

1

2

3

4

5

6 **The transmission-blocking effects antimalarial drugs revisited:
7 mosquito fitness costs and sporontocidal effects of artesunate
8 and sulfadoxine-pyrimethamine**

9 Villa M^{1*}, Buysse M¹, Berthomieu A^{1,2}, Rivero A^{1,2}

10

11

12

13 ¹MIVEGEC (CNRS – IRD – Université de Montpellier)

14 ²CREES (Centre d'Écologie et Évolution de la Santé), Montpellier

15 911 avenue Agropolis, 34394 Montpellier, France

16

17

18 *Corresponding author (manon.villa@ird.fr)

19

20

21

22

23

24

Declaration of interests: none

25 **Abstract**

26 Assays used to evaluate the transmission-blocking activity of antimalarial drugs are largely
27 focused on their potential to inhibit or reduce the infectivity of gametocytes, the blood stages of the
28 parasite that are responsible for the onward transmission to the mosquito vector. For this purpose, the
29 drug is administered concomitantly with the gametocyte-infected blood, and the results are evaluated
30 as the % reduction in the number of oocysts in the mosquito midgut.

31 We report the results of a series of experiments that explore the transmission blocking potential
32 of two key antimalarial drugs, artesunate (AS) and sulfadoxine-pyrimethamine (SP), when
33 administered to mosquitoes already infected from a previous blood meal. For this purpose, uninfected
34 mosquitoes and mosquitoes carrying a 6-day old *Plasmodium relictum* infection (early oocyst stages)
35 are allowed to feed either on a drug-treated or an untreated host in a fully factorial experiment. This
36 protocol allows us to bypass the gametocyte stages and establish whether the drugs are able to arrest
37 the ongoing development of oocysts and sporozoites, as would be the case when a mosquito takes a
38 post-infection treated blood meal. In a separate experiment, we also explore whether a drug-treated
39 blood meal impacts key life history traits of the mosquito relevant for transmission, and if this depends
40 on their infection status.

41 Our results show that feeding on an AS- or SP-treated host has no epidemiologically relevant
42 effects on the fitness of infected or uninfected mosquitoes. In contrast, when infected mosquitoes feed
43 on an SP-treated host, we observe both a significant increase in the number of oocysts in the midgut,
44 and a drastic decrease in both sporozoite prevalence (-30%) and burden (-80%) compared to the
45 untreated controls. We discuss the potential mechanisms underlying these seemingly contradictory
46 results and contend that, provided the results are translatable to human malaria, the potential
47 epidemiological and evolutionary consequences of the current preventive use of SP in malaria-endemic
48 countries could be substantial.

49 **Keywords:** transmission-blocking interventions, vaccines, antimalarial drugs, avian malaria

50

51 1. Introduction

52 Synthetic antimalarial drugs are the mainstay for the prevention and treatment of malaria
53 throughout the world. Over the last century, these synthetic antimalarials, have replaced traditional
54 herbal remedies such as the (quinine-containing) bark of the South American cinchona trees and the
55 (artemisinin-containing) Chinese drug *qinghao*. Broadly speaking, four major synthetic antimalarial drug
56 classes exist for the treatment of malaria: (i) quinolines (chloroquine, mefloquine), which owe their
57 origins to quinine, interfere with the ability of *Plasmodium* detoxify haematin, a toxic compound
58 resulting from the degradation of the haemoglobin; (ii) antifolates (pyrimethamine, sulfadoxine,
59 proguanil), so-called because they disturb the folate pathway of *Plasmodium*, thereby interfering with
60 its DNA and amino-acid synthesis; (iii) atovaquone which interferes with the parasite's mitochondrial
61 electron transport, and (iv) artemisinin derivatives (artemether, artesunate), the most potent and
62 effective anti-malarials to date, which exert their anti-malarial action by perturbing redox homeostasis
63 and the haematin detoxification in the parasite (Müller and Hyde, 2010).

64 Although the prime purpose for developing these antimalarials is obviously to prevent or cure
65 the infection of the patients, it has become rapidly obvious that they can also be used to reduce the
66 prevalence of the disease in the population by reducing the onward transmission of the parasite by the
67 vector (Sinden et al., 2012; Wadi et al., 2019). The transmission-blocking effect of antimalarial drugs
68 can take place in three different, albeit non-exclusive, ways. Firstly, drugs may be able to kill, arrest
69 the maturation, alter the sex ratio or reduce the infectivity of gametocytes, the sexual stages of the
70 parasite that are present in the blood and are responsible for the transmission to the mosquito.
71 Secondly, drugs may be able to hinder the development of the parasite within the mosquito.
72 *Plasmodium* development inside the mosquito is complex and involves the fusion of male and female
73 gametocytes to form a *zygote*, the passage of the mobile zygote through the midgut wall to form an
74 *oocyst* that grows, undergoing successive mitosis, ruptures and releases thousands of *sporozoites* that
75 migrate to the salivary glands. Antimalarial drugs, or their metabolites, can find their way to the
76 mosquito midgut where they can block the parasite either directly, by being toxic to any of the above

77 stages of the parasite, or indirectly, by disturbing the fine-tuned mosquito physiological pathways that
78 are essential for parasite development (Sinden et al., 2012). Finally, just as some antimalarials have
79 unwanted secondary effects in the host, so they may be able to adversely affect key life history traits of
80 the mosquito essential for parasite transmission such as its longevity or host seeking behaviour.

81 To date, the majority of experimental studies have focused on the gametocytocidal effects of
82 antimalarial drugs (Delves et al., 2018; Ruecker et al., 2014). Gametocytes are an attractive target for
83 transmission-blocking interventions because they constitute an important bottleneck in the life cycle of
84 the parasite and can be directly targeted due to their presence in the bloodstream of the host. While
85 some of the available compounds may be able to achieve a 100% gametocyte inhibition, and thus
86 completely block the transmission cycle, many of the compounds being tested result in a partial, if at
87 times substantial, gametocyte reductions (Sanders et al., 2014). Partial reductions may, however, fail to
88 accurately reflect the degree to which the mosquitoes become infected (Churcher et al., 2013; Sinden,
89 2017), and may even end up enhancing transmission due higher mosquito survival rates associated to
90 lower oocyst burdens (Sinden, 2010). It has therefore been argued that interventions that aim to target
91 gametocytes should be combined with others that target the later stages of parasite development within
92 the mosquito (Blagborough et al., 2013; Paaijmans and Fernàndez-Busquets, 2014; Sinden, 2010).
93 Whether antimalarial drugs have an effect on oocyst or sporozoite development, however, is still
94 largely unknown, as most protocols provide the drug with the infected blood meal thereby conflating
95 the effects on the gametocytes with the effects on the later stages (Delves et al., 2018; Wadi et al.,
96 2018).

97 Current WHO advice for the treatment of malaria in endemic countries relies heavily on the use
98 of two synthetic antimalarial drugs: artesunate and sulfadoxine-pyrimethamine (WHO, 2019).
99 Artesunate (henceforth AS), a potent and fast-acting artemisinin derivative, is used as a treatment for
100 severe/complicated malaria, or in combination with longer-acting antimalarial drugs such as
101 sulfadoxine-pyrimethamine, amodiaquine or mefloquine for the treatment of children and adults with
102 uncomplicated malaria (WHO, 2019). AS is a pro-drug that, once inside the cell, is rapidly converted

103 into its active form, dihydroartemisinin, which in turn generates reactive oxygen species (ROS) that
104 increase oxidative stress and cause malarial protein damage via alkylation (Hou and Huang, 2016;
105 O'Neill et al., 2010). In humans, peak plasma concentrations are reached in 1–2 h following oral intake
106 (though the absorption through injection may be slower and somewhat more variable, Balint, 2001).
107 Sulfadoxine-pyrimethamine (henceforth SP), on the other hand, is recommended in areas with
108 moderate to high malaria transmission for the intermittent preventive treatment (ITP) of pregnant
109 women and infants (0-1 years) and, in areas of high seasonal transmission, for the seasonal malaria
110 chemoprevention (SMC) of young children (<6 years of age, WHO, 2019). Each year, millions of
111 people throughout the world get treated by one of these drugs (WHO, 2019). Sulfadoxine and
112 pyrimethamine act synergistically to inhibit the activity of dihydropteroate synthase (DHPS) and
113 dihydrofolate reductase (DHFR), respectively, thus inhibiting the folic acid metabolism of the parasite
114 (Peterson et al., 1988). They are both long-lasting drugs, with plasma concentrations being found up to
115 42 days post treatment (Karunajeewa et al., 2009).

116 The gametocytocidal potential of both drugs has been the subject of numerous studies (review
117 in Butcher, 1997; Wadi et al., 2019). AS has a demonstrated cytocidal activity against mature and
118 immature gametocytes *in vitro* (Chotivanich et al., 2006; Peatey et al., 2012). Evidence of the
119 gametocytocidal effects of SP, on the other hand, is contradictory. Certain studies have found that SP
120 has no gametocidal activity (Miguel-Blanco et al., 2015; Plouffe et al., 2016), others that SP inhibits
121 male gametocyte formation (Delves et al., 2012, 2013) and yet others that pyrimethamine
122 administration results in an increased gametocyte production, possibly as an adaptive response of the
123 parasite to stressful conditions (Buckling et al., 1999).

124 Here, we report the results from a series of experiments that aim to investigate the
125 transmission-blocking potential of AS and SP downstream from their putative cytocidal effects on the
126 gametocytes. For this purpose, we perform a series of factorial experiments feeding infected and
127 uninfected mosquitoes either on drug-treated or control hosts. Experiments are carried out using the
128 avian malaria parasite, *Plasmodium relictum* and its natural vector, the mosquito *Culex*

129 *quinquefasciatus*, one of the few available systems in which these experiments are both technically and
130 ethically possible. In order to bypass the gametocytocidal effects of the drug, the 'infected' mosquitoes
131 were exposed to the drug while carrying a 6-day old infection from a previous blood meal
132 (corresponding the early oocyst stages, Pigeault, 2015). Under our standard laboratory conditions, 5-6
133 days is the average length of the *Cx quinquefasciatus* gonotrophic cycle.

134 Avian malaria has played a key historical role in the study of human malaria, being a stimulus
135 for the development of medical parasitology (Rivero and Gandon, 2018). It has played a particularly
136 pivotal role in the screening and clinical testing of the first synthetic antimalarials (Coatney et al.,
137 1953; Hewitt, 1940; Rivero and Gandon, 2018) and in the study of their potential use as transmission-
138 blocking compounds (Gerberg, 1971; Ramakrishnan et al., 1963; Terzakis, 1971). Compared with
139 rodent malaria, the avian malaria system has the added advantage of using the parasite's natural vector
140 in the wild, the mosquito *Culex pipiens*, thereby sidestepping the issues associated with mosquito-
141 parasite combinations without a common evolutionary history (Cohuet et al., 2006; Dong et al., 2006).

142 Our aims were to establish: 1) whether the drugs administered to infected mosquitoes can arrest
143 the ongoing development of oocysts and/or sporozoites, but also 2) whether the drugs alter the fitness
144 of mosquitoes and, if so, whether this is contingent on whether the mosquitoes are infected with
145 *Plasmodium*. Our results provide insights into the multiplicity of effects that a given drug may have in
146 the different stages of the parasite's sporogonic cycle. We discuss the potential epidemiological and
147 evolutionary consequences of using AS and SP to reduce transmission of *Plasmodium* in the field.

148

149 **2. Material and Methods**

150

151 **2.1. Mosquito and parasite protocols**

152 All experiments were carried out using a laboratory strain of *Culex pipiens quinquefasciatus*
153 (SLAB strain). *Culex* mosquitoes are the most important natural vector of avian malaria in Europe and
154 the Americas. The larvae in all the experiments were reared at a constant density per tray (n=300

155 larvae) following previously published laboratory protocols (Vézilier et al., 2010). Larval trays (n=22)
156 were placed individually inside an “emergence cage” (40 cm x 28 cm x 31 cm) and emerged adults
157 were allowed to feed *ad libitum* on a 10% glucose water solution. Rearing and experiments took place
158 at our standard insectary conditions (24-26 °C, 60-80% RH, and 12:12 L:D photoperiod).

159 *Plasmodium relictum* (lineage SGS1) is the aetiological agent of the most prevalent form of
160 avian malaria in Europe. The parasite lineage was isolated from blue tits (*Parus caeruleous*) collected
161 in the Montpellier area in October 2016 and subsequently passaged to naïve canaries (*Serinus canaria*)
162 by intraperitoneal injection. Since then, it has been maintained by carrying out regular passages
163 between our stock canaries through intraperitoneal injections with the occasional passage through the
164 mosquito.

165
166 **2.2. *Impact of antimalarials on Plasmodium-infected and uninfected mosquito traits***

167 The purpose of these experiments was to establish whether feeding from a sulfadoxine-
168 pyrimethamine (SP) or an artesunate (AS) treated host can negatively influence mosquito traits such as
169 longevity and fecundity. For this purpose, two separate experiments were set up.

170 **2.2.1. *Sulfadoxine-pyrimethamine experiment***

171 To obtain infected and uninfected mosquitoes to use in the experiment, 200 female mosquitoes
172 were placed in a cage containing either an infected or an uninfected bird (n=4 and n=3 cages of
173 infected and uninfected birds respectively). Infected birds were obtained by injecting them with 100µL
174 of blood from our *P. relictum*-infected canary stock. Mosquito blood feeding took place 10 days after
175 the injection, to coincide with the acute phase of the *Plasmodium* infection in the blood (Cornet et al.,
176 2014; Pigeault et al., 2015). After the blood meal, which took place overnight, the bird was taken out
177 of the cage, unfed mosquitoes were discarded and engorged mosquitoes were provided with a 10%
178 sugar solution. Three days later, a tray with water was placed inside the cage to allow egg laying (and
179 hence the completion of the mosquito’s gonotrophic cycle). Seven days pbm 20 mosquitoes were
180 haphazardly chosen from each of the 4 cages having contained an infected bird, and were dissected

181 under a binocular microscope to verify the existence of *Plasmodium* oocysts in their midgut. These
182 dissections confirmed that the large majority of the mosquitoes (91 %) had become infected.

183 To explore the impact of SP on the fecundity and longevity of mosquitoes, infected and
184 uninfected mosquitoes were allowed to take a second blood meal on either an SP-treated or a control
185 bird. For this purpose, four days prior to the blood meal, 3 birds (henceforth SP-treated birds) had a
186 daily subcutaneous injection of 30 µl of a sulfadoxine-pyrimethamine solution (Sigma S7821 and
187 46706, 320 mg/kg Sulfadoxine, 16 mg/kg Pyrimethamine solubilized in DMSO) while 3 additional
188 (control) birds were injected with 30 µl of DMSO. The red blood cell count of birds (number of red
189 blood cells per ml of blood) was quantified immediately before the blood meal using flow cytometry
190 (Beckman Coulter Counter, Series Z1). One hour after the last injection, 100 infected and 80
191 uninfected mosquitoes were placed in a cage containing either an SP-treated or a control bird. To allow
192 the identification of the infected and uninfected mosquitoes, they were previously marked using a
193 small amount (2.5 µg/female) of coloured fluorescent powder (RadGlo® JST) as a dust storm.
194 Preliminary trials have shown that, at this concentration, the dust has no effect on mosquito traits
195 (Vézilier et al., 2012). On day 1 post blood meal (pbm), the number of blood-fed mosquitoes in each of
196 the cages was counted and unfed females discarded.

197 To quantify haematin (a proxy for blood meal size) and fecundity, 80 females from each cage
198 (40 infected and 40 uninfected) were haphazardly chosen and placed individually in numbered 30 ml
199 Drosophila tubes, covered with a mesh ('haematin tubes'). Food was provided in the form of a paper
200 strip soaked in a 10% glucose solution. Three days later (day 4 pbm), all mosquitoes were transferred
201 to a new tube containing 7 mL of mineral water to allow the females to lay their eggs ('fecundity
202 tube'). The amount of haematin excreted at the bottom of each tube was quantified as an estimate of
203 the blood meal size following previously published protocols (Vézilier et al. 2010). The fecundity
204 tubes were provided with a paper strip soaked with 10% sugar solution. The fecundity tubes were
205 checked daily for the presence of eggs. The egg laying date was recorded and egg rafts were

206 photographed using a binocular microscope equipped with a numeric camera. Eggs counted using the
207 Mesurim Pro freeware (Academie d'Amiens, France).

208 To quantify longevity, the rest of the infected and uninfected mosquitoes were kept in the cages
209 and provided with a tray of water for egg laying for the first 6 days. Survival of these mosquitoes was
210 assessed daily by counting dead individuals lying at the bottom of each cage until all females died.

211 2.2.2. *Artesunate experiment*

212 The protocol used was identical to the one used in the SP experiment with only a few minor
213 modifications. Here, four days prior to the blood meal, 3 birds (henceforth AS-treated birds) had a
214 subcutaneous injection of 50 µl of an artesunate solution (16 mg/kg artesunate, Sigma A3731, in a
215 50mg/kg bicarbonate solution) twice daily (9am and 6pm) while 3 additional (control) birds were
216 injected with 50 µl of the bicarbonate solution. As in the previous experiment, mosquito dissections
217 confirmed that the large majority of the *Plasmodium* mosquitoes (95 %) were indeed infected.

218

219 2.3. *Impact of antimalarials on Plasmodium infection within the mosquito*

220 The purpose of these experiments was to establish whether antimalarial drugs can have an
221 effect on the development of *Plasmodium* within the mosquito. For this purpose, we allowed
222 previously-infected mosquitoes to feed on either SP-treated, AS-treated or control birds (n=3 birds
223 each). At the time of feeding, mosquitoes had been infected for 6 days from a previous blood meal.
224 Protocols used to infect mosquitoes and treat the birds were identical to those used in the two previous
225 experiments.

226 To assess the impact of the drugs in the blood meal on the *Plasmodium* parasites developing
227 within the mosquitoes, 15-20 mosquitoes were haphazardly chosen from each cage at three different
228 intervals: 8-9 days, 11-12 days and 14 days post-infection (corresponding to 2-3 days, 5-6 days and 8
229 days after the treated blood meal). Based on previous results (Pigeault, 2015) these intervals
230 correspond to the expected peak oocyst numbers, start of sporozoite production and peak sporozoite
231 production, respectively. At each of these time points, each mosquito was dissected to count the

232 number of oocysts in the midgut under the microscope (as in Vézilier et al. 2010), and its head-thorax
233 was preserved at -20°C for the quantification of the sporozoites. Sporozoites were quantified using
234 real-time quantitative PCR as the ratio of the parasite's *cytb* gene relative to the mosquito's *ace-2* gene
235 (Zélé et al. 2014). As in the other experiments a large majority of the mosquitoes were infected (82%-
236 87%).

237

238 **2.4. Statistical analyses**

239 Analyses were carried out using the R statistical package (v3.4.4). The different statistical
240 models used are described in the Supplementary Materials (Tables S1 & S2). The general procedure to
241 build models was as follows: treatment (AS, SP, control), and infection status (infected/uninfected)
242 were fitted as fixed explanatory variables. Birds were fitted as a random effect. Where appropriate,
243 haematin and dissection day were introduced into the model as an additional fixed variable. Since we
244 observed differences between the different plates used for the colorimetric quantification of the
245 haematin (Vézilier et al., 2010) the models were fitted with the haematin residuals of a model
246 containing haematin as a response variable and plate as a fixed explanatory variable. Maximal models,
247 including all higher order interactions, were simplified by sequentially eliminating non-significant
248 terms and interactions to establish a minimal model. The significance of the explanatory variables was
249 establish using a likelihood ratio test (LRT) which is approximately distributed as a chi-square
250 distribution (Bolker, 2008) and using $p = 0.05$ as a cut-off p -value.

251 Survival data were analyzed using Cox proportional hazards mixed effect models (coxme).
252 Proportion data (blood-fed females, egg laying females, oocyst and sporozoite burden) were analyzed
253 using mixed linear models and a binomial distribution. Response variables that were highly
254 overdispersed (number of eggs per raft, oocyst burden) were analyzed using mixed negative binomial
255 models (glmmTMB). *A posteriori* contrasts were carried out by aggregating factor levels together and
256 by testing the fit of the simplified model using a LRT (Crawley, 2007). Because of the small number

257 of replications, differences in red blood cell counts between the birds in the different treatments were
258 tested using Kruskal-Wallis non-parametric tests.

259

260 **2.5. Ethics statement**

261 Bird manipulations were carried out in strict accordance with the “National Charter on the
262 Ethics of Animal Experimentation” of the French Government. Experiments were approved by the
263 Ethical Committee for Animal Experimentation established by the authors’ institution (CNRS) under
264 the auspices of the French Ministry of Education and Research (permit number CEEA- LR-1051).

265 The authors declare no conflict of interests

266

267 **3. Results**

268 **3.1. Impact of antimalarials on *Plasmodium*-infected and uninfected mosquito traits**

269 **3.1.1. Sulfadoxine-Pyrimethamine (SP) experiment**

270 The vast majority of mosquitoes (97-100%) blood fed, independently of whether they were
271 provided with an SP-treated or a control bird (model 1, $\chi^2 = 0.1306$, $p = 0.7178$) and of their infection
272 status (model #, $\chi^2 = 3.1086$, $p = 0.0779$). The amount of blood ingested (quantified as the amount of
273 haematin excreted) was also similar across experimental conditions (model 2, *treatment*: $\chi^2 = 0.6545$,
274 $p = 0.4185$; *infection*: $\chi^2 = 0.0001$, $p = 0.9802$). There was no difference in the haematocrit of SP-
275 treated and untreated birds (model 3, $\chi^2 = 0.4286$, $p = 0.5127$).

276 The probability of laying an egg raft was overall very high (85-95%) except for infected
277 mosquitoes feeding on control birds (65%, model 4, *treatment*infection*: $\chi^2 = 11.372$, $p = 0.001$).

278 Overall, females having fed in SP treated birds laid eggs earlier than those fed on control birds (model
279 5, LR.stat = 10.243, $p = 0.001$). Egg laying date also depended on the interaction between blood meal
280 size and the infection status of the mosquito (model 5, LR.stat = 7.2853, $p = 0.007$). While for infected
281 females blood meal size had no impact on oviposition day, uninfected females who took larger blood

282 meals laid eggs earlier than those who took a smaller blood meals (LR.stat = 6.7296, p = 0.0094).
283 Mosquito fecundity (number of eggs per raft) decreased with egg laying date (model 6, $\chi^2 = 15.808$, p
284 <0.001) but was independent of both treatment (model 6, $\chi^2 = 0.2478$, p = 0.6186) and infection status
285 (model 6, $\chi^2 = 0.1048$, p = 0.7462),

286 Uninfected mosquitoes lived significantly longer than their infected counterparts (model 7, HR
287 \pm se = 0.8167 ± 0.0766 ; $\chi^2 = 7.4768$, p = 0.006). This effect was however independent on whether the
288 host had been previously treated with SP or not (model 7, $\chi^2 = 0.0557$, p = 0.8134). The results were
289 identical when analyzing survival to day 14, the time at which sporozoite production peaks (model 8).

290 3.1.2. *Artesunate (AS) experiment –*

291 As above, the vast majority of mosquitoes (95-98%) blood fed, independently of whether they
292 were provided with an AS-treated or a control bird (model 9, $\chi^2 = 2.4543$, p = 0.1172) and of their
293 infection status (model 9, $\chi^2 = 0.1085$, p = 0.7418). The amount of blood ingested was also similar
294 across experimental conditions (model 10, *treatment*: $\chi^2 = 0.0009$, p = 0.4185; *infection*: $\chi^2 = 0.787$, p
295 = 0.375). There was no difference in the haematocrit of AS-treated and untreated birds (model 10, $\chi^2 =$
296 1.4727, p = 0.2888).

297 The probability of laying an egg raft was overall very high (81-88%). As in the SP experiment,
298 infected mosquitoes had a slightly lower chance of laying eggs than their infected counterparts, though
299 here this effect was independent of whether they had fed on a treated or an untreated bird (model 11,
300 $\chi^2 = 4.3911$, p = 0.0361). For mosquitoes feeding on AS-treated birds, the probability of laying an egg
301 raft depended heavily on the amount of blood ingested: treated females that took a small blood meal
302 saw their probability of laying eggs significantly reduced (mean \pm s.e probability of egg laying for
303 treated females in the lowest blood meal quartile: $55.4 \pm 6.7\%$, in the highest blood meal quartile: 92.6
304 $\pm 3.0\%$). No such difference was found in mosquitoes that fed on untreated birds (lowest quartile: 78.2
305 $\pm 5.6\%$, highest quartile 85.5 + 4.8 % ; model 11, *treatment*haematine*: $\chi^2 = 8.0323$, p = 0.0046, see
306 Supplementary Materials, Figure S1). The egg laying date was independent of the treatment (model

307 11, LR.stat = 0.203, p= 0.6523) but was negatively correlated with the size of the blood meal: females
308 that take smaller blood meals laid eggs later (model 12, LR.stat = 12.498, p < 0.001). Mosquito
309 fecundity (number of eggs per raft) increased with blood meal size (model 13, $\chi^2 = 36.875$, p < 0.001)
310 but was independent of both treatment (model 13, $\chi^2 = 0.2784$, p = 0.5978) and infection status ($\chi^2 =$
311 0.9796, p = 0.3223).

312 Neither the artesunate treatment (model 14, $\chi^2 = 0.0577$, p = 0.8102) nor the mosquito infection
313 status (model 14, $\chi^2 = 0.3266$, p-value = 0.5677) had an impact on overall mosquito survival. The
314 results were identical when analyzing survival to day 14, the time at which sporozoite production
315 peaks (model 15).

316

317 **3.2. *Impact of antimalarials on Plasmodium infection within the mosquito***

318 *3.2.1. Sulfadoxine-Pyrimethamine experiment*

319 The prevalence of oocysts decreased with dissection time (model 16, $\chi^2 = 14.843$, p < 0.01), but
320 was independent of the antimalarial treatment (model 16, $\chi^2 = 2.7322$, p = 0.0983). In contrast, there
321 was a very significant interaction between the SP-treatment and the time of dissection on the number
322 of oocysts developing inside the mosquitoes (model 17, $\chi^2 = 24.159$, p < 0.01). Although the general
323 trend was towards a decrease in the number of oocysts with time (Fig.1), mosquitoes having fed on a
324 SP-treated bird had a consistently higher number of oocysts in their midgut than mosquitoes having
325 fed on their control counterparts. These results are consistent across all the birds used in the
326 experiment (Supplementary Materials, Fig S2-3). Fitting day as a continuous (rather than discrete)
327 variable in the model revealed that the rate of decline of oocysts with time was significantly higher in
328 control-fed mosquitoes (incidence rate ratio, IRR = 21%) than in SP-fed mosquitoes (IRR = 9.4%).

329 Treatment had a significant effect on the prevalence of sporozoites within the mosquitoes
330 (model 19, $\chi^2 = 10.394$, p < 0.01). On average, parasites developing in mosquitoes having fed on an
331 SP-treated host had a significantly lower probability of reaching the sporozoite stage than their control

332 counterparts (55% vs 82%, respectively). Sporozoite burden was also significantly lower in
333 mosquitoes having fed on an SP-treated host, irrespective of the dissection date (model 20, *treatment*:
334 $\chi^2 = 9.8898$, $p < 0.01$; *date*: $\chi^2 = 3.1579$, $p = 0.2062$; Fig. 1). As above, these results are consistent
335 across all the birds used in the experiment (Supplementary Materials, Fig S2-3). Fitting day as a
336 continuous (rather than discrete) variable in the model revealed that while in control-fed mosquitoes
337 the number of sporozoites stayed roughly constant with time (slope not significantly different from 0,
338 $t = 1.66$), in SP-treated mosquitoes, the number of sporozoites decreased significantly with time ($t =$
339 2.41).

340

341 3.2.2. *Artesunate experiment*

342 Feeding on an AS-treated host had no impact on the prevalence of oocysts (model 22, $\chi^2 =$
343 0.854, p -value = 0.3554). Oocyst burden, on the other hand, showed the same pattern of decrease with
344 time as in the previous experiment (model 23, $\chi^2 = 211.91$, $p < 0.01$). There was a significant effect of
345 treatment in interaction with the date of dissection (model 23, *date*treatment*: $\chi^2 = 7.3787$, $p = 0.025$).
346 Post hoc analyses revealed the existence of a significant, albeit marginally, higher oocyst burden in
347 treated hosts on days 11 and 12 ($\chi^2 = 3.8886$, $p = 0.0486$) while no differences were observed in day
348 8,9 ($\chi^2 = 0.0106$, $p = 0.9179$) and 14 ($\chi^2 = 3.5452$, $p = 0.0597$).

349 Feeding on an AS-treated host, however, had no effect on either sporozoite prevalence (model
350 24: $\chi^2 = 0.0106$, $p = 0.9179$), or burden (model 25, $\chi^2 = 0.0002$, $p = 0.9885$, Fig 2

351

352 4. Discussion

353 Artesunate and sulfadoxine-pyrimethamine are the cornerstone of modern antimalarial
354 treatments in malaria-endemic areas. Millions of people across the world are treated every year with
355 these drugs. Both antimalarials are extremely efficient at clearing the parasite from the red blood cells
356 but, like most other drugs, they also come of a suite of adverse effects in humans (Medscape, 2020).

357 The aim of our study was to establish whether this double toxicity, for both *Plasmodium* and its host,
358 also takes place in the vector, thereby interfering on parasite transmission by mosquitoes. More
359 precisely we aimed to establish: 1) whether mosquitoes feeding on an AS or SP treated host suffer any
360 adverse fitness effects from the drugs, and 2) whether the drugs are toxic for the oocysts and
361 sporozoites developing inside a mosquito

362 For this purpose, we carried out several factorial experiments feeding both uninfected
363 mosquitoes and mosquitoes with a 6-day old infection (corresponding to the early stages of oocyst
364 formation in *P. relictum*, Pigeault, 2015) on drug treated (AS or SP) and control hosts. We then
365 quantified the life history traits of the mosquito (fecundity, longevity) and the oocyst (midgut) and
366 sporozoite (salivary gland) stages of the parasites developing inside them.

367 Our results show what seem to be mostly minor effects of the drugs on the life history traits of
368 mosquitoes feeding from a treated host. Amongst the two life history traits quantified that are known
369 to be key for malaria transmission: mosquito longevity (Smith and McKenzie, 2004) and host feeding
370 probability (Cornet et al., 2019), neither were found to be affected by the drug treatments. Previous
371 work on the longevity effects of drugs has shown that *An. gambiae* mosquitoes membrane-fed on a
372 gametocyte culture containing high concentrations SP had significantly shorter lifespans (Kone et al.,
373 2010). Whether this is due to differences in the experimental system or, more likely, to key differences
374 in experimental conditions (Kone et al added a high SP dose to a gametocyte culture) is unclear. In our
375 experiments, some significant interactions were, however, found that may be worthy of further study.
376 Females that fed on an SP-treated bird laid eggs on average 8 hours earlier than those fed on control
377 birds, a result that agrees with previous studies showing that *Culex pipiens* mosquitoes are able to
378 advance their oviposition schedule when faced with adverse conditions (Vézilier et al., 2015). In
379 addition, mosquitoes taking small blood meals from AS-treated birds saw their probability of laying an
380 egg raft reduced by 37% as compared to their control counterparts. In humans, artesunate use is
381 frequently associated with haemolytic anaemia as evidenced by a decline in blood haemoglobin levels
382 and an increase in reticulocyte counts (Burri et al., 2014; Sowunmi et al., 2017). Had a similar

383 phenomenon taken place in our birds, mosquitoes taking a small blood meal from AS-treated hosts
384 would not have obtained enough haemoglobin to produce a batch of eggs (Ferguson et al., 2003;
385 Vézilier et al., 2012; Zhou et al., 2007). We found no difference in the total number of red blood cells
386 between AS-treated and untreated birds, but since our analysis did not allow us to distinguish between
387 young (reticulocyte) and mature red blood cells, we could not establish whether artesunate induces
388 anaemia in this system.

389 In contrast to the effects observed on mosquito life history traits which, interesting as they may
390 be from a biological standpoint are unlikely to bear significant consequences for the epidemiology of
391 the disease, the substantial reduction in both sporozoite prevalence (- 30%) and burden (- 80%) in
392 mosquitoes having taken an SP-treated blood meal, may result in a drastic reduction in the
393 transmission potential of the parasite. Sulfadoxine and pyrimethamine act synergistically to inhibit the
394 activity of dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR), respectively, thus
395 inhibiting the folic acid metabolism of the parasite (Hopkins Sibley et al., 2001). Folic acid is vital for
396 the biosynthesis of purines and pyrimidines, which are essential for DNA synthesis and cell
397 multiplication (Kirk et al., 1976). The mitotic-blocking properties of pyrimethamine were first gleaned
398 through work done on *Plasmodium gallinaceum* where birds treated with high concentrations of
399 pyrimethamine showed arrested schizont division and fewer merozoites were produced (Aikawa and
400 Beaudoin, 1968). Since then, the schistocidal effect of pyrimethamine has been confirmed in several
401 other systems (Delves et al., 2012; Vincke, 1970). In contrast, work on the effect of pyrimethamine on
402 *Plasmodium* sporogony in the mosquito has produced contrasting results. The overwhelming majority
403 of these studies tested the so-called *prophylactic* effect of pyrimethamine on the mosquito, that is, the
404 effect of the drug when administered prior to or concomitantly with the infected blood meal (Table 1).
405 These studies found that when administered with the infected blood meal, pyrimethamine averted the
406 arrival of sporozoites to the salivary gland. There was, however, no consensus on the mechanisms
407 underlying this sporozoite-inhibitory effect: pyrimethamine may have rendered gametocytes
408 uninfective (Foy and Kondi, 1952), prevented the ookinetes from traversing the midgut wall (Bray et

409 al., 1959), or prevented the oocysts from reaching maturity (Terzian, 1970; Terzian et al., 1968). More
410 recent work seems to confirm that pyrimethamine in combination with sulfadoxine, decreases the
411 infectiousness of gametocytes (Beavogui et al., 2010; Kone et al., 2010) and Delves et al. have
412 reported that pyrimethamine and other antifolates result in a strong (> 90%) inhibition of male
413 gametocyte exflagellation, while having virtually no effect on female gametocytes (Delves et al., 2012,
414 2013) thus effectively strongly skewing the parasites' operational sex ratio. These studies collectively
415 suggest that a prophylactic administration of SP has transmission-blocking effect through the
416 inhibition of the early (gametocyte) stages within the mosquito.

417 Our experiments were carried out using a *curative* protocol, i.e. the drug was administered to
418 mosquitoes carrying a 6-day old *Plasmodium* infection which, in this system, corresponds to the initial
419 stages of the oocyst invasion of the midgut. The drastic decrease obtained in both sporozoite
420 prevalence (Fig 1b) and burden (Fig 1d) demonstrate that SP has an additional effect on parasite
421 development, which is downstream from its toxicity to (male) gametes. Although the underlying
422 mechanism remains to be established, these results are consistent with the mitosis-blocking properties
423 of antifolates observed in the blood stages of parasites, which may here have prevented the multiple
424 rounds cell division that take place inside the syncytial oocyst prior to the liberation of the sporozoites
425 (Gerald et al., 2011). Recent experiments using luciferase-expressing *Plasmodium berghei* parasites
426 cultured *in vitro* (Azevedo et al., 2017) have observed a significant reduction in the luminescence of
427 oocysts after adding 10 μ M pyrimethamine to the parasite culture. As the luciferase was under the
428 control of the parasite's circumsporozoite protein (*PbCSP*) promoter regions, a reduction in the number
429 of sporozoites produced inside the oocyst therefore seems like a plausible explanation for the observed
430 reduction in bioluminescence.

431 The strong reduction in sporozoite prevalence and burden in SP-fed mosquitoes is all the more
432 notable for being associated with a significant concomitant increase in the number of oocysts in the
433 midgut (Fig 1c). One potential explanation is that the powerful antibiotic properties of sulfadoxine and
434 pyrimethamine may have altered the microbiota of the mosquito midgut (Capan et al., 2010) which has

435 been shown to be correlated with oocyst development (Gendrin et al., 2015; Saraiva et al., 2016). We
436 are not aware of any study that has investigated the antibiotic properties of SP against the mosquito
437 midgut flora. To our knowledge, this is the first time that such an increase in oocysts following a drug-
438 treated blood meal has been reported in any study, which raises some interesting questions regarding
439 the timing of SP administration with respect to the arrival of ookinetes to the midgut wall. In addition,
440 we observed an interesting pattern whereby the decline in oocyst numbers with time, a natural process
441 that takes place as mature oocysts burst to produce sporozoites, happens more rapidly in control-fed
442 than in SP-fed mosquitoes, which may be indicative of a delay in oocyst development in the latter.
443 Other possibilities for the increased oocystaemia observed, such as a SP-induced immunosuppression
444 or SP-induced facilitation of the ookinete midgut invasion would also merit further study. Irrespective
445 of the underlying mechanism, our results indicate that SP exerts two opposing effects on the parasite's
446 sporogonic development within the mosquito: one that facilitates the midgut invasion of oocysts,
447 followed by another that blocks the production of sporozoites within them.

448 In contrast to SP, AS treatment had no discernible effects on sporozoite burden and only a
449 minor effect, detectable only 11-12 post infection, on the number of oocysts. These results are in
450 agreement with previous work showing that artesunate and other artemisinine derivatives have a
451 considerable gametocytocidal effect in humans but no effect on the mosquito stages of the parasite
452 (Butcher, 1997; Wadi et al., 2019) .

453 We are acutely aware that the effects of curative administration of SP on oocyst and sporozoite
454 burden may not directly translatable to human malaria. SP is widely used as a preventive treatment for
455 uninfected children (SMC) and pregnant women (IPT), with millions of doses being provided every
456 year across the African continent (Van Eijk et al., 2011). The transmission-blocking effect of a
457 curative administration of SP demonstrated here would be relevant when infected mosquitoes bite
458 these SP-treated individuals (in the field, mosquitoes go through several gonotrophic, bloodmeal - egg
459 laying - bloodmeal, cycles, Bomblies, 2014). To confirm the curative effect of SP in human malaria
460 infections, experiments where infected mosquitoes are membrane-fed on treated uninfected blood

461 could be carried out, with the caveat that membrane feeding and direct feeding on human volunteers
462 may render different results (Beavogui et al., 2010; Butcher, 1989; Wadi et al., 2018). Provided the
463 results obtained here are repeatable in human malaria, the epidemiological and evolutionary
464 consequences of the preventive use of SP in malaria-endemic countries could be substantial. Fewer
465 sporozoite-carrying mosquitoes (-30%), and fewer sporozoites in the salivary gland (-80%) should
466 translate into lower transmission rates, even accounting for a non-linear correlation between sporozoite
467 load and transmission (Aleshnick et al., 2019). The evolutionary effects may not be less important.
468 Current work largely assumes that the strongest selective pressures for drug resistance operate on the
469 treated host. As these results show, the strong bottleneck for sporozoites in the mosquito may act as an
470 additional selective pressure which may help maintain drug resistance in the field even when the drug
471 is not used to treat infected hosts, as is the case in the current mass administration of pyrimethamine
472 for ITP and SMC. More generally, these results also highlight the need for further studies on the
473 effects of the transmission-blocking compounds on each stage of the parasite's cycle within the
474 mosquito. The results of standard membrane feeding assays (SMFAs), considered to be the gold
475 standard for assessing the efficiency of transmission blocking interventions, are reported as a percent
476 reduction in the number of oocysts compared to a control (Nunes et al., 2014; Paton et al., 2019), with
477 current efficacy thresholds set at around a 80% reduction. As shown here, drugs can have contrasting
478 effects on different stages of the parasite's sporogonic cycle highlighting the potential drawbacks of
479 assessing drug-based transmission-blocking interventions based on oocyst quantifications alone.

480

481 **5. Acknowledgements**

482 We would like to thank Tanguy Lagache for his help with the experiments. This work was
483 funded through the ANR-16-CE35-0001-01 ('EVODRUG').

484

485

486 **6. References**

- 487 Aikawa, M., Beaudoin, R.L., 1968. Studies on nuclear division of a malarial parasite under
488 pyrimethamine treatment. *J. Cell Biol.* 39, 749–754. doi:10.1083/jcb.39.3.749
- 489 Aleshnick, M., Ganusov, V. V., Nasir, G., Yenokyan, G., Sinnis, P., 2019. Experimental
490 determination of the force of malaria infection reveals a non-linear relationship to mosquito
491 sporozoite loads. *bioRxiv* 1–40. doi:10.1101/830299
- 492 Azevedo, R., Markovic, M., Machado, M., Franke-Fayard, B., Mendes, A.M., Prudêncio, M., 2017.
493 Bioluminescence method for in vitro screening of *Plasmodium* transmission-blocking
494 compounds. *Antimicrob Agents Chemother* 61, e02699-16.
- 495 Balint, G.A., 2001. Artemisinin and its derivatives: an important new class of antimalarial agents.
496 *Pharmacol. Ther.* 90, 261–265. doi:10.1016/S0163-7258(01)00140-1
- 497 Beavogui, A.H., Djimde, A.A., Gregson, A., Toure, A.M., Dao, A., Coulibaly, B., Ouologuem, D.,
498 Fofana, B., Sacko, A., Tekete, M., Kone, A., Niare, O., Wele, M., Plowe, C. V., Picot, S.,
499 Doumbo, O.K., 2010. Low infectivity of *Plasmodium falciparum* gametocytes to *Anopheles*
500 *gambiae* following treatment with sulfadoxine-pyrimethamine in Mali. *Int. J. Parasitol.* 40,
501 1213–1220. doi:10.1016/j.ijpara.2010.04.010
- 502 Blagborough, A.M., Churcher, T.S., Upton, L.M., Ghani, A.C., Gething, P.W., Sinden, R.E., 2013.
503 Transmission-blocking interventions eliminate malaria from laboratory populations. *Nat.*
504 *Commun.* 4, 1–7. doi:10.1038/ncomms2840
- 505 Bolker, B.M., 2008. Ecological models and data in R, *Ecological Models and Data in R*.
506 doi:10.1111/j.1442-9993.2010.02210.x
- 507 Bomblies, A., 2014. Agent-based modeling of malaria vectors: the importance of spatial simulation.
508 *Parasites and Vectors* 7, 308. doi:10.1186/1756-3305-7-308
- 509 Bray, R.S., Burgess, R.W., Fox, R.M., Miller, M.J., 1959. Effect of pyrimethamine upon sporogony
510 and pre-erythrocytic schizogony of *Laverania falciparum*. *Bull. World Health Organ.* 21, 233–
511 238.
- 512 Buckling, A., Crooks, L., Read, A., 1999. *Plasmodium chabaudi*: effect of antimalarial drugs on
513 gametocytogenesis. *Exp. Parasitol.* 93, 45–54. doi:10.1006/EXPR.1999.4429
- 514 Burgess, R.W., Young, M.D., 1959. The development of pyrimethamine resistance by *Plasmodium*
515 *falciparum*. *Bull. World Health Organ.* 20, 37–46.
- 516 Burri, C., Ferrari, G., Ntuku, H.M., Kitoto, A.T., Duparc, S., Hugo, P., Mitembo, D.K., Lengeler,

- 517 C., 2014. Short report: delayed anemia after treatment with injectable artesunate in the
518 Democratic Republic of the Congo: a manageable issue. *Am. J. Trop. Med. Hyg.* 91, 821–823.
519 doi:10.4269/ajtmh.14-0149
- 520 Butcher, G., 1997. Antimalarial drugs and the mosquito transmission of *Plasmodium*. *Int. J.*
521 *Parasitol.* 27, 975–987.
- 522 Butcher, P., 1989. Mechanisms of immunity to malaria and the possibilities of a blood-stage
523 vaccine: a critical appraisal. *Parasitology* 98, 315–327. doi:10.1017/S0031182000062247
- 524 Capan, M., Mombo-Ngoma, G., Makristathis, A., Ramharter, M., 2010. Anti-bacterial activity of
525 intermittent preventive treatment of malaria in pregnancy: comparative *in vitro* study of
526 sulfadoxine-pyrimethamine, mefloquine, and azithromycin. *Malar. J.* 9, 303.
527 doi:10.1186/1475-2875-9-303
- 528 Chotivanich, K., Sattabongkot, J., Udomsangpetch, R., Looareesuwan, S., Day, N.P.J., Coleman,
529 R.E., White, N.J., 2006. Transmission-blocking activities of quinine, primaquine, and
530 artesunate. *Antimicrob. Agents Chemother.* 50, 1927–1930. doi:10.1128/AAC.01472-05
- 531 Churcher, T.S., Bousema, T., Walker, M., Drakeley, C., Schneider, P., Ouédraogo, A.L., Basáñez,
532 M.G., 2013. Predicting mosquito infection from *Plasmodium falciparum* gametocyte density
533 and estimating the reservoir of infection. *Elife* e00626. doi:10.7554/eLife.00626
- 534 Chutmongkonkul, M., Maier, W.A., Seitz, H.M., 1992. *Plasmodium falciparum*: effect of
535 chloroquine, halofantrine and pyrimethamine on the infectivity of gametocytes for *Anopheles*
536 *stephensi* mosquitoes. *Ann. Trop. Med. Parasitol.* 86, 103–110.
537 doi:10.1080/00034983.1992.11812639
- 538 Coatney, G.R., Cooper, W.C., Eddy, N.B., Greenberg, J., 1953. Survey of antimalarial agents:
539 chemotherapy of *Plasmodium gallinaceum* infections; toxicity; correlation of structure and
540 action. *Public Heal. Serv. Publ.*
- 541 Cohuet, A., Osta, M.A., Morlais, I., Awono-Ambene, P.H., Michel, K., Simard, F., Christophides,
542 G.K., Fontenille, D., Kafatos, F.C., 2006. *Anopheles* and *Plasmodium*: from laboratory models
543 to natural systems in the field. *EMBO Rep.* 7, 1285–1289. doi:10.1038/sj.embo.7400831
- 544 Cornet, S., Nicot, A., Rivero, A., Cator, L., 2019. Avian malaria alters blood feeding of *Culex*
545 *pipiens* mosquitoes. *Malar. J.* 18, 82.
- 546 Cornet, S., Nicot, A., Rivero, A., Gandon, S., 2014. Evolution of plastic transmission strategies in
547 avian malaria. *PLoS Pathog.* 10. doi:10.1371/journal.ppat.1004308
- 548 Crawley, M.J., 2007. The R book, Imperial C. ed. UK.

- 549 Delves, M., Plouffe, D., Scheurer, C., Meister, S., Wittlin, S., Winzeler, E.A., Sinden, R.E., Leroy,
550 D., 2012. The activities of current antimalarial drugs on the life cycle stages of *Plasmodium*: a
551 comparative study with human and rodent parasites. PLoS Med. 9.
552 doi:10.1371/journal.pmed.1001169
- 553 Delves, M.J., Miguel-Blanco, C., Matthews, H., Molina, I., Ruecker, A., Yahya, S., Straschil, U.,
554 Abraham, M., León, M.L., Fischer, O.J., Rueda-Zubiaurre, A., Brandt, J.R., Cortés, Á.,
555 Barnard, A., Fuchter, M.J., Calderón, F., Winzeler, E.A., Sinden, R.E., Herreros, E., Gamo,
556 F.J., Baum, J., 2018. A high throughput screen for next-generation leads targeting malaria
557 parasite transmission. Nat. Commun. 9, 1–13. doi:10.1038/s41467-018-05777-2
- 558 Delves, M.J., Ruecker, A., Straschil, U., Lelièvre, J., Marques, S., López-Barragán, M.J., Herreros,
559 E., Sinden, R.E., 2013. Male and female *Plasmodium falciparum* mature gametocytes show
560 different responses to antimalarial drugs. Antimicrob. Agents Chemother. 57, 3268–3274.
561 doi:10.1128/AAC.00325-13
- 562 Dong, Y., Aguilar, R., Xi, Z., Warr, E., Mongin, E., Dimopoulos, G., 2006. *Anopheles gambiae*
563 immune responses to human and rodent *Plasmodium* parasite species. PLoS Pathog. 2, e52.
564 doi:10.1371/journal.ppat.0020052
- 565 Ferguson, H.M., Rivero, A., Read, A.F., 2003. The influence of malaria parasite genetic diversity
566 and anaemia on mosquito feeding and fecundity. Parasitology 127, 9–19.
567 doi:10.1017/S0031182003003287
- 568 Foy, H., Kondi, A., 1952. Effect of daraprim on the gametocytes of *Plasmodium falciparum*. Trans.
569 R. Soc. Trop. Med. Hyg. doi:10.1016/0035-9203(52)90084-9
- 570 Gendrin, M., Rodgers, F.H., Yerbanga, R.S., Ouédraogo, J.B., Basañez, M.G., Cohuet, A.,
571 Christophides, G.K., 2015. Antibiotics in ingested human blood affect the mosquito microbiota
572 and capacity to transmit malaria. Nat. Commun. 6, 1–7. doi:10.1038/ncomms6921
- 573 Gerald, N., Mahajan, B., Kumar, S., 2011. Mitosis in the human malaria parasite *Plasmodium*
574 *falciparum*. Eukaryot. Cell 10, 474–482. doi:10.1128/EC.00314-10
- 575 Gerberg, E.J., 1971. Evaluation of antimalarial compounds in mosquito test systems. Trans. R. Soc.
576 Trop. Med. Hyg. 65, 358–363.
- 577 Gunders, A.E., 1961. The effect of a single dose of pyrimethamine and primaquine in combination
578 upon gametocytes and sporogony of *Laverania falcipara* (= *Plasmodium falciparum*) in
579 Liberia. Bull. World Health Organ. 24, 650–653.
- 580 Hewitt, R., 1940. Bird Malaria, The american journal of hygiene.

- 581 Hogh, B., Gamage-Mendis, A., Butcher, G.A., Thompson, R., Begtrup, K., Mendis, C., Enosse,
582 S.M., Dgedge, M., Barreto, J., Eling, W., Sinden, R.E., 1998. The differing impact of
583 chloroquine and pyrimethamine/sulfadoxine upon the infectivity of malaria species to the
584 mosquito vector. *Am. J. Trop. Med. Hyg.* 58, 176–182. doi:10.4269/ajtmh.1998.58.176
- 585 Hopkins Sibley, C., Hyde, J.E., Sims, P.F.G., Plowe, C. V., Kublin, J.G., Mberu, E.K., Cowman,
586 A.F., Winstanley, P.A., Watkins, W.M., Nzila, A.M., 2001. Pyrimethamine-sulfadoxine
587 resistance in *Plasmodium falciparum*: what's next? *TRENDS Parasitol.* 17, 582–588.
- 588 Hou, L., Huang, H., 2016. Immune suppressive properties of artemisinin family drugs. *Pharmacol.*
589 *Ther.* 166, 123–127. doi:10.1016/j.pharmthera.2016.07.002
- 590 Karunajeewa, H.A., Salman, S., Mueller, I., Baiwog, F., Gomorrai, S., Law, I., Page-Sharpe, M.,
591 Rogerson, S., Siba, P., Ilett, K.F., Davis, T.M.E., 2009. Pharmacokinetic properties of
592 sulfadoxine-pyrimethamine in pregnant women. *Antimicrob. Agents Chemother.* 53, 4368–
593 4376. doi:10.1128/AAC.00335-09
- 594 Kirk, D., Mittwoch, U., Stone, A.B., Wilkie, D., 1976. Limited ability of thymidine to relieve
595 mitotic inhibition by pyrimethamine in human fibroblasts. *Biochem. Pharmacol.* 25, 681–685.
- 596 Kone, A., Vegte-Bolmer, M. van de, Siebelink-Stoter, R., Gemert, G.J. van, Dara, A., Niangaly, H.,
597 Luty, A., Doumbo, O.K., Sauerwein, R., Djimde, A.A., 2010. Sulfadoxine-pyrimethamine
598 impairs *Plasmodium falciparum* gametocyte infectivity and *Anopheles* mosquito survival. *Int.*
599 *J. Parasitol.* 40, 1221–1228. doi:10.1016/j.ijpara.2010.05.004
- 600 Medscape, 2020. Artesunate dosing, indications, interactions, adverse effects, and more [WWW
601 Document]. URL <https://reference.medscape.com/drug/artesunate-342684> (accessed 4.21.20).
- 602 Miguel-Blanco, C., Lelièvre, J., Delves, M.J., Bardera, A.I., Presa, J.L., López-Barragán, M.J.,
603 Ruecker, A., Marques, S., Sinden, R.E., Herreros, E., 2015. Imaging-based high-throughput
604 screening assay to identify new molecules with transmission-blocking potential against
605 *Plasmodium falciparum* female gamete formation. *Antimicrob. Agents Chemother.* 59, 3298–
606 3305. doi:10.1128/AAC.04684-14
- 607 Müller, I.B., Hyde, J.E., 2010. Antimalarial drugs: modes of action and mechanisms of parasite
608 resistance. *Futur. Microbiol* 5, 1857–1873.
- 609 Nunes, J.K., Woods, C., Carter, T., Raphael, T., Morin, M.J., Diallo, D., Leboulleux, D., Jain, S.,
610 Loucq, C., Kaslow, D.C., Birkett, A.J., 2014. Development of a transmission-blocking malaria
611 vaccine: progress, challenges, and the path forward. *Vaccine*.
612 doi:10.1016/j.vaccine.2014.07.030

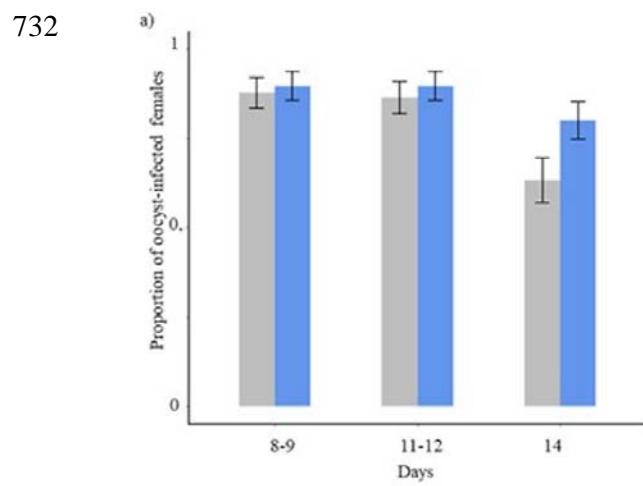
- 613 O'Neill, P.M., Barton, V.E., Ward, S.A., 2010. The molecular mechanism of action of
614 artemisinin— the debate continues. *Molecules* 15, 1705–1721.
615 doi:10.3390/molecules15031705
- 616 Omar, M.S., Collins, W.E., Contacos, P.G., 1973. Gametocytocidal and sporontocidal effects of
617 antimalarial drugs on malaria parasites. *Exp. Parasitol.* 34, 229–241. doi:10.1016/0014-
618 4894(73)90082-9
- 619 Paaijmans, K., Fernàndez-Busquets, X., 2014. Antimalarial drug delivery to the mosquito: an option
620 worth exploring? *Futur. Microbiol* 9, 579–582. doi:10.2217/FMB.14.30
- 621 Paton, D.G., Childs, L.M., Itoe, M.A., Holmdahl, I.E., Buckee, C.O., Catteruccia, F., 2019.
622 Exposing *Anopheles* mosquitoes to antimalarials blocks *Plasmodium* parasite transmission.
623 *Nature*. doi:10.1038/s41586-019-0973-1
- 624 Peatey, C.L., Leroy, D., Gardiner, D.L., Trenholme, K.R., 2012. Anti-malarial drugs: how effective
625 are they against *Plasmodium falciparum* gametocytes? *Malar. J.* 11, 34. doi:10.1186/1475-
626 2875-11-34
- 627 Peterson, D.S., Walliker, D., Wellem, T.E., 1988. Evidence that a point mutation in dihydrofolate
628 reductase-thymidylate synthase confers resistance to pyrimethamine in *falciparum* malaria,
629 *Proc. Nati. Acad. Sci. USA*.
- 630 Pigeault, R., 2015. Ecologie évolutive des interaction Hôte / Moustique / *Plasmodium*: sources
631 d'hétérogénéité de l'infection des vecteurs. Université de Montpellier.
- 632 Pigeault, R., Vézilier, J., Cornet, S., Zélé, F., Nicot, A., Perret, P., Gandon, S., Rivero, A., 2015.
633 Avian malaria: a new lease of life for an old experimental model to study the evolutionary
634 ecology of *Plasmodium*. *Philos. Trans. R. Soc. B Biol. Sci.* 370, 20140300.
635 doi:10.1098/rstb.2014.0300
- 636 Plouffe, D.M., Wree, M., Du, A.Y., Meister, S., Li, F., Patra, K., Lubar, A., Okitsu, S.L., Flannery,
637 E.L., Kato, N., Tanaseichuk, O., Comer, E., Zhou, B., Kuhen, K., Zhou, Y., Leroy, D.,
638 Schreiber, S.L., Scherer, C.A., Vinetz, J., Winzeler, E.A., 2016. High-throughput assay and
639 discovery of small molecules that interrupt malaria transmission. *Cell Host Microbe* 19, 114–
640 126. doi:10.1016/j.chom.2015.12.001
- 641 Ramakrishnan, S.P., Basu, P.C., Harwant, S., Wattal, B.L., 1963. A study on the joint action of
642 diamino-diphenyl-sulphone (DDS) and pyrimethamine in the sporogony cycle of *Plasmodium*
643 *gallinaceum*: potentiation of the sporontocidal activity of pyrimethamine by DDS. *Indian J.*
644 *Malariaol.* 17, 141–148.

- 645 Rivero, A., Gandon, S., 2018. Evolutionary Ecology of Avian Malaria: Past to Present. Trends
646 Parasitol. 34. doi:10.1016/j.pt.2018.06.002
- 647 Robert, V., Awono-Ambene, H.P., Le Hesran, J.-Y., Trape, J.-F., 2000. Gametocytemia and
648 infectivity to mosquitoes of patients with uncomplicated *Plasmodium falciparum* malaria
649 attacks treated with chloroquine or sulfadoxine plus pyrimethamine. Am. J. Trop. Med. Hyg.
650 62, 210–216. doi:10.4269/ajtmh.2000.62.210
- 651 Ruecker, A., Mathias, D.K., Straschil, U., Churcher, T.S., Dinglasan, R.R., Leroy, D., Sinden, R.E.,
652 Delves, M.J., 2014. A male and female gametocyte functional viability assay to identify
653 biologically relevant malaria transmission-blocking drugs. Antimicrob. Agents Chemother. 58,
654 7292–7304. doi:10.1128/AAC.03666-14
- 655 Sanders, N.G., Sullivan, D.J., Mlambo, G., Dimopoulos, G., Tripathi, A.K., 2014. Gametocytocidal
656 screen identifies novel chemical classes with *Plasmodium falciparum* transmission blocking
657 activity. PLoS One 9, e105817. doi:10.1371/journal.pone.0105817
- 658 Saraiva, R.G., Kang, S., Simões, M.L., Angleró-Rodríguez, Y.I., Dimopoulos, G., 2016. Mosquito
659 gut antiparasitic and antiviral immunity. Dev. Comp. Immunol. 64, 53–64.
660 doi:10.1016/j.dci.2016.01.015
- 661 Shinondo, C.J., Norbert Lanners, H., Lowrie, R.C.J., Wiser, M.F., 1994. Effect of pyrimethamine
662 resistance on sporogony in a *Plasmodium berghei/Anophelestephensi* model. Exp. Parasitol.
663 78, 194–202.
- 664 Shute, P.G., Maryion, M., 1954. The effect of pyrimethamine (Daraprim) on the gametocytes and
665 oocysts of *Plasmodium falciparum* and *Plasmodium vivax*. Trans. R. Soc. Trop. Med. an Hyg.
666 48, 50–63.
- 667 Sinden, R.E., 2017. Developing transmission-blocking strategies for malaria control. PLoS Pathog.
668 doi:10.1371/journal.ppat.1006336
- 669 Sinden, R.E., 2010. A biologist's perspective on malaria vaccine development. Hum. Vaccin.
670 doi:10.4161/hv.6.1.9604
- 671 Sinden, R.E., Carter, R., Drakeley, C., Leroy, D., 2012. The biology of sexual development of
672 *Plasmodium*: the design and implementation of transmission-blocking strategies. Malar. J. 11,
673 1–11. doi:10.1186/1475-2875-11-70
- 674 Smith, D.L., McKenzie, F.E., 2004. Statics and dynamics of malaria infection in *Anopheles*
675 mosquitoes. Malar. J. 3. doi:10.1186/1475-2875-3-13
- 676 Sowunmi, A., Akano, K., Ntadom, G., Ayede, A., Oguche, S., Agomo, C., Okafor, H., Watila, I.,

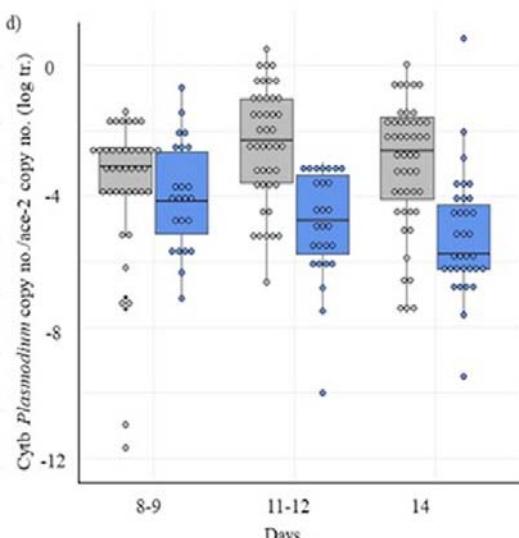
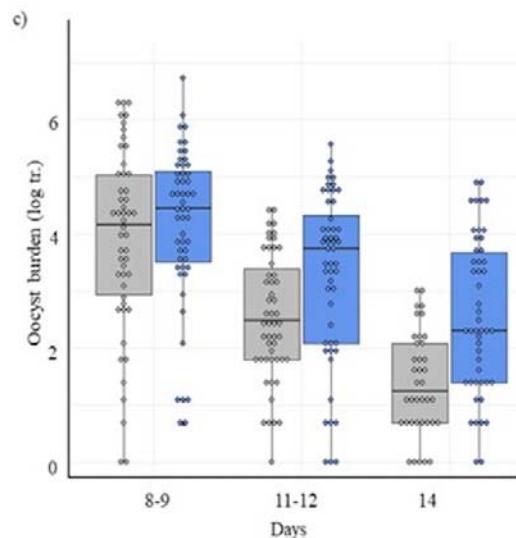
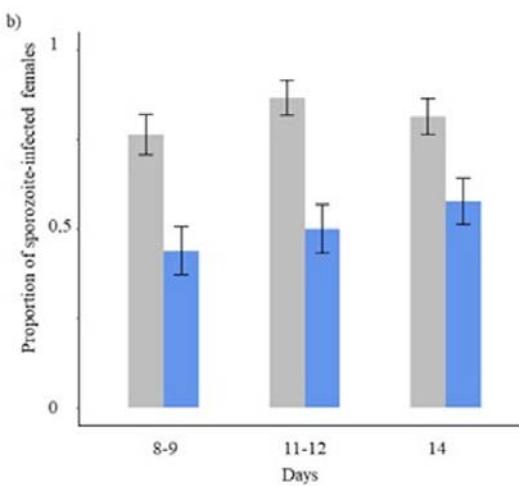
- 677 Meremikwu, M., Ogala, W., Agomo, P., Adowoye, E., Fatunmbi, B., Aderoyeje, T., Happi, C.,
678 Gbotosho, G., Folarin, O., 2017. Anaemia following artemisinin-based combination treatments
679 of uncomplicated *Plasmodium falciparum* malaria in children: temporal patterns of
680 haematocrit and the use of uncomplicated hyperparasitaemia as a model for evaluating late-
681 appearing anaemia. *Chemotherapy* 62, 231–238. doi:10.1159/000449366
- 682 Teklehaimanot, A., Nguyen-Dinh, P., Collins, W.E., Barber, A.M., Campbell, C.C., 1985.
683 Evaluation of sporontocidal compounds using *Plasmodium falciparum* gametocytes produced
684 in vitro. *Am. J. Trop. Med. Hyg.* 34, 429–434. doi:10.4269/ajtmh.1985.34.429
- 685 Terzakis, J.A., 1971. *Plasmodium gallinaceum*: drug-induced ultrastructural changes in oocysts.
686 *Exp. Parasitol.* 30, 260–266.
- 687 Terzian, L.A., 1970. A note on the effects of antimalarial drugs on the sporogonous cycle of
688 *Plasmodium cynomolgi* in *Anopheles stephensi*. *Parasitology* 61, 191–194.
- 689 Terzian, L.A., Stahler, N., Daw, A.T., 1968. The sporogonous cycle of *Plasmodium vivax* in
690 *Anopheles* mosquitoes as a system for evaluating the prophylactic and curative capabilities of
691 potential antimalarial compounds. *Exp. Parasitol.* 23, 56–66. doi:10.1016/0014-
692 4894(68)90042-8
- 693 Van Eijk, A.M., Hill, J., Alegana, V.A., Kirui, V., Gething, P.W., ter Kuile, F.O., Snow, R.W.,
694 2011. Coverage of malaria protection in pregnant women in sub-Saharan Africa: a synthesis
695 and analysis of national survey data. *Lancet Infect. Dis.* 11, 190–207. doi:10.1016/S1473-
696 3099(10)70295-4
- 697 Vézilier, J., Nicot, A., Gandon, S., Rivero, A., 2015. *Plasmodium* infection brings forward
698 mosquito oviposition. *Biol. Lett.* 11, 2–6. doi:10.1098/rsbl.2014.0840
- 699 Vézilier, J., Nicot, A., Gandon, S., Rivero, A., 2012. *Plasmodium* infection decreases fecundity and
700 increases survival of mosquitoes. *Proc. Biol. Sci.* 279, 4033–41. doi:10.1098/rspb.2012.1394
- 701 Vézilier, J., Nicot, A., Gandon, S., Rivero, A., 2010. Insecticide resistance and malaria
702 transmission: infection rate and oocyst burden in *Culex pipiens* mosquitoes infected with
703 *Plasmodium relictum*. *Malar. J.* 9. doi:10.1186/1475-2875-9-379
- 704 Vincke, I.H., 1970. The effects of Pyrimethamine and Sulphormethoxine on the pre-erythrocytic
705 and sporogonous cycle of *Plasmodium berghei berghei*. *Ann. Soc. Belg. Med. Trop.* (1920).
706 50, 339–358.
- 707 Wadi, I., Anvikar, A.R., Nath, M., Pillai, C.R., Sinha, A., Valecha, N., 2018. Critical examination
708 of approaches exploited to assess the effectiveness of transmission-blocking drugs for malaria.

- 709 Future Med. Chem. 10, 2619–2639. doi:10.4155/fmc-2018-0169
- 710 Wadi, I., Nath, M., Anvikar, A.R., Singh, P., Sinha, A., 2019. Recent advances in transmission-
711 blocking drugs for malaria elimination. Future Med. Chem. 11, 3047–3088. doi:10.4155/fmc-
712 2019-0225
- 713 WHO, 2019. World Malaria Report 2019. Geneva.
- 714 Zélé, F., Nicot, A., Berthomieu, A., Weill, M., Duron, O., Rivero, A., 2014. *Wolbachia* increases
715 susceptibility to *Plasmodium* infection in a natural system. Proc. R. Soc. B 281.
716 doi:10.1098/rspb.2013.2837
- 717 Zhou, G., Kohlhepp, P., Geiser, D., Frasquillo, M. del C., Vazquez-Moreno, L., Winzerling, J.J.,
718 2007. Fate of blood meal iron in mosquitoes. J. Insect Physiol. 53, 1169–1178.
719 doi:10.1016/j.jinsphys.2007.06.009
- 720
- 721

722

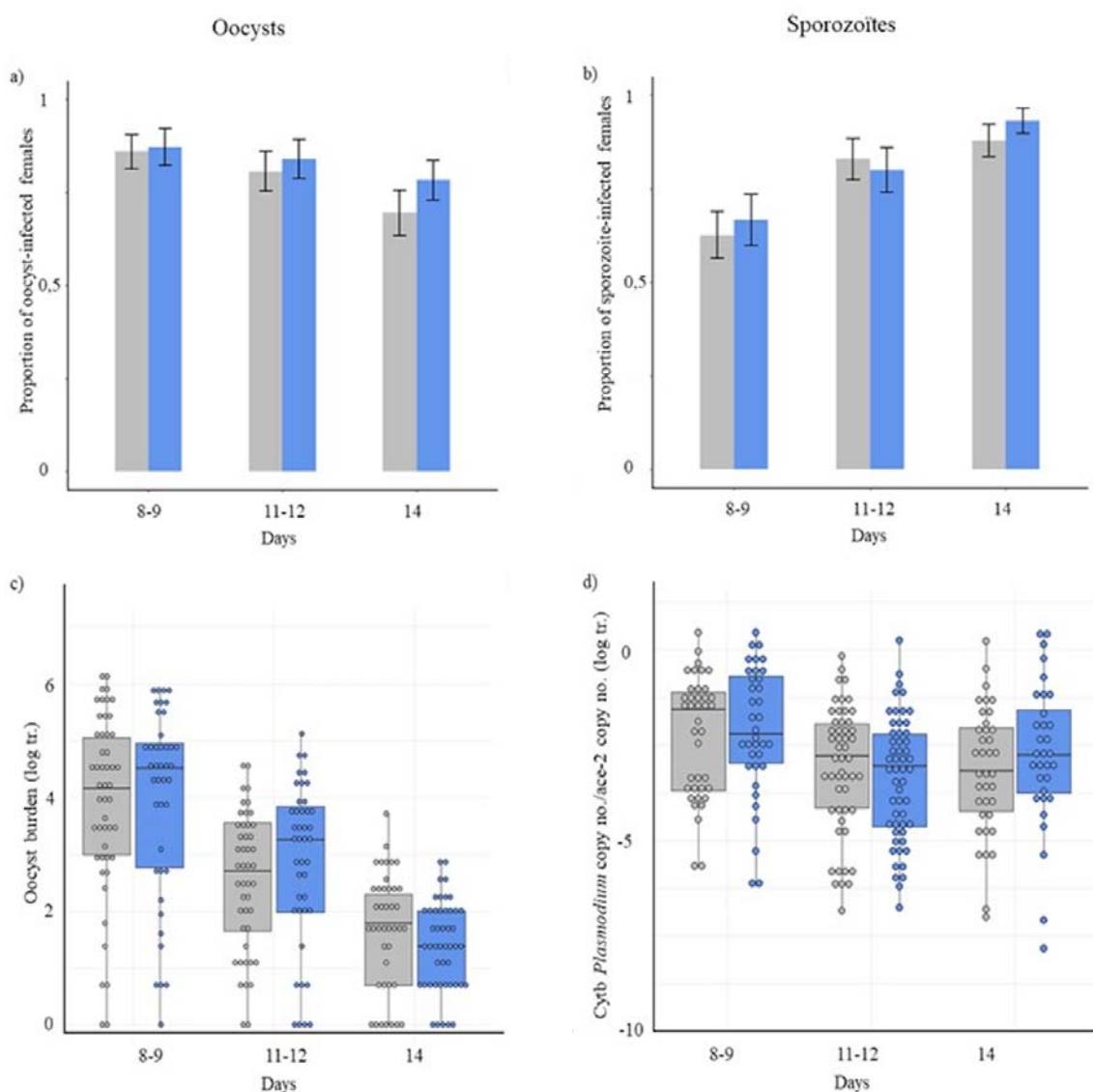

Figures

723




724 **Figure 1. Prevalence and burden of oocysts and sporozoites in mosquitoes fed on a control-**
725 **(grey) or SP-treated (blue) host** for each sampling day (number of days post infection). a), b): oocyst
726 and sporozoite prevalence, respectively. c), d): oocyst and sporozoite burden, respectively. Prevalence
727 is represented as the mean \pm standard error (calculated as $\text{sqrt}(pq/n)$). Burden is represented as a
728 boxplot where with the median (horizontal lines), first and third quartiles (box above and below the
729 medians). Vertical lines delimit 1.5 times the inter-quartile range above which individual counts are
730 considered outliers and marked as circles.

731

Oocysts



Sporozoites

733 **Figure 2. Prevalence and burden of oocysts and sporozoites in mosquitoes fed on a control-**
734 **(grey) or AS-treated host (blue)** for each sampling day (number of day post infection). a, b):
735 oocyst and sporozoite prevalence, respectively. c, d): oocyst and sporozoite burden, respectively.
736 Prevalence is represented as the mean \pm standard error (calculated as $\text{sqrt}(pq/n)$). Burden is
737 represented as a boxplot where with the median (horizontal lines), first and third quartiles (box
738 above and below the medians). Vertical lines delimit 1.5 times the inter-quartile range above which
739 individual counts are considered outliers and marked as circles.

740

Tables

Table 1: Summary of the main studies investigating the inhibitory effect of pyrimethamine (PYR) alone or in combination with sulfadoxine (SFX) for oocyst and sporozoite formation. In *prophylactic* protocols the drug is administered before or concomitantly with the infected blood meal (mosquitoes ingest the drug at the same time as the infective gametocytes). In *curative* protocols, the mosquito is first infected and then provided with a second blood meal containing the drug.

Plasmodium species	Mosquito species	Dose*	Oocyst inhibition	Sporozoite inhibition	Reference
Prophylactic administration					
<i>P.falciparum</i>	<i>An.gambiae</i>	20 mg PYR /ind	-	YES	(Foy and Kondi, 1952)
<i>P.falciparum</i>	<i>An.stephensi</i>	25 mg PYR /ind	YES ¹	NO ²	(Shute and Maryion, 1954)
<i>P.falciparum</i>	<i>An.gambiae</i> <i>An.melas</i>	25-50 mg PYR /ind	YES	YES	(Bray et al., 1959)
<i>P.falciparum</i>	<i>An.quadrivittatum</i> <i>An.freeborni</i>	50-100 mg PYR /ind	YES ¹	YES	(Burgess and Young, 1959)
<i>P.falciparum</i>	<i>An.gambiae</i>	12-50 mg PYR/ind	YES ^{1,3}	YES ^{2,3}	(Gunders, 1961)
<i>P.falciparum</i>	<i>An.stephensi</i>	0.00001% PYR (ss)	-	YES ²	(Gerberg, 1971)
<i>P.falciparum</i>	<i>An.stephensi</i>	10 ⁻⁷ M PYR (mf)	YES ¹	-	(Chutmongkonkul et al., 1992)
<i>P.falciparum</i>	<i>An.gambiae</i>	75 mg PYR 1500 mg SFX	YES ¹	-	(Hogh et al., 1998)
<i>P.falciparum</i>	<i>An.gambiae</i>	1.25 mg/kg PYR 25 mg/kg SFX	YES	-	(Beavogui et al., 2010)
<i>P.falciparum</i>	<i>An.arabiensis</i>	25 mg/kg SFX 1.25 mg/kg PYR	YES ^{1,4}	-	(Robert et al., 2000)
<i>P.vivax</i>	<i>An.stephensi</i>	50 mg PYR /ind	YES ¹	NO ²	(Shute and Maryion, 1954)
<i>P.vivax</i>	<i>An.stephensi</i>	0.002 gr PYR /ml (ss)	YES ¹	YES	(Terzian et al., 1968)
<i>P.cynomolgui</i>	<i>An.stephensi</i>	0.001 gr PYR /ml (ss)	YES ¹	YES	(Terzian, 1970)
<i>P.cynomolgui</i>	<i>An.stephensi</i>	0.00001% PYR (ss)	-	YES ²	(Gerberg, 1971)
<i>P.cynomolgui</i>	<i>An.maculatus</i>	3 mg PYR /kg	YES	YES	(Omar et al., 1973)
<i>P.berghei</i>	<i>An.stephensi</i>	2.5 - 20mg PYR /kg	YES	YES	(Vincke, 1970)
<i>P.berghei</i>	<i>An.stephensi</i>	20mg PYR /kg	YES	YES	(Shinondo et al., 1994)
<i>P.berghei</i>	<i>An.stephensi</i>	Serum from PYR/SFX treated patients (mf)	YES ¹	-	(Hogh et al., 1998)
<i>P.gallinaceum</i>	<i>Ae.aegypti</i>	0.028 mg/kg PYR 210 mg/kg SFX	-	YES	(Ramakrishnan et al., 1963)
<i>P.gallinaceum</i>	<i>Ae.aegypti</i>	0.001% and 0.0001% PYR (ss)	YES ¹	YES ²	(Terzakis, 1971)
<i>P.gallinaceum</i>	<i>Ae.aegypti</i>	0.00001% PYR (ss)	-	YES ²	(Gerberg, 1971)

Curative administration

<i>P.falciparum</i>	<i>An.gambiae</i> , <i>An.melas</i>	25-50 mg PYR 4 days post infection	YES ¹	NO ²	(Bray et al., 1959)
<i>P.falciparum</i>	<i>An.gambiae</i>	1μM PYR 2-4 days post-infection (mf)	YES ¹	NO ²	(Teklehaiamanot et al., 1985)
<i>P.falciparum</i>	<i>An.stephensi</i>	10 ⁻⁷ M PYR 4 days post infection (mf)	NO	-	(Chutmongkonkul et al., 1992)

* Drug administered directly to host unless otherwise stated: (ss): drug administered in sugar solution, (mf): drug added to blood in a membrane feeder. ¹Inhibition was partial (some oocysts present); ²Sporozoites were observed but not quantified; ³No untreated controls;

⁴ Chloroquine-treated patients used as a control.

751
752
753
754
755

756

757

758

759

760

Supplementary Materials

The transmission-blocking effects of antimalarial drugs revisited:

fitness costs and sporontocidal effects (Villa et al)

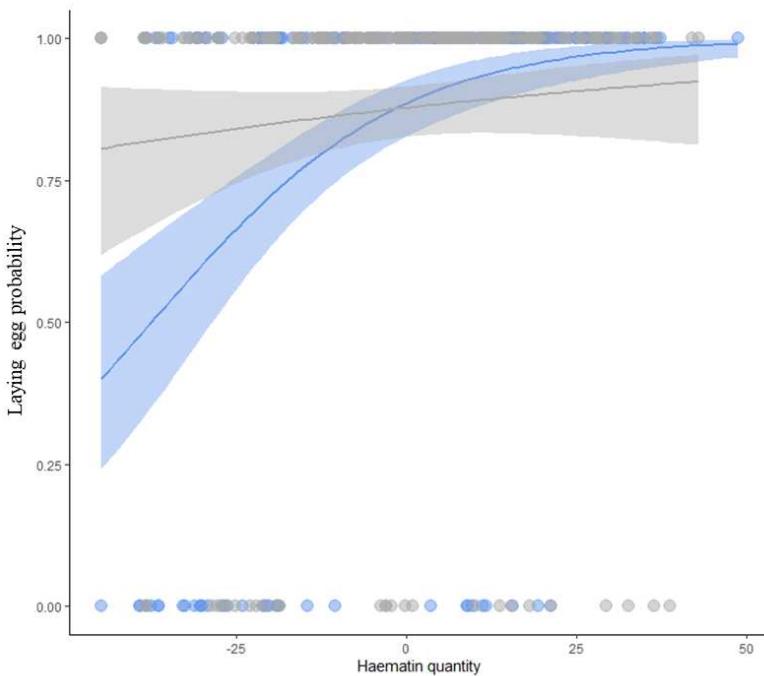
764

765

766

767 **Table S1. Description of the statistical models used to analyze the impact of drugs on mosquito**
 768 **life history traits.** Models with binomial error structure require a concatenated response variable
 769 binding together the number of successes and failures for a given outcome. N gives the number of
 770 mosquitoes included in each analysis. "Maximal model" represents the complete set of explanatory
 771 variables (and their interactions) included in the model. "Minimal model" represents the model
 772 containing only the significant variables and their interactions. Round brackets indicate that the
 773 variable was fitted as a random factor. Square brackets indicate the error structure used (n: normal
 774 errors, b: binomial errors). date: sampling day, status: alive/dead on sampling day, fed/unfed: number
 775 of fed/unfed mosquitoes, hm: haematin excreted (proxy for blood meal size), plt: plate used for the
 776 colorimetric quantification haematin, hmr: residuals of hm by plate, eggs: number of eggs laid, inf:
 777 mosquito infection status (infected/uninfected), TR: mosquito fed on treated/untreated bird.
 778
 779

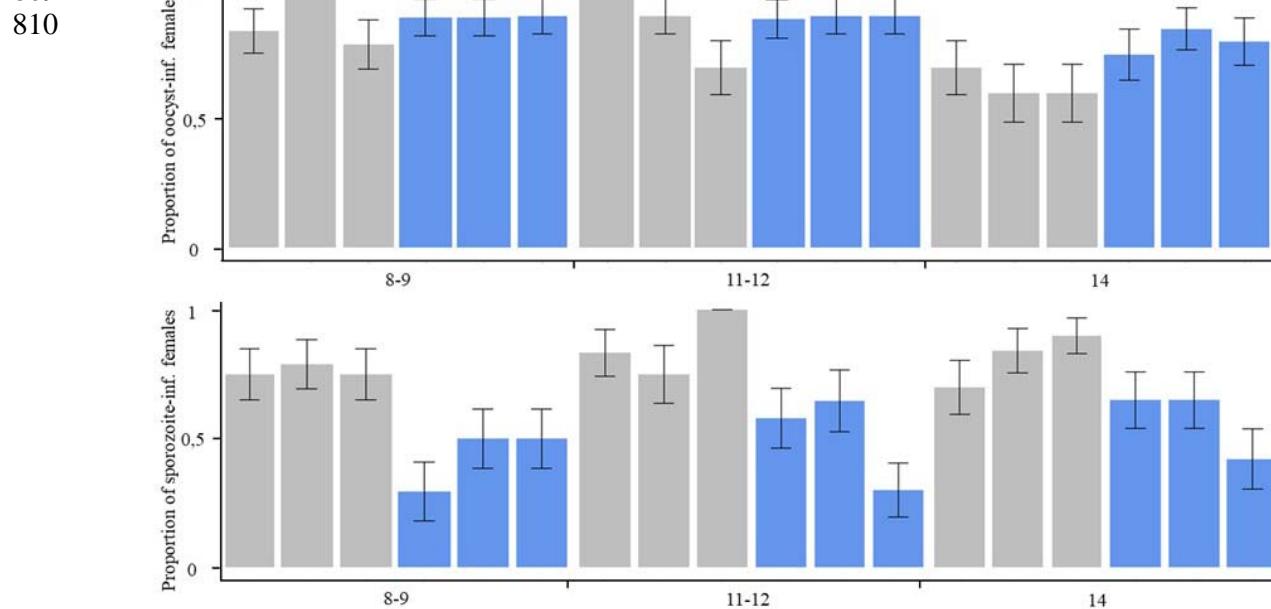
Variable of interest	Response variable	Model Nb.	N	Maximal model	Minimal model	R subroutine [err struct.]	
<i>Effect of AS on mosquito traits</i>							
RBC	RBC/ml	RBC	5	5	TR	1	K-W
Survival	Overall survival	(date, status)	14	414	TR*inf + (1 bird)	(1 bird)	coxme
	% mosquitoes surviving until day 14	cbind (dead, alive)	15	10	TR*inf + (1 bird)	(1 bird)	lmer [b]
Blood meal size	Blood-fed	cbind (fed, unfed)	9	966	TR*inf + (1 bird)	(1 bird)	lmer [b]
	Blood meal size	hmr (lm (hm ~ plt))	10	414	TR*inf + (1 bird)	(1 bird)	lmer [n]
Fecundity	Egg laying probability	cbind (laid, not laid)	13	440	hmr*TR*inf + (1 bird)	TR*hmr + inf + (1 bird)	lmer [b]
	Oviposition day	day	11	337	hmr*TR*inf	hmr	clm
	Number of eggs per raft	eggs	12	337	hmr*TR + inf*day + (1 bird)	hmr + (1 bird)	glmmTMB
<i>Effect of SP on mosquito traits</i>							
RBC	RBC/ml	RBC	3	6	TR	1	K-W
Survival	overall survival	(date, statut)	7	564	TR*inf + (1 bird)	inf + (1 bird)	coxme
	% mosquitoes surviving until day 14	cbind(dead, alive)	8	12	TR*inf + (1 bird)	(1 bird)	lmer [b]
Blood meal	Blood-fed	cbind (fed, unfed)	1	1045	TR*inf + (1 bird)	(1 bird)	lmer [b]
	Blood meal size	hmres (lm (hm ~ Plq))	2	454	TR*inf + (1 bird)	(1 bird)	lmer [n]
Fecundity	Egg-laying probability	cbind (laid, not laid)	4	378	hmr*TR*inf + (1 bird)	TR*inf + (1 bird)	lmer [b]
	Oviposition day	day	5	312	hmr*TR*inf	hmr*inf + TR	clm
	Number of eggs per raft	eggs	6	312	hmr*TR + inf*day + (1 bird)	day + (1 bird)	glmmTMB

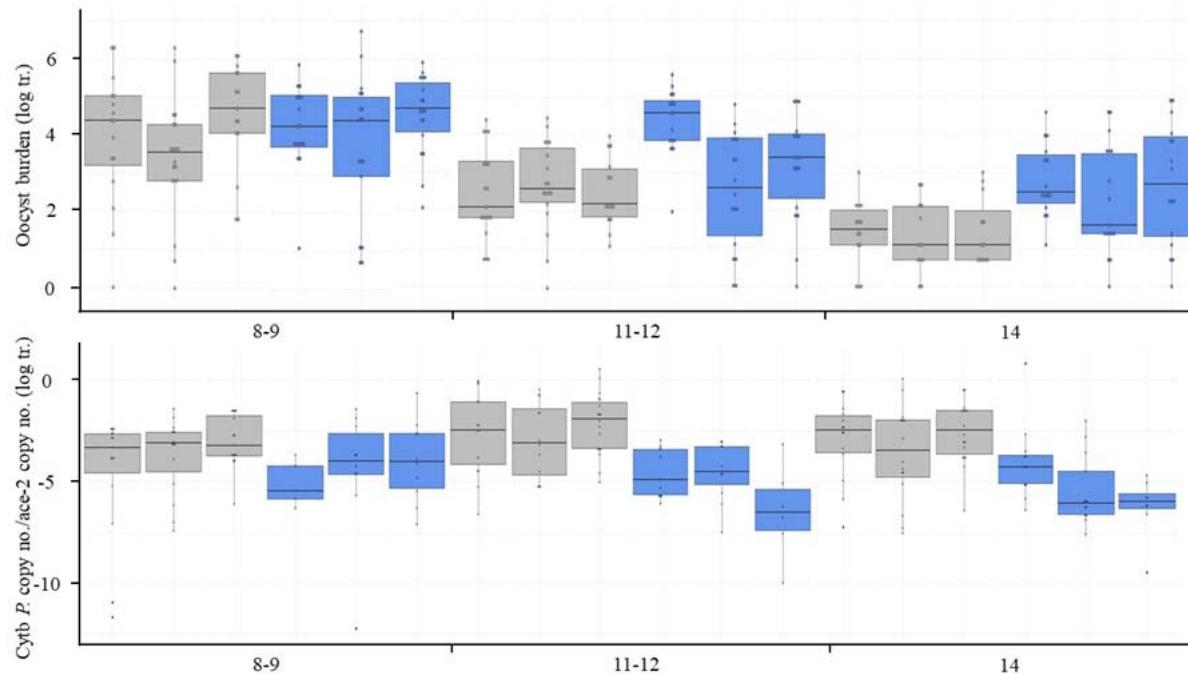

780
 781

782 **Table S2. Description of the statistical models used to analyze the impact of drugs on**
 783 ***Plasmodium* prevalence and burden.** Models with binomial error structure require a concatenated
 784 response variable binding together the number of successes and failures for a given outcome. N gives
 785 the number of mosquitoes included in each analysis. "Maximal model" represents the complete set of
 786 explanatory variables (and their interactions) included in the model. "Minimal model" represents the
 787 model containing only the significant variables and their interactions. Round brackets indicate that the
 788 variable was fitted as a random factor. Square brackets indicate the error structure used (n: normal
 789 errors, b: binomial errors). date: mosquito dissection day (discrete variable), day: mosquito dissection
 790 day (continuous variable), inf: mosquito infection status (infected/uninfected), plt: plate used for the
 791 sporozoite quantification (qPCR), TR: mosquito fed on treated/untreated bird.
 792
 793

Variable of interest	Response variable	Model Nb.	N	Maximal model	Minimal model	R subroutine [err struct.]
Effect of AS on Plasmodium						
Oocyst prevalence	Number of mosquitoes with at least 1 oocyst	cbind (inf, uninf)	22	330 TR *date + (1 bird)	date + (1 bird)	lmer [b]
Oocyst burden	Number of oocysts per infected mosquito	oocysts	23	266 TR*date + (1 bird)	date + (1 bird)	glmmTMB
Sporozoite prevalence	Number of mosquitoes with sporozoites	cbind (inf, uninf)	24	287 TR *date + (1 plt)	date + (1 plt)	lmer [b]
Sporozoite burden	Ratio between mosquito and parasite DNA	log(ratio)	25	227 TR *date + (1 bird) + (1 plt)	date + (1 bird) + (1 plt)	lmer [n]
Effect of SP on Plasmodium						
Oocyst prevalence	Number of mosquitoes with at least 1 oocyst	cbind (inf, uninf)	16	352 TR*date + (1 bird)	date + (1 bird)	lmer [b]
Oocyst burden	Number of oocysts per infected mosquito	oocysts	17	291 TR*date + (1 bird)	TR *date + (1 bird)	glmmTMB
Oocyst burden	Number of oocysts per infected mosquito	oocysts	18	291 TR*day + (1 bird)	TR *day + (1 bird)	glmmTMB
Sporozoite prevalence	Number of mosquitoes with sporozoites	cbind (inf, uninf)	19	320 TR *date + (1 plt)	TR + (1 bird) + (1 plt)	lmer [b]
Sporozoite burden	Ratio between mosquito and parasite DNA	log (ratio)	20	225 TR *date + (1 bird) + (1 plt)	TR + (1 bird) + (1 plt)	lmer [n]
Sporozoite burden	Ratio between mosquito and parasite DNA	log (ratio)	21	225 TR *day + (1 bird) + (1 plt)	TR*day + (1 bird) + (1 plt)	lmer [n]

794
 795


796 **Figure S1.** Laying egg probability as a function of the haematin excreted (represented here by the
797 residuals of a model containing 'plate' as an explanatory variable, see materials and methods.) Blue:
798 mosquitoes fed on an AS-treated bird, grey: mosquitoes fed on a control bird. Each point represents an
799 individual, lines are fitted using a logistic regression the grey areas are the 95% confident intervals.
800
801


802 **Figure S2. Prevalence of oocysts (top) and sporozoites (bottom) in mosquitoes fed on each of the**
803 **3 control (grey) and SP-treated (blue) birds, for each of the 3 sampling days (8-9, 11-12 and 14).**
804 Prevalence is represented as the mean \pm standard error (calculated as $\text{sqrt}(pq/n)$). Burden is represented
805 as a boxplot where with the median (horizontal lines), first and third quartiles (box above and below
806 the medians). Vertical lines delimit 1.5 times the inter-quartile range above which individual counts
807 are considered outliers and marked as circles.

808

809

811 **Figure S3. Oocyst (top) and sporozoite (bottom) burden in mosquitoes fed on each of the 3**
812 **control (grey) and SP-treated (blue) birds**, for each of the 3 sampling days (8-9, 11-12 and 14).
813 Burden is represented as a boxplot where with the median (horizontal lines), first and third quartiles
814 (box above and below the medians). Vertical lines delimit 1.5 times the inter-quartile range above
815 which individual counts are considered outliers and marked as circles.

