 these neurons the *PRKN* mutant neurons mount a higher response to global mitochondrial inhibition
269 but they cannot sustain mitophagy for as long as the control neurons are able to (Figure 4Aii).
270 However, at day 17 of differentiation when neurons are approximately 50/50 reliant on glycolysis
271 and oxidative phosphorylation *PRKN* mutant neurons have higher basal mitophagy levels than
272 controls (controls 0.07 +/- 0.03, *PRKN* mutants 0.09 +/- 0.05, Figure 4Bi) and again mount a higher
273 response to mitochondrial inhibition but cannot sustain that level of mitophagy overtime (Figure
274 4Bii). Finally, at the end stage of differentiation when neurons are reliant on oxidative
275 phosphorylation *PRKN* mutant neurons have a severe deficit in basal and induced mitophagy (Figure
276 4C basal mitophagy controls 0.09 +/- 0.025, *PRKN* mutants 0.025 +/- 0.008; induced mitophagy
277 controls 0.3 +/- 0.09, *PRKN* mutants 0.1 +/- 0.01, $p < 0.01$). We used two alternative methods of
278 evaluating mitophagy rates previously validated^{27,28}; using these method we found very similar
279 results throughout differentiation and at endpoint (Figure 4D and 4E). Tom20 amount is increased in
280 *PRKN* mutant patient derived neurons, indicating less mitophagy aligning with the mitophagy rates
281 measured using the live and fixed assays.

282

283 **Figure 4. Mitophagy throughout dopaminergic iNeuron differentiation**

284 **A, B and C** Quantification of percentage of mitochondria undergoing basal (i) or induced (ii) mitophagy
285 per cell over time at day 12 (A), day 17 (B) or day 27 of differentiation (C). Graphs represent the
286 quantification of mitochondria undergoing mitophagy over time. Basal mitophagy is unaltered in *PRKN*


287 mutants (grey lines) compared to controls (black lines) at day 12 of differentiation (Ai); however by
288 day 17 basal mitophagy is increased in *PRKN* mutants ($p = 0.019$; Bi) and at endpoint of differentiation
289 day 27, *PRKN* mutants have significantly reduced basal mitophagy levels (* $p = 0.011$, Ci). Induced
290 mitophagy is increased in *PRKN* mutants initially after induction at day 12 (Aii); the same pattern is
291 seen at day 17 (Bii) however by day 27 induced mitophagy is significantly lower in *PRKN* mutant
292 neurons (* $p = 0.0113$, Cii). **D** shows quantification of mitophagy using an alternative measure;
293 showing the same pattern as the live assay. No difference at day 12, an increase at day 17 in the *PRKN*
294 mutants (grey bars) compared to controls (black bars, ** $p = 0.0016$) and a reduction at day 27 (** p
295 = 0.0035). All experiments were repeated on three separate rounds of differentiation in each control
296 and *PRKN* mutant patient line (four different controls and *PRKN* mutant patient lines are included).
297 Bar graphs represent mean with SD. **E** shows quantification of the amount of Tom20. *PRKN* mutant
298 neurons have increased Tom20 amounts at day 27 of differentiation as compared to control A (*PRKN*
299 A * $p = 0.04$, *PRKN* B * $p = 0.02$). $n = 3$ for each line.

300

301 **Redox modulating compounds KH176 and KH176m partially reverses neuronal deficits in *PRKN*
302 mutant DA neurons**

303 In order to evaluate if the driving mechanism in *PRKN* mutant DA neurons is the loss of energy
304 production by the mitochondria or the dramatically increased mitochondrial ROS production, we
305 treated the neurons with the known potent intracellular redox-modulating agents KH176 and
306 KH176m ²⁹ currently in clinical trials in mitochondrial patients with m.3243A>G spectrum disorders
307 ³⁰. In agreement with the mechanism of action²⁸ treatment with KH176 and KH176m decreased
308 mitochondrial ROS production to control levels after 24 hours treatment (Figure 5A, control A
309 vehicle treated 0.16 +/- 0.006; control A KH176 treated 1 μ M 0.14 +/- 0.02; *PRKN* mutant A vehicle
310 treated 0.7 +/- 0.15; *PRKN* mutant A KH176 treated 1 μ M 0.12 +/- 0.05; $p < 0.001$). KH176 and
311 KH176m treatment had no significant effects on mitochondrial function (MMP or cellular ATP levels)

312 or mitochondrial morphology parameters (Figure 5 B-D). Treatment with KH176 and KH176m did
313 show a mild effect on neuronal morphology after only 24 hours of treatment; with the resulting
314 neurons being less round after treatment; a morphology closer to control neurons (Figure 5E, cell
315 roundness: control A vehicle treated 1.5 +/- 0.09; control A KH176 treated 1 μ M 1.6 +/- 0.06; *PRKN*
316 mutant A vehicle treated 3.1 +/- 0.6; *PRKN* mutant A KH176 treated 1 μ M 2.2 +/- 0.6). KH176 has not
317 been assessed before for an effect on mitophagy rates; we investigated if KH176m treatment could
318 affect basal mitophagy rates in neurons from *PRKN* mutant A. Our data show a significant increase in
319 basal mitophagy rates after treatment with KH176m in both control and *PRKN* neurons (Figure 5F,
320 control A vehicle treated 1.14 +/- 0.11, control A KH176m 100nM 1.27 +/- 0.11, control A KH176m
321 1000nM 1.56 +/- 0.15 *PRKN* mutant A vehicle treated 0.6 +/- 0.05, *PRKN* mutant A KH176m 100nM
322 0.9 +/- 0.05, *PRKN* mutant A KH176m 1000nM 0.8 +/- 0.08).

323

324 **Figure 5. Treatment of dopaminergic iNeurons with KH176 and KH176m**

325 A shows mitochondrial ROS levels are significantly reduced with treatment of both KH176 and
326 KH176m (n = 3 for each line presented, 2 way ANOVA with Sidaks multiple comparisons test *** p <
327 0.0001). B shows mitochondrial membrane potential is significantly reduced in *PRKN* mutant patient
328 neurons however treatment with KH176 and KH176m has no effect on mitochondrial membrane

329 potential (** p = 0.0009 and 0.025 respectively). **C** shows cellular ATP levels are reduced in *PRKN*
330 mutant neurons however treatment with KH176 and KH176m has no significant effect. **D** shows
331 mitochondria are more round in *PRKN* mutant patient neurons compared to controls, again treatment
332 with KH176 and KH176m has no effect (** p = 0.0048 and **** p = 0.0001 respectively). **E** shows
333 neuronal roundness is increased in *PRKN* mutant neurons; treatment with KH176m at 100nM has a
334 significant effect of reducing neuronal roundness, indicating the neurons are more elongated and
335 similar in morphology to the controls (* p = 0.018 and ** p = 0.0045 respectively). For A-E the black
336 dotted line shows mean vehicle treated for controls and grey dotted line mean vehicle treated for
337 *PRKN*, n = 3 for each line. Two way ANOVA with Sidaks multiple comparisons test used. **F** Basal
338 mitophagy is reduced in *PRKN* mutant A (grey triangles) compared to control A (black triangles);
339 treatment with KH176m at both 100nM (squares) and 1000nM (circles) concentrations increase basal
340 mitophagy rates in both control A and *PRKN* mutant A (n = 2 for each line presented, 2 way ANOVA
341 with Sidaks multiple comparisons test control vehicle vs control KH176m 1000nM p = 0.0088; control
342 vehicle vs *PRKN* vehicle p = 0.0003; *PRKN* mutant A vehicle vs *PRKN* mutant A KH176m 100nM p =
343 0.0001).

344

345 **Discussion**

346 Our study is the first to report successful reprogramming via the iNPC route of PD *PRKN* mutant
347 patient fibroblasts; varying reprogramming methods depend on competent energy generation for
348 successful reprogramming¹⁹. We have previously reported severe mitochondrial abnormalities in
349 *PRKN* mutant fibroblasts⁵; reprogramming of fibroblasts with a reduction in metabolic function can
350 be challenging using iPSC routes¹⁹ however here we show metabolically challenged fibroblasts can
351 be reprogrammed using this direct reprogramming route. Recently others have used alternative
352 direct reprogramming methods to generate dopamine like neuronal cells from sporadic and LRRK2
353 Parkinson's patient cells³¹⁻³³. These studies showed several alternative reprogramming routes can

354 lead to viable dopaminergic neuronal like cells; with each group assessing the dopaminergic qualities
355 of the cells produced. Furthermore we have recently reported use of this reprogramming route to
356 generate dopaminergic neurons from sporadic PD fibroblasts; in that study we found the
357 mitochondrial abnormalities exasperated in the neurons compared to the fibroblasts from the same
358 patient³⁴. The specific method we have used here, the iNPC derived route has proved a useful model
359 to study familial and sporadic forms of neurodegenerative diseases thus far; astrocytes derived from
360 Motor Neuron Disease (MND) patients display neuronal toxicity when in co-culture with WT neurons
361 similar to that seen with primary astrocytes from post-mortem biopsies from MND patients.
362 Furthermore both iAstrocytes and iNeurons were recently used to investigate mechanisms of cell
363 toxicity in C9orf72 dependent Motor Neuron Disease^{20–23,35,36}. We report the generation of high yield
364 of DA neurons from iNPC's. The DA yield we achieved via this method is higher than reported via the
365 iPSC differentiation route and similar or higher than that found with alternative direct
366 reprogramming routes. We also note, the processes of the neurons generated via iNPC
367 reprogramming are shorter than those from iPSC derived neurons. We hypothesize this is due to the
368 retention of age characteristics during direct reprogramming methods; whereas iPSC derived
369 neurons are more embryonic in nature and similar to primary cultures generated from mice.
370 However, this requires further investigation to fully understand the mechanisms involved. We find
371 more cell death in the *PRKN* mutant DA neurons throughout differentiation; less efficient
372 differentiation has been reported by others for *PRKN* mutant patient neurons via iPSC
373 reprogramming route¹³. We also report iNPC derived *PRKN* mutant DA neurons are smaller and less
374 elongated than controls. The increased cell death has been suggested to be dependent on the
375 mitochondrial status of the cell rather than genotype³⁷. Our data would support this however
376 further work to systematically test this would be useful to assess correlation between genotype and
377 metabolic status.
378 Our study investigating mitochondrial function and morphology throughout differentiation suggests
379 the increased cell death seen in *PRKN* mutant DA neurons co-insides with the neurons undergoing a

380 metabolic switch from glycolysis to oxidative phosphorylation. We show the iNPC derived neurons
381 have a clear switch in metabolism at day 22 with dependence on oxidative phosphorylation rather
382 than glycolysis with a concurrent increase in the total amount of ATP in the neurons. This allows us
383 to study mitochondrial function in these neurons which are metabolically more aligned to adult
384 neurons *in vivo* (which are oxidative phosphorylation dependent) rather than embryonic neurons
385 (glycolysis dependent)³⁸. Our data show that, while this metabolic switch is occurring, mitochondrial
386 morphology changes; as the neurons become more oxidative phosphorylation dependent the
387 mitochondria become more interconnected in both controls and *PRKN* mutants; we suggest this a
388 change in mitochondrial morphology to allow the neurons to become reliant on oxidative
389 phosphorylation. Once the metabolic switch has occurred mitochondrial morphology can return to
390 the normal shape; however *PRKN* mutant neurons once OXPHOS dependent have increased
391 mitochondrial fragmentation. This is opposite to the mitochondrial morphology phenotype we have
392 previously reported in *PRKN* mutant fibroblasts⁵; however others in the literature have previously
393 reported a more fragmented mitochondrial network associated with *PRKN* deficiency³⁹; this is likely
394 to be a cell type specific effect; our data suggesting this is dependent on the metabolic status of the
395 cells.

396 Previous studies utilising iPSC derived *PRKN* mutant neurons have found mitochondrial
397 abnormalities including defective mitophagy when induced using CCCP¹²; however recent *in vivo*
398 data from mouse and *Drosophila* models have shown little reduction in mitophagy on a *PRKN* or
399 PINK1 deficient background¹⁶. Here we show basal and induced mitophagy levels in *PRKN* mutant
400 patient derived DA neurons; furthermore we find in a *PRKN* mutant background mitophagy levels
401 are dependent on cellular energetic status. In cells which are dependent on glycolysis for energy
402 production, basal and induced mitophagy are increased (or at least the same as controls) in *PRKN*
403 mutant patient cells however upon the switch to OXPHOS dependency the *PRKN* mutant DA neurons
404 have impaired basal mitophagy and are unable to mount a response to global mitochondrial
405 dysfunction. Our data support the finding in *PRKN* deficient *Drosophila* that adult neurons increase

406 levels of mitophagy during ageing however *PRKN* deficient neurons cannot¹⁸. The specific mitophagy
407 pathway being utilised in these *PRKN* mutant neurons is not clear and requires further investigation.

408 Although mitochondrial abnormalities have been clearly identified by many in PD models; there is
409 debate as to whether the detrimental component of this is actually loss of energy or increased ROS
410 production. Here we show that mitochondrial ROS levels are significantly increased only at end stage
411 of differentiation when the neurons are OXPHOS dependent and have severe mitochondrial
412 abnormalities. The increase in mitochondrial ROS is striking in all four *PRKN* mutant patient neuron
413 lines. Previous studies have shown an increase in ROS in some *PRKN* mutant patient neurons but not
414 in others and have measured total cellular ROS rather than mitochondrial specific ROS which could
415 explain why the data we present here is more consistent across the group of patients. Targeting
416 mitochondrial dysfunction for a potential therapeutic to slow or stop disease progression is an
417 attractive option with many mitochondrial targeted therapeutics shown to be effective in various
418 models of PD (recently reviewed^{2,40}). Different therapeutic strategies are being developed; some
419 primarily acting to boost energy deficits whilst others are targeting ROS production. Here we show
420 that treatment with the known redox-modulating compounds KH176 and KH176m dramatically
421 reduces the mitochondrial ROS production with no significant effect on MMP or cellular ATP levels;
422 however, KH176 and KH176m do have a mild beneficial effect on the neuronal morphology of the
423 *PRKN* mutant neurons. These effects could be modulated by an increase in basal mitophagy after
424 treatment with KH176m. This suggests a reversal of the energy deficit may not be required to have
425 beneficial neuronal effects; however further work need to be done to fully investigate this,
426 particularly over a longer term treatment.

427 In conclusion, our study utilises the iNPC technology to generate a high DA population of neurons
428 which both express markers of DA neurons and release dopamine upon induction. Our data shows a
429 predominant mitochondrial dysfunction present in these neurons which is far more pronounced
430 than that found in the primary patient fibroblasts⁵. Our study builds on previous work as for the first

431 time neuronal properties, mitochondrial functional, morphological and mitophagy parameters are
432 assessed in the same neurons; neurons which all express TH and contain dopamine. Finally, our
433 study highlights mitophagy as an energetic dependent process, which, in a *PRKN* mutant background
434 varies considerably if the cells are glycolytic or OXPHOS dependent. This underlines the need to
435 study mitophagy processes with endogenous levels of proteins in cell types which are relevant for
436 disease and understand the energetic profile of the cells in order to be able to relate the findings to
437 disease mechanism. Further studies to undertake detailed biochemical assessments of neuronal
438 metabolism in this model in addition to utilising this model to assess putative neuroprotective
439 compounds are warranted.

440 **Methods**

441 **Culture of primary fibroblasts, generation and culture of iNPC's.**

442 Primary fibroblasts were obtained from Coriell Cell Repository (coriell.org) controls: ND29510,
443 GM09400, GM23967 and AG06882; *PRKN* mutant patients: ND30171, ND31618, ND40067 and
444 ND40078 (details of mutation are given at coriell.org; full information is now available from NINDS
445 data repository). Control and *PRKN* mutant groups were age and sex matched (controls 57 +/- 6.8;
446 parkin mutants 53 +/- 8 years). Fibroblasts were cultured in EMEM as previously described⁵. iNPC's
447 were generated as previously described⁴¹. iNPC's were maintained in DMEM/Ham F12 (Invitrogen);
448 N2, B27 supplements (Invitrogen) and FGFb (Peprotech) in fibronectin (Millipore) coated tissue
449 culture dishes and routinely sub-cultured every 2-3 days using accutase (Sigma) to detach them.

450 **Neuron differentiation of iNPC's**

451 Neurons were differentiated from iNPC's as previously described³⁴. Briefly, iNPCs are plated in a 6-
452 well plate and cultured for 2 days in DMEM/F-12 medium with Glutamax supplemented with 1%
453 NEAA, 2% B27 (Gibco) and 2.5μM of DAPT (Tocris). On day 3, DAPT is removed and the medium is
454 supplemented with 1μM smoothened agonist (SAG; Millipore) and FGF8 (75ng/ml; Peprotech) for

455 additional 10 days. Neurons are replated at this stage. Subsequently SAG and FGF8 are withdrawn
456 and replaced with BDNF (30 ng/ml; Peprotech), GDNF (30 ng/ml; Peprotech), TGF-b3 (2 mM;
457 Peprotech) and dcAMP (2 mM, Sigma) for 15 days.

458 **Immunofluorescence staining, live fluorescent imaging and ELISA**

459 Neurons were plated and underwent immunocytochemistry staining as described previously³⁴. Cells
460 are plated into 96 well plates and fixed using 4% paraformaldehyde for 30 minutes. After PBS
461 washes cells are permeabilised using 0.1% Triton X-100 for 10 minutes and blocked using 5% goat
462 serum for 1 hour. Cells are incubated with primary antibodies (Pax6 (Abcam); nestin (Abcam); GFAP
463 (Abcam), tyrosine hydroxylase (Abcam); DAT (ThermoFisher); β III tubulin (Millipore); Tom20 (BD
464 Biosciences); LC3 (MBL); activated caspase 3 (Cell Signalling); Map2 (Abcam); NeuN (Abcam)); at 4
465 degrees for 16 hours. Cells are washed using PBS-Tween and incubated with Alexa Fluor conjugated
466 secondary antibodies 488 and 568 (Invitrogen) and Hoescht (Sigma) 1 μ M prior to imaging. Imaging
467 was performed using the Opera Phenix high content imaging system (Perkin Elmer). Twenty fields of
468 view were imaged per well; in seven z planes. Images were analysed using Harmony software;
469 maximum projections were used for analysis.

470 Dopamine ELISA was performed as per the manufacturer's instructions (Labor Diagnostika Nord
471 GmbH&Co. KG). Dopamine release experiments, neurons were incubated in HBSS with Ca^{2+} and Mg^{2+}
472 (Gibco by Life Technologies) for 30minutes, or HBSS with Ca^{2+} and Mg^{2+} for 15 minutes and 56mM
473 KCl (Fisher chemical) for another 15 minutes or HBSS without Ca^{2+} and Mg^{2+} (Gibco by Life
474 Technologies) with 2mM EDTA for 15min and then 56mM KCL is added for another 15 minutes.
475 Media is collected immediately; cells are harvested using accutase, centrifuged at 400g for 4min and
476 resuspended in 10 μ l of PBS. EDTA 1mM and Sodium Metabisulfite (Sigma) 4mM are added to both
477 the media and pellet to preserve the dopamine. The ELISA was read on a PheraStar plate reader
478 (BMG Labtech) as per the manufacturer's instructions; using the provided standard curve to
479 calculate dopamine concentrations.

480 Neurons were incubated with 0.1 μ M Neurosensor 521 (Sigma) and 1 μ M Hoechst in media for 30
481 minutes at 37 degrees. Cells were washed in phenol red free media and imaged using InCell 2000
482 (GE Healthcare) using 60x objective and 488nm excitation for Neurosensor 521 and 405nm
483 excitation for Hoechst (method modified from ⁴²). Fifteen fields of view per well were imaged and at
484 3 wells per line on at least three rounds of differentiation.

485 Neuronal membrane potential was measured using Fluovolt Membrane Potential Kit (ThermoFisher)
486 as per the manufacturer's instructions. Experiments were performed under basal or depolarizing
487 conditions after treatment with isotonic potassium chloride solution (140 mM KCl, 5 mM NaCl,
488 1.8 mM CaCl₂, 1.0 mM MgCl₂, 20 mM HEPES, 20 mM Glucose, pH 7.4).

489 **Mitochondrial function, morphology and mitophagy measurements**

490 Neurons were plated in 96 well plates; for MMP and morphology live imaging cells are incubated for
491 one hour at 37 degree with 50nM tetramethylrhodamine (TMRM), 1 μ M rhodamine 123 and 1 μ M
492 Hoescht (Sigma), after removal of dyes and replacement with phenol red free media plates are
493 imaged using the Opera Phenix. Fifteen fields of view are imaged per well, in seven z planes. Images
494 are analysed using Harmony software (Perkin Elmer). Segmentation protocols were established to
495 segment the nuclei, mitochondria, and image region containing cytoplasm including projections.
496 Analysis of number, size, intensity and morphology of mitochondria were calculated per image
497 region using Harmony software (Perkin Elmer) using similar methodology as previously established
498 ²⁷. Cellular ATP measurements are undertaken using ATPLite kit (Perkin Elmer) as per manufacturer's
499 instructions. To assess dependency on OXPHOS or glycolysis, cells were pre-treated with oligomycin
500 (Sigma) 10 μ M and 2-Deoxy Glucose (Sigma) 50mM for 30minutes at 37 degree and then ATP
501 measurements were performed ⁴³. Mitochondrial reactive oxygen species generation was assessed
502 using mitochondrial NpFR2 probe ⁴⁴ incubated with cells at 20 μ M and 1 μ M Hoechst for 30mins at
503 37°C, probes were removed and phenol red free media replaced. Cells were imaged using the Opera
504 Phenix (Perkin Elmer). In order to assess mitophagy in live cells, cells were incubated for one hour at

505 37°C with 1µM tetramethylrhodamine (TMRM), 1µM Lysotracker Green (Invitrogen) and 1µM
506 Hoescht , before washing to remove fluorescent probes. For the measurement of induced mitophagy
507 2µM Antimycin A (Sigma) and 5µM oligomycin (Sigma) were added prior to imaging. Images were
508 captured in time lapse every 18 minutes in the same fields of view, minimum 6 fields of view per
509 well. Images generated from the live imaging experiments were analysed using Harmony (Perkin
510 Elmer software). We developed protocols in order to segment nucleus, image region containing
511 cytoplasm, mitochondria, lysosomes, autolysosomes containing mitochondria. Maximal projection
512 images were used for analysis. Mitochondria contained within lysosomes segmentation was set up in
513 such a way to identify a mitophagy event when the overlap between mitochondria and lysosome
514 was 100%.

515 Staining of cells using LC3 and Tom20 (as described above) and subsequent imaging using Opera
516 Phenix and image analysis was used to validate the live imaging mitophagy assay. The image
517 segmentation and analysis was set up in Harmony software as previously published ²⁷. Furthermore
518 as an additional mitophagy read out we utilised the loss of Tom20 signal from cells as previously
519 determined ²⁸.

520 **Statistical tests**

521 All experiments were performed on at least triplicate differentiations for each control and *PRKN*
522 mutant neuron or iNPC unless otherwise stated. Data are presented as mean +/- standard deviation.
523 Students t test was used when comparing between control and *PRKN* mutant patients. When
524 comparing different timepoints throughout differentiation a matched two way ANOVA was used
525 with multiple comparisons using Sidaks or Tukey correction. Treatment data was analysed using two
526 way ANOVA and multiple comparisons. All statistical tests were carried out using GraphPad Prism
527 software.

528 **References**

529 1. Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria
530 to activate Parkin. *PLoS Biol.* 2010;8(1)

531 2. Macdonald R, Barnes K, Hastings C MH. Mitochondrial abnormalities in Parkinson's disease
532 and Alzheimer's disease: can mitochondria be targeted therapeutically? *Biochem. Soc. Trans.*
533 2018;46(4):891–909.

534 3. Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle
535 degeneration in Drosophila parkin mutants. [Internet]. *Proc. Natl. Acad. Sci. U. S. A.*
536 2003;100(7):4078–83.[cited 2017 Oct 5] Available from:
537 <http://www.ncbi.nlm.nih.gov/pubmed/12642658>

538 4. Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial Dysfunction and Oxidative Damage in
539 parkin-deficient Mice. *J. Biol. Chem.* 2004;279(18):18614–18622.

540 5. Mortiboys H, Thomas KJ, Koopman WJH, et al. Mitochondrial function and morphology are
541 impaired in parkin-mutant fibroblasts. *Ann. Neurol.* 2008;64(5)

542 6. Grünewald A, Voges L, Rakovic A, et al. Mutant parkin impairs mitochondrial function and
543 morphology in human fibroblasts. *PLoS One* 2010;5(9)

544 7. Klein C, Pramstaller PP, Lohmann K, et al. Mutations in PINK1 and Parkin Impair
545 Ubiquitination of Mitofusins in Human Fibroblasts. *PLoS One* 2011;6(3):e16746.

546 8. Grünewald A, Seibler P, Shurkewitsch K, et al. Phosphatase and Tensin Homolog (PTEN)-
547 induced Putative Kinase 1 (PINK1)-dependent Ubiquitination of Endogenous Parkin
548 Attenuates Mitophagy. *J. Biol. Chem.* 2012;288(4):2223–2237.

549 9. Hsieh CH, Shaltouki A, Gonzalez AE, et al. Functional Impairment in Miro Degradation and
550 Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease. *Cell Stem Cell*
551 2016;19(6):709–724.

552 10. Kishinevsky S, Mazzulli JR, Puspita L, et al. Parkin and PINK1 Patient iPSC-Derived Midbrain
553 Dopamine Neurons Exhibit Mitochondrial Dysfunction and α -Synuclein Accumulation
554 [Internet]. Stem Cell Reports 2016;7(4):664–677. Available from:
555 <http://dx.doi.org/10.1016/j.stemcr.2016.08.012>

556 11. Hsieh CH, Shaltouki A, Gonzalez AE, et al. Functional Impairment in Miro Degradation and
557 Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease. Cell Stem Cell
558 2016;19(6)

559 12. Suzuki S, Akamatsu W, Kisa F, et al. Efficient induction of dopaminergic neuron differentiation
560 from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons [Internet].
561 Biochem. Biophys. Res. Commun. 2017;483(1):88–93. Available from:
562 <http://dx.doi.org/10.1016/j.bbrc.2016.12.188>

563 13. Shaltouki A, Sivapatham R, Pei Y, et al. Mitochondrial alterations by PARKIN in dopaminergic
564 neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell
565 Reports 2015;4(5):847–859.

566 14. Ren Y, Jiang H, Hu Z, et al. HHS Public Access. 2015;33(1):68–78.

567 15. Pacelli C, Giguère N, Bourque MJ, et al. Elevated Mitochondrial Bioenergetics and Axonal
568 Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons. Curr. Biol.
569 2015;25(18)

570 16. McWilliams TG, Prescott AR, Montava-Garriga L, et al. Basal Mitophagy Occurs Independently
571 of PINK1 in Mouse Tissues of High Metabolic Demand. Cell Metab. 2018;439–449.

572 17. Lee JJ, Martinez AS, Zarate AM, et al. Basal mitophagy is widespread in Drosophila but
573 minimally affected by loss of Pink1 or parkin. 2018;217(5):1613–1622.

574 18. Cornelissen T, Vilain S, Vints K, et al. Deficiency of parkin and PINK1 impairs age-dependent
575 mitophagy in drosophila. Elife 2018;7:1–14.

576 19. Kim Y, Zheng X, Ansari Z, et al. Mitochondrial Aging Defects Emerge in Directly
577 Reprogrammed Human Neurons due to Their Report Mitochondrial Aging Defects Emerge in
578 Directly Reprogrammed Human Neurons due to Their Metabolic Profile. 2018;2550–2558.

579 20. Meyer K, Ferraiuolo L, Miranda CJ, et al. Direct conversion of patient fibroblasts
580 demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and
581 sporadic ALS. *Proc. Natl. Acad. Sci.* 2014;111(2)

582 21. Hautbergue GM, Castelli LM, Ferraiuolo L, et al. SRSF1-dependent nuclear export inhibition of
583 C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits
584 [Internet]. *Nat. Commun.* 2017;8(May):1–18. Available from:
585 <http://dx.doi.org/10.1038/ncomms16063>

586 22. Ferraiuolo L, Meyer K, Sherwood TW, et al. Oligodendrocytes contribute to motor neuron
587 death in ALS via SOD1-dependent mechanism [Internet]. *Proc. Natl. Acad. Sci.*
588 2016;113(42):E6496–E6505. Available from:
589 <http://www.pnas.org/lookup/doi/10.1073/pnas.1607496113>

590 23. Webster CP, Smith EF, Bauer CS, et al. The C9orf72 protein interacts with Rab1a and the ULK1
591 complex to regulate initiation of autophagy [Internet]. *EMBO J.* 2016;35(15):1656–
592 1676. Available from: <http://emboj.embopress.org/lookup/doi/10.15252/embj.201694401>

593 24. Swistowski A, Peng J, Liu Q, et al. Efficient generation of functional dopaminergic neurons
594 from human induced pluripotent stem cells under defined conditions. *Stem Cells*
595 2010;28(10):1893–1904.

596 25. Zanon A, Kalvakuri S, Rakovic A, et al. SLP-2 interacts with Parkin in mitochondria and
597 prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and
598 *Drosophila*. *Hum. Mol. Genet.* 2017;26(13):2412–2425.

599 26. Cartelli D, Amadeo A, Calogero AM, et al. Parkin absence accelerates microtubule aging in

600 dopaminergic neurons [Internet]. *Neurobiol. Aging* 2018;61:66–74. Available from:
601 <https://doi.org/10.1016/j.neurobiolaging.2017.09.010>

602 27. Diot A, Hinks-Roberts A, Lodge T, et al. A novel quantitative assay of mitophagy: Combining
603 high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy
604 and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA.
605 *Pharmacol. Res.* 2015;100

606 28. Wit R De, Verhaar F, Watson M, et al. Development and validation of a high content-based
607 assay to measure Tom20 loss in dopaminergic human neurons differentiated in vitro. [date
608 unknown];20.

609 29. Beyrath J, Pellegrini M, Renkema H, et al. KH176 Safeguards Mitochondrial Diseased Cells
610 from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin
611 System/Peroxiredoxin Enzyme Machinery [Internet]. *Sci. Rep.* 2018;8(1):1–14. Available from:
612 <http://dx.doi.org/10.1038/s41598-018-24900-3>

613 30. Janssen MCH, Koene S, de Laat P, et al. The KHENERGY Study: Safety and Efficacy of KH176 in
614 Mitochondrial m.3243A>G Spectrum Disorders. *Clin. Pharmacol. Ther.* 2019;105(1):101–111.

615 31. He M, Zhang H, Li Y, et al. Direct and selective lineage conversion of human fibroblasts to
616 dopaminergic precursors [Internet]. *Neurosci. Lett.* 2019;699(January):16–23. Available from:
617 <https://doi.org/10.1016/j.neulet.2019.01.033>

618 32. Chang JH, Tsai PH, Wang KY, et al. Generation of Functional Dopaminergic Neurons from
619 Reprogramming Fibroblasts by Nonviral-based Mesoporous Silica Nanoparticles [Internet].
620 *Sci. Rep.* 2018;8(1):1–12. Available from: <http://dx.doi.org/10.1038/s41598-017-18324-8>

621 33. Lee M, Sim H, Ahn H, et al. Direct Reprogramming to Human Induced Neuronal Progenitors
622 from Fibroblasts of Familial and Sporadic Parkinson’s Disease Patients. *Int. J. Stem Cells*
623 2019;1–10.

624 34. Carling PJ, Mortiboys H, Green C, et al. Deep phenotyping of peripheral tissue facilitates
625 mechanistic disease stratification in sporadic Parkinson's disease. *Prog. Neurobiol.*
626 2020;101772.

627 35. Allen SP, Hall B, Castelli LM, et al. Astrocyte adenosine deaminase loss increases motor
628 neuron toxicity in amyotrophic lateral sclerosis. *Brain* 2019;142(3):586–605.

629 36. Allen SP, Hall B, Woof R, et al. C9orf72 expansion within astrocytes reduces metabolic
630 flexibility in amyotrophic lateral sclerosis. 2019;

631 37. Fang D, Qing Y, Yan S, et al. Development and Dynamic Regulation of Mitochondrial Network
632 in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs [Internet]. *Stem Cell*
633 *Reports* 2016;7(4):678–692. Available from: <http://dx.doi.org/10.1016/j.stemcr.2016.08.014>

634 38. Lees JG, Gardner DK, Harvey AJ. Mitochondrial and glycolytic remodeling during nascent
635 neural differentiation of human pluripotent stem cells. *Development*
636 2018;145(20):dev168997.

637 39. Kathrin Lutz A, Exner N, Fett ME, et al. Loss of parkin or PINK1 function increases Drp1-
638 dependent mitochondrial fragmentation. *J. Biol. Chem.* 2009;284(34):22938–22951.

639 40. Park JS, Davis RL, Sue CM. Mitochondrial Dysfunction in Parkinson's Disease: New
640 Mechanistic Insights and Therapeutic Perspectives. *Curr. Neurol. Neurosci. Rep.* 2018;18(5)

641 41. Meyer K, Ferraiuolo L, Miranda CJ, et al. Direct conversion of patient fibroblasts
642 demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and
643 sporadic ALS [Internet]. *Proc. Natl. Acad. Sci.* 2014;111(2):829–832. Available from:
644 <http://www.pnas.org/cgi/doi/10.1073/pnas.1314085111>

645 42. Hettie KS, Liu X, Gillis KD, Glass TE. Selective catecholamine recognition with NeuroSensor
646 521: A fluorescent sensor for the visualization of norepinephrine in fixed and live cells. *ACS*
647 *Chem. Neurosci.* 2013;4(6):918–923.

648 43. Allen SP, Rajan S, Duffy L, et al. Superoxide dismutase 1 mutation in a cellular model of
649 amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to
650 glycolysis. *Neurobiol. Aging* 2014;35(6)

651 44. Kaur A, Brigden KWL, Cashman TF, et al. Mitochondrially targeted redox probe reveals the
652 variations in oxidative capacity of the haematopoietic cells. *Org. Biomol. Chem.*
653 2015;13(24):4343–4349.

654 **Acknowledgements:** The authors would like to thank the participants from which the original skin
655 biopsies were taken. The authors gratefully acknowledge the support of Parkinson's UK (F-1301
656 awarded to HM and K-1506 awarded to HM and LF), funding from Celgene to HM, Wellcome Trust
657 Academy of Medical Sciences Springboard funding SBF002/1142 awarded to LF and Australian
658 Research Council (DP180101897) awarded to EN. JB and JS received funding from the SysMedPD
659 project from the European Union's Horizon 2020 research and innovation program under grant
660 agreement 668738 and the ZonMW PMRare project (113302003). This research was supported by
661 the NIHR Sheffield Biomedical Research Centre (BRC). The views expressed are those of the author(s)
662 and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care (DHSC).

663 **Authors contributions:** AS undertook much of the experimental work culturing the neurons,
664 performing assays and staining and putting figures together. CB undertook the remainder of neuron
665 culture and assays. FML undertook some of the experimental work specifically the Tom20 loss
666 mitophagy validation and KH176m mitophagy assays. MM was involved in the experimental work
667 generating the iNPC's from patient and control fibroblasts. EN designed and synthesised the
668 mitochondrial ROS probes and advised on their use. JB and JS provided the Khondrion compounds
669 and expertise of use in assays. LF was instrumental in the generation of iNPC's both experimentally
670 and intellectually. HM conceived the study, planned the study, undertook some experimental work,
671 analysed and interpreted the data and wrote the manuscript. All authors contributed to the editing
672 and re-drafting of the manuscript.

673 **Competing Interests:** JS is the founding chief executive officer of Khondrion. JB is the chief scientific

674 officer of Khondrion. All other authors have no competing interests to declare.