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1  Abstract:
2 Founder population size, demographic changes (eg. population bottlenecks or rapid
3 expansion) can lead to variation in recombination rates across different populations.
4 Previous research has shown that using population-specific reference panels has a
5 dgnificant effect on downstream population genomic analysis like haplotype phasing,
6 genotype imputation and association, especialy in the context of population isolates.
7 Here, we developed a high-resolution recombination rate mapping at 10kb and 50kb
8 scae using high-coverage (20-30x) whole-genome sequenced 55 family trios from
9 Finland and compared it to recombination rates of non-Finnish Europeans (NFE). We
10 tested the downstream effects of the population-specific recombination rates in
11  datistical phasing and genotype imputation in Finns as compared to the same analyses
12 peformed by using the NFE-based recombination rates. We found that Finnish
13 recombination rates have a moderately high correlation (Spearman’s p =0.67-0.79) with
14 NFE, athough on average (across all autosoma chromosomes), Finnish rates
15 (2.268+0.4209 cM/Mb) are 12-14% lower than NFE (2.641+0.5032 cM/Mb). Finnish
16  recombination map was found to have no significant effect in haplotype phasing
17  accuracy (switch error rates ~ 2%) and average imputation concordance rates (97-98%
18  for common, 92-96% for low frequency and 78-90% for rare variants). Our results
19  suggest that downstream population genomic analyses like haplotype phasing and
20  genotype imputation mostly depend on population-specific contexts like appropriate
21  reference panels and their sample size, but not on population-specific recombination
22 maps or effective population sizes. Currently, available HapMap recombination maps
23 seem robust for population-specific phasing and imputation pipelines, even in the

24 context of relatively isolated populations like Finland.
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26 1. Introduction:

27  Recombination is not uniform across the human genome with large areas having lower
28 recombination rates, so-caled ‘coldspots’, which are then interspersed by shorter
29 regions marked by a high recombinational activity called ‘hotspots’ [1]. With long
30  chunks of human genome existing in high linkage disequilibrium, LD [2], and organised
31 intheform of ‘haplotype blocks', the ‘coldspots’ tend to coincide with such regions of
32 highLD[3].

33  Direct estimation methods of recombination are quite time-consuming, and evidence
34 has suggested that they do not easily scale up to genome-wide, fine-scae
35 recombinational variation estimation [4]. A less time-consuming but computationally
36 intensive aternative is to use the LD patterns surrounding the SNPs [5]. Such methods
37  have been used in the past decade or so, to create fine-scale recombination maps [6].
38 Besides the International HapMap project that focused on capturing common variants
39 and haplotypes in diverse populations, international WGS-based collaborations like
40 1000 Genomes Project, provided genetic variation data for 20 worldwide populations
41 [7]. This led to further refinement of the recombination maps coupled with
42  methodological advances of using coalescent methods for recombination rate [8, 9].

43  With the rise of international collaborative projects, it was realised that founder
44  populations can often have very unique LD patterns [10], subsequently also displaying
45 unique increased genetics-driven health risks [11], suggesting that population-specific
46  reference datasets should be used to leverage the LD patterns to better detect disease

47 variants in downstream genetic analysis [12]. Genomic anaysis methods like
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48  haplotype phasing and imputing genotypes require recombination maps and other
49  population genetic parameters as input to obtain optimal results [13, 14, 15, 16]

50 Intheis study, we set to test this by 1) estimating recombination rates along the genome
51 in Finnish population using ~55 families of whole-genome sequenced (20-30x) Finns,
52 2) comparing these rates to some other European populations, and 3) comparing the
53  effect of using Finnish recombination rate estimates and cosmopolitan estimates in
54  phasing and imputation errors in Finnish samples.

55 2. Materials& Methods:

56 2.1 Datasets used:

57  Finnish Migraine Families Collection

58  Whole-genome sequenced trios (n = 55) consisting of the parent-offspring combination
59 were drawn from a large Finnish migraine families collection consisting of 1,589
60 familiestotalling 8,319 individuals [17]. The trios were used for the recombination map
61  construction using LDHAT version 2. The families were collected over 25 years from
62  various headache clinics in Finland (Helsinki, Turku, Jyvaskyld, Tampere, Kemi, and
63  Kuopio) and via advertisements in the national migraine patient organisation web page
64  (https://migreeni.org/). The families consist of different pedigree sizes from small to
65 large (1-5+ individuals). Of the 8319 individuals, 5317 have a confirmed migraine
66  diagnosis based on the third edition of the established International Classification for
67 Headache Disorders (ICHD-3) criteria [18].

68 EUFAM cohort

69 To check the phasing accuracy of our Finnish recombination map, we used an
70  independently sourced 49 trios from the European Multicenter Study on Familia

71  Dyslipidemias in Patients with Premature Coronary Heart Disease (EUFAM). Finnish
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72 familial combined hyperlipidemia (FCH) families were identified from patients initially
73  admitted to hospitals with premature cardiovascular heart disease (CHD) diagnosis who
74  dso had elevated levels of total cholesterol (TC), triglycerides (TG) or both in the >
75  90th Finnish population percentile. Those families who had at least one additional first-
76  degree relative also affected with hyperlipidemia were also included in the study apart
77  fromindividuals with elevated levels of TG. [19, 20, 21].

78 FINRISK cohort

79  The imputation accuracy of the Finnish and previously published HapMap based
80 recombination maps [8, 9] was subsequently tested on an independent FINRISK
81  CoreExome chip dataset consisting of 10,481 individuals derived from the national-
82 level FINRISK cohort. Primarily, it comprises of respondents of representative, cross-
83  sectional population surveys that are conducted once every 5 years since 1972 to get a
84  national assessment of various risk factors of chronic diseases and other hedth
85  behaviours among the working-age population drawn from 3 to 4 major cities in
86 Finland [22].

87  FINNISH reference panel cohort

88  The whole-genome sequenced samples used were obtained from PCR-free methods and
89 PCR-amplified methods, which was followed by sequencing on a lllumina HiSeq X
90 platform with a mean depth of ~30x. The obtained reads were then aligned to the
91 GRCh37 (hgl9) human reference genome assembly using BWA-MEM. Best practice
92  guidelines from Genome Analysis Toolkit (GATK) were used to process the BAM files
93 and variant calling. Several criteria were used in this stage for sample exclusion:
94  relatedness (identity-by-descent (IBD) > 0.1), sex mismatches, among several others.

95  Furthermore, samples were filtered based on other criteria such as: non-reference
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96 variants, singletons, heterozygous/homozygous variants ratio, insertion/deletion ratio
97 for novel indels, insertion/deletion ratio for indels observed in dbSNP, and
98 transition/transversion ratio.

99  After this stage, some exclusion criteria were applied to set some variants as missing:
100 GQ < 20, phred-scaled genotype likelihood of reference allele < 20 for heterozygous
101  and homozygous variant calls, and allele balance <0.2 or >0.8 for heterozygous calls. A
102  truth sensitivity percentage threshold of 99.8% for SNV's and of 99.9% for indels was
103  used based on the GATK Variant Quality Score Recalibration (VQSR) to filter variants
104  with, quality by depth (QoD) < 2 for SNVs and < 3 for indels, call rate < 90%, and
105 Hardy-Weinberg equilibrium (HWE) p-value < 1x10-9. Some other variants like
106  monomorphic, multi-allelic and low-complexity regions [23] were further excluded.
107  Thefinal reference dataset used in this study for imputation consisted of high coverage
108  (20-30x) whole-genome sequence-based reference panel of 2690 individuals from the

109  SISu project (Sequencing Initiative Suomi, http://www.sisuproject.fi/, [24]).

110 2.2 Recombination map construction:

111  Coalescent-based fine-scale recombination map construction [8] is greatly eased by
112 using trios which provide more accurate haplotype phasing resolution [25]. Hence, we
113 used trio data (n=55, 110 independent parents) from the Finnish Migraine Families
114  Cohort described above. These were filtered primarily using VCFtools [26] and custom
115 R scripts. Firstly, sites were thinned with within 15bp of each other such that only one
116  dSte remained followed by a filtering step of removing variants with a minor allele
117  frequency of <5% [27]. The resultant data were then phased using family-aware
118 method of SHAPEIT [28] using the standard HapMap recombination map [8, 9],

119  which was then split into segments of ~10000 SNPs with a 1000 SNP overhang on each
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120  side of the segments. LDhat version 2 was run for 10’ iterations with a block penalty of
121 5, every 5000 iterations of them of which the first 10% observations were discarded [8,
122 29]. The CEU based maps, used here for comparison, were obtained similarly using
123 LDhat [29].

124  However, LDHat is computationally intensive, and calculations suggest that the 1000
125 Genomes OMNI data set [30] would be too much computationally intensive to
126  complete [31], hence limiting the maximum number of haplotypes which could be
127  used.

128 To overcome this and make the recombination map independent of the underlying
129  methodology, we used a machine learning method implemented in FastEPRR [31, 32].
130 It supports the use of larger sample sizes, than LDHat and the recombination estimates
131  for sample sizes > 50, yields smaller variance than LDHat based estimates [31]. The
132  method was then applied to each autosome with overlapping sliding windows (i.e.,
133 window size, 50 kb and step length, 25 kb) under default settings for diploid organisms.
134 Asseen in [31] both methods produce similar estimates, with only variance of the
135  egtimate of mean being different.

136  The output of LDHat and FastEPRR is in terms of population recombination rate (p)
137  and to convert them into per-generational rate (r) used in phasing/imputation algorithms
138  we used optimal effective population size values derived from our testing (as explained
139 in the Supplementary Text). The estimates from LDHat and FastEPRR were then
140 averaged, to obtain a new combined estimate with the lowest variance amongst all the
141  three [31].

142 2.3 Phasing and imputation accuracy
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143  To test whether the usage of different recombination maps affects the efficiency of
144  haplotype phasing and imputation , we used the aforesaid Finnish genotype data to
145  evaluate: (i) switch error rates across all chromosomes and (ii) imputation concordance
146  ratesfor chromosome 20.

147  2.3.1 Phasing Accuracy

148 The gold standard method to estimate haplotype phasing accuracy is to count the
149  number of switches (or recombination events) needed between the computationally
150 phased dataset and the true haplotypes [33].The number of such switches divided by
151  the number of all possible switchesis called switch error rate (SER).

152 For testing the influence of recombination maps on phasing accuracy, we used three
153  different recombination maps: HapMap, fine-scale Finnish recombination map and a
154  constant background recombination rate (1cM/Mb), to phase the 55 offspring
155  haplotypes without using any reference dataset. To check whether reference panels used
156  during haplotype phasing made any impact on the switch error rates, we used the
157  Finnish SISU based reference (n=2690), to check whether the size of the reference
158  panel made any impact on the results in phasing the offspring’s haplotypes (Figure 1).
159 The SER in the offspring’s phased haplotypes were then calculated by determining the
160 true offspring haplotypes using data from the parents (98 individuals) with a custom
161  script [34].

162  2.3.2 Imputation Accuracy

163  Imputation concordance was used as the metric for calculating the imputation accuracy.
164  For this, we randomly masked FINRISK CoreExome chip data consisting of 10,480
165 individuas [22] from chromosome 20. To test the role of reference panel size in

166 influencing the imputation accuracy in conjunction with varying the population genetics


https://doi.org/10.1101/2020.05.20.106831
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.106831; this version posted May 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

167 parameters, we imputed the masked dataset with BEAGLE (Browning et al., 2016)
168 using the Finnish reference panel (n = 2690). The concordance was then calculated
169  between the imputed genotypes and the original masked variants. Masking was done by
170  randomly removing ~10% of variants from the chip dataset.

171  The influence of recombination maps on imputation accuracy was checked by
172 caculating the concordance values between imputed and original variants, using the
173 Finnish reference panel in various combinations of recombination maps (constant rate,
174  HapMap, Finnish map) during the imputation (Figure 1).

175 3. Results:

176 3.1 Finnish recombination map and its comparison to the HapM ap recombination
177  map:

178 The primary aim of our study was to derive a high-resolution genetic recombination
179 map for Finland and use it for comparative tests in commonly used analyses like
180 haplotype phasing and imputation. To derive a population-specific Finnish
181  recombination map, we used the high-coverage WGS data and an average of different
182  estimation methods (LDHat and FastEPRR). We used the Ne value of 10,000 derived
183  from our extensive testing of different Ne values (See supplementary text) to get the
184  per-generation recombination rates. The average recombination rates of Finnish
185  population isolate depicted 12-14% lower values (autosome-wide average 2.268+0.4209
186 cM/Mb) for all chromosomes compared to CEU based maps (2.641+0.5032 cM/Mb)
187  (Figure2).

188  These differences in average recombination rates are reflected in the correlation values
189  across al chromosomes (Spearman’s p ~ 0.67 - 0.79) between the developed Finnish

190 map and HapMap based one (Figure 2). We also present a direct comparison between

10
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191  the two maps, of the recombination rates at SMb scales, which presents a similar visual
192  pattern of rates across the genome (Supplementary Figure 1).

193 3.2 Effects of the population-specific recombinations map on haplotype phasing
194  Variation in population-specific recombination maps (and effective population sizes)
195 can affect the downstream genomic analyses like haplotype phasing and imputation.
196 We tested the Finnish map, HapMap map and a constant recombination rate map
197  (1cM/Mb) to understand the effects of population-specific maps on downstream
198 genomic analyses. The phasing accuracy was tested under two different conditions:
199  using no additional reference panel and using an population-specific . SISu v2 reference
200 pane (n= 2690) in phasing. We observed that, on average, SER ranged between 1.8-
201  3.7% (Supplementary Figure 2) across the different chromosomes and recombination
202  maps. We found statistically significant differences within both no-reference panel and
203 the Finnish reference panel results (Kruskal Wallis, p-value = 5.3e-10 and 4.7e-10,
204  respectively; Figure 3). The constant recombination map (1cM/Mb) had significantly
205  higher SER values when compared to the Finnish map or the HapMap map (Figure 3)
206  both when no reference panels were used (p-value = 2.9e-11 and 2.6e-09, respectively)
207 and when the Finnish reference panel was used (p-value = 2.9e-11 and 9.5e-13,
208  respectively). The choice of recombination maps mattered more when no reference
209 panel was used (p-value = 0.0046), however when using the Finnish reference panel, the
210 differencein SER was statistically insignificant (p-value = 0.25).

211 3.3 Effects of the population-specific recombinations map on genotype imputation
212  Imputation accuracy was similarly tested using the reference panel under three different
213 recombination map settings. We observed that when the imputation target dataset was

214  phased and imputed using the Finnish reference panel (n=2690) irrespective of the

11
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215  population-specific recombination maps, it had a high imputation accuracy (overall
216  concordance rate ~98%, Figure 4) across MAF bins (>0.1%). Though some differences
217  in concordance rates are seen in for rare variants (MAF <0.1%). The concordance rate
218  was lower when the test dataset was phased without reference panels (concordance rate
219  72~77%, Figure5).

220 4. Discussion:

221 Population isolates like Finland, have had a divergent demographic history as compared
222  to the outbred European populations, with a less historic migration, more fluctuating
223 population sizes and higher incidences of bottleneck events and founder effects [35, 36]
224  This unique demographic history then affects different population genetic parameters,
225 like recombination rates [37]. It has been shown previously that using population-
226 gpecific genomic reference panels augmented the accuracy of imputation accuracy
227 leading to better mapping of diseases specific variants in GWAS [12]. Since
228  recombination rates (in the form of recombination maps), features in much of the
229  downstream genomic analyses methods like imputation and haplotype phasing [15,
230  34], we wanted to study their effect on downstream analyses.

231  Firstly, we characterised the Finnish recombination map using high-coverage (~30x)
232  whole-genome sequencing (WGS) samples from large SISu v2 reference panel
233  (n=2690). Previously used recombination maps hail from the HapMap and
234  1000Genomes projects which used sparse genotypic datasets or low-depth sequencing
235 samples. This is a first attempt in creating a recombination map for Finland using
236  population-specificWGS samples. We used two different methods in estimating the
237  recombination rates, to achieve accurate estimates with lower variance [29,31]. In

238  addition, we estimated effective population sizes using identity-by-descent (IBD) based

12
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239  methods [15] for both Finnish and CEU based datasets. The obtained recombination
240 map was then used to test their role and importance in two selected downstream
241 genomic analyses — haplotype phasing and imputation concordance. Since the
242 recombination rate determination requires effective population size estimates, we also
243 tested the role of varying effective population size on these two analyses (See
244 Supplementary Text). The extensive testing of Ne yielded the estimate of 10,000
245  originadly derived theoretically [38] and most used commonly for humans fits quite
246  rightly for the recombination map.

247  The Finnish recombinational landscape when compared to the HapMap based map,
248 showed, on average, a high degree of correlation across scales (10, 50kb and 5Mb),
249  however, on average, Finnish recombination rates across chromosomes were found to
250  be lower. Such moderate to high correlations (Figure 2) and similar recombinational
251  landscape (Supplementary Figure 1) could be due to high sharing of recombinations in
252 individuals from closely-related populations. The degree of dissimilarity in the
253  population-level differences between Finnish and mainland Europeans in terms of
254  recombination rates could be due to population-specific demographic processes like
255  founder effects, bottleneck events and migration [39], or chromatin structure PRDM9
256  binding locations, for example [40]. And the broad similarity in terms of correlational
257  sructure seen here, reflects a shared ancestral origin of Finns and other mainland
258  Europeans [41]. Other studies on population isolates like Iceland [9] have previously
259 found a high degree of correlation with CEU based maps, albeit with substantial
260 differences as seen here. Previous studies [42] have additionally explored the
261 relationship between recombination rate differences between populations and alele

262  frequency differences, with evidence suggesting that the differences between rates show

13
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263  the selection impact in the past 100,000 years since the out-of-Africa movement of
264  humans.

265 As seen in previous studies, much of the downstream genomic analyses like getting
266  more refined GWAS hits or, accurate copy number variants (CNV) imputation, can be
267  highly improved with the addition/use of population-specific datasets [12]. To test this
268 in the context of population-specific recombination maps, we used them to test the
269  haplotype phasing and imputation accuracy and observed that despite large differences
270  inthe effective population sizes between populations, it did not affect the tested metrics.
271  One possible explanation for the insignificant effect seen here is that the role of
272 parameters like effective population size and recombination maps is to scale over the
273 haplotypes for efficient coverage of the whole genome. However, when sufficiently
274  large, population-specific genomic reference panels are available with tens of thousands
275  of haplotypic combinations, such scaling over for specific populations, does not yield
276  in substantial improvements. As we showed here, reference panel size could play an
277  important role in the downstream genomic analyses and in most cases, the current
278  practice of using the standard HapMap recombination map can be reasonably used.
279 Another point of interest here is that the use of different Ne parameters during
280  phasing/imputation might be redundant as we observed no change in the accuracy of our
281 estimates on varying the Ne parameters. Similarly, when using population-specific
282  recombination maps, we did not find any tangible benefits in using them over the
283  current standard maps based on the HapMap data.

284  Our study suggests a couple of important points for future studies: (a) varying effective
285 population size for downstream genomic analyses, such as phasing and imputation,

286  might have a relatively small impact, and it might be better to use the default option of

14
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287  the particular software; (b) when available, it is beneficial to use a population-specific
288 genomic reference panel as they increase the accuracy; (c) HapMap can be used for
289  current downstream genomic analyses like haplotype phasing or genotype imputation in
290  European-based populations. And, if need be, can be substituted for using population-
291  specific maps, asthe accuracy rates are quite similar to the population-based maps.

292  Though the sample used here is from a disease cohort but is nevertheless representative
293  of Finland's population and hence provides a reasonable recombination rate estimates.
294  On the other hand, our reliance on disease cohorts could lead to minor variation in the
295  resultant recombination. Though as we share asimilar out-of-Africa origin, much of our
296 history is shared and though biological differences in the recombinational landscape do
297 exist between different populations, much of the downstream genomic analyses
298  (haplotyping, imputation or, GWAS), might not be affected by recombination map or
299  values of effective population size.
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Figure 1: Flowchart overview of the analyses and comparisons performed.

Figure 2: Average (+ standard deviation) recombination rates of Finnish v/s CEU per
autosome measured in cM/Mb and Correlation between Finnish and CEU
recombination rates across al chromosomes. The comparisons are made for similar
physical positions.

Figure 3: Statistical comparison of Switch Error Rates across all autosomes calculated
for al children in the trios using different recombination maps with respect to different
reference panel conditions (absent or present). The p-values are shown at the top of each
panel from Kruskal Wallis ANOVA testing between panel groups and ones between

boxplots for within-group comparisons.

21


https://doi.org/10.1101/2020.05.20.106831
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.106831; this version posted May 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

446  Figure 4. Comparison of Imputation Concordance across different Minor Allele
447  Frequency (MAF) groups for a range of different recombination map combinations
448  phased with NO reference panels

449  Figure 5: Comparison of Imputation Concordance across different Minor Allele
450 Frequency (MAF) groups for a range of different recombination map combinations

451  phased with reference panels.
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