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Abstract:

Immunohistochemical staining in breast cancer shows both gain and loss of COX2 expression
with disease risk and progression. We investigated four common COX2 antibody clones and
found high specificity for purified human COX2 for three clones; however, recognition of COX2
in cell lysates was clone dependent. Biochemical characterization revealed two distinct forms of
COX2, with SP21 recognizing an S-nitrosylated form and CX229 and CX294 appearing to
recogni ze the same non-nitrosylated COX2 antigen. We found S-nitrosylated and non-
nitrosylated COX2 occupy different subcellular locationsin normal and breast cancer tissue,
implicating distinct synthetic/trafficking pathways and function. Dual stains of ~2000 breast
cancer cases show early onset breast cancer has increased expression of both forms of COX2
compared to postmenopausal cases. Our results highlight the strengths of using multiple, highly
characterized antibody clones for COX2 immunohistochemical studies and raise the prospect

that S-nitrosylation of COX2 may play arolein breast cancer biology.
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Introduction

The cyclooxygenase enzyme COX2, a key mediator of tissue inflammation via prostaglandin
production, has been investigated extensively as a cancer biomarker and therapeutic target >,
Data supporting pro-tumorigenic roles for COX2 include robust preclinical studiesidentifying
COX 2 as an oncogene > %, the demonstration that NSAID-based COX2 blockade inhibits cancer
progression in preclinical models **°; and epidemiologic studies showing that NSAID use
correlates with reductions in colon and breast cancer risk **°. However, prospective clinical
trials utilizing aspirin or celecoxib therapy for the prevention, recurrence and treatment of colon
1720 or breast cancer ***>?"%* show variable results. Further, within the breast cancer field,
disparate results of COX2 immunohistochemical (IHC) studies call into question the reliability

of COX2 as abreast cancer biomarker or therapeutic target 2.

In colon, where COX2 is firmly established as atumor promoter, IHC studies on formalin-fixed
paraffin-embedded (FFPE) tissue report minimal COX2 levelsin normal epithelium and
increased COX2 in at-risk epithelium and invasive cancer *>**. While some breast cancer studies
corroborate these results *°, others show loss of COX2 in invasive disease compared to adjacent
normal tissue %%, One explanation for these divergent results may be methodological, as no
standardized approach to COX2 IHC detection has been adopted. For example, one concern
regarding aCOX2 antibodies is cross-reactivity, as COX1 is closely related to COX2, with 65%

amino acid sequence homology and near-identical catalytic sites 4.

In this study, we offer a novel explanation for the conflicting data on COX2 expression in breast
cancer studies, with implications for other cancers: antibody clone specificity for distinct forms
of COX2 based on S-nitrosylation state. First, we investigated the effect of antibody clone on

COX1 and COX2 recognition biochemically, focusing on four commonly utilized aCOX2
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clones. We validated three clones, SP21, CX229, and CX294 as highly specific for COX2
protein. Unexpectedly, we found these antibody clones differently recognized COX2 in COX2
positive cell lysates, in adjacent normal breast, and in breast and colon cancer tissues. In the
breast, we found these distinct staining patterns are due to antibody specificity for S-nitrosylated
and non-nitrosylated forms of COX2 respectively. In summary, these studies provide a plausible
explanation for disparate COX2 staining patterns observed in breast cancer studies, highlight the
strengths of interrogating COX2 with multiple validated antibodies, and demonstrate subcellular

localization that infers distinct regulation and function of COX2 based on S-nitrosylation.

Results
COX2 Antibody Validations

We assessed four commonly utilized aCOX2 antibody clones, SP21, CX229, CX294, and D5H5
(Table 1) for COX2 specificity to recombinant human COX1 and COX2 proteins. We found all
four antibodies recognized recombinant human COX2 protein (Fig 1A, lanes 2-5). Only D5H5
showed weak reactivity to human COX1 (Fig 1A, lane 10) and was eiminated from further

evaluation.

We next assessed specificity of SP21, CX229, and CX294 to detect COX2 protein in cell lysates
from mouse melanoma BRAFV600E cells with wild type or genetically deleted COX1/COX2
(KO) *2. SP21 detected COX2 protein in wild type but not in KO cells (Fig 1B, lanes 1-2).
CX229 and CX294 did not detect murine COX2 (Fig 1B, lanes 3 and 5), consistent with
reported human specificity for these clones. To assess antibody reactivity to human COX2

protein, we utilized human colon cancer cell lines with high (HCA-7) and low (HCT-15) COX2
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expression ™. As anticipated, CX229 and CX 294 detected COX 2 protein in the high COX2
expressing HCA-7 cdls (Fig 1C, lanes 2-3), but not in the low expressing HCT-15 cells (Fig
1C, lanes 6-7). Unexpectedly, SP21 did not detect COX2 protein in the high COX2 expressing
HCA-7 cdl lysate (Fig 1C, lane 1), even though SP21 robustly detects human recombinant

COX2 protein (Fig 1A, lane 2) 2",

We next assessed for COX2 antibody specificity in FFPE tissues. Because SP21 recognizes
murine COX2, we utilized genetically modified mouse models to confirm antibody specificity %.
We found that SP21 recognized murine COX2 in mouse mammary epithelial cellsin wild type
but not in COX2 KO glands, confirming specificity (Fig 1D). Next, a previously validated
COX 2 positive human breast cancer case * was selected to assess SP21, CX 229 and CX 294
staining. All three clones stained this COX2 positive control tissue (Fig 1E). We next
demonstrated SP21, CX229 and CX294 specificity for COX2 by confirming that the majority of
antibody signal was lost with the addition of a COX2 specific blocking peptide (Fig 1E). Thus,

all three COX2 clones show high specificity and senstivity for COX2 in FFPE tissues.

S-nitrosylated and non-nitrosylated for ms of COX2

Given the high specificity and sensitivity of SP21, CX229 and CX294 for COX2 protein, itis
unclear why SP21 would not recognize COX2 in the COX2 high expressing HCA-7 cells (Fig
1C, lane 1). To address this question, we examined the amino acid sequences used as
immunogens (Fig 2A) for SP21, CX229 and CX294 antibody generation. We found a post-
trandlation modification site for S-nitrosylation at Cys-526 only in the SP21 immunogen (Fig

2A, red arrow). CX229 and CX294 were made using essentially identical amino acid sequences.
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Since they similarly recognized COX2 in human colorectal cancer cell lines by western blot and
have essentially identical staining in abreast cancer TMASs (n = 56, Supplemental Fig 1 and
Supplemental Table 1), we focused our subsequent biochemical analyses on SP21 and CX229.
To address whether SP21 preferentially recognizes S-nitrosylated COX2, we employed the
strategy of biochemically adding and removing nitric oxide moietiesto COX2 protein and then
assessing antibody recognition by western blot. To obtain a source of COX2 that is differentially
recognized by SP21 and CX229 and suitable for S-nitrosylation modifications, we performed
COX2 immunoprecipitation of HCA-7 cell lysates using CX229, as CX229 recognizes COX2 in
this cell line (as does CX294) whereas SP21 does not (Fig 1C, lane 2 vs. lane 1). As expected,
CX229 recognizes the COX2 protein immunopreci pitated by the CX229 antibody (Fig 2B, lane
1), while CX229-immunoprecipitated COX2 was undetected by SP21 (Fig 2B, lane 2). Since the
SP21 immunogen includes the putative COX2 S-nitrosylation site, we reasoned that HCA-7
COX2 protein is non-nitrosylated, and that S-nitrosylation might convert HCA-7 COX2 to an
SP21-recognizable form. To test thisidea, the above CX229 immunoprecipitated COX2 was S-
nitrosylated by incubation with S-nitrosoglutathione (SNOG) “°. We found that SP21 detected
HCA-7 COX2 only after incubation with S-nitrosoglutathione (Fig 2B, lane 4), which is

consistent with SP21 specifically recognizing an S-nitrosylated form of COX2.

To determine if SP21 antibody signal is lost with de-nitrosylation of COX2 protein, as predicted
if SP21 is specific for S-nitrosylated COX2, we next performed de-nitrosylation assays. Because
recombinant human COX2 is recognized by SP21, suggesting S-nitrosylation (Fig 1A, lane 2),
we first determined if the recombinant human COX2 is S-nitrosylated using a pan-nitrosylation

specific monoclonal antibody (Fig 2C, lane 1), and acommercial (Sigma) biochemical detection
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kit for S-nitrosylation (Fig 2C, lane 2& 3). Both methods demonstrate that purified recombinant
human COX2 contains S-nitrosylated COX2. We then utilized Na ascorbate to de-nitrosylate
recombinant human COX 2, utilizing a methodology previously reported in mouse cell lysates *’.
Na ascorbate treatment resulted in a dramatic dose-dependent decrease in SP21 signal (Fig 2D,
lane 3, & upper electrophoretogram). In contrast, de-nitrosylation of recombinant COX2 did
not significantly reduce the CX229 signal (Fig 2D, lane 6, & lower electrophor etogram).
These western blot assay data are consistent with SP21 specifically recognizing S-nitrosylated

COX2, whereas CX 229 signal appears independent of S-nitrosylation.

S-nitrosylated and non-nitrosylated COX2 staining patternsin human breast and colon

cancer tissue

We next sought to determine if the S-nitrosylation state of COX2, as detected by SP21 and
CX229, could result in disparate staining resultsin cancer tissue. To this end we stained sections
of human breast and colon TMAs, with 52 and 53 cores respectively, using routine chromogen-
based IHC methods. In breast TMAS, 2% of the cores stained preferentially with SP21, whereas
35% of the cores stained preferentially with CX229, with little to no overlap between staining
patterns (Fig 3A & Supplemental Table 2). Further, colon TMAs also had differential staining
patterns for SP21 and CX229, suggesting relevance beyond breast (Fig 3A & Supplemental
Table 2). While unique stating patterns for SP21 were anticipated based on its specificity for S-
nitrosylated COX2, the fact that CX229 antibody signal did not overlap with the SP21 signal was

unanticipated and strongly suggests that SP21 and CX229 recognize distinct forms of COX2.
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SP21 and CX229 show opposing staining trendsin normal adjacent, DCIS and invasive

breast cancer tissue

We next addressed antibody staining patternsin breast tissues that contained far normal, adjacent
normal, DCIS, and invasive tumor on asingle slide. The SP21 staining pattern was consi stent
with the paradigm of increased COX2 expression in DCIS compared to adjacent normal tissue
(Fig 3B, Supplemental Fig 2A). In this small cohort, we aso saw a significant decrease in SP21
COX2 sgnal ininvasive breast cancer compared to adjacent DCIS lesions; however, SP21
staining in invasive breast cancer trended higher than in adjacent normal tissue. In contrast, with
CX229, the highest COX2 expression was observed in histologically normal epithelium, with
modest but progressive loss of COX2 expression in invasive cancer (Fig 3B, Supplemental Fig
2B). These data provide preliminary evidence that the S-nitrosylated and non-nitrosylated forms
of COX2 are both present in breast cancer cases, with differentially elevated expression during
breast cancer progression. Importantly, these data show how clone selection for COX2 antibody
may yield substantially different results in breast cancer studies and demonstrate the inherent

limitations of assessing COX2 expression using a single antibody clone.

Distinct intracellular localization of S-nitrosylated COX2

With the biochemical confirmation that SP21 and CX229 differentially recognize COX2 protein
based on S-nitrosylation state, we next assessed where these two forms of COX2 localize within
human breast cancers. To obtain information about COX2 localization at a sub-cellular
resolution, we performed dual immunofluorescence (IF) staining with SP21 and CX229, as well
as with SP21 and CX294. We found that individual cancer cases could be dominated by SP21
signal (Fig 4A, left panel), CX229 signal (Fig 4A, middle pandl) or both (data not shown).
Additionally, SP21 and CX294 dual stained cases |ooked nearly identical to cases stained with

9
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SP21 and CX229 (Fig 4 and Supplemental Fig 4). Of note, in tumors and adjacent normal breast
tissue there was virtually no overlap in cellular localization of SP21 and CX229 nor SP21 and
CX294 signal, providing further evidence that SP21 and CX229/CX294 recognize distinct forms
of COX2 (Fig 4A, Supplemental Fig 4). Further in adjacent normal tissue, SP21 and
CX229/CX294 stained distinct subcellular regions. Specifically, within acinar structures CX229
and CX294 dominantly stained lateral plasma membranes (Fig 4A, right panel green signal,
Supplemental Fig 4), whereas SP21 primarily stained apical junctional regions (Fig 4A, right
panel red signal, Supplemental Fig 4). These data are congistent with distinct trafficking and

function of S-nitrosylated and non-nitrosylated COX2 in adjacent normal tissue.

Variation of SP21 and CX229 Stainingin Two Large Breast Cancer Cohorts

To further understand the inter-case variation between S-nitrosylated and non-nitrosylated COX2
expression in breast cancer, we stained two large breast cancer cohorts, the Nurses Health Study
1 (NHS1) cohort and the University of Colorado Y oung Women's Breast Cancer Trandlational
Program (YWBCTP) cohort, with ~2000 combined cases (Supplemental Table 3). We used an
optimized dual SP21 and CX 229 staining protocol where we confirmed that neither antibody
order nor chromogen selection significantly impacted staining results (Supplemental Fig 3). We
found ~95% of the COX2 signal comes from tumor cells compared to stromal cells, results
consistent with previous reports *. To account for differencesin stromal composition between
cases, we restricted analyses to tumor cells by positively annotating tumor cell clusters followed
by computer-assisted quantitation of antibody signal (Aperio ImageScope analysis software
(LeicaBiosystems, Vista, CA) (Fig 4B)). To this end, SP21 and CX229 COX2 expression for
each sample was compiled as a continuous variable and hierarchical clustering was performed

10


https://doi.org/10.1101/2020.05.20.104612
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.104612; this version posted May 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

using R studio software. Independent K-mean clustering for SP21 and CX229 in both cohorts
showed nearly identical cutoff values for positivity (SP21: NHS-2.9%, YWBCTP-2.8%, CX229:
NHS-6.1%, YWBCTP-6.2%) indicating similar staining intensity, which permits comparisons

between the two cohorts.

The NHSL cohort is primarily composed of women diagnosed with breast cancer later in
life, with an average age at diagnosis of 58 years, and consists of N = 8612 cores representing
1770 cases. By hierarchical clustering, the NHS1 breast tumor cores clustered into 6 COX2
expression groups with group 1 (45.9% of cores), the largest group, exhibiting very low
expression for both SP21 and CX229 (Fig 4C, group 1). Group 2 (18% of cores), group 3
(13.3% of cores), and group 4 (15% of cores), were defined by cores with low, medium and high
expression of CX229 respectively, but very low SP21 expression. Group 5 (4.5% of cores) is
defined by medium levels of SP21 expression and high CX229 expression. Finally, group 6
(2.5% of cores) contained cores with medium expression of SP21, but low expression of CX229.
Since COX 2 expression in the normal breast has been demonstrated to be hormone dependent %,
we next assessed the expression of SP21 and CX229 in a cohort of young women'’s breast cancer
(YWBCTP, N = 233 cases) with an average age at diagnosis of 38 years. In the YWBCTP
cohort, only 3% of cases had very low expression of CX229 and SP21 (Fig 4D, group 1)
compared to 45.9% of coresin the NHS1 cohort (Fig 4C, group 1). In particular, SP21 was
much higher in the YWBCTP cohort, which resulted in the formation of two additional groups
with very high expression of SP21 in ~17% of cases (Fig 4D, groups 7 and 8). In sum, COX2
expression, for both S-nitrosylated and non-nitrosylated COX2 varies widely between patients,

with non-nitrosylated COX2 being more commonly expressed than the S-nitrosylated form.
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Additionally, expression of both S-nitrosylated and non-nitrosylated COX2 is more common in

the YWBCTP cohort of early onset breast cancers compared to the older, NHSL1 cohort.
Discussion

In this study, we identify commonly used COX2 antibodies that differentially recognize distinct
forms of COX2 based, at least in part, on post-trandlational S-nitrosylation. Evidence of distinct
cellular synthetic, trafficking, and functional pathways for these two forms of COX2 is suggested
by non-overlapping staining patternsin adjacent normal breast and cancer tissues. Similar
staining patterns were observed in colon cancer, which supports relevance of these findingsin
colon cancer. Further, since COX2 biology is thought to be important in many cancer types and
diseases, our discovery of S-nitrosylation state specific COX2 antibody clonesis likely to have
broad impact. Additionally, in asmall cohort, we observed the S-nitrosylated form of COX2 is
highest in DCIS lesions compared to adjacent normal breast tissue, with levels decreased in
invasive breast cancer. This pattern of expression issimilar to that observed for HER2, abona
fide breast cancer oncogene that is expressed at highest levelsin DCIS lesions 2. Overall, high
expression of S-nitrosylated COX2 in DCIS lesions is an observation consistent with the
established paradigm of COX2 as pro-tumorigenic. In contrast, levels of non-nitrosylated COX2
were unchanged between adjacent normal and DCIS, with a modest decrease in invasive tumor.
These disparate staining patterns, based on S-nitrosylation state of COX2, may help explain why

4264950 inversaly 38 o

previous breast cancer studies report that COX2 expression either directly
failed to correlate with breast cancer risk, progression and or outcomes *2’. While we are the
first to validate antibody reagents that distinguish COX2 based on its S-nitrosylation state, the

impact of COX2 S-nitrosylation in the context of breast cancer remains to be determined.
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COX2 S-nitrosylation is dependent on nitric oxide (NO) biology, and data from the NO field
provides strong rational for pursuing a potential role for COX2 S-nitrosylation in breast cancer.
In endothelial and neuronal cells, NO is produced via expression of the NO synthases eNOS and
nNOS, which regulate physiologic vasodilation and neuronal signaling, respectively >*. Evidence
for an inducible form of NO synthase (iNOS) was first reported in macrophages >, and led to the
discovery of NO as a principal regulator of tissue inflammation >* with likely rolesin cancer °**,
For example, in triple negative breast cancer (TNBC) cdll lines, defined asER, PR and Her-2
negative, iINOS signaling promotes stem-like properties and metastatic potential >*. Further,
iNOS blockade as a single agent reduces TNBC growth, metastasis > and enhances efficacy of
chemotherapy in xenograft models *°. Importantly, these pre-clinical studies define anovel, NO-
centric path toward the possible treatment of aggressive TNBC. Interrogating COX2 S-

nitrosylation by breast cancer subtype, grade, and stage is a potentially fruitful next step for

understanding COX2 as a biomarker of risk as well as therapeutic target.

Evidence that S-nitrosylation increases COX2 activity has been demonstrated using in vitro
pathogen “® and neurotoxicity * models, and in an in vivo model of myocardial infarction >’
Further studies demonstrate that iNOS inhibitors can block COX2 activity and its downstream
pathogenic sequela, demonstrating a synergistic interaction between these two major
inflammatory systems **°°, Consistent with NOS2 and COX2 inflammatory pathway cross-talk
in human breast cancer, a recent report finds co-expression of iNOS and COX2 predicts poor
survival in breast cancer patients, and animal modeling confirms survival benefit with dual

targeting of INOS and COX2 %, Thus, our work identifying antibodies that distinguish COX2
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based on nitrosylation state in humans highlights the need for future investigationsinto the role

that COX2 S-nitrosylation plays in breast cancer risk, progression and outcomes.

Main strengths of our study include the use of multiple, independent methods to investigate
COX2 specificity of four different aCOX2 antibody clones; the use of robust biochemical
approaches to demonstrate dependency of S-nitrosylation state on COX2 antibody recognition;
and the inclusion of ~2000 breast cancer cases to assess dual COX2 staining. Of potential
relevance to early onset breast cancer, we observed higher overall tumor cell COX2 staining and
higher levels of S-nitrosylated COX2 in younger, primarily pre-menopausal age patients
compared to that observed in the mostly postmenopausal patients enrolled in NHSL. This
observation is congstent with previous reports demonstrating prostaglandin production and
COX2 are positively regulated in mammary epithelial cells by ovarian hormones **. One
limitation of our study isthe lack of inclusion of true normal breast tissue for assessing baseline
levels of S-nitrosylated and non-nitrosylated COX2. Further, our assessment of COX2 levelsin
adjacent normal, DCIS and invasive cancersis based on alimited number of cases, requiring

additional assessment.

To conclude, we find that commonly utilized antibodies directed against COX2 can distinguish
between S-nitrosylated and non-nitrosylated forms of COX2. Further, we find that S-nitrosylated
and non-nitrosylated COX2 have distinct subcellular distributionsin both adjacent normal and
breast and colon cancer tissues, providing evidence for distinct synthetic, trafficking, and

functional pathways. As aresult, previous work relying on COX2 IHC to define associations
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between COX2 expression and cancer parameters should be reviewed in light of these findings.
Likewise, future COX2 studies should be designed with multiple antibody clones to detect both
S-nitrosylated and non-nitrosylated forms of COX2. How both forms of COX2 are regulated,
which tissue compartments express COX2 (e.g., epithelial, endothelial, immune), what
subcdllular locations they occupy, and how subcellular localization impacts COX 2 function

remain important, unanswered questions.
Materialsand Methods
Ethics

Formalin-fixed paraffin-embedded (FFPE) human breast and colon tissue for this study was
approved by the BWH/Harvard Cohorts Biorepository and Institutional Review Boards at
Colorado Multiple Institution Review Board (COMIRB), and Oregon Health and Science

University (OHSU). Written informed consent was given by participants when required.
Human tissues

De-identified FFPE cases of breast (n=52) and colon (n=53) cancer tissue microarrays (TMAS)
and breast cancer cases (n=2019) from the Nurses' Health Study-1 (NHS1) ®* were obtained
from the Channing Laboratory, Brigham and Women's Hospital, Massachusetts. Y oung
women’s FFPE breast cancer cases were acquired from the Y oung Women'’ s Breast Cancer
Trandational Program (YWBCTP) at the University of Colorado (n = 233). Breast tissue
sections with adjacent normal, ductal carcinomain situ (DCIS) and invasive ductal carcinoma on
asingle slide were obtained from Kaiser Permanente Northwest (KPNW) (n=10). A total of 233
YWBCTP and 1770 NHS1 cases were evaluated for dual COX2 IHC stain after exclusion of one

entire TMA dlide (249 cases) from the NHSL1 cohort. The control coresfor this TMA dlide
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displayed staining several standard deviations above the average for the study, resulting in

exclusion from analysis.

Antigenic regions used for antibody generation

COX2 protein sequence for human (P35354), rat (P35355), and mouse (Q05769) were aligned

with Uniprot (http://www.uniprot.org/). Antigenic peptide sequences used to generate each

COX2 clone were obtained from the respective manufacturers and examined for differencesin

species and post-trandational modification sites.
| mmunaoblotting

Recombinant human COX1 protein (Abcam, Ab-198643, 4ng), human COX2 protein (Cayman
Chemical, 60122, 4ng), and 25ug cdll line lysatesin RIPA buffer were separated by WES
automated gel electrophoresis System (Protein Simple, San Jose, CA). Cdll lines were procured
from authenticated sources: mouse BRAFV600E melanoma (Wt) and COX1/2 CRISPR targeted
sub-line?®; human HCA-7 colon cancer (Sigma Aldrich #02091238), and human HCT-15 colon
cancer (ATCC, # CCL-225). Primary antibodies and working concentrations were: COX2 SP21
clone (Thermo Fisher Scientific # RM-9121, at 25ng/uL), COX2 CX229 clone (Cayman
Chemical # 160112, at 25ng/uL), COX2 CX294 clone (Agilent Dako # M3617, a 25ng/uL) and
COX2 D5HS5 clone (Cell Signaling Technology # 12282, at 25ng/uL), COX-1 (Cell Signaling
Technology # 4841, at 25ng/uL) and GAPDH (14C10 clone, Cdll Signaling Technology #2118,
at 2ng/uL). For HRP-conjugated secondary antibodies and detection; anti-rabbit (Protein Simple
# 042-206, RTU) or anti-mouse (Protein Simple# 042-205, RTU) were utilized, followed by
chemiluminescent substrate (Protein Simple # PS-CS01, Luminol-S, Peroxide). Protein

separation and signal detection utilized the WES system (Protein Simple, San Jose, CA) and
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immunoblot and electrophoretograms were composed and analyzed by Compass Software
(Protein Simple, San Jose, CA). All lanes shown together in western data derive from the same

experiment and were processed in parallel.
S-nitrosylation and chemical de-nitrosylation

S-nitrosylation of proteins was detected by western blot using an S-nitrosylation specific
antibody (HY 8E12 clone, Abcam # 94930, 1:20) or the Pierce S-Nitrosylation Western Blot
detection kit (Thermo Fisher Scientific # 90105). De-nitrosylation of proteins was performed
using either 330 mM (low) or 1M (high) sodium (Na) ascorbate in HENS buffer (Thermo Fisher

Scientific # 90106) as previously described #’.
I mmunohistochemical staining of FFPE tissues

Four pm sections of FFPE tissue were stained for single or dual COX2 IHC, or dual COX2
immunofluorescence (IF). Detailed protocols for staining are outlined in Supplemental Table 4.
COX2 antibody clones were SP21 (Thermo Fisher scientific # RM-9121), CX229 (Cayman #
160112), and CX294 (Agilent Dako # M3617). Secondary antibodies and chromogens were
Envison+ HRP detection (Agilent # K4001, # K4003) followed by 3,3'-Diaminobenzidine
(DAB) (Agilent # K3468), or alkaline phosphatase detection (Enzo Life Sciences # ACC110-
0150) followed by Warp Red (Biocare # WR806) for IHC staining and Alexa Fluor antibodies
(Invitrogen # A11029, #A21245) for IF staining. IHC and |F stained slides were scanned using
Aperio ScanScope AT (Leica Biosystems, Vista, CA) and Apotome (Zeiss, Jena, Germany)
microscopes, respectively. IHC signal data werer captured and quantified using Aperio
ImageScope analysis software (Leica Biosystems, Vista, CA) *. All data acquisition was

performed by investigators who were blinded to study group.
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Hierarchical and K means Clustering of SP21 and CX229 expression

Percent area stained for SP21 and CX229 dual stained FFPE tissue from the NHS1 and
YWBCTP cohorts were separately subjected to Hierarchical and K-means clustering and optimal
cluster numbers were obtained. Hierarchical clustering was performed using R studio software.
For K means clustering, the lowest expression group was identified as the distribution containing

the negative stained group above which all values would be considered positive %%,

Statistical analysis

Comparisons for far/near adjacent normal, DCIS, and invasive cancer were done on GraphPad
Prism 8 software using the two tailed t-test, with significance at P value of <0.05. Comparisons
of clinical characteristics of the NHS1 and YWBCTP cohorts was performed using chi-squared

test on GraphPad Prism 8 software.

Data Availability

For western analysis data the associated Compass (Protein Simple, San Jose, CA) datafileswith
raw data are available upon request. Other data that support the findings of this study are

available from the corresponding author upon reasonable request.
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FigureLegends

Figure 1. aCOX2 specificity of four distinct antibody clones. A. Western blot analysis for
aCOX2 clones SP21, CX 229, CX294 and D5H5 against recombinant human COX2 and COX1
protein show high specificity of clones SP21, CX229, and CX294 for COX2 protein (A, lanes 2-
4, lanes 7-9). Clone D5H5 shows strong reactivity to COX2 protein, but also some reactivity to
COX1 protein (A, lanes 5, 10). Lane A1l isthe COX1 protein/aCOX1 antibody positive control.
B. Mouse melanoma BRAFV600E cell lysate is recognized by SP21 in wild type (Wt) cells but
not in COX1/COX2 KO cédls (B, lanes 1, 2). CX229 and CX294, made against human COX2,
do not show reactivity to mouse COX2+ cell lysates (B, lanes 3, 5). C. Clones SP21, CX229 and
CX294 were probed against human cell lysates with high (HCA-7) and low (HCT-15) COX2
expression. SP21 did not show reactivity to HCA-7 cell lysate (C, lane 1). CX229 and CX294
show reactivity to HCA-7 cell lysate (C, lanes 2, 3). All three clones show minimal to no
reactivity to HCT-15 cell lysates (C, lanes 5-7). D. FFPE tissue stained using SP21 shows

staining in the mammary epithelium of Wt but not in COX1/COX2 KO mice. E. Human breast
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cancer tissue stained for SP21, CX229 and CX294 show robust signal in the tumor cells (E,
upper panes, brown stain). Quantitative algorithmic analysis shows positive (orange and red)
and negative (yellow and blue) signal for SP21 and CX229 in human breast cancer tissue (E,
lower left panels). COX2 epithelia signal with SP21, CX229 and CX294 is blocked using a
COX 2 specific blocking peptide (E, lower 2™, 4™ and 6™ panels). Scale bar for all imagesis

S0pm.

Figure 2. SP21 recognizes S-nitrosylated COX2. A. Human and Rat amino acid (AA)
sequence of PTGS2 gene region used as immunogens (SP21= black bold, CX229= gray box).
Potential post-tranglational modification (larger font size) S-nitrosylation Site is seen at cysteine
526 (red arrow), disulfide bond sites at AA 555 and 561, and a glycosylation site at AA 580. B.
COX2 immunoprecipitation (1P) of HCA-7 cell lysate using CX229 is recognized by CX229 (B,
lane 1) but not SP21 (B, lane 2). On biochemical S-nitrosylation of the CX229 IP, SP21 regains
reactivity to COX2 (B, lane 4). C. Western blot analysis confirms recombinant human COX2
protein contains the S-nitrosylated form of COX2 as detected by a pan-nitrosylation specific
monoclonal antibody (C, lane 1) aswell as by assessment of nitrosylation modification using the
Pierce S-nitrosylation kit and the anti-TM T antibody (C, lanes 2-3). D. Western blot analysis
confirms dose-escal ating Na ascorbate treatment (-, +, ++) used for de-nitrosylation of
recombinant human COX2 protein results in dose dependent loss of SP21 signal (D, lanes 1-3).
No or minimal loss of CX229 reactivity was observed after Na ascorbate treatment (D, lanes 4-
6). Quantitation of COX2 western blots from three separate Na ascorbate experiments (D, right

panel e ectrophoretograms).
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Figure 3. Two aCOX2 clones show differential pattern of staining. A. TMA cores from
breast and colon cancer cases show preferential CX229 (cases #1 & #3) or preferential SP21
staining (cases #2 & #4). Algorithmic analysis for each TMA core shows COX2 positive signal
(orange and red) compared to negatively stained tissue (blue). B. Sequential sections of
individual cases were stained for SP21 (red) and CX229 (blue) and evaluated for COX2
expression in far and adjacent normal, DCIS, and Invasive breast cancer tissue (n=9). SP21
shows highest expression in the DCIS lesions. Clone CX229 shows highest COX2 expression in
normal far and adjacent breast epithelium, with decreased COX2 expression in invasive cancer

(P values: *<0.05). Scale bar for al imagesis 100um.

Figure4. Variation of SP21 and CX229 expression in two breast cancer cohorts. A. IF
staining of two invasive cancer cases show predominant staining for either SP21 (left panel) or
CX229 (middle panedl) and absence of co-localization (SP21 = red, CX229 = green, co-
localization = yellow). Percent stained area for each clone and percent co-localization are listed
within the images. Similarly, IF staining of normal breast acini show SP21 (red signal) and
CX229 (green signal) stain distinct cellular locations with minimal overlap (yellow signal, right
panel). Pink arrow heads show intense localized staining for CX229. Y ellow arrows show
intense localized staining for SP21. Scale bar =20 um B. TMA cores with dual staining for SP21
and CX229 were dual stained and annotated for tumor epithelium. The algorithmic analyses of
positive staining for SP21 (red), CX229 (green), colocalization (yellow) and negative (blue) is
shown. Scale bar is 100um C. Hierarchical clustering analysis for SP21 and CX229, assessed
independently for each breast cancer cohort using R studio, shows cohorts separate into distinct
groups. NHSLI breast tumor cores (N=8612, 1770 cases) clustered into 6 COX2 expression

groups with the largest group (n=3961, 45.9%) exhibiting very low expression for both SP21 and
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CX229. Groups 2 (n=1580, 18%), 3 (n=1154, 13.3%), and 4 (n=1308, 15%), were defined by
cores with low, medium and high expression of CX229 respectively, and very low SP21
expression. Cluster 5 (n=389, 4.5%) had medium level of SP21 expression and high CX229
expression and cluster 6 (n=220, 2.5%) contained cores with medium expression of SP21, but
low expression of CX229 (left panel). The young women breast cancer study clustered into 8
groups with cluster 1 (n=7, 1.8%) with very low expression of both SP21 and CX229. Groups 2
(n=34, 17.5%), 3 (n=58, 24.8%) and 4 (n=31, 13.3%) had very low SP21 and low, medium and
high CX229 expression respectively. Groups 5 (n=26, 11%) and 6 (n=37, 15%) had high and
low CX229 expression respectively with low to medium SP21 expression. Groups 7 (n=22,

9.5%) and 8 (n=18, 7.7%) had medium to high SP21 and low CX229 expression (right pandl).

Supplemental Figure 1. TMA cores from breast cancer cases stained for CX229 and CX294
have similar staining intensity, ranging from high (core #1), medium (core #2) or low (core #3).
Higher magnification of core #3 (black box) shows that CX229 and CX294 have similar
specificity in staining the same cells on sequential sections. Algorithmic analysis for each TMA
core shows COX2 positive signal (orange and red) compared to negatively stained tissue (blue).

Scale bar for all imagesis 100um.

Supplemental Figure 2. SP21 and CX229 clones show inverted staining patterns between
adjacent normal and invasive cancer in Kaiser Pacific North West (KPNW) cases. A. SP21
staining intensity was low in adjacent normal breast tissue and increased in invasive breast
cancer (blue circles, n=10, P value: *<0.05). B. CX229 (blue triangles, n=10) shows highest
COX2 expression in normal adjacent breast epithelium with atrend towards decreased COX2

expression in invasive breast cancer.
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Supplemental Figure 3. A. Dual IHC stained images of SP21 and CX 229 show similar staining
patterns when the order of antibodies and chromogens were switched during staining process. B.
Algorithmic analysis of the imagesin part A of thisfigure (upper panel) revealed 4.47% CX229

(green) and 0.05% SP21 (red) expression (left, lower pand). With reversed antibody order, there

was 4.48% CX 229 (red) and 0.04% SP21 (green) expression (right, lower panel).

Supplemental Figure4. IF staining of serial sections of an invasive cancer case and adjacent
normal breast acini show distinct sub-cellular localization of SP21, CX294 and CX229. The left
column shows dual stains of SP21 and CX294 with minimal co-localization (SP21 = red, CX294
= green, co-localization = yellow). The right column shows dual stains of SP21 and CX229 with
minimal co-localization (SP21 = red, CX294 = green, co-localization = yellow). Pink arrow
heads show intense localized staining for CX294/CX229. Y elow arrows show intense localized

staining for SP21. Scale bar for al imagesis 50um.
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Designated sP21 CX229 CX294 D5H5
Clone
Rat COX-2, Human COX-2, | Human COX-2, Human COX-2
C-terminus C-terminus C-terminus protein
Epitope AA segquence AA sequence AA sequence residues
513-604 580-599 580-598 surrounding AA
sequence 93-123
Host for
antibody Rabbit Mouse Mouse Rabbit
preparation
Clonality Monoclonal Monoclonal Monoclonal Monoclonal
Epitope Cox- 48AA 2AA 2AA 17AA
1 overlap
C\éfn”s;r:y Thermo Scientific Ciz]”i"f;‘s Dako Cell Signaling
(catalog #) (RM-9121-R7) (160112) (M3617) (12282)
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Figure 4
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Supplemental figure 1
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Supplemental Figure 4
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