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Abstract (max 350 w) 31 

Background: Understanding and controlling the spread of antimicrobial resistance is 32 

one of the greatest challenges of modern medicine. To this end many efforts focus on 33 

characterising the human resistome or the set of antibiotic resistance determinants 34 

within the microbiome of an individual. Aside from antibiotic use, other host 35 

environmental and genetic factors that may shape the resistome remain relatively 36 

underexplored.  37 

Methods: Using gut metagenome data from 250 TwinsUK female twins, we quantified 38 

known antibiotic resistance genes to estimate gut microbiome antibiotic resistance 39 

potential for 41 types of antibiotics and resistance mechanisms. Using heritability 40 

modelling, we assessed the influence of host genetic and environmental factors on the 41 

gut resistome. We then explored links between gut resistome, host health and specific 42 

environmental exposures using linear mixed effect models adjusted for age, BMI, 43 

alpha diversity and family structure. 44 

Results: We considered gut microbiome antibiotic resistance to 21 classes of 45 

antibiotics, for which resistance genes were detected in over 90% of our population 46 

sample. Using twin modelling, we estimated that on average about 25% of resistome 47 

variability could be attributed to host genetic influences. Greatest heritability estimates 48 

were observed for resistance potential to acriflavine (70%), dalfopristin (51%), 49 

clindamycin (48%), aminocoumarin (48%) and the total score summing across all 50 

antibiotic resistance genes (38%). As expected, the majority of resistome variability 51 

was attributed to host environmental factors specific to an individual. We compared 52 

antibiotic resistance profiles to multiple environmental exposures, lifestyle and health 53 

factors. The strongest associations were observed with alcohol and vegetable 54 

consumption, followed by high cholesterol medication and antibiotic usage. Overall, 55 

inter-individual variation in host environment showed modest associations with 56 

antibiotic resistance profiles, and host health status had relatively minor signals.  57 

Conclusion: Our results identify host genetic and environmental influences on the 58 

human gut resistome. The findings improve our knowledge of human factors that 59 

influence the spread of antibiotic resistance genes and may contribute towards helping 60 

to attenuate it.  61 

 62 

Keywords: Antibiotic resistance, gut microbiome, heritability, twins  63 
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Background 64 

Currently, antibiotics are the most effective treatment for infectious diseases in 65 

humans and in animals. However, their intensive use in health care and food 66 

production has led to a dramatic increase in antibiotic resistant pathogens [1]. 67 

Antibiotic resistance is acquired by bacteria through mutation and gene transfer. The 68 

human gut is home to trillions of bacteria and can act as a reservoir for antibiotic 69 

resistance genes (ARG), where exchange of ARG may take place between bacteria 70 

[2, 3]. ARG can be transferred vertically throughout bacterial division and horizontally 71 

between bacteria via transformation (integration of DNA fragments from the 72 

environment), transduction (through a bacteriophage) and conjugation (interaction 73 

between two bacteria) [4]. Individuals are constantly exposed to new bacteria that 74 

might reach the gastrointestinal track and although the ability of these bacteria to 75 

colonise the large intestine is debated [5], their passage through the gut ecosystem 76 

may be sufficient to horizontally transfer ARGs to the microbial community. Thus, the 77 

host microbiome may have the potential to acquire antibiotic resistance without direct 78 

antibiotic exposure. Resistant pathogenic bacteria are a serious health problem, and 79 

resistant non-pathogenic bacteria are also of concern due to their potential to transfer 80 

ARGs to pathogens. Indeed, the continuous rise of antibiotic resistant bacteria has led 81 

to a significant increase in mortality, especially in nosocomial infections [6]. 82 

 83 

Advances in technology have allowed for the collective sequencing of whole gut 84 

microbiota genomes, or metagenomes [7]. It is therefore possible to identify and 85 

potentially quantify ARG carried by bacteria in the gut community through the analysis 86 

of gut metagenome data.  Several studies have explored the ARG profile of the human 87 

gut microbiome [8, 9], or the gut resistome, using different approaches including total 88 

number of ARGs in the gut or metrics such as the antibiotic resistance potential (ARP) 89 

[10]. ARP estimates the number of ARG copies in a sample, weighted by the relative 90 

abundance of taxa carrying the ARG. Although ARP metrics do not measure functional 91 

antibiotic resistance, they have been used to explore factors that may shape the gut 92 

resistome. For instance, significant ARP differences were observed across countries 93 

mirroring differences in country-specific antibiotic consumption [11], where higher 94 

antibiotic use in human, and also farm animals, was related to greater ARP levels. 95 

Medicinal antibiotic use plays an important role in shaping the gut resistome, where 96 
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antibiotic use during hospitalisation has been associated with increased relative 97 

abundance of ARGs in the gut [12]. The potential for transition of ARGs during food 98 

production, or the `farm-to-fork9 hypothesis, has been extensively discussed in the 99 

literature [13]. Although evidence remains sparse [14, 15], direct exposure to livestock 100 

has been linked to an increase in the number of ARG within the human gut [16]. 101 

Furthermore, other environmental or lifestyle factors have also been linked to gut 102 

resistome variation [17]. For example, significant gut resistome associations with travel 103 

[18] and pet ownership [19] suggest that a multitude of factors could be at play. 104 

 105 

Despite this, the factors shaping the human gut ARG reservoir are still not well 106 

understood. Exploring country-specific environmental variation allows insight into 107 

environmental parameters involved in this process [8, 10, 20]. In addition, previous 108 

work has demonstrated that the gut microbiome could also be influenced by host 109 

genetics [21, 22], with even stronger influence observed when considering gut 110 

microbiota fonctionality [23]. Therefore, it is plausible that host genetic impacts may 111 

also affect the abundance of bacteria that carry ARGs, as well as the potential to 112 

transfer ARGs in the gut community.  113 

 114 

In this study, we hypothesised that both host genetic and environmental factors 115 

influence the human gut ARG reservoir. By profiling the ARP in a sample of 250 116 

healthy female volunteers from the TwinsUK cohort, we evaluated the role of host 117 

genetic and environmental impacts on the resistome using a twin study design. We 118 

then explored resistome associations with specific environmental factors and health 119 

status in shaping the human gut ARG reservoir.  120 

 121 

 122 

 123 

Methods 124 

Samples 125 

We used published gut metagenomic profiles of 250 female twins from the TwinsUK 126 

cohort of mean age 61 (range 36-80 years of age). The sample contained 35 127 

monozygotic (MZ) and 92 dizygotic (DZ) twin pairs with an average body mass index 128 

(BMI) of 25.8 ± 4.61. Sample collection and sequencing methods have previously been 129 
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described [23], with on average 74 million non-human high-quality Illumina HiSeq 130 

paired-end reads of a read length 100 bp (insert size 350 bp) per sample. Sequence 131 

data quality control, gene catalogue build, gene abundance estimation, and taxonomic 132 

assignment have previously been described in this dataset [23].  Briefly, the published 133 

gene catalogue consisted of 11,446,577 non-redundant genes, at which relative gene 134 

abundances were estimated [23] using previously described methods [24, 25]. 135 

Taxonomic annotation has previously been described in this sample [23], and utilised 136 

taxonomic assignments from the IGC gene catalogue [26] and application of the same 137 

pipeline [25, 25] for taxonomic assignment of the additional genes reported in this 138 

sample [23]. The relative abundance of a taxon is calculated from the relative 139 

abundance of its genes, considering only signals with at least 10 genes from a taxon.  140 

  141 

Antibiotic Resistance Potential 142 

Gut resistomes were profiled using the antibiotic resistance potential (ARP) approach 143 

[10]. The ARP is defined as the average microbial genome fraction encoding ARGs 144 

for a particular antibiotic or class of antibiotics, across all bacteria in the gut 145 

microbiome sample, based on known taxonomy of the ARGs (here considered at the 146 

genus level, with each genus represented by its average ARG carriage within the 147 

ProGenomes database) [27]. The approach uses the above described gene 148 

catalogue, published relative gene abundances and catalogue amino acid sequences 149 

to assess ARG abundance in the sample and subsequently takes into account their 150 

taxonomic composition to generate the ARP. For ARP estimation amino acid 151 

sequences were translated from the gene sequences, selecting the frame resulting in 152 

the longest uninterrupted protein, and where for the majority of sequences (80%) only 153 

one specific frame was full length and was selected. The gene catalogue in this dataset 154 

was the annotated for ARGs using CARD (version 2.0.1) [28] and ResFams [29], 155 

assigning ResFams hits only to sequences without a CARD hit and integrating both 156 

types of annotation via the Antibiotic Resistance Ontology (ARO). This resulted in a 157 

gene catalogue annotated with ARG family membership and thus total gene 158 

abundances per ARG family. Together with projections on expected ARG abundance 159 

from taxonomic composition of each sample, ARPs were then computed. The ARP is 160 

a measure of antibiotic resistance gene abundance relative to the amount of sample 161 

material stemming from taxa known to carry such resistance genes. The measure 162 

aims to decouple ARGs increases following from taxonomic composition change only, 163 
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compared to changes resulting from selection within taxonomic groups for higher ARG 164 

carriage. Thus, findings of altered raw ARG abundance versus altered ARP 165 

abundance represent different scenarios each leading to altered resistance capacity 166 

in microbial ecosystems 3 ARG shift in the absence of ARP shift reflects changes 167 

driven by larger-scale taxonomic composition shift with accompanying changes in 168 

ARG abundance, whereas ARP shift may indicate a shift within taxa to more resistant 169 

varieties, including by direct propagation of resistance genes, copy number alterations, 170 

mobile element transmission, strain replacement or other scenarios. ARP were 171 

estimated for 339 profiles that clustered and represented resistance to 39 specific 172 

types of antibiotics or classes of antibiotics, many of which were highly correlated. 173 

Altogether, estimates were obtained for 41 different variables, spanning 39 types of 174 

antibiotics or classes of antibiotics, one antibiotic resistance mechanism represented 175 

as a proxy class (efflux pumps), and the overall total of resistance genes within an 176 

individual. Pair-wise correlations were estimated across the 41 variables, with multiple 177 

highly correlated profiles (Supplementary Figure 1). Therefore, a single ARP was 178 

chosen to represent each cluster of highly correlated of ARPs (pair-wise Spearman 179 

rho > 0.9), selecting the most prevalent profile as the representative per correlated 180 

cluster (Supplementary Figure 1). ARP profiles were then corrected for potential 181 

covariates in a linear mixed effects regression to generate the ARP residuals that were 182 

included in the majority of downstream analyses. Covariates included BMI, age, and 183 

³-diversity as fixed effects, and family and zygosity as random effects.  184 

 185 

 186 

Twin modelling: ARP heritability and environment effects 187 

Twin-based heritability of ARP variables was calculated by fitting the ACE model to 188 

ARP residuals using the 8OpenMx9 package in R version 3.6.1. The model assesses 189 

the relative contribution of additive genetic effects (A), common environment (C), and 190 

environment unique to an individual (E), towards the variance of a phenotype of 191 

interest, here a specific ARP residual profile 192 

(http://openmx.ssri.psu.edu/docs/OpenMx/2.3.1/GeneticEpi_Path.html). The 193 

significance of the A component was based on the difference between the fit of the 194 

ACE and the CE models to evaluate if inclusion of A fit the data better than use of C 195 

and E alone.  196 

 197 
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Association study 198 

To follow up twin-based results of host environmental influences on ARPs, we carried 199 

out association analyses comparing inter-individual variability in each ARP profile to a 200 

series of host environmental variables. Host environmental variables included factors 201 

related to health and host environment, such as lifestyle and diet factors, and 202 

medication use. We identified 24 health markers that included 21 conditions that were 203 

reported in at least 10 of the 250 twins, as well as further variables such as number of 204 

days spent in a hospital, DEXA measures of visceral fat mass, and estimated frailty 205 

[30] and neuroticism scores [31] (Supplementary table 1). Next, a total of 32 206 

environmental factors were selected and divided in three categories: distal 207 

environment (5), diet (14) and medication use (12). Information related to diet, lifestyle, 208 

medication use, and health status were collected through questionnaires sent to the 209 

volunteers and time matched with the date of sample collection. Dietary intakes were 210 

estimated via food frequency questionnaire (FFQ) data, collected following Epic-211 

Norfolk guidelines [32], and used to construct the Healthy Eating Index (HEI) 2010 212 

[33], previously validated within this cohort as a means of capturing dietary variance 213 

[34]. The index of multiple deprivation (IMD), a composite measure of area-level 214 

deprivation, was downloaded from government websites and used to derive within-215 

population quintiles as described previously [35]. Environmental data were not always 216 

available for the 250 twins and details of the sample size for each variable can be 217 

found in Supplementary table 1. 218 

To evaluate the association between each individual ARP and the environmental 219 

variable of interest we used a linear mixed effects regression model (lme4 package in 220 

R version 3.6.1). Unadjusted ARPs were fit as the response variable, the 221 

environmental or health variable was the predictor, and models were adjusted for BMI, 222 

age, alpha diversity and family structure as previously described. Significance of the 223 

results were evaluated by comparing the full model (including the variable of interest) 224 

to a null model (excluding the variable) using a likelihood ratio test. Results were 225 

adjusted for multiple testing using the false discovery rate (FDR 5%).   226 

 227 

 228 

 229 

 230 
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Results 231 

Profiling the gut resistome 232 

We explored gut metagenomic profiles of 250 healthy older (mean age 65) Caucasian 233 

female twins from the TwinsUK cohort, including 35 MZ and 92 dizygotic DZ twin pairs. 234 

The gut resistome in each individual was characterised using the antibiotic resistance 235 

potential (ARP), a previously developed measure of ARG abundance relative to 236 

abundance of their likely carrier taxa [10]. ARP profiles were estimated for 41 237 

variables, which included antibiotics, antibiotic classes, and antibiotic resistance 238 

mechanisms. Some of the ARP variables were highly correlated and therefore 239 

replaced by the most prevalent profile as a representative of each cluster 240 

(Supplementary Figure 1). Altogether, 23 ARP profiles were less correlated and 241 

therefore considered as independent variables (Spearman rho < 0.9). The variables 242 

assess potential of AR to specific antibiotics and classes of antibiotics, including ARP 243 

for the total gut resistome estimated as the overall sum of ARPs within an individual, 244 

or total ARP (ALL). Of the 23 ARPs, 21 were detected in over 90% of our sample and 245 

were explored in subsequent analyses (Figure 1). Therefore, in most of our UK 246 

population sample the gut communities could be considered as carriers of a large 247 

proportion of well characterised ARGs (Figure 1). Tetracycline and clindamycin - two 248 

broad spectrum antibiotics widely used in humans - were the ARPs detected at the 249 

highest level in our sample (Figure 1). In contrast, ARPs to amythiamicin A and fusidic 250 

acid were detected in less than 20% of the population sample and were excluded in 251 

downstream analyses in this study.  252 

 253 
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 254 

Figure 1: Antibiotic resistance potential level and prevalence among the TwinsUK 255 

cohort. Prevalence among the population is pictured on the left and mean ARP levels 256 

on the right. ARPs below the dotted line are removed from subsequent analyses.  257 

 258 

Host genetic influences on the gut resistome  259 

Since our samples constitute only twin pairs, we carried out twin-based heritability 260 

analyses of the ARP profiles. Using the ACE model, we estimated the proportion of 261 

variation that is attributed to host genetic or environmental factors for each of the 21 262 

ARP variables. 263 

We observed that ARP profiles are predominantly under the influence of host 264 

environmental factors (Figure 2A, Supplementary table 2). However, two ARP 265 

profiles had strong evidence for heritability (A > 50%), namely acriflavin (A = 70%, 266 

95% CI = [36-85]%) and dalfopristin (A = 51%, 95% CI = [6-72]%). Altogether, five 267 

ARPs displayed a nominally significant fit of the heritability term in the twin model, and 268 

these were acriflavin, dalfopristin, aminocoumarin (A = 48%, 95% CI =  [1-69]%) and 269 

clindamycin (A = 48%, 95% CI = [4-71]%), as well as total ARP (ALL, A = 38%, 95% 270 

CI = [1-65]%). In total 12 ARPs (57% of profiles) had at least modest heritability 271 

estimates over 20% (A > 20%). The average ARP heritability across the 21 variables 272 

was estimated to be over 25% (A = 28.4% ± 21.4, Figure 2A). The four ARPs 273 

displaying greatest heritability estimates (acriflavine, dalfopristin, aminocoumarin, 274 

clindamycin) were highly prevalent in our sample (>95% prevalence, Figure 1) and in 275 
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an independent gut metagenomic dataset from healthy Western Europeans (>=50% 276 

prevalence of cluster components in Carr et al. 2020 [20], Supplementary table 3). 277 

We also verified that highly correlated ARPs (Spearman rho > 0.9) displayed similar 278 

levels of heritability estimates (Figure 2B). For instance, acriflavine that was the most 279 

heritable ARP (A = 70%) and was highly correlated with four other ARP measures 280 

(ciprofloxacin, moxifloxacin, nalidixic acid and norfloxacin) that all displayed nominally 281 

significant heritability estimates above 50%.  282 

The twin model also allows the decomposition of the environmental variance into 283 

components that can be attributed to each individual (E, or unique), or that are shared 284 

within a twin pair (C, or common). In our data, the majority of the environmental 285 

impacts were attributed to individual-specific effects, in line with previous observations 286 

from 16S results [21].  287 

 288 

 289 

Figure 2: Heritability of the human gut ARP. Heritability estimate results calculated 290 

with the OpenMx ACE model. Full results are presented in Supplementary table 2. 291 

ACR, acriflavin; CIP, ciprofloxacin; MOX, moxifloxacin; NAL, nalidixic acid; NOR, 292 

norfloxacin; CAR, carbomycin; DAL, dalfopristin; ERY, erythromycin; TEL, 293 

telithromycin; A40, antibiotic a40926; CLI, clindamycin; MUP, mupirocin; LIN, linezolid; 294 
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COL, colistin; ACT, actinomycin; MIC, microcin J25; CHL, chlortetracycline; GLY, 295 

glycylcycline; TIG, tigecycline. 296 

 297 

Heritability of the gut resistome is only partially attributed to taxonomical heritability 298 

Previous studies conducted in the same cohort have showed that the relative 299 

abundance of certain taxa in the gut can be heritable [21, 22]. Despite correcting for 300 

genus abundance in the ARP calculation, as well as correcting for overall ³-diversity 301 

in the heritability analyses, it is plausible that the observed genetic contributions to 302 

ARPs may be attributed to heritability of different components of the gut microbial 303 

community that we may not have corrected for in full. To tackle this, we carried out 304 

additional analyses with further corrections specifically for the ARPs that displayed 305 

significant proportion of variance explained by host genetics (P < 0.05), namely: 306 

acriflavin, aminocoumarin, dalfopristin and clindamycin; as well as the sum of total 307 

ARPs (ALL).  308 

 309 

Some bacterial genera carry more ARGs on average per genome and will therefore 310 

make a greater contribution to an ARP profile. We first evaluated if heritable ARGs 311 

were carried by a large number of heritable genera (A > 20%).  Xie et al. (2016) 312 

reported that in total 27 genera displayed at least moderate heritability (A > 20%) using 313 

the same dataset [23]. All 27 genera contribute to total ARP (ALL) and aminocoumarin 314 

ARP, while only 19, 8, and 7 of these contributed to clindamycin, dalfopristin and 315 

acriflavin ARPs, respectively (Figure 3A, Supplementary table 4). In contrast, 316 

brodimopim, for which we estimated no heritable components (A=0), showed 317 

contribution from only 2 of the 27 these moderately heritable genera. 318 

 319 

To assess the impact of these genus-level observations on our ARP heritability results, 320 

we regressed the four heritable ARPs as well as the sum of all ARPs and brodimoprim 321 

(as a negative control) against their contributing heritable genera (A>20%) and used 322 

the residuals to re-estimate heritability. The heritability estimates of the sum of all 323 

ARPs was reduced by 15% as a result of this correction (Figure 3B, Supplementary 324 

table 5). For the four other ARPs, we observed a direct relationship between the level 325 

of heritability reduction post correction and the number of heritable genera that 326 

contributed to each ARP. However, although in all cases the heritability estimates were 327 

attenuated after this correction, they still remained nominally significant. The 328 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.18.092973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.092973
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

heritability estimates of aminocoumarin ARP, the ARP connected to the greatest 329 

number of heritable genera (n = 27) dropped from 48% to 26%. On the other hand, 330 

the clindamycin (19 genera), dalfopristin (8 genera), and acriflavin (7 genera) ARPs 331 

heritability levels were reduced by only 11%, 0.01% and 4%, respectively, after 332 

correction. As expected, the brodimoprim heritability estimate was unaffected by the 333 

adjustment.  334 

 335 

 336 
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Figure 3: Impact of heritable taxonomy components on ARPs heritability. (A) Link 337 

between heritable taxa and the three most heritable ARPs, total ARP (All) and a non-338 

heritable ARP (brodimoprim). Dark green bars represent A (proportion of variance of 339 

the trait under genetic influence) estimates previously published for each of 27 340 

heritable genera. The five ARPs represented on the top by pie charts representing 341 

their heritability results are linked to genera with A > 0.2 at the bottom. The weight of 342 

the link is proportional to the contribution weight of a genus to an ARP. (B) Heritability 343 

estimate results for total ARP (All), acriflavin, dalfopristin, aminocoumarin, clindamycin 344 

and brodimoprim before (GØ) and after correction for high A (GA) bacterial genera 345 

relative abundance. 346 

 347 

The gut resistome is poorly associated with host health status 348 

We next explored if gut resistome profiles are linked to health status of the host in our 349 

predominantly healthy older female twin sample. We focused on 24 health traits 350 

altogether, including 21 conditions that were reported in at least 10 of the 250 twins, 351 

as well as number of days spent in a hospital, visceral fat mass (VFM) estimates, frailty 352 

and neuroticism scores (Supplementary table 1) and explored their associations with 353 

the 21 ARPs using linear mixed effect model adjusted for BMI, alpha diversity, age, 354 

gender and family structure. None of the tested associations surpassed FDR at 5% 355 

multiple testing correction overall, but allergy and high cholesterol were positively 356 

associated with 3 ARPs at FDR 5% correction within health trait (Figure 4). Overall, 357 

24 nominally significant associations were observed between 17 health traits and 18 358 

ARPs. These included positive associations between allergy and constipation with 4 359 

and 3 ARPs, respectively, as well as 3 negative associations between VFM and ARPs. 360 

In total, 70% of the associations were observed with heritable ARPs. Only three traits 361 

(VFM, osteoarthritis and high cholesterol) were associated exclusively with non-362 

heritable ARPs, while eight (frailty, days spent at hospital, UTI, diabetes, thyroid 363 

disorders, depression, neuroticism and migraine) were associated exclusively with 364 

heritable ARPs.  365 

 366 
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 367 

Figure 4: Association between ARP profiles ranked based on their level of heritability 368 

and disease. Nominally significant (P < 0.05) associations are colour-coded with blue 369 

colours representing negative associations and red colours representing positive 370 

ones. * P < 0.01; ** P < FDR 5% for the health condition of interest. The bar graph on 371 

the top of the heatmap represents the number of associations observed for each trait 372 

with heritable ARPs (A > 20%) in green and with non-heritable ARPs (A < 20%) in 373 

yellow. Full results are available in Supplementary table 6. 374 

 375 

Host environmental factors are associated with the gut resistome 376 
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To evaluate host environmental effects on the gut resistome, we explored the 377 

association between ARP variability and 31 host environmental variables, using the 378 

linear models as described above (Supplementary table 1). Host environment factors 379 

were divided into three categories: (i) distal environment, such as the index of multiple 380 

deprivation (IMD), has ever lived abroad and contact with pets, (ii) diet, including 381 

alcohol consumption and 12 domains calculated from FFQs to build the healthy eating 382 

index (HEI), and (iii) medication used by at least 10 participants in the study. Two 383 

associations surpassed multiple testing adjustment in the diet category (adjusted P-384 

value < 0.05) and a total of 66 nominally significant associations were observed 385 

between 30 environmental factors and 21 ARPs (Figure 5).  386 

Over half of the nominally significant associations were observed with diet variables 387 

(31 associations, 54% of total). The most significant results that surpassed multiple 388 

testing adjustment were obtained between alcohol consumption and amoxicillin ARP 389 

(beta = 0.1561 ± 0.0390; P = 9.58x10-5), followed by an association between total 390 

vegetables consumption and tetracycline ARP (beta = -0.3840 ± 0.0987; P = 1.44x10-391 

4). A large number of nominally significant associations were also observed between 392 

ARPs and consumption of greens and beans (associated with 7 ARPs, of which 2 393 

displayed association P-values < 0.01), as well as total vegetables intake (associated 394 

with 6 ARPs, of which 1 displayed association P-values < 0.002). Dairy consumption 395 

displayed one positive association with benzalkonium chloride ARP (beta = 0.0702 ± 396 

0.0249; P = 0.0053), and total protein consumption was negatively associated with 397 

tetracycline ARP (beta = -0.1335 ± 0.0633; P = 0.0380). All associations observed 398 

between alcohol consumption and ARPs were positive, while most of those observed 399 

between fruit, vegetable or greens and beans consumption with ARPs were negative.  400 

For distal environmental factors, there were no results after multiple testing correction, 401 

but 15 nominally significant associations were observed, the majority of which were 402 

positive associations with IMD (n = 9). Notably, three of the four most heritable ARPs 403 

were positively associated with IMD (acriflavin: beta = 0.1983 ± 0.0653, P = 0.0032; 404 

dalfopristin: beta = 0.2630 ± 0.0715, P = 0.0005; clindamycin: beta = 0.1799 ± 0.0587, 405 

P = 0.0032), as well as sum of all ARPs (beta = 0.1509 ± 0.0706, P = 0.0355). 406 

Furthermore, we also observed a positive association between beta lactam and 407 

previous pregnancy or pregnancies (beta = 0.4613 ± 0.1389; P = 0.001), as well as 408 

having lived abroad (beta = 0.9235 ± 0.3081; P = 0.003). Interestingly, this was the 409 
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only set of variables for which a majority of the associations (53%) were observed with 410 

non-heritable ARPs.  411 

In the medication category, there were no results after multiple testing correction, but 412 

20 nominally significant associations were observed between use of 7 medications 413 

and 21 ARPs. As expected, antibiotic consumption was positively associated with 6 414 

ARPs including amoxicillin (beta = 1.0441 ± 0.3179; P = 0.001), beta lactam (beta = 415 

0.5785 ± 0.2028; P = 0.005) and chloramphenicol (beta = 0.8327 ± 0.3019; P = 0.006).  416 

However, the highest number of associations (9 associations) were detected with high 417 

cholesterol medication, and in all cases, these were negative associations. The 418 

strongest association was observed between tetracycline ARP and high cholesterol 419 

medication (effect size = -0.75±0.22; P = 0.001). As statins are the most commonly 420 

used drugs for high cholesterol, we checked if this signal could be attributed to use of 421 

statins. Out of 50 volunteers on high cholesterol medication, 29 (58%) reported statin 422 

use. We evaluated the association between ARPs and statin use (excluding volunteers 423 

who used high cholesterol drugs other than statins; and using the same mixed effect 424 

model as previously described) and observed that none of the 9 associations remained 425 

nominally significant. However, for 5 out of 9 associations (ALL, chloramphenicol, 426 

chlortetracycline, rifabutin and tetracycline) the direction of the associations remained 427 

negative. Thus, it is not possible to exclude that fact that statins use may be the 428 

underlying cause of these results, and this would need to be confirmed in a larger 429 

study. No concordance was observed between the results obtained for medication use 430 

and the corresponding associated condition, where these data were available (Figure 431 

4). 432 
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 433 

Figure 5: Host environmental factors associate with gut ARP profiles. Association 434 

between ARP profiles ranked based on their level of heritability and environmental 435 

factors. Nominally significant (P < 0.05) association results are colour-coded on the 436 

heatmap with blue colours representing negative associations and red colours positive 437 

ones. The bar graph on the top of the heatmap represents the number of associations 438 

observed for each trait with heritable ARPs (A > 20%) in green and with non-heritable 439 

ARPs (A < 20%) in yellow. * P < 0.01; **P < FDR 5% for individual environmental 440 

factors, *** P < FDR 5% within category (distal environment, diet and drugs). Full 441 

results are available in Supplementary table 7. 442 

 443 

Discussion 444 

We describe the gut resistome of a Caucasian predominantly healthy older female 445 

sample from the UK and aim to dissect the role of host genetic and environmental 446 

factors on shaping the antibiotic resistance reservoir. Most ARPs were prevalent in 447 

over 90% of the population sample, which was much higher than previously reported 448 
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[10, 11]. This difference is likely due to changes and improvement of the databases 449 

used to characterise ARGs and indicates that the majority of the population is likely to 450 

harbour many ARGs in the gut, with potential implications for risk of developing 451 

resistance to antibiotic treatments in case of infection. 452 

 453 

Our results confirm that the human gut resistome is mostly shaped by environmental 454 

factors. Yet, we observed that on average over a quarter of ARP variance may be 455 

under host genetic control. While some ARPs could be considered not heritable, many 456 

(57% of ARPs) were over 20% heritable. The most heritable ARP, acriflavin, showed 457 

very strong evidence of host genetic impacts with heritability of 70%. Acriflavin is a 458 

topical antiseptic and this observation may be driven by the fact that most common 459 

human skin diseases are also heritable [36]. ARP heritability was in line with previous 460 

analysis of the TwinsUK microbiome demonstrating that the abundance of both 461 

bacterial taxa and genes could be heritable [23]. On the other hand, our estimates of 462 

ARPs heritability are greater than expectation based on previously reported host 463 

genetic contribution to the taxonomic composition of the gut microbiota [21, 22, 23]. 464 

By correcting ARPs for the relative abundance of highly heritable genera that 465 

contributed ARGs, we observed a proportion of the measured ARP heritability likely 466 

reflects the heritability of the bacterial gene carriers. Nonetheless, this did not fully 467 

eliminate the role of host genetics onto the ARP itself. Thus, these results suggest that 468 

host genetic effects may not only shape the gut bacterial ecosystem and favour the 469 

growth of specific bacterial taxa, but could also promote presence or absence of 470 

specific gene functions such as antibiotic resistance within the gut. 471 

 472 

The twin model results indicated that, as expected, the majority of antibiotic resistance 473 

variation in our sample could be attributed to environmental factors unique to an 474 

individual. To explore this further, we compared antibiotic resistance profiles to 475 

multiple environmental exposures, lifestyle and health factors. Overall, the strongest 476 

and most wide-spread associations were observed with dietary intake components 477 

(especially alcohol intake and vegetable consumption), medication use (particularly 478 

cholesterol lowering drugs such as statins), and socioeconomic status (SES) defined 479 

by the IMD. Dietary components (predominantly alcohol, fruits, vegetables and legume 480 

consumption) exhibited associations with multiple ARPs. Diet plays an important role 481 

in shaping the gut microbiome [37, 38] that is then able to influence the resistome [39], 482 
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which may explain our observations. For instance, the HEI built using the dietary 483 

components considered here has been strongly associated with the composition of 484 

the gut microbiota [34]. Consumption of alcoholic beverages such as red wine has 485 

also been associated with alteration of the gut microbiota diversity and composition 486 

[40] and may contribute to our results of numerous positive associations observed 487 

between alcohol consumption and ARPs in this study. Although positive ARP-488 

associations with alcohol intake was observed, ARP-associations observed with 489 

vegetables as well as fruits and beans were all negative. These results could reflect 490 

the importance of these foods, potentially through their high fibre content, in 491 

modulating the composition of the gut microbiome at the taxonomic level [41, 42], thus 492 

affecting the gut resistome. The observed effect of diet on ARPs may also contribute 493 

to their associations with SES. Indeed, diet intake has been correlated with SES in 494 

numerous studies [43, 44] and we observe here that 9 ARPs were positively 495 

associated with IMD, of which 7 are also associated with one of diet items studied. 496 

Yet, a recent study demonstrated that the associations detected between IMD and the 497 

gut microbiome were not all affected by dietary intake [35]. This suggest that other 498 

components of SES may contribute to shaping the gut resistome. 499 

 500 

Beside the general effect of diet on the gut resistome, the spread of ARGs across the 501 

human population could partly be attributed to the use of antibiotics in the food industry 502 

described as the 8farm-to-fork9 hypothesis [45]. Indeed, it was found that the total ARP 503 

levels of a human gut within a country is directly proportional to the quantity of 504 

antibiotics use in farms [10]. However, in our study, only two nominally significant 505 

associations were observed between ARPs and protein intake suggesting that meat 506 

consumption may not be the main driver of ARG transfer. We observed one positive 507 

association between dairy consumption and benzalkonium chloride (BC) ARP. BC is 508 

an agent that can be used as a disinfectant in the dairy industry, leading to the 509 

development of BC resistant bacteria [46, 47, 48]. Furthermore, bacteria from farm 510 

animals can be transferred to humans via fermented dairy products such as cheese 511 

[49]. Together, this suggests that dairy consumption may also be relevant in terms of 512 

transfer of ARG from animals to human and selective dietary alteration of the gut 513 

microbiota composition at a taxonomic level may also play an important role in shaping 514 

the gut resistome. Diet could also contribute to the observed heritability of ARPs as 515 

food choices were also described as heritable [50]. 516 
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 517 

We assessed the association between ARPs and medication use as many drugs affect 518 

the composition of the gut microbiota [51, 52]. As expected, antibiotic consumption 519 

was positively associated with 9 ARPs, as well as the sum of all ARPs, but these 520 

results did not surpass multiple testing correction. A recent study following the gut 521 

microbiome of 12 men post antibiotic treatment described an increasing trend in ARP 522 

levels up to 6 months after exposure [53]. Nevertheless, most of the major effects were 523 

observed within a 4 to 8 days window suggesting a time-limited effect of antibiotic 524 

consumption on the gut resistome, which may explain our modest association results 525 

[53]. The strongest associations were observed with amoxicillin and methicillin ARPs, 526 

two commonly used antibiotics, for which resistance of human commensals have been 527 

reported [54, 55]. Other drugs had no noticeable effects on the ARP profiles apart from 528 

negative associations observed with drugs used to treat high cholesterol. The most 529 

common cholesterol lowering drugs are statins, that have been reported to affect the 530 

composition of the gut microbiota [51]. Statins have been proposed as potential 8AMR 531 

breakers9, molecules described as capable of re-sensitising bacteria resistant to 532 

antibiotics [56, 57]. The observed associations between high cholesterol and ARPs 533 

were not significant when considering statin use only, but the lower sample size in the 534 

statin subset analyses reduced our power. However, 5 of the 9 associations remained 535 

negative, in line with a potential effect of statins on the resistome. While the effect of 536 

statins on ARPs would need to be confirmed in a larger sample, our data suggest that 537 

other high cholesterol drugs may also be at play and should be studied in more depth.  538 

 539 

ARPs were relatively weakly correlated to host health status variables, with only few 540 

nominally significant associations observed with common diseases and health-related 541 

phenotypes. Surprisingly, the number of urinary tract infections (UTIs) or days spent 542 

in the hospital within the last year were negatively associated with ARP levels, despite 543 

the fact that hospitals are thought to play a small, but significant role in ARG spread 544 

[58, 59], and UTIs are generally eradicated by antibiotic treatment. This result may be 545 

due to the small sample size in these analyses, with only 20 volunteers reporting at 546 

least 3 UTI in their lifetime, and 19 with a hospital visit (of at least one day) within the 547 

last year. On the other hand, autoimmune disorders such as allergy and rheumatoid 548 

arthritis, were positively associated with ARPs, in line with our expectations. Both 549 

diseases have been associated with alteration of the composition of the gut microbiota 550 
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[30, 60, 61]. While allergy has been associated with increased Proteobacteria that 551 

carry a high number of ARGs in our dataset [62], rheumatoid arthritis has mostly been 552 

linked to an increase in Prevotella [63, 64] that contains less ARGs than the average 553 

genus. Interestingly, visceral fat mass was generally negatively associated with ARP 554 

levels, which is in line with the negative trend described by Forslund et al. (2014) 555 

between ARPs and BMI [11]. 556 

 557 

Although these results can improve our understanding of the many intrinsic and 558 

extrinsic factors that shape the human gut resistome, this study has limitations. First, 559 

although this is one of the largest studies of its kind so far, the sample size was 560 

relatively limited and only suggestive associations were observed that would need to 561 

be replicated in larger samples to lead to robust conclusions. Furthermore, causal 562 

mechanisms could not be inferred due to the cross-sectional nature of the study. Most 563 

of the phenotypes and environmental exposures that we explored were self-reported, 564 

including diet. Ideally future work would explore these findings using objective 565 

measures of environmental exposures and diet, and clinically validated phenotypes. 566 

Finally, ARPs are an in-silico measure of potential for antibiotic resistance, and actual 567 

resistance of the gut community would need to be further assessed in vitro or in vivo 568 

to fully assess the impact of host genetic and environmental factors on the resistance 569 

of the gut community to antibiotic treatment.   570 

 571 

Conclusions 572 

In summary, our results show that based on our UK female population sample, the 573 

human gut can be considered as a reservoir for antibiotic resistance genes. We 574 

demonstrated that while the gut resistome is mostly shaped by environmental factors, 575 

over a quarter of its variance can be mapped to host genetics and this can only partly 576 

be explained by the overall heritability of the gut microbiota composition. Although we 577 

are still far from being able to conduct genome-wide association studies that will 578 

enable us to understand the role of host or bacterial genetic architecture on the human 579 

gut resistome, our results imply that, in the future, host genetic variation could be taken 580 

into consideration when prescribing antibiotics. Additionally, we observed that the 581 

composition of the human gut resistome is strongly linked to a multitude of 582 

environmental factors, beyond antibiotic consumption. Indeed, diet was the 583 
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environmental component associated with the most ARPs, suggesting that food 584 

production and composition may play a key role in the global ARG spread in addition 585 

to its effects on the taxonomic composition of the gut microbiome. Altogether, our 586 

results suggest that, as for many other therapies, antibiotic prescription should be 587 

framed in a personalised context to maximise treatment success and help constrain 588 

the spread of antibiotic resistance.  589 

 590 

List of abbreviations 591 

A, additive genetic effects; A40, antibiotic a40926; ACR, acriflavin; ACT, actinomycin; 592 

AMR, antimicrobial resistance; ARG, antibiotic resistance genes; ARO, antibiotic 593 

resistance ontology ; ARP, antibiotic resistance potential; BC, benzalkonium chloride; 594 

BMI, body mass index; Bp, bade pair; C, common environment effects; CAR, 595 

carbomycin; CHL, chlortetracycline; CI, confidence interval; CIP, ciprofloxacin; CLI, 596 

clindamycin; COL, colistin; DAL, dalfopristin; DEXA, Dual-energy X-ray 597 

absorptiometry; DNA, Deoxyribonucleic acid; DZ, dizygotic; E, unique environment 598 

effects; ERY, erythromycin; FDR, false discovery rate; FFQ, food frequency 599 

questionnaires; GLY, glycylcycline; HEI, healthy eating index; IMD, indices of multiple 600 

depravation; LIN, linezolid; MIC, microcin J25; MOX, moxifloxacin; MUP, mupirocin; 601 

MZ, monozygotic; NAL, nalidixic acid; NOR, norfloxacin; RUC, rural urban 602 

classification; SES, socioeconomic status; TEL, telithromycin; TIG, tigecycline; UK, 603 

United Kingdome; UTI, urinary tract infection; VFM, visceral fat mass. 604 
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