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Abstract: 1 

Founder population size, demographic changes (eg. population bottlenecks or rapid 2 

expansion) can lead to variation in recombination rates across different populations. 3 

Previous research has shown that using population-specific reference panels has a 4 

significant effect on downstream population genomic analysis like haplotype phasing, 5 

genotype imputation and association, especially in the context of population isolates. 6 

Here, we developed a high-resolution recombination rate mapping at 10kb and 50kb 7 

scale using high-coverage (20-30x) whole-genome sequenced 55 family trios from 8 

Finland and compared it to recombination rates of non-Finnish Europeans (NFE). We 9 

tested the downstream effects of the population-specific recombination rates in 10 

statistical phasing and genotype imputation in Finns as compared to the same analyses 11 

performed by using the NFE-based recombination rates. We found that Finnish 12 

recombination rates have a moderately high correlation (Spearman’s ρ =0.67-0.79) with 13 

NFE, although on average (across all autosomal chromosomes), Finnish rates 14 

(2.268±0.4209 cM/Mb) are 12-14% lower than NFE (2.641±0.5032 cM/Mb). Finnish 15 

recombination map was found to have no significant effect in haplotype phasing 16 

accuracy (switch error rates ~ 2%) and average imputation concordance rates (97-98% 17 

for common, 92-96% for low frequency and 78-90% for rare variants). Our results 18 

suggest that downstream population genomic analyses like haplotype phasing and 19 

genotype imputation mostly depend on population-specific contexts like appropriate 20 

reference panels and their sample size, but not on population-specific recombination 21 

maps or effective population sizes. Currently, available HapMap recombination maps 22 

seem robust for population-specific phasing and imputation pipelines, even in the 23 

context of relatively isolated populations like Finland. 24 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.20.106831doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.106831
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Keywords: recombination, phasing, imputation, Finland, population genomics 25 

1. Introduction: 26 

Recombination is not uniform across the human genome with large areas having lower 27 

recombination rates, so-called ‘coldspots’, which are then interspersed by shorter 28 

regions marked by a high recombinational activity called ‘hotspots’ [1]. With long 29 

chunks of human genome existing in high linkage disequilibrium, LD [2], and organised 30 

in the form of ‘haplotype blocks’, the ‘coldspots’ tend to coincide with such regions of 31 

high LD [3].  32 

Direct estimation methods of recombination are quite time-consuming, and evidence 33 

has suggested that they do not easily scale up to genome-wide, fine-scale 34 

recombinational variation estimation [4]. A less time-consuming but computationally 35 

intensive alternative is to use the LD patterns surrounding the SNPs [5]. Such methods 36 

have been used in the past decade or so, to create fine-scale recombination maps [6]. 37 

Besides the International HapMap project that focused on capturing common variants 38 

and haplotypes in diverse populations, international  WGS-based collaborations like 39 

1000 Genomes Project, provided genetic variation data for 20 worldwide populations 40 

[7]. This led to further refinement of the recombination maps coupled with 41 

methodological advances of using coalescent methods for recombination rate  [8, 9]. 42 

With the rise of international collaborative projects, it was realised that founder 43 

populations can often have very unique LD patterns  [10], subsequently also displaying 44 

unique  increased genetics-driven health risks  [11], suggesting that population-specific 45 

reference datasets should be used to leverage the LD patterns to better detect disease 46 

variants in downstream genetic analysis  [12].  Genomic analysis methods like 47 
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haplotype phasing and imputing genotypes require recombination maps and other 48 

population genetic parameters as input to obtain optimal results  [13, 14, 15, 16] 49 

In theis study, we set to test this by 1) estimating recombination rates along the genome 50 

in Finnish population using ~55 families of whole-genome sequenced (20-30x) Finns, 51 

2) comparing these rates to some other European populations, and 3) comparing the 52 

effect of using Finnish recombination rate estimates and cosmopolitan estimates in 53 

phasing and imputation errors in Finnish samples. 54 

2. Materials & Methods: 55 

2.1 Datasets used: 56 

Finnish Migraine Families Collection  57 

Whole-genome sequenced trios (n = 55) consisting of the parent-offspring combination 58 

were drawn from a large Finnish migraine families collection consisting of 1,589 59 

families totalling 8,319 individuals [17].  The trios were used for the recombination map 60 

construction using LDHAT version 2. The families were collected over 25 years from 61 

various headache clinics in Finland (Helsinki, Turku, Jyväskylä, Tampere, Kemi, and 62 

Kuopio) and via advertisements in the national migraine patient organisation web page 63 

(https://migreeni.org/). The families consist of different pedigree sizes from small to 64 

large (1-5+ individuals). Of the 8319 individuals, 5317 have a confirmed migraine 65 

diagnosis based on the third edition of the established International Classification for 66 

Headache Disorders (ICHD-3) criteria  [18]. 67 

EUFAM cohort 68 

To check the phasing accuracy of our Finnish recombination map, we used an 69 

independently sourced 49 trios from the European Multicenter Study on Familial 70 

Dyslipidemias in Patients with Premature Coronary Heart Disease (EUFAM). Finnish 71 
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familial combined hyperlipidemia (FCH) families were identified from patients initially 72 

admitted to hospitals with premature cardiovascular heart disease (CHD) diagnosis who 73 

also had elevated levels of total cholesterol (TC), triglycerides (TG) or both in the ≥ 74 

90th Finnish population percentile. Those families who had at least one additional first-75 

degree relative also affected with hyperlipidemia were also included in the study apart 76 

from individuals with elevated levels of TG. [19, 20, 21]. 77 

FINRISK cohort 78 

The imputation accuracy of the Finnish and previously published HapMap based 79 

recombination maps  [8, 9] was subsequently tested on an independent FINRISK 80 

CoreExome chip dataset consisting of 10,481 individuals derived from the national-81 

level FINRISK cohort. Primarily, it comprises of respondents of representative, cross-82 

sectional population surveys that are conducted once every 5 years since 1972 to get a 83 

national assessment of various risk factors of chronic diseases and other health 84 

behaviours among the working-age population drawn from 3 to 4 major cities in 85 

Finland  [22]. 86 

FINNISH reference panel cohort 87 

The whole-genome sequenced samples used were obtained from PCR-free methods and 88 

PCR-amplified methods, which was followed by sequencing on a Illumina HiSeq X 89 

platform with a mean depth of ~30×. The obtained reads were then aligned to the 90 

GRCh37 (hg19) human reference genome assembly using BWA-MEM. Best practice 91 

guidelines from Genome Analysis Toolkit (GATK) were used to process the BAM files 92 

and variant calling. Several criteria were used in this stage for sample exclusion: 93 

relatedness (identity-by-descent (IBD) > 0.1), sex mismatches, among several others. 94 

Furthermore, samples were filtered based on other criteria such as: non-reference 95 
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variants, singletons, heterozygous/homozygous variants ratio, insertion/deletion ratio 96 

for novel indels, insertion/deletion ratio for indels observed in dbSNP, and 97 

transition/transversion ratio. 98 

After this stage, some exclusion criteria were applied to set some variants as missing: 99 

GQ < 20, phred-scaled genotype likelihood of reference allele < 20 for heterozygous 100 

and homozygous variant calls, and allele balance <0.2 or >0.8 for heterozygous calls. A 101 

truth sensitivity percentage threshold of 99.8% for SNVs and of 99.9% for indels was 102 

used based on the GATK Variant Quality Score Recalibration (VQSR) to filter variants 103 

with, quality by depth (QoD) < 2 for SNVs and < 3 for indels, call rate < 90%, and 104 

Hardy-Weinberg equilibrium (HWE) p-value < 1×10-9. Some other variants like 105 

monomorphic, multi-allelic and low-complexity regions  [23] were further excluded.  106 

The final reference dataset used in this study for imputation consisted of high coverage 107 

(20-30x) whole-genome sequence-based reference panel of 2690 individuals from the 108 

SISu project (Sequencing Initiative Suomi, http://www.sisuproject.fi/,  [24]). 109 

2.2 Recombination map construction: 110 

Coalescent-based fine-scale recombination map construction  [8] is greatly eased by 111 

using trios which provide more accurate haplotype phasing resolution  [25]. Hence, we 112 

used trio data (n=55, 110 independent parents) from the Finnish Migraine Families 113 

Cohort described above. These were filtered primarily using VCFtools  [26] and custom 114 

R scripts. Firstly, sites were thinned with within 15bp of each other such that only one 115 

site remained followed by a filtering step of removing variants with a minor allele 116 

frequency of <5%  [27]. The resultant data were then phased using family-aware 117 

method of SHAPEIT  [28] using the standard HapMap recombination map  [8, 9], 118 

which was then split into segments of ~10000 SNPs with a 1000 SNP overhang on each 119 
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side of the segments. LDhat version 2 was run for 107 iterations with a block penalty of 120 

5, every 5000 iterations of them of which the first 10% observations were discarded  [8, 121 

29]. The CEU based maps, used here for comparison, were obtained similarly using 122 

LDhat  [29]. 123 

However, LDHat is computationally intensive, and calculations suggest that the 1000 124 

Genomes OMNI data set  [30] would be too much computationally intensive to 125 

complete  [31], hence limiting the maximum number of haplotypes which could be 126 

used.  127 

To overcome this and make the recombination map independent of the underlying 128 

methodology, we used a machine learning method implemented in FastEPRR [31, 32]. 129 

It supports the use of larger sample sizes, than LDHat and the recombination estimates 130 

for sample sizes > 50, yields smaller variance than LDHat based estimates  [31]. The 131 

method was then applied to each autosome with overlapping sliding windows (i.e., 132 

window size, 50 kb and step length, 25 kb) under default settings for diploid organisms. 133 

As seen in  [31] both methods produce similar estimates, with only variance of the 134 

estimate of mean being different.  135 

The output of LDHat and FastEPRR is in terms of population recombination rate (p) 136 

and to convert them into per-generational rate (r) used in phasing/imputation algorithms 137 

we used optimal effective population size values derived from our testing (as explained 138 

in the Supplementary Text). The estimates from LDHat and FastEPRR were then 139 

averaged, to obtain a new combined estimate with the lowest variance amongst all the 140 

three  [31].  141 

 2.3 Phasing and imputation accuracy 142 
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To test whether the usage of different recombination maps affects the efficiency of 143 

haplotype phasing and imputation , we used the aforesaid Finnish genotype data to 144 

evaluate: (i) switch error rates across all chromosomes and (ii) imputation concordance 145 

rates for chromosome 20.  146 

2.3.1 Phasing Accuracy 147 

The gold standard method to estimate haplotype phasing accuracy is to count the 148 

number of switches (or recombination events) needed between the computationally 149 

phased dataset and the true haplotypes  [33].The number of such switches divided by 150 

the number of all possible switches is called switch error rate (SER).  151 

For testing the influence of recombination maps on phasing accuracy, we used three 152 

different recombination maps: HapMap, fine-scale Finnish recombination map and a 153 

constant background recombination rate (1cM/Mb), to phase the 55 offspring 154 

haplotypes without using any reference dataset. To check whether reference panels used 155 

during haplotype phasing made any impact on the switch error rates, we used the 156 

Finnish SISU based reference (n=2690), to check whether the size of the reference 157 

panel made any impact on the results in phasing the offspring’s haplotypes (Figure 1).  158 

The SER in the offspring’s phased haplotypes were then calculated by determining the 159 

true offspring haplotypes using data from the parents (98 individuals) with a custom 160 

script [34]. 161 

2.3.2 Imputation Accuracy 162 

Imputation concordance was used as the metric for calculating the imputation accuracy. 163 

For this, we randomly masked FINRISK CoreExome chip data consisting of 10,480 164 

individuals [22] from chromosome 20. To test the role of reference panel size in 165 

influencing the imputation accuracy in conjunction with varying the population genetics 166 
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parameters, we imputed the masked dataset with BEAGLE (Browning et al., 2016) 167 

using the Finnish reference panel (n = 2690). The concordance was then calculated 168 

between the imputed genotypes and the original masked variants. Masking was done by 169 

randomly removing ~10% of variants from the chip dataset.  170 

The influence of recombination maps on imputation accuracy was checked by 171 

calculating the concordance values between imputed and original variants, using the 172 

Finnish reference panel in various combinations of recombination maps (constant rate, 173 

HapMap, Finnish map) during the imputation (Figure 1).  174 

3. Results: 175 

3.1 Finnish recombination map and its comparison to the HapMap recombination 176 

map: 177 

The primary aim of our study was to derive a high-resolution genetic recombination 178 

map for Finland and use it for comparative tests in commonly used analyses like 179 

haplotype phasing and imputation. To derive a population-specific Finnish 180 

recombination map, we used the high-coverage WGS data and an average of different 181 

estimation methods (LDHat and FastEPRR). We used the Ne value of 10,000 derived 182 

from our extensive testing of different Ne values (See supplementary text) to get the 183 

per-generation recombination rates. The average recombination rates of Finnish 184 

population isolate depicted 12-14% lower values (autosome-wide average 2.268±0.4209 185 

cM/Mb) for all chromosomes compared to CEU based maps (2.641±0.5032 cM/Mb) 186 

(Figure 2). 187 

These differences in average recombination rates are reflected in the correlation values 188 

across all chromosomes (Spearman’s ρ ~ 0.67 - 0.79) between the developed Finnish 189 

map and HapMap based one  (Figure 2). We also present a direct comparison between 190 
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the two maps, of the recombination rates at 5Mb scales, which presents a similar visual 191 

pattern of rates across the genome (Supplementary Figure 1).  192 

3.2 Effects of the population-specific recombinations map on haplotype phasing  193 

Variation in population-specific recombination maps (and effective population sizes) 194 

can  affect the downstream genomic analyses like haplotype phasing and imputation.  195 

We tested the Finnish map, HapMap map and a constant recombination rate map 196 

(1cM/Mb) to understand the effects of population-specific maps on downstream 197 

genomic analyses. The phasing accuracy was tested under two different conditions: 198 

using no additional reference panel and using an population-specific . SISu v2 reference 199 

panel (n= 2690) in phasing. We observed that, on average, SER ranged between 1.8-200 

3.7% (Supplementary Figure 2) across the different chromosomes and recombination 201 

maps. We found statistically significant differences within both no-reference panel and 202 

the Finnish reference panel results (Kruskal Wallis, p-value = 5.3e-10 and 4.7e-10, 203 

respectively; Figure 3). The constant recombination map (1cM/Mb) had significantly 204 

higher SER values when compared to the Finnish map or the HapMap map (Figure 3) 205 

both when no reference panels were used (p-value = 2.9e-11 and 2.6e-09, respectively) 206 

and when the Finnish reference panel was used (p-value = 2.9e-11 and 9.5e-13, 207 

respectively). The choice of recombination maps mattered more when no reference 208 

panel was used (p-value = 0.0046), however when using the Finnish reference panel, the 209 

difference in SER was statistically insignificant (p-value = 0.25).  210 

3.3 Effects of the population-specific recombinations map on genotype imputation  211 

Imputation accuracy was similarly tested using the reference panel under three different 212 

recombination map settings. We observed that when the imputation target dataset was 213 

phased and imputed using the Finnish reference panel (n=2690) irrespective of the 214 
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population-specific recombination maps, it had a high imputation accuracy (overall 215 

concordance rate ~98%, Figure 4) across MAF bins (>0.1%). Though some differences 216 

in concordance rates are seen in for rare variants (MAF <0.1%). The concordance rate 217 

was lower when the test dataset was phased without reference panels (concordance rate 218 

72~77%, Figure 5).  219 

4. Discussion: 220 

Population isolates like Finland, have had a divergent demographic history as compared 221 

to the outbred European populations, with a less historic  migration, more fluctuating 222 

population sizes and higher incidences of bottleneck events and founder effects [35, 36] 223 

This unique demographic history then affects different population genetic parameters, 224 

like recombination rates [37]. It has been shown previously that using population-225 

specific genomic reference panels augmented the accuracy of imputation accuracy 226 

leading to better mapping of diseases specific variants in GWAS [12]. Since 227 

recombination rates (in the form of recombination maps), features in much of the 228 

downstream genomic analyses’ methods like imputation and haplotype phasing [15, 229 

34], we wanted to study their effect on downstream analyses.  230 

Firstly, we characterised the Finnish recombination map using high-coverage (~30x) 231 

whole-genome sequencing (WGS) samples  from large SISu v2 reference panel 232 

(n=2690). Previously used recombination maps hail from the HapMap and 233 

1000Genomes projects which used sparse genotypic datasets or low-depth sequencing 234 

samples. This is a first attempt in creating a recombination map for Finland using 235 

population-specificWGS samples. We used two different methods in estimating the 236 

recombination rates, to achieve accurate estimates with lower variance [29,31]. In 237 

addition, we estimated effective population sizes using identity-by-descent (IBD) based 238 
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methods [15] for both Finnish and CEU based datasets. The obtained recombination 239 

map was then used to test their role and importance in two selected downstream 240 

genomic analyses – haplotype phasing and imputation concordance. Since the 241 

recombination rate determination requires effective population size estimates, we also 242 

tested the role of varying effective population size on these two analyses (See 243 

Supplementary Text). The extensive testing of Ne yielded the estimate of 10,000 244 

originally derived theoretically [38] and most used commonly for humans fits quite 245 

rightly for the recombination map.  246 

The Finnish recombinational landscape when compared to the HapMap based map, 247 

showed, on average, a high degree of correlation across scales (10, 50kb and 5Mb), 248 

however, on average, Finnish recombination rates across chromosomes were found to 249 

be lower. Such moderate to high correlations (Figure 2) and similar recombinational 250 

landscape (Supplementary Figure 1) could be due to high sharing of recombinations in 251 

individuals from closely-related populations. The degree of dissimilarity in the 252 

population-level differences between Finnish and mainland Europeans in terms of 253 

recombination rates could be due to population-specific demographic processes like 254 

founder effects, bottleneck events and migration [39], or chromatin structure PRDM9 255 

binding locations, for example [40]. And the broad similarity in terms of correlational 256 

structure seen here, reflects a shared ancestral origin of Finns and other mainland 257 

Europeans [41]. Other studies on population isolates like Iceland [9] have previously 258 

found a high degree of correlation with CEU based maps, albeit with substantial 259 

differences as seen here. Previous studies [42] have additionally explored the 260 

relationship between recombination rate differences between populations and allele 261 

frequency differences, with evidence suggesting that the differences between rates show 262 
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the selection impact in the past 100,000 years since the out-of-Africa movement of 263 

humans.  264 

As seen in previous studies, much of the downstream genomic analyses like getting 265 

more refined GWAS hits or, accurate copy number variants (CNV) imputation, can be 266 

highly improved with the addition/use of population-specific datasets [12]. To test this 267 

in the context of population-specific recombination maps, we used them to test the 268 

haplotype phasing and imputation accuracy and observed that despite large differences 269 

in the effective population sizes between populations, it did not affect the tested metrics. 270 

One possible explanation for the insignificant effect seen here is that the role of 271 

parameters like effective population size and recombination maps is to scale over the 272 

haplotypes for efficient coverage of the whole genome. However, when sufficiently 273 

large, population-specific genomic reference panels are available with tens of thousands 274 

of haplotypic combinations, such scaling over for specific populations, does not  yield 275 

in substantial improvements. As we showed here, reference panel size could play an 276 

important role in the downstream genomic analyses and in most cases, the current 277 

practice of using the standard HapMap recombination map can be reasonably used. 278 

Another point of interest here is that the use of different Ne parameters during 279 

phasing/imputation might be redundant as we observed no change in the accuracy of our 280 

estimates on varying the Ne parameters. Similarly, when using population-specific 281 

recombination maps, we did not find any tangible benefits in using them over the 282 

current standard maps based on the HapMap data.  283 

Our study suggests a couple of important points for future studies: (a) varying effective 284 

population size for downstream genomic analyses, such as phasing and imputation, 285 

might have a relatively small impact, and it might be better to use the default option of 286 
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the particular software; (b) when available, it is beneficial to use a population-specific 287 

genomic reference panel as they increase the accuracy; (c) HapMap can be used for 288 

current downstream genomic analyses like haplotype phasing or genotype imputation in 289 

European-based populations. And, if need be, can be substituted for using population-290 

specific maps, as the accuracy rates are quite similar to the population-based maps.  291 

Though the sample used here is from a disease cohort but is nevertheless representative 292 

of Finland’s population and hence provides a reasonable recombination rate estimates. 293 

On the other hand, our reliance on disease cohorts could lead to minor variation in the 294 

resultant recombination. Though as we share a similar out-of-Africa origin, much of our 295 

history is shared and though biological differences in the recombinational landscape do 296 

exist between different populations, much of the downstream genomic analyses 297 

(haplotyping, imputation or, GWAS), might not be affected by recombination map or 298 

values of effective population size. 299 
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 430 

 431 

 432 

 433 

 434 

 435 

Figure 1: Flowchart overview of the analyses  and comparisons  performed. 436 

Figure 2: Average (± standard deviation) recombination rates of Finnish v/s CEU per 437 

autosome measured in cM/Mb and Correlation between Finnish and CEU 438 

recombination rates across all chromosomes. The comparisons are made for similar 439 

physical positions. 440 

Figure 3: Statistical comparison of Switch Error Rates across all autosomes calculated 441 

for all children in the trios using different recombination maps with respect to different 442 

reference panel conditions (absent or present). The p-values are shown at the top of each 443 

panel from Kruskal Wallis ANOVA testing between panel groups and ones between 444 

boxplots for within-group comparisons. 445 
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Figure 4: Comparison of Imputation Concordance across different Minor Allele 446 

Frequency (MAF) groups for a range of different recombination map combinations 447 

phased with NO reference panels 448 

Figure 5: Comparison of Imputation Concordance across different Minor Allele 449 

Frequency (MAF) groups for a range of different recombination map combinations 450 

phased with reference panels. 451 
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