

Exposure to hypergravity during zebrafish development alters cartilage material properties and strain distribution.

Elizabeth A Lawrence¹, Jessye A Aggleton^{1,2}, Jack J. W. A. van Loon³, Josepha Godivier⁴, Robert L. Harniman⁵, Jiaxin Pei¹, N. C. Nowlan⁴, Chrissy L Hammond ¹

1. School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
2. School of Anthropology and Archaeology, University of Bristol, BS8 1UU
3. A: European Space Agency (ESA) Technology Center (ESTEC), TEC-MMG, NL-2200 AG, Noordwijk Netherlands.
B: Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center Location VUmc & Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
4. Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
5. School of Chemistry, University of Bristol, BS8 1TS, UK

Keywords: Zebrafish, musculoskeletal, gravity, finite element analysis, chondrocyte maturation, extracellular matrix.

Running title: Zebrafish development in hypergravity

Abstract

Terrestrial vertebrates have adapted to life on Earth and its constant gravitational field, which exerts load on the body and influences the structure and function of tissues. While the effects of microgravity on muscle and bone homeostasis are well described, the effects of shorter exposures to increased gravitational fields are less well characterized. Here, we exposed zebrafish to 3 and 6g hypergravity from 3-5 days post fertilisation, when key events in jaw cartilage morphogenesis occur. We did not observe changes to growth, or morphology of cartilage or muscle. However, we observed altered mechanical properties of jaw cartilages. We model the impact of these material property changes using Finite Element Analysis and show strain distribution in the jaw is altered following hypergravity. In regions of predicted altered

34 strain we observed local changes to chondrocyte morphology, suggesting altered gravity affects
35 chondrocyte maturation, ultimately leading to changes to cartilage structure and function.

36

37 **Background**

38

39 Mechanical loading of the skeleton occurs during physical activity through muscle contraction
40 and ground reaction forces (Lanyon *et al.*, 1975; Usui *et al.*, 2003). This loading builds and
41 maintains bone mass, making increased skeletal loading an area of interest in the treatment of
42 osteoporosis (Russo and MD, 2009). A physiological level of mechanical loading is beneficial to
43 cartilage function *in vitro* by increasing chondrocyte proliferation and anabolic processes,
44 boosting proteoglycan synthesis (Klein-Nulend *et al.*, 1987; Lee and Bader, 1997; Soltz *et al.*,
45 2000; Shelton, Bader and Lee, 2003; Sharma, Saxena and Mishra, 2007). *In vivo* experiments
46 in hamsters (Otterness *et al.*, 1998), rats (Galois *et al.*, 2003), and humans (Manninen, 2001),
47 have indicated that moderate exercise has a chondroprotective role, resulting in decreased risk
48 of severe osteoarthritis (OA). In contrast, overloading or reduced loading of joints has a role in
49 cartilage destruction by promoting catabolic pathways. Extreme loading (through high impact
50 sports (Arendt and Dick, 1995; Levy *et al.*, 1996) or joint misalignment (Meireles *et al.*, 2017))
51 leads to extracellular matrix damage, loss of collagen, chondrocyte cell death and eventually OA
52 (Torzilli *et al.*, 1999; Loening *et al.*, 2000; Patwari *et al.*, 2004).

53

54 As mechanical loading is exerted on the skeleton by gravitational forces (Kohrt, Barry and
55 Schwartz, 2009), many studies on the musculoskeletal system have been carried out across a
56 range of gravity levels. Microgravity has significant, well documented, effects on the skeleton
57 with decreased bone density observed in humans (Demontis *et al.*, 2017) and fish (Chatani *et*
58 *al.*, 2015), and disruptions to skeletal maturation observed in immature mice (Maupin *et al.*,
59 2019). Studies on astronauts and cosmonauts following long duration space flight found that
60 92% had a minimum of 5% bone loss in at least one skeletal site (LeBlanc *et al.*, 2007) with
61 weight-bearing regions most affected (LeBlanc, Shackelford and Schneider, 1998; Vico *et al.*,
62 2000). Sarcopenia is also observed in microgravity, with decrease in muscle volume of around
63 15% following 4-6 months in microgravity (Adrian LeBlanc *et al.*, 2000). While decreased
64 mechanical loading in microgravity has been uniformly associated with disuse bone loss,
65 exposure to hypergravity has been shown to increase or decrease bone depending on the
66 degree of hypergravity. One study exposed mice to hypergravity for 21 days and found that at
67 2g, there was an improvement in trabecular bone volume, fewer osteoclasts and an increase in

68 mineralization (Gnyubkin, 2015). At 3g they found cortical thinning, more osteoclasts and a
69 reduced rate of bone formation (Gnyubkin, 2015), supporting the idea that loading is beneficial
70 to a point, after which it becomes deleterious (Yokota, Leong and Sun, 2011). Zebrafish larvae
71 have been exposed to hypergravity in a Large Diameter Centrifuge (LDC). Aceto et. al. (2015)
72 exposed zebrafish to 3g and observed increased ossification in the cranial skeleton of larvae
73 exposed to 3g between 5 and 9 days post fertilisation (dpf) (Aceto et al., 2015).

74

75 Another component of the musculoskeletal system sensitive to alterations in biomechanics is
76 cartilage, particularly the articular cartilage of synovial joints. This cartilage has a limited
77 regenerative capacity (Karuppal, 2017) and is important for absorbing load to protect the
78 underlying bone, ensuring the smooth function of joints (Fox, Bedi and Rodeo, 2009). Human
79 bed-rest studies, hind-limb unloading studies in rats and studies performed on mice exposed to
80 real microgravity have demonstrated that loss of mechanical forces lead to cartilage degradation
81 primarily through proteoglycan loss (Souza et al., 2012; Ganse et al., 2015; Willey et al., 2016;
82 Fitzgerald et al., 2019). Cell culture experiments carried out in microgravity also support the
83 observation of cartilage degradation under reduced loading conditions, with cytoskeletal
84 reorganization and extracellular matrix (ECM) composition altered following short exposures
85 (Van Loon et al., 1995; Freed et al., 1997; Zhang et al., 2003; Ulbrich et al., 2010; Aleshcheva
86 et al., 2013). In comparison to work on cartilage in unloading conditions, less is known about the
87 effect of hypergravity and increased mechanical loading. One study on cultured chondrocytes
88 showed downregulation of *BMP4* (crucial in collagen type II and aggrecan synthesis (Reddi,
89 2001)) following very short term cyclic hypergravity exposure during parabolic flight (Wehland et
90 al., 2015), suggesting that articular cartilage health would be impaired under such loading
91 conditions.

92

93 Here, we show that exposure to hypergravity for 48 hours from 3 days post fertilisation (dpf) in
94 zebrafish has no substantial effect on craniofacial cartilage morphology or musculature, but
95 causes significant changes to cartilage material properties, chondrocyte morphology and ECM
96 organisation. We also demonstrate altered strain distribution across the lower jaw following
97 hypergravity exposure, providing an explanation for the cell-level changes. Altogether, this
98 shows that hypergravity exposure in zebrafish larvae between 3-5dpf can induce subtle, but
99 detrimental, changes to cartilage which could become more severe over time.

100

101

102 **Materials and methods**

103

104 **Zebrafish husbandry and mutant lines.**

105

106 Zebrafish were maintained as described previously (Westerfield, 2000). Experiments were
107 approved by the European Space Agency (ESA) and performed in accordance with UK ASPA
108 regulations.

109

110 **Hypergravity experiments**

111 Zebrafish were exposed to hypergravity in the Large Diameter Centrifuge (LDC) (Van Loon *et*
112 *al.*, 2008) at the European Space Research and Technology Centre (ESTEC) for 48 hours from
113 3dpf to 5dpf. The LDC consists of a central axis linked to 2 arms. Samples can be placed in 6
114 gondolas (which can be set to 2 different hypergravity levels) plus 1 central gondola at 1g to
115 control for rotation and possible related Coriolis accelerations (Van Loon, 2007). The larvae
116 were exposed to 3g and 6g, with control larvae located at the central axis, further larvae were
117 maintained at 1g static (Supplementary Figure 1A). In each gondola, 4 petri dishes containing
118 150ml of Danieau's solution and <35 larvae each were stacked in the centre of an incubator set
119 to a constant temperature of 28°C (Supplementary Figure 1A-D). Larvae were incubated in the
120 dark except during the recording of videos (to monitor survival and swim behaviour during the
121 experiment). Following exposure to hypergravity, 1 petri dish from each gravity condition was
122 reserved for behavioural studies, with the rest fixed in 4% paraformaldehyde (PFA) or bone fix
123 (3.5% formaldehyde in 40mM phosphate buffer) for further analysis.

124 **Whole fish measurements**

125

126 Larvae were mounted in glycerol and imaged on a Leica MZ10F stereo microscope. Head to tail
127 length was measured using the line function in Fiji (Schindelin *et al.*, 2012) (Supplementary
128 Figure 1E).

129

130 **Antibody labelling**

131

132 Immunohistochemistry was performed as previously described (Hammond and Schulte-Merker,
133 2009). Briefly, larvae were fixed in 4% PFA and dehydrated to 100% MeOH for storage, then

134 rehydrated to 1 x PBST, permeabilised and blocked in 5% horse serum prior to incubation in
135 primary antibodies (Collagen type II [Abcam ab34712] 1:500, A4.1025 [Developmental Studies
136 Hybridoma Bank] 1:500, L-plastin (Cvejic *et al.*, 2008) 1:200, Acetylated tubulin [Sigma-Aldrich
137 T6793] 1:200) at 4°C overnight (o/n). Samples were washed three times in PBST, re-blocked
138 and incubated in secondary antibodies (Goat anti-rabbit 555 [Dylight], Donkey anti-mouse
139 [Thermofisher Scientific], Goat anti-chick 647 [Thermofisher scientific] all at 1:500) o/n at 4°C.
140 Where required, larvae were incubated in 5µg/ml 4',6-diamidino-2-phenylindole (DAPI)
141 [Invitrogen] for 1 hour and washed in PBST prior to imaging. Samples were mounted in 0.5%
142 low melting point agarose and imaged on a Leica SP5II confocal microscope with a 10x or 20x
143 objective.

144

145 **Alcian blue and Alizarin red staining**

146

147 Alcian Blue and Alizarin red whole mount larval staining was performed as previously described
148 (Walker and Kimmel, 2007) on larvae fixed in 3.5% formaldehyde.

149

150 **Atomic force microscopy**

151

152 Atomic Force Microscopy (AFM) was conducted utilizing a Multi-mode VIII microscope with
153 Nanoscope V controller, operating in a PeakForce control regime [Bruker, CA, USA]. Larval
154 cartilage was investigated in a hydrated state in an ambient environment (Elizabeth A.
155 Lawrence *et al.*, 2018). Prior to AFM investigation, larvae were fixed in 4% formaldehyde,
156 stained with Alcian blue and Alizarin red (as above), and the lower jaw was dissected in 1%
157 glycerol in PBS to prevent structural changes induced by drying. For measurement of Young's
158 modulus (YM) via Quantitative Nano-mechanical Mapping (QNM) RTESPA-150 cantilevers
159 [Bruker, Ca, USA] were utilized, having nominal spring constant and tip radii of 5 N/m and 8 nm
160 respectively. Cantilevers were calibrated via the relative method utilizing a PDMS standard with
161 data fit to a DMT model accounting for the effect of adhesion forces in the standard Hertzian
162 model for indentation. Three fish were investigated for each level of hypergravity exposure. For
163 each fish, three separate 500nm x 500nm regions were scanned in both the immature
164 chondrocytes and hypertrophic chondrocytes, six regions in total. 65,536 measurements were
165 taken per scanned region and their RMS average recorded for comparison. Data was
166 normalised to values from 1g static samples to show the relative YMs (Melbourne *et al.*, 2018;
167 Nigmatullin *et al.*, 2018, 2019; Swift *et al.*, 2018; Terry *et al.*, 2019; Gubała *et al.*, 2020).

168

169

170 **Nanoindentation**

171 Larvae were fixed in 4% PFA and stored in 100% MeOH before rehydration to 30% sucrose in
172 PBS. Samples were submerged in 30% sucrose in PBS, diluted 1:2 in optimum cutting
173 temperature compound (OCT) until they sunk. This solution was refreshed for embedding and
174 samples were flash frozen and sectioned in a coronal orientation using an NX70 Cryostat
175 [ThermoFisher] at a thickness of 10 μ m. Nanoindentation was performed on sections containing
176 the jaw joint and/or Meckel's cartilage using a Chiaro nanoindentation device [Optics11,
177 Amsterdam, The Netherlands]. Sections were kept submerged in PBS at room temperature
178 whilst measurements were taken. A spherical nanoindentation probe with an 8 μ m radius and
179 stiffness of 0.49N/m was used, and tissues were indented to a depth of 1 μ m with velocity of
180 1 μ m s⁻¹, with the tip held at a constant depth for 10s. The collected curves were analysed based
181 on Hertzian contact theory for direct comparison with AFM measurements and the resultant YM
182 E_{hertz} were calculated assuming sample's incompressibility. Nanoindentation was performed
183 across all sections containing the joint or Meckel's cartilage, with one measurement collected
184 per region of interest in each section. The resulting YM were averaged for each region across
185 sections. Nanoindentation was performed on five fish from each of the 1g static and 6g spin
186 groups.

187

188 **Histological staining**

189

190 Fixed samples were processed into paraffin, cut in 5 μ m sections, deparaffinised and stained
191 with Haematoxylin & Eosin (H&E) and Alcian blue, Picosirius Red, Safranin O/Fast Green or
192 Masson's Trichrome. **H&E** **Alcian blue** slides were stained in Erhlic's haematoxylin for 5
193 minutes, rinsed, differentiated in acid alcohol and Scotts water, placed in eosin solution for 10
194 seconds, rinsed and immersed in Alcian blue for 30 minutes. **Picosirius Red** slides were
195 immersed in picosirius red for 1 hour and washed in 2 changes of acidified water. **Safranin**
196 **O/Fast Green** slides were stained with Weigert's iron haematoxylin for 10 minutes, washed for a
197 further 10 minutes, stained with 0.05% fast green solution for 5 minutes, rinsed in 1% acetic
198 acid and immersed in 0.1% Safranin O solution for 5 minutes. **Masson's Trichrome** Sections
199 were re-fixed in Bouins solution, stained in Weigert's iron haematoxylin then Ponceau Fuschin
200 (Masson's) for 5 minutes, rinsed, immersed in phosphomolybdic acid solution and counter

201 stained with Aniline blue both 5 minutes and dipped in 1% acetic acid for 10 seconds. Following
202 staining, all sections were dehydrated sequentially to 100% industrial methylate spirit (IMS),
203 immersed in xylene 3 x 5 minutes and mounted using DPX mountant. Slides stained with
204 Picrosirius red were imaged under polarized light on a Leica DMI6000 inverted epifluorescence
205 microscope, all other slides were imaged on Leica MZ10F stereo microscope.

206

207

208 **Measurement of staining intensity from histology slides**

209

210 To measure the staining intensity of Safranin O and Masson's trichrome, images were opened
211 in Fiji and the segmented line tool was used to draw a line through the ECM surrounding
212 immature and hypertrophic chondrocytes in the jaw region. The plot profile command was then
213 performed to extract the gray value along this line and measurements normalised to the image
214 background to remove white balance discrepancies. This was performed in ten areas of
215 immature and hypertrophic chondrocytes respectively, with measurements recorded from three
216 fish per gravity condition.

217

218 **Cell circularity and area quantification**

219

220 Chondrocyte morphology was measured in Fiji from brightfield images of alcian blue stained
221 lower jaw paraffin sections (5 μ m thick). The polygon selection tool was used to outline
222 chondrocytes at the joint and intercalation zone of the Meckel's cartilage (Figure 2 A), the area
223 and roundness shape descriptors were collected using the measure command. Cells from the
224 middle of the Meckel's cartilage were classified as hypertrophic and cells from the jaw joint and
225 Meckel's symphysis (black asterisk in Figure 2 A) were classified as immature.

226

227 **Jaw measurements**

228

229 Confocal image stacks of the lower jaw immunostained for type II collagen were loaded in to Fiji
230 (Schindelin *et al.*, 2012) and the line tool, followed by the measure command, were used to take
231 length and width measurements (Figure 1 A). 3D jaw renders and joint measurements were
232 executed as previously described in (Elizabeth A. Lawrence *et al.*, 2018) (Figure 1 D) using
233 Amira 6.0 [FEI].

234

235 **Muscle quantifications and calculation of muscle forces**

236

237 Muscle forces for each muscle group were calculated using methodology from (Brunt *et al.*,
238 2016). In brief, muscle fibre number and length was quantified manually in Fiji from confocal
239 images of A4.1025 stained zebrafish and the cross-sectional area of the fibers was calculated
240 using the formula: πr^2 . The radii of the fibres was calculated by taking a measurement across
241 each fibre and dividing it by two. To calculate the cross-sectional area of the whole muscle
242 group, the resulting value was multiplied by the number of muscle fibers. This area was
243 multiplied by the maximal force generated per unit area for larval zebrafish skeletal muscles
244 (40n N/ μm^2 , from (Iorga *et al.*, 2011)) to give the final force value for the muscle.

245

246 **Finite Element Analysis.**

247

248 Finite Element (FE) models of the lower jaw for 1g static and 6g conditions were created from a
249 confocal image stack of a representative experiment specimen. The same cartilage morphology
250 and muscle forces were used for both conditions' models in the absence of significant
251 differences in cartilage and muscle morphology between 1g static and 6g specimens (Figure
252 1A-C, H, H'). The FE meshes were developed and modelled for jaw opening and closing
253 movements as previously published (E.A. Lawrence *et al.*, 2018). Two different versions of the
254 model were created, one for the nanoscale properties derived from AFM and the other using the
255 microscale properties measured by nanoindentation. Relative material properties were derived
256 from AFM and nanoindentation experiments (values used are listed in Table 1). For AFM and
257 nanoindentation experiments separately, values were normalised relative to the 1g static
258 hypertrophic chondrocyte Young's modulus. In both experiments the Young's modulus of the
259 joint interzones were set at 0.025% of the 1g static hypertrophic chondrocyte Young's modulus,
260 a markedly lower value than the chondrocyte cells to enable realistic joint movement, and a
261 Poisson's ratio of 0.495. To reflect the respective experimental Poisson's ratios, in the
262 nanoindentation experiment hypertrophic and immature chondrocytes Poisson's ratios were set
263 at 0.495; in the AFM experiment hypertrophic and immature chondrocytes Poisson's ratios were
264 set at 0.3. All muscle forces were calculated based on cross-sectional area of the anatomical
265 muscles, with forces reduced to 60% of maximal force (to represent jaw respiratory movement).

266

267 **Transmission Electron Microscopy**

268

269 Transmission electron microscopy (TEM) was performed on 5dpf larvae fixed in 2.5%
270 glutaraldehyde in 0.1M sodium cacodylate for 1 hour at RT. These samples were embedded in
271 3% agarose before being osmium/uranyl acetate stained, dehydrated and infiltrated with Epon
272 in a Leica EM TP tissue processor using the standard protocol. Prior to sectioning, samples
273 were laterally embedded in 100% Epon and left to harden at 60°C for two days. These blocks
274 were sectioned at a thickness of 70nm on a Leica EM UC7 RT ultramicrotome using a diamond
275 knife [Diatome]. Sections were dried o/n before staining in uranyl acetate for five minutes
276 followed by dH₂O washes, five minutes in lead citrate and a final dH₂O wash. Sections were
277 imaged on a Tecnai 12 -FEI 120kV BioTwin Spirit Transmission Electron Microscope.

278

279 **Analysis of collagen fibre density from TEM images**

280

281 To analyse collagen fibre density, TEM images were loaded into Fiji and a region of interest
282 (ROI) of 1μm² was drawn in a random location containing ECM. The number of collagen fibres
283 in this ROI was counted using the multipoint tool and this process was repeated for five
284 separate regions per image. Four images were analysed from two separate sections per fish,
285 with the sections originating from one fish per gravity condition.

286

287 **Results**

288

289 **Craniofacial cartilage morphology and musculature are unaffected by hypergravity**

290 Having confirmed there was no delay in larval growth (Singleman and Holtzman, 2014) following
291 hypergravity exposure (Supplementary Figure 1E), we investigated the effect of increased
292 mechanical loading through hypergravity on developing cartilage, using type II collagen
293 immunostaining, and Alcian blue and Alizarin red double staining to visualize morphology
294 (Supplementary Figure 2A, Figure 1A, A', H, H'). These analyses did not reveal significant
295 changes to the overall jaw shape, with jaw length and width not significantly changed in 1g static
296 and 6g fish (Figure 1B, C). Analysis of joint morphology also revealed no significant difference in
297 fish exposed to hypergravity compared to the 1g controls (Figure 1D - G).

298 Given the association of microgravity with muscle loss (Martin, Edgerton and Grindeland, 1988;
299 Caiozzo *et al.*, 1994), we stained larvae with the pan-skeletal myosin marker A4.1025 to
300 visualize muscles in the lower jaw (Figure 1I, I'). From these images we quantified muscle fibre

301 number, length and force, with no significant differences in craniofacial muscle seen between
302 zebrafish incubated in normal gravity and at 6g between 3-5 dpf (Figure 1J, K, L).

303

304 **Material properties are altered in the lower jaw**

305

306 Changes to mechanical loading have been observed to change skeletal stiffness at both at the
307 nano and micro scales (Turko *et al.*, 2017). This led us to investigate the relative material
308 properties of lower jaw cartilage using AFM (Melbourne *et al.*, 2018; Nigmatullin *et al.*, 2018,
309 2019; Swift *et al.*, 2018; Terry *et al.*, 2019; Gubała *et al.*, 2020). Measurements were taken from
310 areas of immature chondrocytes and hypertrophic chondrocytes (location of measurements
311 shown by schematics in Figure 1M, N). In both instances, a positive correlation between the
312 magnitude of gravitational exposure and the measured YM was seen. Fish from 3g and 6g had
313 a significantly higher YM than 1g static or 1g spin fish (Figure 1M,N)), with 6g showing a
314 significant increase in YM compared to 3g fish. This trend represents a stiffening of the cartilage
315 following hypergravity exposure during development.

316

317 Within complex materials, different structures can have a greater influence on stiffness at
318 different length scales. Having used AFM to measure YM at the nano-scale we employed
319 nanoindentation to investigate material properties of lower jaw cartilage at the micro-scale.
320 Measurements from nanoindentation show 6g fish had a significantly higher YM (E_{hertz}) in
321 hypertrophic chondrocytes when compared to 1g static fish. This pattern of increased stiffness
322 was not seen for immature chondrocytes (Figure 1O).

323

324 **Exposure to hypergravity affects chondrocyte maturation and behaviour**

325

326 The impact of hypergravity at a cellular level was evaluated by measuring chondrocyte
327 morphology from Alcian blue stained lower jaw sections (Figure 2A - C). Chondrocyte area was
328 significantly reduced in immature and hypertrophic regions in 6g fish, with immature cells at the
329 joint and Meckel's symphysis showing the largest area reduction (Figure 2B). Immature
330 chondrocytes also showed a significant decrease in circularity (Figure 2C). The regions of most
331 change to cell morphology were co-localised to muscle attachment sites in the mid-Meckel's
332 cartilage and at the jaw joint. This suggests that short exposure to hypergravity alters
333 chondrocyte behaviour, causing cartilage and resulting bones to develop abnormally if
334 maintained in hypergravity for an extended period.

335

336 **Histological staining reveals subtle changes to the ECM surrounding chondrocytes in**
337 **areas of altered cell morphology**

338

339 As increased mechanical loading is associated with higher glycosaminoglycan (GAG) synthesis
340 and decreased extracellular matrix (ECM) secretion (Schröder *et al.*, 2019), we performed
341 wholemount Alcian blue and Alizarin red double staining (Figure 1H, H') and Alcian blue, H & E
342 on sections to visualize GAGs throughout the lower jaw (Figure 2D). From brightfield images,
343 we observed no changes to mineralisation or GAGs at 5dpf (Figure 1H, H', 2D), suggesting
344 secretion of this ECM component is unaffected by altered loading.

345

346 The effect of hypergravity exposure on other ECM components was examined using Safranin O,
347 Masson's trichrome, and picrosirius red staining on sections of the lower jaw including the joint
348 and Meckel's cartilage. Proteoglycan content and mineralisation of the cartilage ECM was
349 visualized with Safranin O/ Fast Green staining which marks the cartilage red, according to the
350 amount of proteoglycan present, and bone in green (Figure 2D'). The intensity of this stain was
351 measured, revealing fish from the 6g condition had a significantly lower staining intensity in
352 regions of immature and hypertrophic chondrocytes than 1g static fish (Figure 2E),
353 corresponding to a reduction in proteoglycan content in the cartilage following hypergravity
354 exposure. This reduction was more pronounced in regions of ECM surrounding immature
355 chondrocytes (Figure 2E). No areas of mineralisation were seen in the stained sections so no
356 information on bone formation could be gathered from this technique.

357

358 Masson's trichrome staining was used to test whether hypergravity impacted collagen content in
359 chondrocyte ECM (Figure 2D''). This stain shows collagen in blue, and measurements of
360 staining intensity showed no significant change to collagen content in the ECM surrounding
361 immature or hypertrophic chondrocytes in 6g fish compared to the ECM in 1g static fish (Figure
362 2F). Alongside measuring total collagen in the ECM through Masson's trichrome, picrosirius red
363 staining was used to assess the balance of type I and type III collagen fibers in the ECM. Under
364 polarized light, ECM surrounding immature and hypertrophic chondrocytes appeared red/orange
365 (Figure 2D'''), indicating a predominance of type I collagen fibres over type III (which would give
366 green birefringence). This was unchanged in zebrafish from the 6g condition (Figure 2D''').

367

368 **Hypergravity causes changes to collagen fibre packing in the ECM**

369

370 To further explore how the cartilage ECM is affected by hypergravity, TEM was carried out on
371 sections of ear cartilage, which are comparable to regions of hypertrophic chondrocytes in the
372 lower jaw where the most significant change to material properties was seen. From the
373 micrographs, subtle changes to the collagen fibre packing were observed (Figure 2G), with
374 fibres appearing closer together in 6g fish. This observation was strengthened by quantification
375 of fibre density, which revealed a trend for increased fibre density in 6g fish (Figure 2H).

376

377 Taken together with histology data, this suggests that hypergravity induces macromolecular
378 changes in the cartilage which give rise to slight changes at the tissue level. If the larvae had
379 been maintained in hypergravity for longer, it is likely that these changes would have become
380 more pronounced, leading to more severe changes to the tissue.

381

382 **Finite Element Analyses reveal altered strain distribution in response to hypergravity 383 exposure**

384

385 To assess whether cell and matrix changes could be correlated with altered strain distribution in
386 the lower jaw, FE models were generated. As no changes in lower jaw morphology or
387 musculature were observed (Figure 1A-C, H, H'), the same volumetric model and muscle forces
388 were used for both gravity conditions. Different normalised material properties from AFM (Figure
389 3A, A') and nanoindentation (Figure 3B, B') were applied to these models (Supplementary Table
390 1). From these models, it can be seen that maximum principal strain is more localised to the
391 joint regions in 6g fish with stiffer cartilage, whereas in 1g fish strain is distributed over a larger
392 area of cartilage elements (Figure 3A-B'). Both methods for obtaining material properties of the
393 cartilage show similar change in strain pattern distribution following hypergravity exposure (from
394 1g static to 6g). Similarly, the pattern of von Mises stress is more evenly distributed throughout
395 the jaw in the 1g static condition, whereas in the 6g condition stress is localised in regions
396 already experiencing high stress, specifically the regions surrounding the joints (Supplementary
397 Figure 3). This pattern is true for both opening and closing movements. The altered patterns of
398 strain observed, in which the largest differences are close to the joint could provide an
399 explanation for the subtle changes to cell maturation, which were more pronounced at the joint,
400 and to changes observed to matrix packing.

401

402

403 **Discussion**

404

405 The impact of microgravity on the musculoskeletal system has been well studied, with exposure
406 to below-Earth gravity linked to muscle loss and decreased bone density. In comparison,
407 relatively little is known about how short-term hypergravity exposure affects the musculoskeletal
408 system. Here, we show that in zebrafish embryos gross cartilage and muscle morphology is
409 unchanged, but cartilage material properties and its resulting biomechanical performance is
410 affected by short-term exposure to hypergravity during development. We also show that
411 hypergravity leads to altered chondrocyte maturation and subtle changes to the surrounding
412 ECM, which may lead to more dramatic changes to the cartilage over time.

413

414 Gravity is important for cartilage health as it provides a loading force essential for cartilage
415 homeostasis and prevention of degenerative diseases such as OA (Penninx *et al.*, 2001; Bader,
416 Salter and Chowdhury, 2011; Musumeci, Szychlinska and Mobasher, 2015; Mellor *et al.*, 2017).
417 Although cartilage morphology and skeletal muscle mass has been shown to be affected by
418 altered loading conditions (Vanwanseele *et al.*, 2003; Hinterwimmer *et al.*, 2004; Liphardt *et al.*,
419 2009; Gao *et al.*, 2018), our data suggest that two days of hypergravity exposure is not sufficient
420 to cause gross morphological changes in larval zebrafish. One explanation for this is the length
421 of exposure being insufficient to induce musculoskeletal remodeling, as previous studies have
422 found that longer exposure to non-Earth gravity leads to more severe musculoskeletal
423 transformations (A LeBlanc *et al.*, 2000; Demontis *et al.*, 2017). Another explanation for the lack
424 of morphological alterations is that the level of hypergravity was not high enough to induce
425 changes. However, it has previously been shown by Aceto *et. al* (Aceto *et al.*, 2015) that
426 exposure to 3g between 5 and 9 dpf is sufficient to induce skeletal changes in zebrafish. This
427 indicates that the age at which the zebrafish are exposed to hypergravity is also crucial (Franz-
428 Odendaal and Edsall, 2018). Thus, we hypothesise that extending the amount of time larvae
429 spend in hypergravity to include later time points key in musculoskeletal development would
430 lead to more dramatic changes.

431

432 The hypothesis that more severe cartilage abnormalities would be seen following a lengthier
433 hypergravity exposure is given weight by increased modulus seen in the matrix of zebrafish
434 exposed to both 3g and 6g, with the largest increase seen in zebrafish subjected to 6g. FE
435 analysis revealed that these altered material properties were sufficient to disturb strain pattern in
436 the lower jaw, with the jaw joint and muscle attachment sites showing most change in the

437 craniofacial cartilage elements. In these areas of altered strain, we observed abnormal
438 chondrocyte maturation, which over time would likely give rise to altered joint shape and
439 cartilage morphology. In conclusion short-term exposure to hypergravity in early development
440 causes changes to ECM content and organisation in zebrafish which could induce more
441 dramatic structural and morphological changes to the musculoskeletal system over extended
442 periods of exposure.

443

444 **Competing interests**

445

446 The authors declare no competing interests.

447

448 **Funding**

449

450 EL and JA received funding from the ESA 'Spin Your Thesis! 2018' program. EL is also funded
451 by the Wellcome Trust Dynamic Molecular Cell Biology PhD programme. JG is funded by a PhD
452 studentship from the Anatomical Society. PeakForce AFM was carried out with equipment
453 funded by EPSRC under Grant "Atoms to Applications"; Grant ref. (EP/K035746/1). CLH is
454 funded by Versus Arthritis Senior Fellowship 21937.

455

456 **Acknowledgements**

457

458 The authors would like to thank Kate Robson-Brown for her invaluable expertise, guidance and
459 backing throughout the project. They would also like to express their gratitude to the ESA
460 Education team, particularly Nigel Savage and Evelien Lageweg, and Alan Dowson at the LDC
461 for their support and advice throughout the 'Spin Your Thesis!' campaign. Finally, they would
462 like to thank David Labonte and Andrea Attipoe for the use of the Chiaro nanoindentation device
463 and for their helpful assistance.

464

465 **References**

466

467 Aceto, J. *et al.* (2015) 'Zebrafish bone and general physiology are differently affected by
468 hormones or changes in gravity', *PLoS ONE*, 10(6), pp. 1–42. doi:
469 10.1371/journal.pone.0126928.

470 Aleshcheva, G. *et al.* (2013) 'Changes in Morphology, Gene Expression and Protein Content in

471 Chondrocytes Cultured on a Random Positioning Machine', *PLoS ONE*. Edited by S. Agarwal,
472 8(11), p. e79057. doi: 10.1371/journal.pone.0079057.

473 Arendt, E. and Dick, R. (1995) 'Knee Injury Patterns Among Men and Women in Collegiate
474 Basketball and Soccer', *The American Journal of Sports Medicine*, 23(6), pp. 694–701. doi:
475 10.1177/036354659502300611.

476 Bader, D. L., Salter, D. M. and Chowdhury, T. T. (2011) 'Biomechanical Influence of Cartilage
477 Homeostasis in Health and Disease', *Arthritis*, 2011, pp. 1–16. doi: 10.1155/2011/979032.

478 Brunt, L. H. *et al.* (2016) 'Building Finite Element Models to Investigate Zebrafish Jaw
479 Biomechanics Video Link', *J. Vis. Exp.*, 54811(11810). doi: 10.3791/54811.

480 Caiozzo, V. J. *et al.* (1994) 'Effect of spaceflight on skeletal muscle: mechanical properties and
481 myosin isoform content of a slow muscle.', *Journal of applied physiology (Bethesda, Md. 1985)*:
482 76(4), pp. 1764–73. doi: 10.1152/jappl.1994.76.4.1764.

483 Chatani, M. *et al.* (2015) 'Microgravity promotes osteoclast activity in medaka fish reared at the
484 international space station', *Scientific Reports*. The Author(s), 5, p. 14172. Available at:
485 <https://doi.org/10.1038/srep14172>.

486 Cvejic, A. *et al.* (2008) 'Analysis of WASp function during the wound inflammatory response -
487 live-imaging studies in zebrafish larvae', *Journal of Cell Science*. doi: 10.1242/jcs.032235.

488 Demontis, G. C. *et al.* (2017) 'Human Pathophysiological Adaptations to the Space
489 Environment.', *Frontiers in physiology*. Frontiers Media SA, 8, p. 547. doi:
490 10.3389/fphys.2017.00547.

491 Fitzgerald, J. *et al.* (2019) 'Articular cartilage and sternal fibrocartilage respond differently to
492 extended microgravity', *npj Microgravity*. Nature Publishing Group, 5(1), p. 3. doi:
493 10.1038/s41526-019-0063-6.

494 Fox, A. J. S., Bedi, A. and Rodeo, S. A. (2009) 'The Basic Science of Articular Cartilage:
495 Structure, Composition, and Function', *Sports Health*. SAGE Publications, 1(6), p. 461. doi:
496 10.1177/1941738109350438.

497 Franz-Odendaal, T. A. and Edsall, S. C. (2018) 'Long-Term Effects of Simulated Microgravity
498 and Vibration Exposure on Skeletal Development in Zebrafish', *Stem Cells and Development*.
499 Mary Ann Liebert Inc., 27(18), pp. 1278–1286. doi: 10.1089/scd.2017.0266.

500 Freed, L. E. *et al.* (1997) 'Tissue engineering of cartilage in space.', *Proceedings of the National
501 Academy of Sciences of the United States of America*. National Academy of Sciences, 94(25),
502 pp. 13885–90. doi: 10.1073/pnas.94.25.13885.

503 Galois, L. *et al.* (2003) 'Moderate-impact exercise is associated with decreased severity of
504 experimental osteoarthritis in rats', *Rheumatology*. Narnia, 42(5), pp. 692–693. doi:

505 10.1093/rheumatology/keg094.

506 Ganse, B. *et al.* (2015) 'Muscular forces affect the glycosaminoglycan content of joint cartilage',
507 *Acta Orthopaedica*, 86(3), pp. 388–392. doi: 10.3109/17453674.2014.989382.

508 Gao, Y. *et al.* (2018) 'Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and
509 Potential Countermeasures.', *Frontiers in physiology*. Frontiers Media SA, 9, p. 235. doi:
510 10.3389/fphys.2018.00235.

511 Gnyubkin, V. (2015) *Effects of continuous and intermittent hypergravity on skeleton*.

512 Gubała, D. *et al.* (2020) 'Multiscale characterisation of single synthetic fibres: Surface
513 morphology and nanomechanical properties', *Journal of Colloid and Interface Science*, 571, pp.
514 398–411. doi: <https://doi.org/10.1016/j.jcis.2020.03.051>.

515 Hammond, C. L. and Schulte-Merker, S. (2009) 'Two populations of endochondral osteoblasts
516 with differential sensitivity to Hedgehog signalling', *Development*, 136(23). doi:
517 10.1242/dev.042150.

518 Hinterwimmer, S. *et al.* (2004) 'Cartilage atrophy in the knees of patients after seven weeks of
519 partial load bearing', *Arthritis & Rheumatism*, 50(8), pp. 2516–2520. doi: 10.1002/art.20378.

520 Iorga, B. *et al.* (2011) 'Micromechanical function of myofibrils isolated from skeletal and cardiac
521 muscles of the zebrafish.', *The Journal of general physiology*. The Rockefeller University Press,
522 137(3), pp. 255–70. doi: 10.1085/jgp.201010568.

523 Karuppal, R. (2017) 'Current concepts in the articular cartilage repair and regeneration.', *Journal
524 of orthopaedics*. Elsevier, 14(2), pp. A1–A3. doi: 10.1016/j.jor.2017.05.001.

525 Klein-Nulend, J. *et al.* (1987) 'Influence of intermittent compressive force on proteoglycan
526 content in calcifying growth plate cartilage in vitro.', *The Journal of biological chemistry*, 262(32),
527 pp. 15490–5. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/3680208> (Accessed: 15
528 November 2019).

529 Kohrt, W. M., Barry, D. W. and Schwartz, R. S. (2009) 'Muscle Forces or Gravity', *Medicine &
530 Science in Sports & Exercise*, 41(11), pp. 2050–2055. doi: 10.1249/MSS.0b013e3181a8c717.

531 Lanyon, L. E. *et al.* (1975) 'Bone Deformation Recorded in vivo from Strain Gauges Attached to
532 the Human Tibial Shaft', *Acta Orthopaedica Scandinavica*. Taylor & Francis, 46(2), pp. 256–
533 268. doi: 10.3109/17453677508989216.

534 Lawrence, E. A. *et al.* (2018) 'The mechanical impact of *col11a2* loss on joints; *col11a2* mutant
535 zebrafish show changes to joint development and function, which leads to early-onset
536 osteoarthritis', *Philosophical Transactions of the Royal Society B: Biological Sciences*. The
537 Royal Society, 373(1759), p. 20170335. doi: 10.1098/rstb.2017.0335.

538 Lawrence, E. A. *et al.* (2018) 'The mechanical impact of *col11a2* loss on joints; *col11a2* mutant

539 zebrafish show changes to joint development and function, which leads to early-onset
540 osteoarthritis', *Philosophical Transactions of the Royal Society B: Biological Sciences*,
541 373(1759). doi: 10.1098/rstb.2017.0335.

542 LeBlanc, A. *et al.* (2000) 'Bone mineral and lean tissue loss after long duration space flight.',
543 *Journal of musculoskeletal & neuronal interactions*, 1(2), pp. 157–60. Available at:
544 <http://www.ncbi.nlm.nih.gov/pubmed/15758512> (Accessed: 5 November 2019).

545 LeBlanc, A. *et al.* (2000) 'Muscle volume, MRI relaxation times (T2), and body composition after
546 spaceflight', *Journal of Applied Physiology*, 89(6), pp. 2158–2164. doi:
547 10.1152/jappl.2000.89.6.2158.

548 LeBlanc, A. D. *et al.* (2007) 'Skeletal responses to space flight and the bed rest analog: a
549 review.', *Journal of musculoskeletal & neuronal interactions*, 7(1), pp. 33–47. Available at:
550 <http://www.ncbi.nlm.nih.gov/pubmed/17396004> (Accessed: 19 September 2019).

551 LeBlanc, A., Shackelford, L. and Schneider, V. (1998) 'Future human bone research in space.',
552 *Bone*, 22(5 Suppl), p. 113S–116S. doi: 10.1016/s8756-3282(98)00013-1.

553 Lee, D. A. and Bader, D. L. (1997) 'Compressive strains at physiological frequencies influence
554 the metabolism of chondrocytes seeded in agarose', *Journal of Orthopaedic Research*, 15(2),
555 pp. 181–188. doi: 10.1002/jor.1100150205.

556 Levy, A. S. *et al.* (1996) 'Chondral Delamination of the Knee in Soccer Players', *The American
557 Journal of Sports Medicine*, 24(5), pp. 634–639. doi: 10.1177/036354659602400512.

558 Liphardt, A.-M. *et al.* (2009) 'Vibration training intervention to maintain cartilage thickness and
559 serum concentrations of cartilage oligometric matrix protein (COMP) during immobilization',
560 *Osteoarthritis and Cartilage*, 17(12), pp. 1598–1603. doi: 10.1016/j.joca.2009.07.007.

561 Loening, A. M. *et al.* (2000) 'Injurious Mechanical Compression of Bovine Articular Cartilage
562 Induces Chondrocyte Apoptosis', *Archives of Biochemistry and Biophysics*. Academic Press,
563 381(2), pp. 205–212. doi: 10.1006/ABBI.2000.1988.

564 Van Loon, J. J. W. A. *et al.* (1995) 'Decreased mineralization and increased calcium release in
565 isolated fetal mouse long bones under near weightlessness', *Journal of Bone and Mineral
566 Research*. John Wiley & Sons, Ltd, 10(4), pp. 550–557. doi: 10.1002/jbmr.5650100407.

567 Van Loon, J. J. W. A. *et al.* (2008) 'The large diameter centrifuge, LDC, for life and physical
568 sciences and technology', *European Space Agency, (Special Publication) ESA SP*, 663
569 SP(June).

570 Van Loon, J. (2007) 'The Gravity Environment in Space Experiments', *Biology in Space and Life
571 on Earth*, pp. 17–32.

572 Manninen, P. (2001) 'Physical exercise and risk of severe knee osteoarthritis requiring

573 arthroplasty', *Rheumatology*, 40(4), pp. 432–437. doi: 10.1093/rheumatology/40.4.432.

574 Martin, T. P., Edgerton, V. R. and Grindeland, R. E. (1988) 'Influence of spaceflight on rat
575 skeletal muscle.', *Journal of applied physiology (Bethesda, Md. 1985)*, 65(5), pp. 2318–25.
576 doi: 10.1152/jappl.1988.65.5.2318.

577 Maupin, K. A. *et al.* (2019) 'Skeletal adaptations in young male mice after 4 weeks aboard the
578 International Space Station', *npj Microgravity*. Nature Publishing Group, 5(1), p. 21. doi:
579 10.1038/s41526-019-0081-4.

580 Meireles, S. *et al.* (2017) 'Medial knee loading is altered in subjects with early osteoarthritis
581 during gait but not during step-up-and-over task.', *PLoS one*. Public Library of Science, 12(11),
582 p. e0187583. doi: 10.1371/journal.pone.0187583.

583 Melbourne, L. A. *et al.* (2018) 'The importance of wave exposure on the structural integrity of
584 rhodoliths', *Journal of Experimental Marine Biology and Ecology*, 503, pp. 109–119. doi:
585 <https://doi.org/10.1016/j.jembe.2017.11.007>.

586 Mellor, L. F. *et al.* (2017) 'Comparison of Simulated Microgravity and Hydrostatic Pressure for
587 Chondrogenesis of hASC', *Aerospace Medicine and Human Performance*, 88(4), pp. 377–384.
588 doi: 10.3357/AMHP.4743.2017.

589 Musumeci, G., Szychlinska, M. A. and Mobasheri, A. (2015) 'Age-related degeneration of
590 articular cartilage in the pathogenesis of osteoarthritis: molecular markers of senescent
591 chondrocytes.', *Histology and histopathology*, 30(1), pp. 1–12. doi: 10.14670/HH-30.1.

592 Nigmatullin, R. *et al.* (2018) 'Mechanically Robust Gels Formed from Hydrophobized Cellulose
593 Nanocrystals', *ACS Applied Materials & Interfaces*. American Chemical Society, 10(23), pp.
594 19318–19322. doi: 10.1021/acsami.8b05067.

595 Nigmatullin, R. *et al.* (2019) 'Thermosensitive supramolecular and colloidal hydrogels via self-
596 assembly modulated by hydrophobized cellulose nanocrystals', *Cellulose*, 26(1), pp. 529–542.
597 doi: 10.1007/s10570-018-02225-8.

598 Otterness, I. G. *et al.* (1998) 'Exercise protects against articular cartilage degeneration in the
599 hamster', *Arthritis & Rheumatism*, 41(11), pp. 2068–2076. doi: 10.1002/1529-
600 0131(199811)41:11<2068::AID-ART23>3.0.CO;2-L.

601 Patwari, P. *et al.* (2004) 'Ultrastructural quantification of cell death after injurious compression of
602 bovine calf articular cartilage.', *Osteoarthritis and cartilage*. Elsevier, 12(3), pp. 245–52. doi:
603 10.1016/j.joca.2003.11.004.

604 Penninx, B. W. J. H. *et al.* (2001) 'Physical Exercise and the Prevention of Disability in Activities
605 of Daily Living in Older Persons With Osteoarthritis', *Archives of Internal Medicine*, 161(19), p.
606 2309. doi: 10.1001/archinte.161.19.2309.

607 Reddi, A. H. (2001) 'Bone Morphogenetic Proteins: From Basic Science to Clinical Applications',
608 *The Journal of Bone and Joint Surgery-American Volume*, 83, pp. S1-1–S1–6. doi:
609 10.2106/00004623-200100001-00001.

610 Russo, C. R. and MD (2009) 'The effects of exercise on bone. Basic concepts and implications
611 for the prevention of fractures.', *Clinical cases in mineral and bone metabolism*: the official
612 journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases. CIC
613 Edizioni Internazionali, 6(3), pp. 223–8. Available at:
614 <http://www.ncbi.nlm.nih.gov/pubmed/22461250> (Accessed: 13 June 2019).

615 Schindelin, J. et al. (2012) 'Fiji: an open-source platform for biological-image analysis.', *Nature
616 methods*. NIH Public Access, 9(7), pp. 676–82. doi: 10.1038/nmeth.2019.

617 Schröder, A. et al. (2019) 'Impact of Mechanical Load on the Expression Profile of Synovial
618 Fibroblasts from Patients with and without Osteoarthritis', *International Journal of Molecular
619 Sciences*. Multidisciplinary Digital Publishing Institute (MDPI), 20(3). doi:
620 10.3390/IJMS20030585.

621 Sharma, G., Saxena, R. K. and Mishra, P. (2007) 'Differential effects of cyclic and static
622 pressure on biochemical and morphological properties of chondrocytes from articular cartilage',
623 *Clinical Biomechanics*, 22(2), pp. 248–255. doi: 10.1016/j.clinbiomech.2006.09.008.

624 Shelton, J. C., Bader, D. L. and Lee, D. A. (2003) 'Mechanical Conditioning Influences the
625 Metabolic Response of Cell-Seeded Constructs', *Cells Tissues Organs*, 175(3), pp. 140–150.
626 doi: 10.1159/000074630.

627 Singleman, C. and Holtzman, N. G. (2014) 'Growth and maturation in the zebrafish, *Danio rerio*:
628 a staging tool for teaching and research.', *Zebrafish*. Mary Ann Liebert, Inc., 11(4), pp. 396–406.
629 doi: 10.1089/zeb.2014.0976.

630 Soltz, M. A. et al. (2000) 'Functional Tissue Engineering of Articular Cartilage Through Dynamic
631 Loading of Chondrocyte-Seeded Agarose Gels', *Journal of Biomechanical Engineering*, 122(3),
632 p. 252. doi: 10.1115/1.429656.

633 Souza, R. B. et al. (2012) 'Effects of Unloading on Knee Articular Cartilage T1rho and T2
634 Magnetic Resonance Imaging Relaxation Times: A Case Series', *Journal of Orthopaedic &
635 Sports Physical Therapy*, 42(6), pp. 511–520. doi: 10.2519/jospt.2012.3975.

636 Swift, T. A. et al. (2018) 'Surface functionalisation significantly changes the physical and
637 electronic properties of carbon nano-dots', *Nanoscale*. The Royal Society of Chemistry, 10(29),
638 pp. 13908–13912. doi: 10.1039/C8NR03430C.

639 Terry, C. et al. (2019) 'Structural features distinguishing infectious ex vivo mammalian prions
640 from non-infectious fibrillar assemblies generated in vitro', *Scientific Reports*, 9(1), p. 376. doi:

641 10.1038/s41598-018-36700-w.

642 Torzilli, P. A. *et al.* (1999) 'Effect of Impact Load on Articular Cartilage: Cell Metabolism and
643 Viability, and Matrix Water Content', *Journal of Biomechanical Engineering*, 121(5), p. 433. doi:
644 10.1115/1.2835070.

645 Turko, A. J. *et al.* (2017) 'Skeletal stiffening in an amphibious fish out of water is a response to
646 increased body weight', *Journal of Experimental Biology*. Company of Biologists Ltd, 220(20),
647 pp. 3621–3631. doi: 10.1242/jeb.161638.

648 Ulbrich, C. *et al.* (2010) 'Characterization of Human Chondrocytes Exposed to Simulated
649 Microgravity', *Cellular Physiology and Biochemistry*, 25(4–5), pp. 551–560. doi:
650 10.1159/000303059.

651 Usui, T. *et al.* (2003) 'Measurement of mechanical strain on mandibular surface with mastication
652 robot: Influence of muscle loading direction and magnitude', *Orthodontics and Craniofacial
653 Research*. Wiley-Blackwell, 6(SUPPL1), pp. 163–167. doi: 10.1034/J.1600-0544.2003.250.X.

654 Vanwanseele, B. *et al.* (2003) 'Longitudinal analysis of cartilage atrophy in the knees of patients
655 with spinal cord injury', *Arthritis & Rheumatism*, 48(12), pp. 3377–3381. doi: 10.1002/art.11367.

656 Vico, L. *et al.* (2000) 'Effects of long-term microgravity exposure on cancellous and cortical
657 weight-bearing bones of cosmonauts.', *Lancet (London, England)*, 355(9215), pp. 1607–11. doi:
658 10.1016/s0140-6736(00)02217-0.

659 Walker, M. B. and Kimmel, C. B. (2007) 'A two-color acid-free cartilage and bone stain for
660 zebrafish larvae', *Biotech Histochem*, 82(1), pp. 23–28. doi: 10.1080/10520290701333558.

661 Wehland, M. *et al.* (2015) 'Differential gene expression of human chondrocytes cultured under
662 short-term altered gravity conditions during parabolic flight maneuvers', *Cell Communication
663 and Signaling*. BioMed Central, 13(1), p. 18. doi: 10.1186/s12964-015-0095-9.

664 Westerfield, M. (2000) *The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (danio
665 rerio)*. 4th ed. University of Oregon Press.

666 Willey, J. S. *et al.* (2016) 'Spaceflight-Relevant Challenges of Radiation and/or Reduced Weight
667 Bearing Cause Arthritic Responses in Knee Articular Cartilage', *Radiation Research*, 186(4), pp.
668 333–344. doi: 10.1667/RR14400.1.

669 Yokota, H., Leong, D. J. and Sun, H. B. (2011) 'Mechanical Loading: Bone Remodeling and
670 Cartilage Maintenance', *Current Osteoporosis Reports*, 9(4), pp. 237–242. doi: 10.1007/s11914-
671 011-0067-y.

672 Zhang, X. *et al.* (2003) 'The effects of simulated microgravity on cultured chicken embryonic
673 chondrocytes', *Advances in Space Research*, 32(8), pp. 1577–1583. doi: 10.1016/S0273-
674 1177(03)90398-X.

675

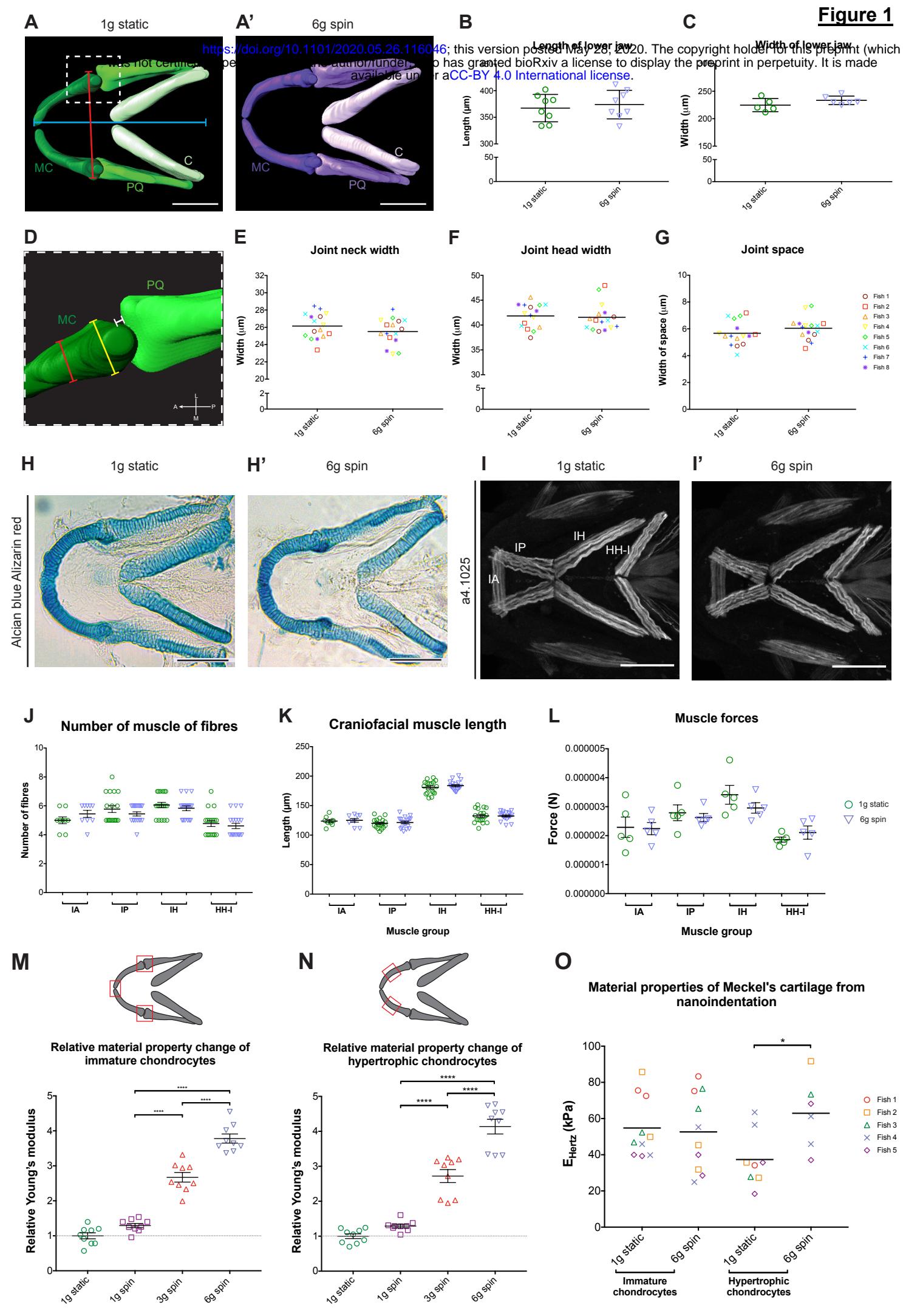
676 **Figure Legends**

677

678 **Figure 1: Lower jaw morphology and musculature are unchanged following hypergravity**
679 **exposure, but changes to cartilage material properties are observed.** (A, A') 3D surface
680 renders from confocal image stacks of lower jaw cartilage in ventral orientation from 1g static
681 (A) and 6g (A') zebrafish at 5dpf (MC = Meckel's cartilage, PQ = palatoquadrate, C =
682 ceratohyal). Scale bar: 100 μ m. (B, C) Quantification of lower jaw length (B) and width (C).
683 Location of measurements shown by red (width) and blue (length) line in (A) (n=8 for all,
684 different symbols = individual fish). (D) Close-up image of jaw joint from 1g static 3D render,
685 position in lower jaw shown by white dashed box in (A). Orientation compass: A, anterior; L,
686 lateral; M, medial; P, posterior. (E- G) Quantification of joint neck (E) and joint head (F) width,
687 and joint space (G), location of measurements shown in (D), red line = joint neck, yellow line =
688 joint head, white line = joint space (n=8 for all). (H, H') Brightfield images of Alcian blue Alizarin
689 red stained lower jaws from 1g static (H) and 6g (H') conditions. Scale bar = 100 μ m. (I, I')
690 Maximum projections of ventral confocal image stacks from 5dpf 1g static (I) and 6g (I')
691 zebrafish immunostained for myosin (A4.1025) (IA = Intermandibularis anterior, IP =
692 Intermandibularis posterior, IH = Interhyoideus, HH-I = Hyohyoideus inferior). Scale bar =
693 100 μ m. (J, K) Quantification muscle fibre number (J) and length (K) measured from confocal
694 image stacks. Location of muscle groups shown in (I). (L) Quantification of craniofacial muscle
695 forces. (M, N) Relative YM values from AFM for immature (M) and hypertrophic (N)
696 chondrocytes from 1g static, 1g, 3g and 6g zebrafish (n=3 for all). Location of measurements
697 taken shown in schematic above graphs. (O) Material properties determined by nanoindentation
698 in 1g static and 6g zebrafish. Data is mean with s.e.m. (E-G show mean with no s.e.m.),
699 D'Agostino and Pearson test performed for all data, followed by student's unpaired t-test in B, C,
700 E, F and G. One-way ANOVA performed within muscle groups in J, K and L and in M and N.
701 Mann-Whitney u-test in O. * p \leq 0.05, ** p \leq 0.01, *** p \leq 0.001, **** p \leq 0.0001.

702

703

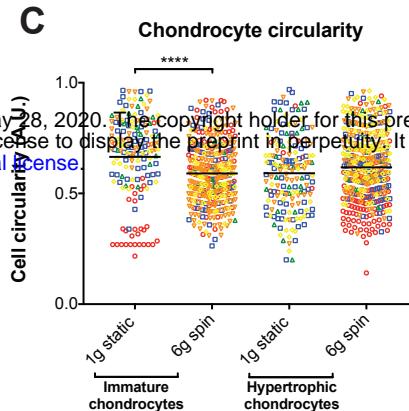
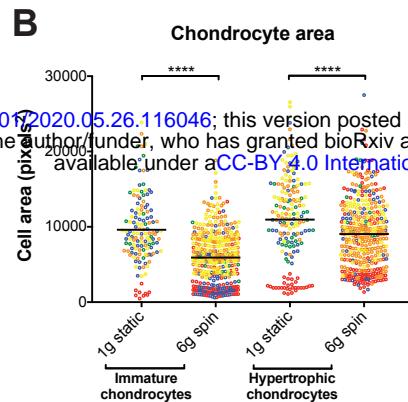

704 **Figure 2: Subtle changes to chondrocytes, and their surrounding ECM occur in areas of**
705 **altered strain.** (A) Representative image with chondrocytes included in area and circularity
706 measurements outlined in yellow. Black asterisk = Meckel's symphysis. (B, C) Quantification of
707 chondrocyte area (B) and circularity (C) (n=5 for all, colours = individual fish). (D-D'') Alcian
708 blue, haematoxylin and eosin (D); Safranin O and fast green, (D'); Masson's trichrome (D''); and

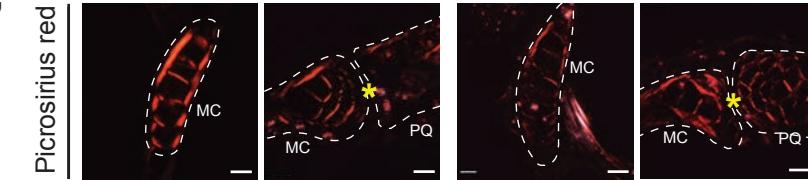
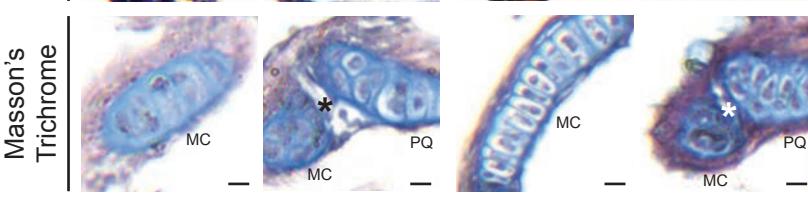
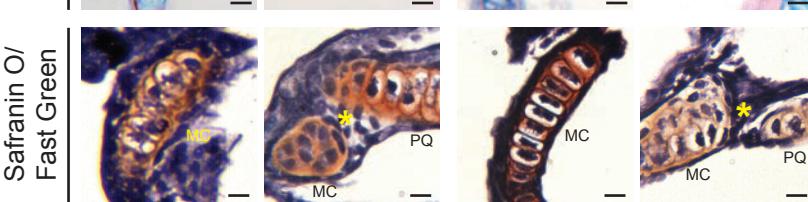
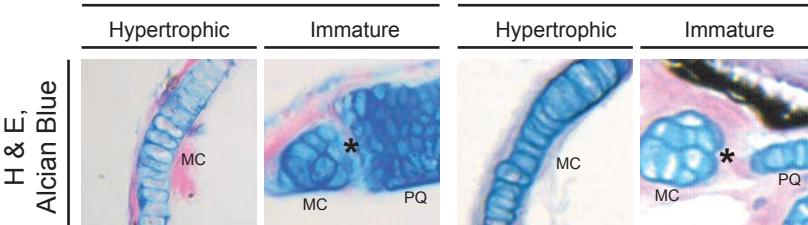
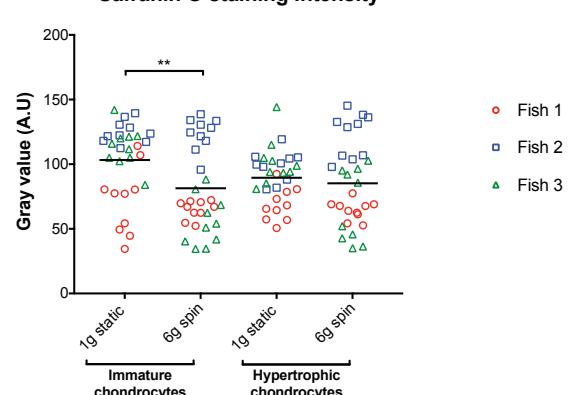
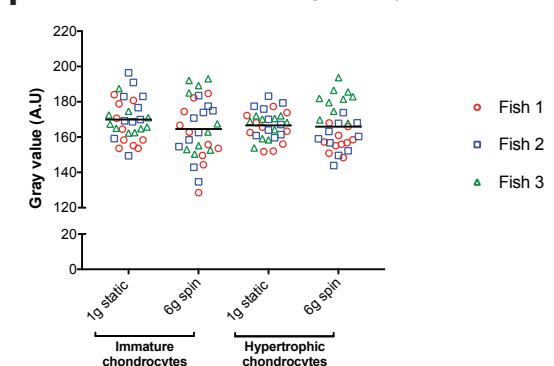
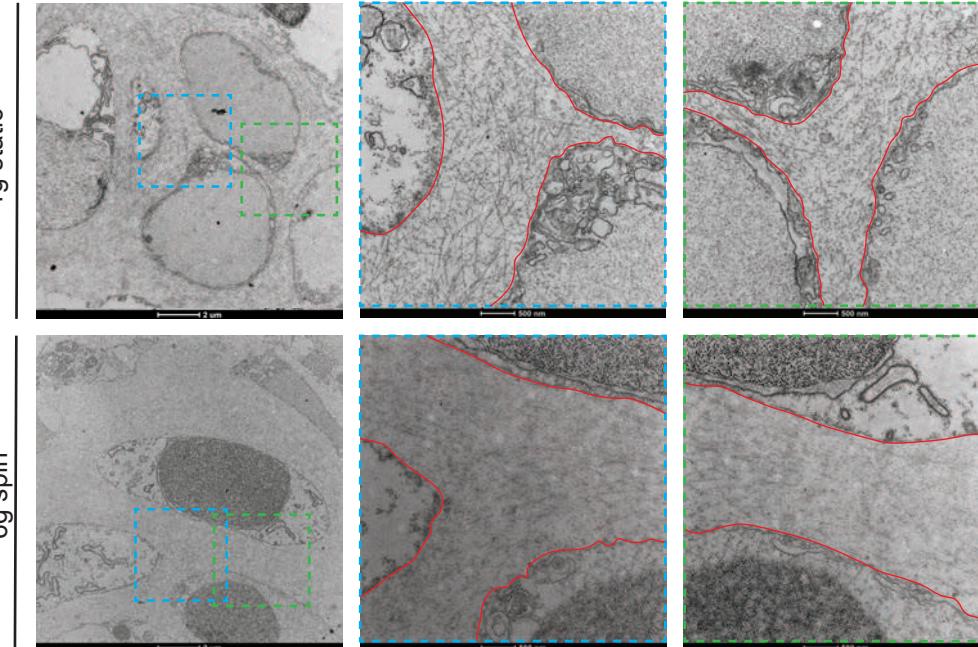
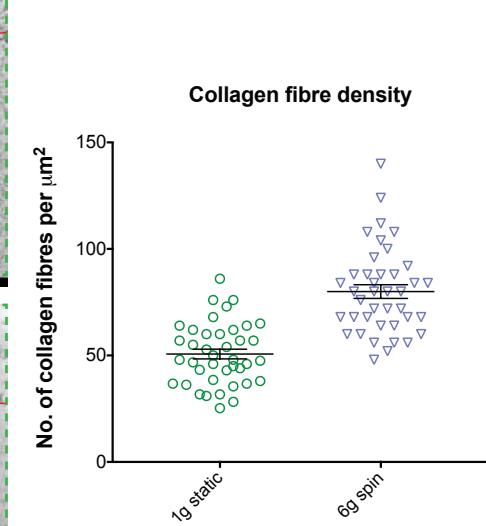
709 picrosirius red (D'') stained ventral sections in 1g static and 6g fish. Asterisk = centre of joint,
710 dotted line in (D'') = outline of cartilage element from section. Scale bar = 10 μ m. MC = Meckel's
711 cartilage, PQ = palatoquadrate, C = ceratohyal. (E, F) Quantification of Safranin O (E) and
712 Masson's trichrome (F) staining intensity. (G) Electron micrographs of hypertrophic
713 chondrocytes in 1g static and 6g zebrafish. Dashed areas = higher magnification images
714 displayed in the centre and to the right of the panel, red lines = chondrocyte borders. Scale bars
715 are shown below each image. (H) Quantification of collagen fibre density in the ECM of 1g static
716 and 6g fish (n = 1 for both). All data is mean with s.e.m. D'Agostino and Pearson normality test
717 performed in B, C, E and F: followed by Mann-Whitney u-test in B and C, and student's
718 unpaired t-test in E and F. * p \leq 0.05, ** p \leq 0.01, *** p \leq 0.001, **** p \leq 0.0001.
719

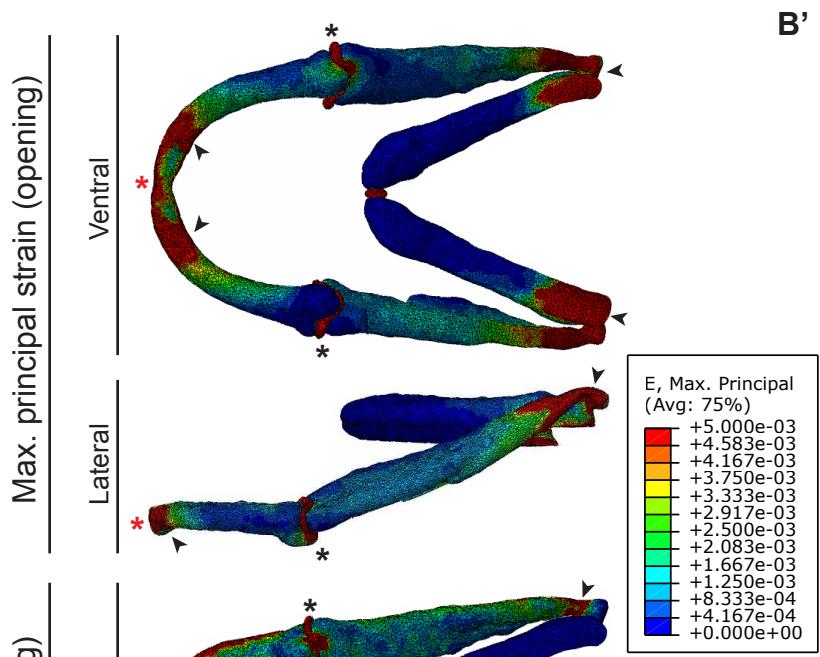
720 **Figure 3: Altered ECM characteristics could result from altered strain distribution in the**
721 **lower jaw following hypergravity exposure (A,A')** FE models of maximum principal strain
722 incorporating relative material property values from AFM in 1g static (A) and 6g zebrafish (A').
723 (B,B') FE models of maximum principal strain incorporating relative material property values
724 from nanoindentation in 1g static (B) and 6g zebrafish (B'). Black arrowheads = areas of high
725 strain; black asterisks = jaw joints; red asterisks = Meckel's symphysis. Ventral and lateral views
726 shown for opening step in both gravity conditions.

727
728 **Table 1:** Actual and relative material property values of immature and hypertrophic
729 chondrocytes from AFM and nanoindentation which were used for FE models. Values represent
730 the mean measurement across samples and the figure number of the corresponding FE model
731 is shown in the right-hand column.
732

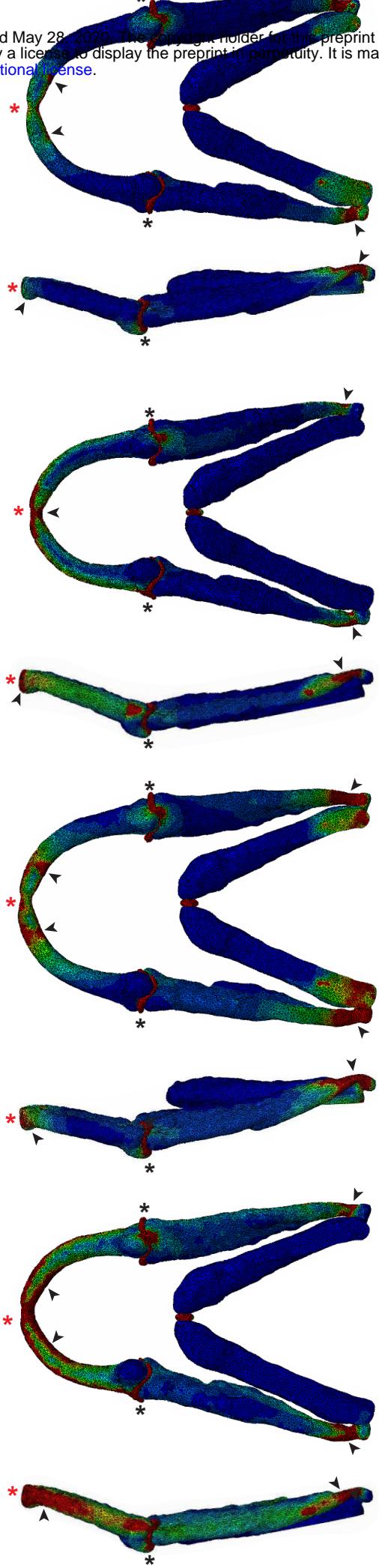
733 **Table 2:** Muscle forces used for FE model generation. Values for 1g static and 6g spin fish
734 represent 60% of the maximum muscle force calculated for each muscle group in Figure 1 L
735 with the exception of the adductor mandibulae.
736
737









Figure 2**A** Meckel's cartilage Jaw joint**D** 1g static 6g spin**E Safranin O staining intensity****F Masson's trichrome staining intensity****G** 1g static 6g spin**H**


Figure 3

A'


6g spin

1g static

FE models with material property values from AFM

B'

Gravity condition	Method	Hypertrophic chondrocytes		Immature chondrocytes		Figure no. of corresponding model
		Actual material property value	Relative material property value	Actual material property value	Relative material property value	
1g static	AFM	7.7 MPa	1	4.2 MPa	0.51968	Figure 3 A
	Nanoindentation	37.39 kPa	1	54.8 kPa	1.46563	Figure 3 B
6g spin	AFM	31.0 MPa	4.13444	15.2 MPa	1.99503	Figure 3 A'
	Nanoindentation	62.9 kPa	1.68227	52.63 kPa	1.407597	Figure 3 B'

Muscle	Muscle forces (N)	
	1g static	6g spin
Intermandibularis anterior	1.37E-06	1.35E-06
Intermandibularis posterior/ Interhyoideus (average of both)	1.86E-06	1.68E-06
Adductor mandibulae	2.57E-06	2.57E-06