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Abstract

Unlike other commonly studied complex traits, pregnancy phenotypes like gestational duration
and fetal size measurements at birth are conjointly determined by maternal and fetal genomes.
Current approaches of heritability estimation based upon an individual’s genotype information are
limited in addressing confounding by shared alleles between mother and fetus. Here, we propose
a novel approach of treating the mother-child pairs as a single analytical unit with three haplotypes
- maternal transmitted (m1), maternal non-transmitted (m2) and paternal transmitted (p1). Using
our haplotype-based approach, we estimate the SNP heritability (h?) of gestational duration and
gestational duration adjusted fetal size measurements at birth in 10,375 mother-child pairs. The
results reveal that variance in gestational duration is mainly attributable to m1 and m2 (h%, =
14% and h2,, = 10%). In contrast, variance in fetal size measurements at birth are mainly
attributable to m1 and pl. Variance in birth weight is attributable to both m1 and pl (h%, =
19.9% and h; = 13.3%). However, variance in birth length (hZ; = 24.5% and h3; = 4.0%)
and head circumference (h2,; = 33.1% and ﬁf,l = 12.3%) are largely attributable to m1. Our
results suggest that gestational duration is primarily determined by the maternal genome whereas
fetal size measurements at birth are primarily determined by fetal genome. In addition, the
difference between (hZ, —h2,)and ﬁlzjl suggests a greater contribution of the maternal

transmitted haplotype than the paternal transmitted haplotype to birth length and head
circumference. Our haplotype-based GCTA approach (H-GCTA) resolves explicit contributions
of maternal and fetal genomes to SNP heritability of pregnancy phenotypes.

Keywords: Narrow-sense heritability, SNP heritability, pregnancy phenotypes, transmitted and
non-transmitted alleles
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Introduction

Narrow sense heritability (h?) is the proportion of phenotypic variance in a population attributable
to additive genetic values (breeding values)'. Generally, the concept of the h? estimation comes
from balanced designs — regression of child phenotypes on mid-parent phenotype, correlation of
full or half sibs and differences in the correlation of monozygotic and dizygotic twins'. However,
in a population with mixed relationships, the linear mixed model (LMM) is the most flexible
approach accounting for both fixed and random effects'>. LMM is generally fitted using restricted
maximum likelihood (REML)>”, Expectation Maximization (EM)® or Bayesian methods®!°.
Following the advent of genome-wide common SNPs arrays, imputation and whole genome
sequencing technologies encouraged researchers to extend its applicability to distantly related and
unrelated individuals.

Over the last decade, various approaches including Genome-based Restricted Maximum
Likelihood (GREML)'"1?, Linkage Disequilibrium-adjusted kinships (LDAK)!?, threshold
Genomic Relatedness Matrices (GRMs)!'4, LD Score regression (LDSC)!> and Phenotype
Correlation-Genotype Correlation (PCGC)' have been developed to estimate SNP-based narrow-
sense heritability (h?)". In addition, variants of these approaches such as GREML-MAF stratified
(GREML-MS)'®, GREML-LD and MAF stratified (GREML-LDMS)!® and LDAK-MAF stratified
(LDAK-MS)* have enabled partitioning of the genetic variance into additive and non-additive
components as well as variance components attributable to chromosomes, genes and inter-genic
regions. The above approaches have helped explain a large proportion of the missing heritability
in various complex diseases and quantitative traits. Nevertheless, they are less suited for pregnancy
phenotypes which are simultaneously influenced by direct fetal genetic effects and indirect
parental effects?!?*. To date, only a few studies have attempted to distinguish maternal genetic
effect?2® from fetal genetic effect in mother-child duos >!*3#72%_ Most of these approaches are still
based on individuals’ genotypes and therefore, are inadequate in addressing the confounding effect
of shared alleles between mother and fetus. Hence, pregnancy-related, antenatal and perinatal
phenotypes demand an approach which can avoid this confounding and partition h? explicitly into
maternal and fetal components.

Here, we introduce a haplotype-based genome-wide complex trait analysis approach (H-GCTA)
for heritability estimation to resolve explicit contribution of maternal and fetal genomes to the
variance of pregnancy outcomes. We consider mother-child pairs as single analytical units
consisting of three haplotypes corresponding to maternal transmitted (ml), maternal non-
transmitted (m2) and paternal transmitted (p1) alleles®**°. Use of such an analytical unit provides
an advantage over conventional approaches based on individual’s genotype information by
avoiding the confounding of m1 which can influence pregnancy phenotypes through both the
mother and fetus (Fig 1a)**. We generate three separate genetic relatedness matrices M1, M2 and
P1 using only m1, only m2 and only p1 respectively. We fit all three matrices simultaneously in a
linear mixed model (LMM) and Haseman-Elston (HE) regression“'33 to estimate variance
components attributable to each of the haplotype-based matrices (Fig 1b). We apply our approach
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to a cohort of 10,375 mother-child pairs to estimate h? of gestational duration and gestational
duration adjusted fetal size measurements at birth e.g. birth weight, birth length and head
circumference. Our results suggest that genetic variance in gestational duration is primarily
attributable to the maternal genome i.e. the maternal transmitted (m1) and non-transmitted (m2)
alleles whereas genetic variance in fetal size measurements at birth are mainly attributable to fetal
genome — maternal transmitted (m1) and paternal transmitted (p1) alleles. We additionally reveal
a larger contribution of the maternal transmitted haplotype than the paternal transmitted haplotype
(h2, —h%, > ﬁ%l) for birth length and head circumference. Our approach can not only estimate

explicit maternal and fetal contribution to pregnancy phenotypes but also detect parent-of-origin
effects (POEs) or correlation between maternal and fetal genetic effects of the maternal transmitted
alleles.
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Results

We first used simulated data to evaluate the validity of H-GCTA and its capabilities in detecting
POEs. We applied our approach to estimate SNP-based narrow-sense heritability (h?) of four
pregnancy phenotypes — gestational duration, birth weight, birth length and head circumference in
10,375 mother-child pairs. The study cohorts included five European cohorts - Avon Longitudinal
Study of Parents and Children (ALSPAC)***°, Danish Birth Cohort (DNBC)*, Norwegian
Mother, Father and Child Cohort study (MoBa)*’, Hyperglycemia and Adverse Pregnancy
Outcome study (HAPO)?® and Finnish dataset (FIN)**3° (Supplementary Text and Supplementary
Tables 1-4). We compared results from our approach with two existing approaches namely,
GCTA'"' and M-GCTA?? (Supplementary Figure 1). Further, h? estimation of gestational
duration was replicated in mother-child pairs from another Norwegian dataset (HARVEST)
(Supplementary Text).

Heritability Estimation using simulated data

We used simulated genotype and phenotype data to assess the utility and robustness of our
approach (H-GCTA). We estimated h? in 3,000 trios using 10,000 SNPs with MAF > 0.001. All

phenotypes were simulated with 50% SNP-based narrow sense heritability (h? = 0.5). Phenotypes
were simulated in three ways — maternal phenotypes i.e. only maternal transmitted and non-
transmitted alleles affecting phenotype, paternal phenotypes i.e. only paternal transmitted and non-
transmitted alleles affecting phenotype and fetal phenotypes i.e. only maternal transmitted and
paternal transmitted alleles affecting phenotype. For fetal traits, we also incorporated different
levels of POE (see methods).

Heritability of simulated maternal and paternal traits

Using conventional GCTA for maternal traits in mothers, fathers and children separately, the
estimated h? based on maternal (m), paternal (p) and fetal (f) genotypes was 49.8%, 2.2% and
12.0% respectively (Supplementary Table 5). We also used M-GCTA in mother-child duos to
estimate the phenotypic variance of maternal traits attributable to indirect maternal effect (BIZW =
48.4%), direct fetal effect (hZ = 1.5%) and direct-indirect effect covariance (h% = 1.3%)
(Supplementary Table 5). Using H-GCTA for maternal traits in complete trio data, phenotypic
variance based on maternal transmitted alleles (hZ;), maternal non-transmitted alleles (h2,),
paternal transmitted alleles (Blzjl) and paternal non-transmitted alleles (ﬁgz) was 23.0%, 23.3%,
1.6% and 1.5% respectively (Fig 2a, Supplementary Table 5). M-GCTA and H-GCTA accurately
distinguished the maternal origin of the simulated phenotype; however, the conventional GCTA
also showed a superficial contribution from the fetal genome (12.0%, approximately one quarter
of the h? based on maternal genotype) due to allele transmission. As expected, h? estimates for

paternal traits followed similar patterns as h? estimates for maternal traits (Supplementary Table
5).

Heritability of simulated fetal traits without POEs


https://doi.org/10.1101/2020.05.12.079863
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.079863; this version posted May 14, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Like parental traits, we used conventional GCTA to estimate h2 for fetal traits in mothers, fathers
and children separately. The estimated hZ based on m, p and f were 12.7%, 13.5% and 49.6%
respectively (Supplementary Table 5). Similarly, using M-GCTA for fetal traits in mother-child
duos, the h? estimates attributable to indirect maternal effect (M), direct fetal effect (G) and direct-
indirect effect covariance (D) were 2.0%, 48.2% and 1.4% respectively (Supplementary Table 5).
Using H-GCTA in complete trio data, we further resolved the phenotypic variance of the simulated
fetal traits into variance components attributable to m1 (h2; = 23.2% ), m2 (hZ, = 1.5%), pl
(ﬁ%l = 24.1%) and p2 (ﬁlz)z = 1.2%) (Fig 2b, Supplementary Table 5). While, conventional
GCTA estimated superficial contributions from maternal and paternal genotypes besides fetal
genotypes, M-GCTA and H-GCTA clearly showed the fetal origin of the simulated phenotypes.
As compared to M-GCTA, H-GCTA further resolved equal contributions from maternal and
paternal transmitted alleles through m1 and p1.

Heritability of simulated fetal traits with POEs

We estimated variance attributable to POEs using simulated fetal traits where m1 had less effect
in comparison to pl. We simulated four scenarios where different fractions of causal variants
(25%, 50%, 75% or 100%) were maternally imprinted. In each scenario, we generated a range of
POEs —m1 having 75% of the effect as compared to pl, m1 having 50% of the effect as compared
to pl, m1 having 25% of the effect as compared to pl and m1 having no effect on the phenotype.
The first three conditions in each scenario represented partial maternal imprinting whereas the last
condition in each scenario represented complete maternal imprinting. Using our approach (H-
GCTA), we estimated the total fetal h? (hZ,; + ﬁlzjl) as expected (~ 50%) (Fig 3, Supplementary
Table 6). Results from H-GCTA showed that the variance attributable to m1 (ﬁfnl) decreased
whereas the variance attributable to p1 (Blzjl) increased in accordance to the level of imprinting in
each scenario. For example, in case of all variants with complete maternal imprinting (m1/p1 =

0.0/1.0), variance attributable to m1 and pl were 1.6% and 47.9% respectively (Supplementary
Table 6). We also compared results from our approach with those from GCTA and M-GCTA.
GCTA underestimated variance attributable to f (h?) depending on the proportion of causal
variants with POEs and level of POEs. M-GCTA estimated variance attributable to G (hé) was as
expected (~ 50%) in case of partial imprinting; however, it underestimated the variance attributable
to G in case of complete imprinting. (Supplementary Table 6). We further compared estimated

variance based on m1, m2 and p1 to calculate h? likely attributable to POEs (Supplementary Table
7).

Heritability estimation of pregnancy phenotypes using empirical data

All analyses for h? estimation were performed using a common set of ~ 11 million markers across
10,375 mother-child pairs. In addition, two MAF cut-offs (0.001 and 0.01) yielding approximately
9 million and 7 million markers respectively, were used for analysis. Only independent mother-
child pairs (kinship coefficient < 0.05) were used in analysis and 20 principal components (PCs)
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were used along with genotype-based GRMs in LMM (Supplementary Figure 3). For haplotype-
based GRMs, we used 30 PCs (10 PCs corresponding to each haplotype) in LMM (Supplementary
Figure 3). We estimated h? using two methods, REML and HE regression. Using both methods,
we also compared results from our approach (H-GCTA) with existing approaches, GCTA and M-
GCTA. Here, we describe results based on GRMs calculated through SNPs with MAF > 0.001.
Results based on GRMs calculated through all polymorphic SNPs and SNPs with MAF > 0.01 are
provided in supplementary text, supplementary table 8 and 9.

Heritability of gestational duration

Using REML, the conventional GCTA approach estimated h? of gestational duration based on m
and f — (hZ, = 25.5%; S.E. = 4.8%; p value = 2.25E-08) and (h? = 9.5%; S.E. = 4.5%; p value =
1.62E-02). Our approach (H-GCTA) further resolved the heritability estimates based on m1 —
14.0% (S.E. = 4.6%; p value = 8.34E-04), m2 — 10.0% (S.E. = 4.6%; p value = 1.33E-02) and pl
—2.6% (S.E. = 4.4%; p value = 2.77E-01) (Fig 4a). Using HE-regression, GCTA and H-GCTA
generated similar results as through REML (Fig 4a). Results using our approach suggested that h?
of gestational duration was primarily determined by maternal genome. Comparison with M-GCTA
confirmed the results from H-GCTA and suggested that h? of gestational duration was mainly

attributable to the SNPs which influence gestational duration through maternal genetic effect
(Table 1a).

Heritability of gestational duration adjusted birth weight

Analysis using conventional GCTA showed that the estimated h? of birth weight based on m and
f were 15.8% (S.E. = 5.3%; p value = 1.71E-03) and 32.3% (S.E. = 5.4%; p value = 1.02E-09)
respectively. Using our approach, we further distinguished phenotypic variance into variance
components based on m1 — 19.9% (S.E. = 5.3%; p value = 9.27E-05); m2 — 3.0% (S.E. =4.9%; p
value = 2.70E-01) and p1 — 13.3% (S.E. = 5.2%; p value = 5.03E-03) (Fig 4b). The h? estimate
obtained through H-GCTA suggested that narrow sense heritability of birth weight was primarily
determined by the fetal genome. Comparison of h? estimates from our approach with those from
M-GCTA illustrated that h? of birth weight was mainly attributable to the SNPs which influence
birth weight only through direct effect (fetal effect) (Table 1b).

Heritability of gestational duration adjusted birth length

We estimated h? of birth length based on m (ﬁfn = 21.8%; S.E. =7.4%; p value = 1.43E-03) and
f (ﬁ? = 26.5%; S.E. =7.5%; p value = 1.61E-04) using conventional GCTA approach. We further
resolved the heritability estimates based on m1 — 24.6% (S.E. = 7.4%; p value = 3.45E-04); m2 —
2.0% (S.E. =7.1%; p value = 3.88E-01) and pl — 4.0% (S.E. = 7.2%; p value = 2.85E-01) using
our haplotype-based GCTA approach (Fig 4c). H-GCTA showed that unlike birth weight, variance
in birth length was mainly attributable to m1 with a much smaller attribution to pl. In addition,
the difference between (h2,; — hZ,) and ﬁ%l (h2, —h2, - Bf,l = 18.5%; S.E. = 12.5%; p value
= 6.88E-02) suggested possible POE or correlation between maternal and fetal effects of the
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maternal transmitted alleles (Supplementary Table 10). As compared to the results from our
approach, M-GCTA showed that variance in birth length was mainly attributable to the D i.e. SNPs
with both indirect effect (maternal genetic effect) and direct effect (fetal effect) (d) (Table 1c).

Heritability of gestational duration adjusted head circumference

Narrow sense heritability (BZ) of head circumference estimated using a conventional GCTA
approach was 32.2% (S.E. =9.0%; p value = 1.45E-04) and 40.3% (S.E. = 9.2%; p value = 5.50E-
06) based on m and f respectively. Using H-GCTA, we resolved the variance attributable to
maternal and fetal genomes into heritability estimates based on m1 —33.1% (S.E. =9.1%; p value
= 1.27E-04); m2 — 6.0% (S.E. = 8.7%; p value = 2.42E-01) and p1 — 12.3% (S.E. = 8.8%; p value
= 7.85E-02) (Fig 4d). Results from H-GCTA showed that the estimated h2 of head circumference
was mainly attributable to m1 with comparatively less attribution to p1. The results from M-GCTA
analysis showed approximately equal contribution to variance of head circumference from G and
D (Table 1d). The comparison of results from H-GCTA and M-GCTA suggested that head
circumference was primarily determined by fetal genome with some influence through maternal
genetic effect with a possible trend of POE or correlation between maternal and fetal effects of the
maternal transmitted alleles (Supplementary Table 10).
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Discussion

Adverse pregnancy outcomes such as short gestational duration (preterm birth, affecting
approximately 10% of all pregnancies), fetal growth restriction or macrosomia pose not only
immediate but also long-term health risks to mother and child. Several studies have shown
associations of preterm birth and low birth weight with developmental disabilities such as cerebral
palsy, intellectual disabilities, autism spectrum disorder, attention deficit hyperactivity disorder,
learning disability and future risk of type 2 diabetes mellitus and cardiovascular diseases in child*’-
4. Understanding the genetic architecture of pregnancy phenotypes will not only elucidate the
genetic basis of immediate health outcomes but also shed light on the nature of their relationships

with long-term health outcomes*°.

To date, various genetic association and heritability estimation studies have attempted to reveal
the genetic basis of gestational duration and fetal growth measures at birth in humans?!-23-28:3041:47-
>l While genetic associations based on candidate genes or genome-wide markers reveal genotype-
phenotype relationships, heritability estimation using related (families) or unrelated samples
provides quantitative measures of genetic contributions to phenotypic variance in a population.
Heritability estimation based on epidemiological studies suggest that fetal genetic factors
contribute 11-35% and 27-42% of variation in gestational duration and fetal growth measures at
birth respectively whereas maternal genetic factors contribute 13-20% and 19-22% of variation in
gestational duration and fetal growth measures at birth>>® respectively. Similar patterns of
maternal and fetal genetic contributions to the variance of pregnancy phenotypes are observed
through genetic studies using GRMs based on an individual’s genotypes?!-2327:28.30.41.48.59.60

Pregnancy phenotypes are primarily genetically determined by two genomes — the maternal and
fetal genome. These two genomes are correlated with each other through maternal transmitted
alleles, sharing effect through both the mother and fetus. Therefore, most of the individual’s
genotype-based approaches for heritability estimation are limited in estimating explicit indirect
(maternal effect) and direct (fetal effect) genetic contribution to pregnancy phenotypes. Using our
haplotype-based GCTA approach (H-GCTA), we disentangle the contribution of maternal
transmitted alleles (m1 - through maternal and fetal effect), maternal non-transmitted alleles (m2
- through maternal effect) and paternal transmitted alleles (p1 - through fetal effect) to the variance
of gestational duration and gestational duration adjusted fetal growth measures at birth in 10,375
European mother-child pairs. Moreover, our approach can be extended to parent-child trios to
detect the paternal genetic effect (genetic nurturing effect)®? (see results using simulated data).

Our results based on common and rare variants (SNPs with MAF > 0.001) show that approximately
14% and 10% variance in gestational duration is attributable to the m1 and m2 components
respectively with a minimal contribution from pl (Fig 4; Table 1). In contrast, variance in
gestational duration adjusted fetal growth measures at birth are mainly contributed by m1 (h2; =
20-33%) and plcomponents (ﬁf,1 =4-13%) with a minimal contribution from m?2 (Fig 4; Table 1).
Among fetal growth measures at birth, variance in birth weight has significant contributions from
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ml (hZ; = 20%) as well as pl (h3; = 13%) whereas variance in birth length and head

circumference are mainly driven by m1 (birth length: hZ, = 25%; head circumference: hZ,; =
33%). These new results suggest that variance in gestational duration is mainly driven by the
mothers’ genome whereas variance in fetal growth measures at birth is mainly driven by the fetal
genome through direct fetal genetic effects. In addition, birth length and head circumference show
evidence of parent-of-origin effects (POEs) based on the results from H-GCTA (Supplementary
Table 10). Results using all polymorphic SNPs and SNPs with MAF > 0.01 support our findings
based on SNPs with MAF > 0.001. We observed the largest h? estimates for each trait using all
polymorphic SNPs, which decreased with increasing threshold of MAF cutoff (number of SNPs
decrease with increasing MAF cutoff). Decrease in the h? estimates with decrease in number of

markers is a general limitation of GCTA-GREML which is dependent on several assumptions!”¢!.

Further, a comparison of results from our approach (H-GCTA) with those from M-GCTA confirms
our observations regarding gestational duration and birth weight. While results from H-GCTA
suggest major contribution to the variance of birth length and head circumference through ml,
those from M-GCTA indicate primary attribution to direct-indirect effect covariance (D) i.e. SNPs
showing effect through both the mother and fetus (Table 1). As suggested by previous results
through M-GCTAZ, birth length is jointly determined by maternal and fetal genomes. However,
our current study with larger sample size suggests that H-GCTA or M-GCTA detect no major
contribution through m2 or indirect effects (maternal genetic effect). In addition, a larger hZ ,
(contribution through maternal and fetal genetic effects) than the summation of h2 , (contribution
through maternal genetic effect) and ﬁlz,l (contribution through fetal genetic effect) suggests that

birth length is mainly influenced by fetal alleles inherited from the maternal side. These
observations suggest possible POEs or correlation between maternal and fetal effects in birth
length and head circumference.

Interestingly, we observe that the contribution of m1 is larger than m2 or p1 for every pregnancy
phenotype in the current study. There are several possible explanations for this pattern of results.
The most obvious explanation is that m1 can influence a pregnancy phenotype through both the
mother and fetus. For example, for a trait mainly defined by the maternal genome like gestational
duration, higher contribution of m1 in comparison to m2 could be due to small but non-zero fetal
effect of the m1 alleles (Supplementary Table 5). Similarly, for traits mainly defined by the fetal
genome such as fetal size measurements at birth, higher contribution of m1 in comparison to pl
could be due to maternal effect of the m1 alleles (Supplementary Table 5). Assuming maternal-
fetal additivity (maternal effect and fetal effect are defined by independent sets of variants and no
interaction between maternal and fetal effect) and no POE, (hZ, - h2,) is equal to ﬁ%l
(Supplementary Table 5). Due to possible POE, above equality doesn’t hold for birth length and
head circumference (Supplementary Table 10). The above pattern can also be observed due to
correlations or interactions of indirect maternal and direct fetal effects. Besides the above-
mentioned explanations, several other biological phenomena such as interaction between SNPs

10
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within the mother or fetus (epistasis), gene-environment interaction and transmission distortion
can explain the observed pattern of h? for gestational duration and fetal size measurements at birth.

Despite the above advances, our current approach has limitations. First, heritability estimation in
our approach can be affected if assumptions such as the normal distribution of effect sizes, LD
between assayed variants and causal variants, absence of epistasis (gene-gene interaction), absence
of gene-environment interaction and the absence of non-additive effects are not met. This set of
limitations is shared with all current GCTA-based approaches. Second, splitting the phenotypic
variance attributable to m1 (hZ;) into fractions contributed through indirect effect (maternal
genetic effect) and direct (fetal) effect isn’t upfront. Although, the proportion of h2,; contributed
through indirect effects (maternal genetic effect) and direct (fetal) effect can be calculated as (Bfnl
- Bf,l) and (hZ,; - h2,) respectively. These calculations are based on two major assumptions —
maternal-fetal additivity (independent sets of SNPs influencing pregnancy phenotypes through
mother and fetus and there is no interaction among them) and no POE. Third, our hypotheses of a
higher contribution of m1 to the h?of pregnancy phenotypes needs further support from larger
datasets and simulations depicting interactions of indirect maternal and direct fetal effects in the
presence and absence of POE.

In conclusion, our approach can resolve the phenotypic variance into indirect effects (maternal
genetic effect) and direct (fetal) effect by considering mother/child pair as a single analytical unit
with three distinct haplotypes — m1, m2 and pl. In comparison to M-GCTA, our approach can
further disentangle the variance attributable to direct (fetal) effect into maternal and fetal
components through ml and pl, which enables assessment of possible POEs or correlation
between maternal and fetal effects. Moreover, our approach can be extended to study parental
effects in duos/trios data??. We believe this approach represents a significant enhance to the genetic
analytic toolbox of pregnancy that others will also employ moving forward.
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Fig 1: a) Schematic representation of the difference between the genotype and haplotype-based
analysis approach; the left part of the figure represents the conventional approach based on
genotypes of mothers and child separately and the right part represents haplotype-based analysis
for pregnancy phenotypes by treating mother/child pairs as analytical units. b) Schematic
representation of the difference between conventional approach of heritability estimation utilizing
genotype-based GRMs and our approach utilizing haplotype-based GRMs (representing the
example of mother-child duos). ml (fl): Maternal transmitted alleles; m2: Maternal non-

transmitted alleles; f2 (p1): paternal transmitted alleles; E: Environmental factors; O'é: phenotypic
variance attributable to mothers’ or children’s genotypes; 62,,, 62,5, and 012)1: phenotypic variance

attributable to m1, m2 and p1 respectively; 62: phenotypic variance attributable to E.
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Fig 2: h? estimates using GCTA, M-GCTA and H-GCTA in simulated genotypes and phenotypes
data; a) h? estimates for maternal traits i.e. phenotypes have genetic contribution only through
mother; b) h? estimates for fetal traits i.e. phenotypes are genetic contribution only through fetus.
For GCTA, M is the GRM generated from maternal genotypes (m), P is the GRM generated from
paternal genotypes (p), and F is the GRM generated from fetal genotypes (f). For M-GCTA, M’
represents the genetic relationship matrix of mothers; G represents genetic relationship matrix of
children and D represents mother-child covariance matrix. For H-GCTA, M1 is the GRM
generated from maternal transmitted alleles (m1), M2 is the GRM generated from maternal non-
transmitted alleles (m2), P1 is the GRM generated from paternal transmitted alleles (p1), and P2
is the GRM generated from paternal non-transmitted alleles (p2). The calculation of these matrices
and the estimation of phenotypic variance attributable to these components are described in the
Methods section.
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Fig 3: h? estimates using our approach (H-GCTA) in simulated fetal traits: a) All variants show
parent-of-origin effects (POEs); b) 75% variants show POEs; ¢) 50% variants show POEs; d) 25%
variants show POE:s. In each scenario, maternal transmitted alleles (m1) show either no imprinting
- effect of m1 is equal to effect of paternal transmitted alleles (p1) or partial imprinting - effect
size of ml 1s 0.75-0.25 in comparison to pl or complete imprinting — ml has no effect on
phenotype.
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a) SNP heritability estimates of gestational duration b) SNP heritability estimates of birth weight
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Fig 4: h? estimates of pregnancy phenotypes using our approach (H-GCTA), implementing REML
and HE regression in unrelated mother-child pairs (relatedness cutoff > 0.05). M1: GRM generated
from maternal transmitted alleles (m1); M2: GRM generated from maternal non-transmitted alleles
(m2); P1: GRM generated from paternal transmitted alleles (p1). All analyses were adjusted for

30 principal components (PCs).
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a) h? estimates of gestational duration
Approach  GRM REML HE-Reg
h2 S.E. p-val h2 S.E. p-val
M 0.2546 0.0475 2.25E-08 0.2317 0.0433 8.40E-08
F 0.0952 0.0455 1.62E-02 0.0905 0.0433 3.68E-02
M’ 0.2287 0.0617 8.37E-05 0.2049 0.0567 2.99E-04
M-GCTA G 0.0349 0.0590 2.76E-01 0.0279 0.0573 6.26E-01
D 0.0079 0.0478 4.35E-01 0.0171 0.0452 7.06E-01
Ml 0.1397 0.0458 8.34E-04 0.1356 0.0434 1.76E-03
H-GCTA M2 0.1005 0.0458 1.33E-02 0.0908 0.0434 3.65E-02

P1 0.0262 0.0444 2.77E-01 0.0178 0.0434 6.81E-01

GCTA

b) h? estimates of birth weight

Approach GRM REML HE-Reg
h2 S.E. p-val h?  S.E. p-val
M 0.1579 0.0533 1.71E-03 0.1334 0.0491 6.62E-03
GCTA F 03226 0.0543 1.02E-09 0.2895 0.0492 4.09E-09
M’ 0.0570 0.0652 1.88E-01 0.0387 0.0643 5.48E-01
M-GCTA G 02619 0.0692 5.48E-05 0.2332 0.0650 3.33E-04
D 0.0488 0.0524 1.78E-01 0.0404 0.0513 4.31E-01
M1 0.1985 0.0533 9.27E-05 0.1911 0.0493 1.04E-04
HL.GCTA M2 00300 0.0495 2.70E-01 0.0241 0.0493 6.24E-01
P 0.1329 0.0520 5.03E-03 0.1197 0.0493 1.52E-02

¢) h? estimates for Birth Length

Approach  GRM REML HE-Reg
h2 S.E. p-val h2 S.E. p-val
GCTA M 0.2175 0.0741 1.43E-03 0.2012 0.0695 3.80E-03

F 02646 0.0748 1.61E-04 0.2459 0.0697 4.18E-04
M’ 0.0000 0.0929 5.00E-01 -0.0214 0.0906 8.13E-01
M-GCTA G 0.0442 0.0939 2.84E-01 0.0351 0.0920 7.03E-01
D 02065 0.0716 2.09E-03 0.1987 0.0727 6.27E-03
M1 0.2455 0.0740 3.45E-04 0.2192 0.0698 1.69E-03
H-GCTA M2 00198 0.0706 3.88E-01 0.0148 0.0699 8.33E-01
Pl 0.0404 0.0715 2.85E-01 0.0268 0.0699 7.02E-01
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d) h? estimates for Head Circumference

Approach GRM REML HE-Reg
h?2 S.E. p-val h?2 S.E. p-val
GCTA M 0.3221 0.0904 1.45E-04 0.3128 0.0876 3.58E-04

F__ 0.4030 0.0924 5.50E-06 _0.3535 0.0878 5.70E-05
M’ 0.0590 0.1087 2.87E-01 0.0618 0.1149 5.91E-01
M-GCTA G 0.1711 0.1154 6.54E-02 0.0987 0.1158 3.94E-01
D 0.2332 0.0856 3.96E-03 0.2361 _0.0912 9.58E-03
M1 03310 0.0914 1.27E-04 0.2928 0.0878 8.51E-04
H-GCTA M2 0.0603 0.0870 2.42E-01 0.0906 0.0878 3.02E-01
Pl 0.1233 0.0882 7.85E-02 0.0729 0.0878 4.06E-01

Table 1: h? estimates in unrelated mother-child pairs (relatedness cutoff > 0.05) using REML and
HE-regression through genotype-based GCTA approach, M-GCTA and haplotype-based GCTA
(H-GCTA) approach for a) gestational duration and b) birth weight c) birth length and d) head
circumference. GRMs were generated using SNPs with MAF > 0.001. Gestational duration was
adjusted for fetal sex and fetal growth measures at birth were additionally adjusted for gestational
duration up to third orthogonal polynomial. Analyses using GCTA and M-GCTA approach were
adjusted for 20 PCs and H-GCTA approach was adjusted for 30 PCs (10 PCs corresponding to
ml, m2 and p1 each).
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Methods
Datasets and quality control

We used genome wide single nucleotide polymorphism (SNP) data from 10,375 mother-child pairs
from five European cohorts to estimate h? of gestational duration and fetal growth measures at
birth (birth weight, birth length and head circumference). These included three data sets collected
from Nordic countries - Danish Birth Cohort (DNBC), Finnish dataset (FIN) and Norwegian
Mother, Father and child Cohort study (MoBa) for genetic study of preterm birth, Avon
Longitudinal Study of Parents and Children (ALSPAC) from UK, and Hyperglycemia and Adverse
Pregnancy Outcome study (HAPO) from UK, Canada, and Australia. (Supplementary Tables 1-4,
Supplementary Figure 2). A detailed description of data sets can be found in Supplementary Text.

Genotyping of DNA extracted from whole blood or swab samples was done on various SNP array
platforms such as Affymetrix 6.0, [llumina Human550-Quad, I1lumina Human610-Quad, Illumina
Human 660W-Quad. SNP array data was filtered based on SNP and sample quality. Quality
Control (QC) of genotypes data was performed at two levels — marker level and individual level.
Marker level QC was conducted using PLINK 1.9%% on the basis of SNP call rate, minor allele
frequency (MAF), Hardy-Weinberg Equilibrium (HWE) and individual level QC was done on the
basis of call rate per individual, average heterozygosity per individual, sex assignment, inbreeding
coefficient. Non-European samples were removed from the study by principal components
analysis (PCA) anchored with 1,000 genome samples. Following QC, genotype data of mother-
child pairs were phased using SHAPEIT 2%. SHAPEIT 2 automatically recognizes pedigree
information provided in the input files. When phasing mother/child duos together, the first allele
in child was always the transmitted allele from mother and the second one from father. We imputed
the pre-phased genotypes for missing genotypes on Sanger Imputation Server using Positional
Burrows-Wheeler Transform (PBWT) software®. Haplotype reference consortium (HRC) panel
was utilized as reference data for imputation purpose®. The phasing and mother-child allele
transmission of the imputed alleles were retained from the pre-phasing stage.

QC of phenotype data was conducted considering gestational duration as the primary outcome.
Pregnancies involving history of risk factors for preterm birth or any medical complication during
pregnancy influencing preterm birth, C-sections and non-spontaneous births were excluded. We
also excluded, non-singlet pregnancies, pregnancies who self-reported non-European ancestry and
children who could not survive > 1 year. Additionally, gestational duration was adjusted for fetal
sex; fetal growth measures at birth such as birth weight, birth length and head circumference were
adjusted for gestational duration up to third orthogonal polynomial component. Details of genotype
and phenotype QC is provided in the Supplementary Text.

Statistical Method

We used a linear mixed model (LMM) to estimate the SNP heritability (h?) of pregnancy
phenotypes. This model assumes that the phenotype was normally distributed - Y ~ N(u, V) with
mean [ and variance V. We created GRMs from standardized genotypes/haplotypes utilizing the
method developed by Yang et.al., 2010'""!2, Each cell of the genotype-based GRM and haplotype-
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based GRM represented relatedness between two individuals j and k calculated based on genotypes
(Equation 1) and haplotypes (Equation 2) respectively.

1\ (xij—2p;) (xik—2py) .
Ay = Wzm 20 (mpp) (Equation 1)

Where, Ajk is the correlation coefficient between two individuals j and k averaged over all SNPs;
w is number of SNPs used to calculate relatedness; x;j is the number of copies of the reference
alleles in individual j for SNP i (i.e. 0 or 1 or 2); xik is the number of copies of the reference alleles
in individual k for SNP i (0 or 1 or 2); pi is frequency of reference allele of SNP i.

w
Tix = %Ziﬂ (C”;‘()l—(_c;i‘)m (Equation 2)
Where, Tjk is the correlation coefficient between two mother/child duos or full trios j and k based
on maternal transmitted alleles (ml) or maternal non-transmitted alleles (m2) or paternal
transmitted alleles (p1) or paternal non-transmitted alleles (p2); w is number of SNPs whose alleles
are used to calculate relatedness; cj; is the number of the reference alleles of m1 or m2 or pl or p2
in mother/child duo or full trio j for SNP i (i.e. 0 or 1); cix is the number of the reference alleles of
ml or m2 or pl or p2 in mother/child duo or full trio k for SNP i (i.e. 0 or 1); pi is frequency of
reference allele of SNP i.

For genotypes-based analysis, we created two GRMs - M and F by utilizing maternal genotypes
(m) and fetal genotypes (f) respectively. For haplotypes-based analysis, we considered mother-
child pair as a single analytical unit consisting of three haplotypes corresponding to m1, m2, and
pl. We created three separate GRMs - M1, M2 and P1 using only ml, only m2 and only pl
respectively (Fig 1a, b). We fitted mothers’ genotype-based GRM (M) (Equations 3 and 4) and
children’s genotype-based GRM (F) (Equations 5 and 6) separately in LMM to estimate
phenotypic variance attributable to maternal and fetal genotypes respectively. To calculate explicit
contribution of maternal and fetal genomes to the overall narrow-sense heritability of pregnancy
phenotypes, we simultaneously fitted all three matrices (M1, M2 and P1) in LMM and estimated
the additive genetic variance attributable to each of three components (Equation 7, 8).

Ys =XB + Zpuy + € (Equation 3)
YsY{ = XX'0f + Mojy + Io? (Equation 4)
Ys =XB + Zsus + € (Equation 5)
YsY{ = XX’} + Fo + Io? (Equation 6)
Ys = XB + ZmiUmi + ZmaUmz + ZpiUpy +€ (Equation 7)
YsY{ = XX'0j + Mloy, + M2ojy, + Plop, + Io? (Equation 8)

Where, Y is a vector of standardized phenotype (n x 1; where, n is number of individuals); X is a
matrix of covariates representing fixed effects (n x p; where, p is number of fixed effects);  is a
vector of fixed effects (p x 1); Z,, is a matrix of mothers’ standardized genotypes (m) (n x w;
where, w is number of SNPs); Z¢ is a matrix of children’s standardized genotypes (f) (n X W); Z1
is a matrix of standardized maternal transmitted alleles (ml) (n X w); Z,, is a matrix of
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standardized maternal non-transmitted alleles (m2) (n x w); Z,1 is a matrix of standardized paternal
transmitted alleles (p1) (n x w); € is a vector of residual effects with € ~ N(0, I62%); u,, and us are
vectors of random effect sizes for maternal genotypes (m) and fetal genotypes (f); um1, um2 and up;
are vectors of random effect sizes for maternal transmitted (m1), maternal non-transmitted (m2)
and paternal transmitted (p1) alleles respectively (m x 1); YsYs is Variance-Covariance matrix of
phenotypes; M, F, M1, M2 and Pl are GRMs generated from Zy, Z¢, Zyq, Zmy and Zpg

respectively (e.g. M=Z,Z1,,); o> are the variances of the respective components.

Assuming additivity, the effect of the maternal transmitted alleles is the summation of the maternal
effect (uy,;) and fetal effect (u;,;) conferred by the same maternal transmitted alleles (U, =
Up; + Up;)- The maternal effect of the maternal transmitted alleles (uy,,) should be equal to the
maternal effect of the maternal non-transmitted alleles (uy,,). Thus, the fetal effect of the maternal
transmitted alleles can be expressed as uy; = Upy; — Uy, Therefore, we evaluated POE — the
overall difference of the fetal effect of maternal and paternal transmitted allele (up,; vs. upq) by

testing (h%; —hZ,, —h2,) = 0 using one sample z test (one-tailed). A pooled standard error

(S.E.) was calculated using \/(S. Eomi )2 + (S.Emz )2+ (S. E.p1 )2. Where, h2,;,h2,, and ﬁIle are

variance components based on maternal transmitted alleles, maternal non-transmitted alleles and
paternal transmitted alleles respectively; S.E.;, S.E.;, and S.E.,jare standard errors

corresponding to h? based on m1, m2 and p1 respectively.

It should be noted that the above test of POE requires assumption of independence between
maternal effects (up,;) and fetal effects (u;,;) of the maternal transmitted alleles. If there is

14

correlation between u,,; and uj; (p = Corr(up,;, umy) # 0),h3; =h2,"+ hZ,” + hZ,,, where
h2,," and h2 ;" are the additive genetic variance explained by the maternal and fetal effects of the
maternal transmitted alleles. h?,, is the covariance between the maternal and fetal effects, which
can be expressed as [ q(1 — @)7(q)(2s/15m10)dq, where s;,; and sy, are the standard deviation
of up,; and uj,,, respectively. g and m(q) are the allele frequency and the allele frequency
spectrum. In this case, a non-zero (h3; —h3,, —h2,) may suggest POE (i.e. up; # up) or

correlation between maternal effect (u;,,) and fetal effect (u;y,,) of the maternal transmitted alleles.
Implementation

Phenotypic variance i.e. Var(Y) attributable to different components could be estimated by fitting
GRMs corresponding to those components in LMM or regression model. We used REML and HE
regression methods implemented in GCTA to estimate h?. For genotype-based analysis through
conventional GCTA approach, we fitted a GRM generated from mothers’ genotypes (M) and
children’s genotypes (F) separately in LMM or HE-regression whereas for haplotype-based
analysis through H-GCTA approach, we fitted three GRMs (M1, M2 and P1) simultaneously in
LMM or HE-regression. We also compared results from our approach with those from M-GCTA.
Analysis through the M-GCTA approach involved generation of the GRMs using mothers’ and
children’s genotypes together. The upper left quadrant of the GRM represented genetic
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relationship matrix of mothers (M’); the lower right quadrant represented genetic relationship
matrix of children (G) and sum of the lower left quadrant and its transpose represented the genetic
relationship matrix of mothers and children (D).

Simulation

We simulated 3,000 trios consisting of four sets of haplotypes (m1, m2, p1, p2) with 10,000 SNPs.
Each SNP was simulated as random draw from Bernoulli distribution of minor allele frequency
(MAF) and repeated 3,000 times for each haplotype. MAF information was picked from randomly
chosen SNPs from chromosome 20 from 1,000 genomes project European samples data (EUR_AF
> 0.001). Effect size corresponding to each SNP was simulated as random draw form a normal
distribution [N(O, 1)]. h? was assumed 50% and environmental components (e) were random draws
from a normal distribution [N(O, (l—ﬁz)l/ 2)]. Three sets of phenotypes were simulated considering
effects only from the mother (maternal traits), the father (paternal traits) or child (fetal traits). We
also simulated fetal traits with POE, where m1 had less effect in comparison to p1. We considered
four scenarios, where varying fractions of causal variants (25%, 50%, 75% and 100%) showed
maternal imprinting. In each scenario, we simulated different levels of imprinting for m1 (25% -
100%) by reducing effect sizes of m1 (75% - 0%) as compared to pl. Non-zero effects of m1 as
compared to pl represented partial maternal imprinting whereas no effect of ml represented
complete imprinting. All simulations were replicated one hundred times. All relatedness matrices
using simulated data were generated and fitted into LMM in a similar way as mentioned in the
statistical methods section.

Analysis of Empirical datasets

We performed analyses using three sets of markers — all polymorphic SNPs, SNPs with MAF >
0.001 and SNPs with MAF > 0.01, to include the contribution of very rare, rare and common
variants to the heritability of pregnancy phenotypes (Supplementary Figure 1). The marker sets
based on the MAF cutoff were selected in each dataset separately, considering mothers as founders.
Then, a common set of markers across all datasets was selected in each MAF cutoff category. We
pooled individual datasets and generated five different GRMs utilizing mothers’ genotypes (M),
children’s genotypes (F), maternal transmitted haplotypes (M1), maternal non-transmitted
haplotypes (M2) and paternal transmitted haplotypes (P1) using the imputed genotype data of
mother/child pairs (Supplementary Table 2). One of the related individuals was removed from
each GRM (relatedness coefficient > 0.05) and a common set of mother-child pairs across five
GRMs was selected in each MAF cutoff category (Supplementary Table 3). We fitted these GRMs
in LMM or HE regression model as described in implementation section. All the analyses were
adjusted for principal components (PCs) — 20 PCs for analyses through GCTA and M-GCTA and
30 PCs (10 PCs corresponding to ml, m2 and pl each) for analyses through H-GCTA
(Supplementary Figure 3). We also replicated our findings in another Nordic dataset of ~ 8,000
mother-child pairs. We estimated the h? of gestational length through REML in replication dataset
using SNPs with MAF > 0.01.
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