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Abstract 

Unlike other commonly studied complex traits, pregnancy phenotypes like gestational duration 

and fetal size measurements at birth are conjointly determined by maternal and fetal genomes. 

Current approaches of heritability estimation based upon an individual’s genotype information are 
limited in addressing confounding by shared alleles between mother and fetus. Here, we propose 

a novel approach of treating the mother-child pairs as a single analytical unit with three haplotypes 

- maternal transmitted (m1), maternal non-transmitted (m2) and paternal transmitted (p1). Using 

our haplotype-based approach, we estimate the SNP heritability (ĥ2) of gestational duration and 

gestational duration adjusted fetal size measurements at birth in 10,375 mother-child pairs. The 

results reveal that variance in gestational duration is mainly attributable to m1 and m2 (ĥm12 =14% and ĥm22 = 10%). In contrast, variance in fetal size measurements at birth are mainly 

attributable to m1 and p1. Variance in birth weight is attributable to both m1 and p1 (ĥm12 =19.9% and ĥp12 = 13.3%). However, variance in birth length (ĥm12 = 24.5% and ĥp12 = 4.0%) 

and head circumference (ĥm12 = 33.1% and ĥp12 = 12.3%) are largely attributable to m1. Our 

results suggest that gestational duration is primarily determined by the maternal genome whereas 

fetal size measurements at birth are primarily determined by fetal genome. In addition, the 

difference between (ĥm12 2 ĥm22 ) and ĥp12  suggests a greater contribution of the maternal 

transmitted haplotype than the paternal transmitted haplotype to birth length and head 

circumference. Our haplotype-based GCTA approach (H-GCTA) resolves explicit contributions 

of maternal and fetal genomes to SNP heritability of pregnancy phenotypes. 

 

Keywords: Narrow-sense heritability, SNP heritability, pregnancy phenotypes, transmitted and 

non-transmitted alleles 
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Introduction 

Narrow sense heritability (h2) is the proportion of phenotypic variance in a population attributable 

to additive genetic values (breeding values)1. Generally, the concept of the h2 estimation comes 

from balanced designs – regression of child phenotypes on mid-parent phenotype, correlation of 

full or half sibs and differences in the correlation of monozygotic and dizygotic twins1. However, 

in a population with mixed relationships, the linear mixed model (LMM) is the most flexible 

approach accounting for both fixed and random effects1-5. LMM is generally fitted using restricted 

maximum likelihood (REML)5-7, Expectation Maximization (EM)8 or Bayesian methods9,10. 

Following the advent of genome-wide common SNPs arrays, imputation and whole genome 

sequencing technologies encouraged researchers to extend its applicability to distantly related and 

unrelated individuals. 

Over the last decade, various approaches including Genome-based Restricted Maximum 

Likelihood (GREML)11,12, Linkage Disequilibrium-adjusted kinships (LDAK)13, threshold 

Genomic Relatedness Matrices (GRMs)14, LD Score regression (LDSC)15 and Phenotype 

Correlation-Genotype Correlation (PCGC)16 have been developed to estimate SNP-based narrow-

sense heritability (ĥ2)17. In addition, variants of these approaches such as GREML-MAF stratified 

(GREML-MS)18, GREML-LD and MAF stratified (GREML-LDMS)19 and LDAK-MAF stratified 

(LDAK-MS)20 have enabled partitioning of the genetic variance into additive and non-additive 

components as well as variance components attributable to chromosomes, genes and inter-genic 

regions. The above approaches have helped explain a large proportion of the missing heritability 

in various complex diseases and quantitative traits. Nevertheless, they are less suited for pregnancy 

phenotypes which are simultaneously influenced by direct fetal genetic effects and indirect 

parental effects21-24. To date, only a few studies have attempted to distinguish maternal genetic 

effect25,26 from fetal genetic effect in mother-child duos 21,23,27,28. Most of these approaches are still 

based on individuals’ genotypes and therefore, are inadequate in addressing the confounding effect 

of shared alleles between mother and fetus. Hence, pregnancy-related, antenatal and perinatal 

phenotypes demand an approach which can avoid this confounding and partition ĥ2 explicitly into 

maternal and fetal components.  

Here, we introduce a haplotype-based genome-wide complex trait analysis approach (H-GCTA) 

for heritability estimation to resolve explicit contribution of maternal and fetal genomes to the 

variance of pregnancy outcomes. We consider mother-child pairs as single analytical units 

consisting of three haplotypes corresponding to maternal transmitted (m1), maternal non-

transmitted (m2) and paternal transmitted (p1) alleles29,30. Use of such an analytical unit provides 

an advantage over conventional approaches based on individual’s genotype information by 
avoiding the confounding of m1 which can influence pregnancy phenotypes through both the 

mother and fetus (Fig 1a)24. We generate three separate genetic relatedness matrices M1, M2 and 

P1 using only m1, only m2 and only p1 respectively. We fit all three matrices simultaneously in a 

linear mixed model (LMM) and Haseman-Elston (HE) regression31-33 to estimate variance 

components attributable to each of the haplotype-based matrices (Fig 1b). We apply our approach 
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to a cohort of 10,375 mother-child pairs to estimate ĥ2 of gestational duration and gestational 

duration adjusted fetal size measurements at birth e.g. birth weight, birth length and head 

circumference. Our results suggest that genetic variance in gestational duration is primarily 

attributable to the maternal genome i.e. the maternal transmitted (m1) and non-transmitted (m2) 

alleles whereas genetic variance in fetal size measurements at birth are mainly attributable to fetal 

genome – maternal transmitted (m1) and paternal transmitted (p1) alleles. We additionally reveal 

a larger contribution of the maternal transmitted haplotype than the paternal transmitted haplotype 

(ĥm12 2 ĥm22 >  ĥp12 ) for birth length and head circumference. Our approach can not only estimate 

explicit maternal and fetal contribution to pregnancy phenotypes but also detect parent-of-origin 

effects (POEs) or correlation between maternal and fetal genetic effects of the maternal transmitted 

alleles. 
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Results 

We first used simulated data to evaluate the validity of H-GCTA and its capabilities in detecting 

POEs. We applied our approach to estimate SNP-based narrow-sense heritability (ĥ2) of four 

pregnancy phenotypes – gestational duration, birth weight, birth length and head circumference in 

10,375 mother-child pairs. The study cohorts included five European cohorts - Avon Longitudinal 

Study of Parents and Children (ALSPAC)34,35, Danish Birth Cohort (DNBC)36, Norwegian 

Mother, Father and Child Cohort study (MoBa)37, Hyperglycemia and Adverse Pregnancy 

Outcome study (HAPO)38 and Finnish dataset (FIN)30,39 (Supplementary Text and Supplementary 

Tables 1-4). We compared results from our approach with two existing approaches namely, 

GCTA11 and M-GCTA23,28 (Supplementary Figure 1). Further, ĥ2 estimation of gestational 

duration was replicated in mother-child pairs from another Norwegian dataset (HARVEST) 

(Supplementary Text). 

Heritability Estimation using simulated data 

We used simulated genotype and phenotype data to assess the utility and robustness of our 

approach (H-GCTA). We estimated ĥ2 in 3,000 trios using 10,000 SNPs with MAF > 0.001. All 

phenotypes were simulated with 50% SNP-based narrow sense heritability (ĥ2 = 0.5). Phenotypes 

were simulated in three ways – maternal phenotypes i.e. only maternal transmitted and non-

transmitted alleles affecting phenotype, paternal phenotypes i.e. only paternal transmitted and non-

transmitted alleles affecting phenotype and fetal phenotypes i.e. only maternal transmitted and 

paternal transmitted alleles affecting phenotype. For fetal traits, we also incorporated different 

levels of POE (see methods). 

Heritability of simulated maternal and paternal traits 

Using conventional GCTA for maternal traits in mothers, fathers and children separately, the 

estimated ĥ2 based on maternal (m), paternal (p) and fetal (f) genotypes was 49.8%, 2.2% and 

12.0% respectively (Supplementary Table 5). We also used M-GCTA in mother-child duos to 

estimate the phenotypic variance of maternal traits attributable to indirect maternal effect (ĥM22 =48.4%), direct fetal effect (ĥG2 = 1.5%) and direct-indirect effect covariance (ĥD2 = 1.3%) 

(Supplementary Table 5). Using H-GCTA for maternal traits in complete trio data, phenotypic 

variance based on maternal transmitted alleles (ĥm12 ), maternal non-transmitted alleles (ĥm22 ), 

paternal transmitted alleles (ĥp12 ) and paternal non-transmitted alleles (ĥp22 ) was 23.0%, 23.3%, 

1.6% and 1.5% respectively (Fig 2a, Supplementary Table 5). M-GCTA and H-GCTA accurately 

distinguished the maternal origin of the simulated phenotype; however, the conventional GCTA 

also showed a superficial contribution from the fetal genome (12.0%, approximately one quarter 

of the ĥ2 based on maternal genotype) due to allele transmission. As expected, ĥ2 estimates for 

paternal traits followed similar patterns as ĥ2 estimates for maternal traits (Supplementary Table 

5). 

Heritability of simulated fetal traits without POEs 
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Like parental traits, we used conventional GCTA to estimate ĥ2 for fetal traits in mothers, fathers 

and children separately. The estimated ĥ2 based on m, p and f were 12.7%, 13.5% and 49.6% 

respectively (Supplementary Table 5). Similarly, using M-GCTA for fetal traits in mother-child 

duos, the ĥ2 estimates attributable to indirect maternal effect (M’), direct fetal effect (G) and direct-

indirect effect covariance (D) were 2.0%, 48.2% and 1.4% respectively (Supplementary Table 5). 

Using H-GCTA in complete trio data, we further resolved the phenotypic variance of the simulated 

fetal traits into variance components attributable to m1 (ĥm12 = 23.2% ), m2 (ĥm22 = 1.5%), p1 

(ĥp12 = 24.1%) and p2 (ĥp22 = 1.2%) (Fig 2b, Supplementary Table 5). While, conventional 

GCTA estimated superficial contributions from maternal and paternal genotypes besides fetal 

genotypes, M-GCTA and H-GCTA clearly showed the fetal origin of the simulated phenotypes. 

As compared to M-GCTA, H-GCTA further resolved equal contributions from maternal and 

paternal transmitted alleles through m1 and p1. 

Heritability of simulated fetal traits with POEs 

We estimated variance attributable to POEs using simulated fetal traits where m1 had less effect 

in comparison to p1. We simulated four scenarios where different fractions of causal variants 

(25%, 50%, 75% or 100%) were maternally imprinted. In each scenario, we generated a range of 

POEs – m1 having 75% of the effect as compared to p1, m1 having 50% of the effect as compared 

to p1, m1 having 25% of the effect as compared to p1 and m1 having no effect on the phenotype. 

The first three conditions in each scenario represented partial maternal imprinting whereas the last 

condition in each scenario represented complete maternal imprinting. Using our approach (H-

GCTA), we estimated the total fetal ĥ2 (ĥm12 + ĥp12 ) as expected (~ 50%) (Fig 3, Supplementary 

Table 6). Results from H-GCTA showed that the variance attributable to m1 (ĥm12 ) decreased 

whereas the variance attributable to p1 (ĥp12 ) increased in accordance to the level of imprinting in 

each scenario. For example, in case of all variants with complete maternal imprinting (m1/p1 = 

0.0/1.0), variance attributable to m1 and p1 were 1.6% and 47.9% respectively (Supplementary 

Table 6). We also compared results from our approach with those from GCTA and M-GCTA. 

GCTA underestimated variance attributable to f (ĥf2) depending on the proportion of causal 

variants with POEs and level of POEs. M-GCTA estimated variance attributable to G (hg2) was as 

expected (~ 50%) in case of partial imprinting; however, it underestimated the variance attributable 

to G in case of complete imprinting. (Supplementary Table 6). We further compared estimated 

variance based on m1, m2 and p1 to calculate ĥ2 likely attributable to POEs (Supplementary Table 

7). 

Heritability estimation of pregnancy phenotypes using empirical data 

All analyses for ĥ2 estimation were performed using a common set of ~ 11 million markers across 

10,375 mother-child pairs. In addition, two MAF cut-offs (0.001 and 0.01) yielding approximately 

9 million and 7 million markers respectively, were used for analysis. Only independent mother-

child pairs (kinship coefficient < 0.05) were used in analysis and 20 principal components (PCs) 
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were used along with genotype-based GRMs in LMM (Supplementary Figure 3). For haplotype-

based GRMs, we used 30 PCs (10 PCs corresponding to each haplotype) in LMM (Supplementary 

Figure 3). We estimated ĥ2 using two methods, REML and HE regression. Using both methods, 

we also compared results from our approach (H-GCTA) with existing approaches, GCTA and M-

GCTA. Here, we describe results based on GRMs calculated through SNPs with MAF > 0.001. 

Results based on GRMs calculated through all polymorphic SNPs and SNPs with MAF > 0.01 are 

provided in supplementary text, supplementary table 8 and 9. 

Heritability of gestational duration 

Using REML, the conventional GCTA approach estimated ĥ2 of gestational duration based on m 

and f – (ĥm2 = 25.5%; S.E. = 4.8%; p value = 2.25E-08) and (ĥf2 = 9.5%; S.E. = 4.5%; p value = 

1.62E-02). Our approach (H-GCTA) further resolved the heritability estimates based on m1 – 

14.0% (S.E. = 4.6%; p value = 8.34E-04), m2 – 10.0% (S.E. = 4.6%; p value = 1.33E-02) and p1 

– 2.6% (S.E. = 4.4%; p value = 2.77E-01) (Fig 4a). Using HE-regression, GCTA and H-GCTA 

generated similar results as through REML (Fig 4a). Results using our approach suggested that ĥ2 

of gestational duration was primarily determined by maternal genome. Comparison with M-GCTA 

confirmed the results from H-GCTA and suggested that ĥ2 of gestational duration was mainly 

attributable to the SNPs which influence gestational duration through maternal genetic effect 

(Table 1a). 

Heritability of gestational duration adjusted birth weight 

Analysis using conventional GCTA showed that the estimated ĥ2 of birth weight based on m and 

f were 15.8% (S.E. = 5.3%; p value = 1.71E-03) and 32.3% (S.E. = 5.4%; p value = 1.02E-09) 

respectively. Using our approach, we further distinguished phenotypic variance into variance 

components based on m1 – 19.9% (S.E. = 5.3%; p value = 9.27E-05); m2 – 3.0% (S.E. = 4.9%; p 

value = 2.70E-01) and p1 – 13.3% (S.E. = 5.2%; p value = 5.03E-03) (Fig 4b). The ĥ2 estimate 

obtained through H-GCTA suggested that narrow sense heritability of birth weight was primarily 

determined by the fetal genome. Comparison of ĥ2 estimates from our approach with those from 

M-GCTA illustrated that ĥ2 of birth weight was mainly attributable to the SNPs which influence 

birth weight only through direct effect (fetal effect) (Table 1b). 

Heritability of gestational duration adjusted birth length 

We estimated ĥ2 of birth length based on m (ĥm2 = 21.8%; S.E. = 7.4%; p value = 1.43E-03) and 

f (ĥf2 = 26.5%; S.E. = 7.5%; p value = 1.61E-04) using conventional GCTA approach. We further 

resolved the heritability estimates based on m1 – 24.6% (S.E. = 7.4%; p value = 3.45E-04); m2 – 

2.0% (S.E. = 7.1%; p value = 3.88E-01) and p1 – 4.0% (S.E. = 7.2%; p value = 2.85E-01) using 

our haplotype-based GCTA approach (Fig 4c). H-GCTA showed that unlike birth weight, variance 

in birth length was mainly attributable to m1 with a much smaller attribution to p1. In addition, 

the difference between (ĥm12 2 ĥm22 ) and ĥp12  (ĥm12 2 ĥm22 2 ĥp12 = 18.5%; S.E. = 12.5%; p value 

= 6.88E-02) suggested possible POE or correlation between maternal and fetal effects of the 
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maternal transmitted alleles (Supplementary Table 10). As compared to the results from our 

approach, M-GCTA showed that variance in birth length was mainly attributable to the D i.e. SNPs 

with both indirect effect (maternal genetic effect) and direct effect (fetal effect) (d) (Table 1c). 

Heritability of gestational duration adjusted head circumference 

Narrow sense heritability (ĥ2) of head circumference estimated using a conventional GCTA 

approach was 32.2% (S.E. = 9.0%; p value = 1.45E-04) and 40.3% (S.E. = 9.2%; p value = 5.50E-

06) based on m and f respectively. Using H-GCTA, we resolved the variance attributable to 

maternal and fetal genomes into heritability estimates based on m1 – 33.1% (S.E. = 9.1%; p value 

= 1.27E-04); m2 – 6.0% (S.E. = 8.7%; p value = 2.42E-01) and p1 – 12.3% (S.E. = 8.8%; p value 

= 7.85E-02) (Fig 4d). Results from H-GCTA showed that the estimated ĥ2 of head circumference 

was mainly attributable to m1 with comparatively less attribution to p1. The results from M-GCTA 

analysis showed approximately equal contribution to variance of head circumference from G and 

D (Table 1d). The comparison of results from H-GCTA and M-GCTA suggested that head 

circumference was primarily determined by fetal genome with some influence through maternal 

genetic effect with a possible trend of POE or correlation between maternal and fetal effects of the 

maternal transmitted alleles (Supplementary Table 10). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.079863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.079863
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Discussion 

Adverse pregnancy outcomes such as short gestational duration (preterm birth, affecting 

approximately 10% of all pregnancies), fetal growth restriction or macrosomia pose not only 

immediate but also long-term health risks to mother and child. Several studies have shown 

associations of preterm birth and low birth weight with developmental disabilities such as cerebral 

palsy, intellectual disabilities, autism spectrum disorder, attention deficit hyperactivity disorder, 

learning disability and future risk of type 2 diabetes mellitus and cardiovascular diseases in child40-

45. Understanding the genetic architecture of pregnancy phenotypes will not only elucidate the 

genetic basis of immediate health outcomes but also shed light on the nature of their relationships 

with long-term health outcomes46. 

To date, various genetic association and heritability estimation studies have attempted to reveal 

the genetic basis of gestational duration and fetal growth measures at birth in humans21,23,28,30,41,47-

51. While genetic associations based on candidate genes or genome-wide markers reveal genotype-

phenotype relationships, heritability estimation using related (families) or unrelated samples 

provides quantitative measures of genetic contributions to phenotypic variance in a population. 

Heritability estimation based on epidemiological studies suggest that fetal genetic factors 

contribute 11-35% and 27-42% of variation in gestational duration and fetal growth measures at 

birth respectively whereas maternal genetic factors contribute 13-20% and 19-22% of variation in 

gestational duration and fetal growth measures at birth52-58 respectively. Similar patterns of 

maternal and fetal genetic contributions to the variance of pregnancy phenotypes are observed 

through genetic studies using GRMs based on an individual’s genotypes21,23,27,28,30,41,48,59,60.  

Pregnancy phenotypes are primarily genetically determined by two genomes – the maternal and 

fetal genome. These two genomes are correlated with each other through maternal transmitted 

alleles, sharing effect through both the mother and fetus. Therefore, most of the individual’s 
genotype-based approaches for heritability estimation are limited in estimating explicit indirect 

(maternal effect) and direct (fetal effect) genetic contribution to pregnancy phenotypes. Using our 

haplotype-based GCTA approach (H-GCTA), we disentangle the contribution of maternal 

transmitted alleles (m1 - through maternal and fetal effect), maternal non-transmitted alleles (m2 

- through maternal effect) and paternal transmitted alleles (p1 - through fetal effect) to the variance 

of gestational duration and gestational duration adjusted fetal growth measures at birth in 10,375 

European mother-child pairs. Moreover, our approach can be extended to parent-child trios to 

detect the paternal genetic effect (genetic nurturing effect)22 (see results using simulated data). 

Our results based on common and rare variants (SNPs with MAF > 0.001) show that approximately 

14% and 10% variance in gestational duration is attributable to the m1 and m2 components 

respectively with a minimal contribution from p1 (Fig 4; Table 1). In contrast, variance in 

gestational duration adjusted fetal growth measures at birth are mainly contributed by m1 (ĥm12  = 

20-33%) and p1components (ĥp12  = 4-13%) with a minimal contribution from m2 (Fig 4; Table 1). 

Among fetal growth measures at birth, variance in birth weight has significant contributions from 
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m1 (ĥm12  = 20%) as well as p1 (ĥp12  = 13%) whereas variance in birth length and head 

circumference are mainly driven by m1 (birth length: ĥm12  = 25%; head circumference: ĥm12  = 

33%). These new results suggest that variance in gestational duration is mainly driven by the 

mothers’ genome whereas variance in fetal growth measures at birth is mainly driven by the fetal 

genome through direct fetal genetic effects. In addition, birth length and head circumference show 

evidence of parent-of-origin effects (POEs) based on the results from H-GCTA (Supplementary 

Table 10). Results using all polymorphic SNPs and SNPs with MAF > 0.01 support our findings 

based on SNPs with MAF > 0.001. We observed the largest ĥ2 estimates for each trait using all 

polymorphic SNPs, which decreased with increasing threshold of MAF cutoff (number of SNPs 

decrease with increasing MAF cutoff). Decrease in the ĥ2 estimates with decrease in number of 

markers is a general limitation of GCTA-GREML which is dependent on several assumptions17,61. 

Further, a comparison of results from our approach (H-GCTA) with those from M-GCTA confirms 

our observations regarding gestational duration and birth weight. While results from H-GCTA 

suggest major contribution to the variance of birth length and head circumference through m1, 

those from M-GCTA indicate primary attribution to direct-indirect effect covariance (D) i.e. SNPs 

showing effect through both the mother and fetus (Table 1). As suggested by previous results 

through M-GCTA23, birth length is jointly determined by maternal and fetal genomes. However, 

our current study with larger sample size suggests that H-GCTA or M-GCTA detect no major 

contribution through m2 or indirect effects (maternal genetic effect). In addition, a larger ĥm12  

(contribution through maternal and fetal genetic effects) than the summation of ĥm22  (contribution 

through maternal genetic effect) and ĥp12  (contribution through fetal genetic effect) suggests that 

birth length is mainly influenced by fetal alleles inherited from the maternal side. These 

observations suggest possible POEs or correlation between maternal and fetal effects in birth 

length and head circumference. 

Interestingly, we observe that the contribution of m1 is larger than m2 or p1 for every pregnancy 

phenotype in the current study. There are several possible explanations for this pattern of results. 

The most obvious explanation is that m1 can influence a pregnancy phenotype through both the 

mother and fetus. For example, for a trait mainly defined by the maternal genome like gestational 

duration, higher contribution of m1 in comparison to m2 could be due to small but non-zero fetal 

effect of the m1 alleles (Supplementary Table 5). Similarly, for traits mainly defined by the fetal 

genome such as fetal size measurements at birth, higher contribution of m1 in comparison to p1 

could be due to maternal effect of the m1 alleles (Supplementary Table 5). Assuming maternal-

fetal additivity (maternal effect and fetal effect are defined by independent sets of variants and no 

interaction between maternal and fetal effect) and no POE, (ĥm12  - ĥm22 ) is equal to ĥp12  

(Supplementary Table 5). Due to possible POE, above equality doesn’t hold for birth length and 
head circumference (Supplementary Table 10). The above pattern can also be observed due to 

correlations or interactions of indirect maternal and direct fetal effects. Besides the above-

mentioned explanations, several other biological phenomena such as interaction between SNPs 
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within the mother or fetus (epistasis), gene-environment interaction and transmission distortion 

can explain the observed pattern of ĥ2 for gestational duration and fetal size measurements at birth.  

Despite the above advances, our current approach has limitations. First, heritability estimation in 

our approach can be affected if assumptions such as the normal distribution of effect sizes, LD 

between assayed variants and causal variants, absence of epistasis (gene-gene interaction), absence 

of gene-environment interaction and the absence of non-additive effects are not met. This set of 

limitations is shared with all current GCTA-based approaches. Second, splitting the phenotypic 

variance attributable to m1 (ĥm12 ) into fractions contributed through indirect effect (maternal 

genetic effect) and direct (fetal) effect isn’t upfront. Although, the proportion of ĥm12  contributed 

through indirect effects (maternal genetic effect) and direct (fetal) effect can be calculated as (ĥm12  

- ĥp12 ) and (ĥm12  - ĥm22 ) respectively. These calculations are based on two major assumptions – 

maternal-fetal additivity (independent sets of SNPs influencing pregnancy phenotypes through 

mother and fetus and there is no interaction among them) and no POE. Third, our hypotheses of a 

higher contribution of m1 to the ĥ2of pregnancy phenotypes needs further support from larger 

datasets and simulations depicting interactions of indirect maternal and direct fetal effects in the 

presence and absence of POE. 

In conclusion, our approach can resolve the phenotypic variance into indirect effects (maternal 

genetic effect) and direct (fetal) effect by considering mother/child pair as a single analytical unit 

with three distinct haplotypes – m1, m2 and p1. In comparison to M-GCTA, our approach can 

further disentangle the variance attributable to direct (fetal) effect into maternal and fetal 

components through m1 and p1, which enables assessment of possible POEs or correlation 

between maternal and fetal effects. Moreover, our approach can be extended to study parental 

effects in duos/trios data22. We believe this approach represents a significant enhance to the genetic 

analytic toolbox of pregnancy that others will also employ moving forward. 
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Figures and Tables 

 

 

Fig 1: a) Schematic representation of the difference between the genotype and haplotype-based 

analysis approach; the left part of the figure represents the conventional approach based on 

genotypes of mothers and child separately and the right part represents haplotype-based analysis 

for pregnancy phenotypes by treating mother/child pairs as analytical units. b) Schematic 

representation of the difference between conventional approach of heritability estimation utilizing 

genotype-based GRMs and our approach utilizing haplotype-based GRMs (representing the 

example of mother-child duos). m1 (f1): Maternal transmitted alleles; m2: Maternal non-

transmitted alleles; f2 (p1): paternal transmitted alleles; E: Environmental factors; σg2: phenotypic 

variance attributable to mothers’ or children’s genotypes; σm12 , σm22  and σp12 : phenotypic variance 

attributable to m1, m2 and p1 respectively; σe2: phenotypic variance attributable to E. 
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a)       b) 

Fig 2: ĥ2 estimates using GCTA, M-GCTA and H-GCTA in simulated genotypes and phenotypes 

data; a) ĥ2 estimates for maternal traits i.e. phenotypes have genetic contribution only through 

mother; b) ĥ2 estimates for fetal traits i.e. phenotypes are genetic contribution only through fetus. 

For GCTA, M is the GRM generated from maternal genotypes (m), P is the GRM generated from 

paternal genotypes (p), and F is the GRM generated from fetal genotypes (f). For M-GCTA, M’ 
represents the genetic relationship matrix of mothers; G represents genetic relationship matrix of 

children and D represents mother-child covariance matrix. For H-GCTA, M1 is the GRM 

generated from maternal transmitted alleles (m1), M2 is the GRM generated from maternal non-

transmitted alleles (m2), P1 is the GRM generated from paternal transmitted alleles (p1), and P2 

is the GRM generated from paternal non-transmitted alleles (p2). The calculation of these matrices 

and the estimation of phenotypic variance attributable to these components are described in the 

Methods section. 
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Fig 3: ĥ2 estimates using our approach (H-GCTA) in simulated fetal traits: a) All variants show 

parent-of-origin effects (POEs); b) 75% variants show POEs; c) 50% variants show POEs; d) 25% 

variants show POEs. In each scenario, maternal transmitted alleles (m1) show either no imprinting 

- effect of m1 is equal to effect of paternal transmitted alleles (p1) or partial imprinting - effect 

size of m1 is 0.75-0.25 in comparison to p1 or complete imprinting – m1 has no effect on 

phenotype. 

  

a) b) 

c) d) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.079863doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.079863
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

 

Fig 4: ĥ2 estimates of pregnancy phenotypes using our approach (H-GCTA), implementing REML 

and HE regression in unrelated mother-child pairs (relatedness cutoff > 0.05). M1: GRM generated 

from maternal transmitted alleles (m1); M2: GRM generated from maternal non-transmitted alleles 

(m2); P1: GRM generated from paternal transmitted alleles (p1). All analyses were adjusted for 

30 principal components (PCs).  
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a) ĥ2 estimates of gestational duration 

Approach GRM REML HE-Reg 
   �̂� S.E. p-val �̂� S.E. p-val 

GCTA 
M 0.2546 0.0475 2.25E-08 0.2317 0.0433 8.40E-08 

F 0.0952 0.0455 1.62E-02 0.0905 0.0433 3.68E-02 

M-GCTA 

M’ 0.2287 0.0617 8.37E-05 0.2049 0.0567 2.99E-04 

G 0.0349 0.0590 2.76E-01 0.0279 0.0573 6.26E-01 

D 0.0079 0.0478 4.35E-01 0.0171 0.0452 7.06E-01 

H-GCTA 

M1 0.1397 0.0458 8.34E-04 0.1356 0.0434 1.76E-03 

M2 0.1005 0.0458 1.33E-02 0.0908 0.0434 3.65E-02 

P1 0.0262 0.0444 2.77E-01 0.0178 0.0434 6.81E-01 

 

b) ĥ2 estimates of birth weight 

Approach GRM REML HE-Reg 

    �̂� S.E. p-val �̂� S.E. p-val 

GCTA 
M 0.1579 0.0533 1.71E-03 0.1334 0.0491 6.62E-03 

F 0.3226 0.0543 1.02E-09 0.2895 0.0492 4.09E-09 

M-GCTA 
M’ 0.0570 0.0652 1.88E-01 0.0387 0.0643 5.48E-01 
G 0.2619 0.0692 5.48E-05 0.2332 0.0650 3.33E-04 

D 0.0488 0.0524 1.78E-01 0.0404 0.0513 4.31E-01 

H-GCTA 

M1 0.1985 0.0533 9.27E-05 0.1911 0.0493 1.04E-04 
M2 0.0300 0.0495 2.70E-01 0.0241 0.0493 6.24E-01 

P1 0.1329 0.0520 5.03E-03 0.1197 0.0493 1.52E-02 

 

c) ĥ2 estimates for Birth Length 

Approach GRM REML HE-Reg 

  �̂� S.E. p-val �̂� S.E. p-val 

GCTA M 0.2175 0.0741 1.43E-03 0.2012 0.0695 3.80E-03 

F 0.2646 0.0748 1.61E-04 0.2459 0.0697 4.18E-04 

M-GCTA 
M’ 0.0000 0.0929 5.00E-01 -0.0214 0.0906 8.13E-01 

G 0.0442 0.0939 2.84E-01 0.0351 0.0920 7.03E-01 

D 0.2065 0.0716 2.09E-03 0.1987 0.0727 6.27E-03 

H-GCTA 
M1 0.2455 0.0740 3.45E-04 0.2192 0.0698 1.69E-03 

M2 0.0198 0.0706 3.88E-01 0.0148 0.0699 8.33E-01 

P1 0.0404 0.0715 2.85E-01 0.0268 0.0699 7.02E-01 
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d) ĥ2 estimates for Head Circumference 

Approach GRM REML HE-Reg 

  �̂� S.E. p-val �̂� S.E. p-val 

GCTA M 0.3221 0.0904 1.45E-04 0.3128 0.0876 3.58E-04 

F 0.4030 0.0924 5.50E-06 0.3535 0.0878 5.70E-05 

M-GCTA 
M’ 0.0590 0.1087 2.87E-01 0.0618 0.1149 5.91E-01 

G 0.1711 0.1154 6.54E-02 0.0987 0.1158 3.94E-01 

D 0.2332 0.0856 3.96E-03 0.2361 0.0912 9.58E-03 

H-GCTA 
M1 0.3310 0.0914 1.27E-04 0.2928 0.0878 8.51E-04 

M2 0.0603 0.0870 2.42E-01 0.0906 0.0878 3.02E-01 

P1 0.1233 0.0882 7.85E-02 0.0729 0.0878 4.06E-01 

Table 1: ĥ2 estimates in unrelated mother-child pairs (relatedness cutoff > 0.05) using REML and 

HE-regression through genotype-based GCTA approach, M-GCTA and haplotype-based GCTA 

(H-GCTA) approach for a) gestational duration and b) birth weight c) birth length and d) head 

circumference. GRMs were generated using SNPs with MAF > 0.001. Gestational duration was 

adjusted for fetal sex and fetal growth measures at birth were additionally adjusted for gestational 

duration up to third orthogonal polynomial. Analyses using GCTA and M-GCTA approach were 

adjusted for 20 PCs and H-GCTA approach was adjusted for 30 PCs (10 PCs corresponding to 

m1, m2 and p1 each). 
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Methods 

Datasets and quality control 

We used genome wide single nucleotide polymorphism (SNP) data from 10,375 mother-child pairs 

from five European cohorts to estimate ĥ2 of gestational duration and fetal growth measures at 

birth (birth weight, birth length and head circumference). These included three data sets collected 

from Nordic countries - Danish Birth Cohort (DNBC), Finnish dataset (FIN) and Norwegian 

Mother, Father and child Cohort study (MoBa) for genetic study of preterm birth, Avon 

Longitudinal Study of Parents and Children (ALSPAC) from UK, and Hyperglycemia and Adverse 

Pregnancy Outcome study (HAPO) from UK, Canada, and Australia. (Supplementary Tables 1-4, 

Supplementary Figure 2). A detailed description of data sets can be found in Supplementary Text. 

Genotyping of DNA extracted from whole blood or swab samples was done on various SNP array 

platforms such as Affymetrix 6.0, Illumina Human550-Quad, Illumina Human610-Quad, Illumina 

Human 660W-Quad. SNP array data was filtered based on SNP and sample quality. Quality 

Control (QC) of genotypes data was performed at two levels – marker level and individual level. 

Marker level QC was conducted using PLINK 1.962 on the basis of SNP call rate, minor allele 

frequency (MAF), Hardy-Weinberg Equilibrium (HWE) and individual level QC was done on the 

basis of call rate per individual, average heterozygosity per individual, sex assignment, inbreeding 

coefficient. Non-European samples were removed from the study by principal components 

analysis (PCA) anchored with 1,000 genome samples. Following QC, genotype data of mother-

child pairs were phased using SHAPEIT 263. SHAPEIT 2 automatically recognizes pedigree 

information provided in the input files. When phasing mother/child duos together, the first allele 

in child was always the transmitted allele from mother and the second one from father. We imputed 

the pre-phased genotypes for missing genotypes on Sanger Imputation Server using Positional 

Burrows-Wheeler Transform (PBWT) software64. Haplotype reference consortium (HRC) panel 

was utilized as reference data for imputation purpose65. The phasing and mother-child allele 

transmission of the imputed alleles were retained from the pre-phasing stage. 

QC of phenotype data was conducted considering gestational duration as the primary outcome. 

Pregnancies involving history of risk factors for preterm birth or any medical complication during 

pregnancy influencing preterm birth, C-sections and non-spontaneous births were excluded. We 

also excluded, non-singlet pregnancies, pregnancies who self-reported non-European ancestry and 

children who could not survive > 1 year. Additionally, gestational duration was adjusted for fetal 

sex; fetal growth measures at birth such as birth weight, birth length and head circumference were 

adjusted for gestational duration up to third orthogonal polynomial component. Details of genotype 

and phenotype QC is provided in the Supplementary Text.  

Statistical Method 

We used a linear mixed model (LMM) to estimate the SNP heritability (ĥ2) of pregnancy 

phenotypes. This model assumes that the phenotype was normally distributed - Y ~ N(μ, V) with 

mean μ and variance V. We created GRMs from standardized genotypes/haplotypes utilizing the 

method developed by Yang et.al., 201011,12. Each cell of the genotype-based GRM and haplotype- 
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based GRM represented relatedness between two individuals j and k calculated based on genotypes 

(Equation 1) and haplotypes (Equation 2) respectively. Ajk = 1w ∑ (xij22pi) (xik22pi)2pi (12pi)wi=1        (Equation 1) 

Where, Ajk is the correlation coefficient between two individuals j and k averaged over all SNPs; 

w is number of SNPs used to calculate relatedness; xij is the number of copies of the reference 

alleles in individual j for SNP i (i.e. 0 or 1 or 2); xik is the number of copies of the reference alleles 

in individual k for SNP i (0 or 1 or 2); pi is frequency of reference allele of SNP i. Tjk = 1w ∑ (cij2pi) (cik2pi)pi (12pi)wi=1         (Equation 2) 

Where, Tjk is the correlation coefficient between two mother/child duos or full trios j and k based 

on maternal transmitted alleles (m1) or maternal non-transmitted alleles (m2) or paternal 

transmitted alleles (p1) or paternal non-transmitted alleles (p2); w is number of SNPs whose alleles 

are used to calculate relatedness; cij is the number of the reference alleles of m1 or m2 or p1 or p2 

in mother/child duo or full trio j for SNP i (i.e. 0 or 1); cik is the number of the reference alleles of 

m1 or m2 or p1 or p2 in mother/child duo or full trio k for SNP i (i.e. 0 or 1); pi is frequency of 

reference allele of SNP i. 

For genotypes-based analysis, we created two GRMs - M and F by utilizing maternal genotypes 

(m) and fetal genotypes (f) respectively. For haplotypes-based analysis, we considered mother-

child pair as a single analytical unit consisting of three haplotypes corresponding to m1, m2, and 

p1. We created three separate GRMs - M1, M2 and P1 using only m1, only m2 and only p1 

respectively (Fig 1a, b). We fitted mothers’ genotype-based GRM (M) (Equations 3 and 4) and 

children’s genotype-based GRM (F) (Equations 5 and 6) separately in LMM to estimate 

phenotypic variance attributable to maternal and fetal genotypes respectively. To calculate explicit 

contribution of maternal and fetal genomes to the overall narrow-sense heritability of pregnancy 

phenotypes, we simultaneously fitted all three matrices (M1, M2 and P1) in LMM and estimated 

the additive genetic variance attributable to each of three components (Equation 7, 8).  Ys = Xβ + Zmum +  ϵ        (Equation 3) YsYs2 = XX2σβ2 + MσM2 + Iσϵ2        (Equation 4) Ys = Xβ + Zfuf +  ϵ         (Equation 5) YsYs2 = XX2σβ2 + FσF2 + Iσϵ2        (Equation 6) Ys = Xβ + Zm1um1 + Zm2um2  +  Zp1up1 + ϵ     (Equation 7) YsYs2 = XX2σβ2 + M1σM12 +  M2σM22 +  P1σP12 + Iσϵ2     (Equation 8) 

Where, Ys is a vector of standardized phenotype (n x 1; where, n is number of individuals); X is a 

matrix of covariates representing fixed effects (n x p; where, p is number of fixed effects); β is a 

vector of fixed effects (p x 1); Zm is a matrix of mothers’ standardized genotypes (m) (n x w; 

where, w is number of SNPs); Zf is a matrix of children’s standardized genotypes (f) (n x w); Zm1 

is a matrix of standardized maternal transmitted alleles (m1) (n x w); Zm2 is a matrix of 
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standardized maternal non-transmitted alleles (m2) (n x w); Zp1 is a matrix of standardized paternal 

transmitted alleles (p1) (n x w); · is a vector of residual effects with · ~ N(0, IÃ2
·); um and uf are 

vectors of random effect sizes for maternal genotypes (m) and fetal genotypes (f); um1, um2 and up1 

are vectors of random effect sizes for maternal transmitted (m1), maternal non-transmitted (m2) 

and paternal transmitted (p1) alleles respectively (m x 1); YsYs2 is Variance-Covariance matrix of 

phenotypes; M, F, M1, M2 and P1 are GRMs generated from Zm, Zf, Zm1, Zm2 and  Zp1 

respectively (e.g. M=Zm1Zm12 ); Ã2 are the variances of the respective components. 

Assuming additivity, the effect of the maternal transmitted alleles is the summation of the maternal 

effect (um12 ) and fetal effect (um122 ) conferred by the same maternal transmitted alleles (um1 = um12  +  um122 ). The maternal effect of the maternal transmitted alleles (um12 ) should be equal to the 

maternal effect of the maternal non-transmitted alleles (um2). Thus, the fetal effect of the maternal 

transmitted alleles can be expressed as um122 = um1 2 um2. Therefore, we evaluated POE – the 

overall difference of the fetal effect of maternal and paternal transmitted allele (um122  vs. up1) by 

testing (ĥm12 2 ĥm22 2 ĥp12 ) = 0 using one sample z test (one-tailed). A pooled standard error 

(S.E.) was calculated using √(S. E.m1 )2 + (S. E.m2 )2 + (S. E.p1 )2
. Where, ĥm12 , ĥm22  and ĥp12  are 

variance components based on maternal transmitted alleles, maternal non-transmitted alleles and 

paternal transmitted alleles respectively; S. E.m1, S. E.m2 and S. E.p1are standard errors 

corresponding to ĥ2 based on m1, m2 and p1 respectively. 

It should be noted that the above test of POE requires assumption of independence between 

maternal effects (um12 ) and fetal effects (um122 ) of the maternal transmitted alleles. If there is 

correlation between um12  and um122  (Ā = Corr(um12 , um122 ) b 0), hm12 = hm12 ′ + hm12 ′′ + hcov2 , where hm12 ′ and hm12 ′′ are the additive genetic variance explained by the maternal and fetal effects of the 

maternal transmitted alleles. hcov2  is the covariance between the maternal and fetal effects, which 

can be expressed as ∫ �(1 2 �)ÿ(�)(2sm12 sm122 Ā)��, where sm12  and sm222  are the standard deviation 

of um12  and um122 , respectively. � and ÿ(�) are the allele frequency and the allele frequency 

spectrum. In this case, a non-zero (ĥm12 2 ĥm22 2 ĥp12 ) may suggest POE (i.e. um122  b up1) or 

correlation between maternal effect (um12 ) and fetal effect (um122 ) of the maternal transmitted alleles. 

Implementation 

Phenotypic variance i.e. Var(Y) attributable to different components could be estimated by fitting 

GRMs corresponding to those components in LMM or regression model. We used REML and HE 

regression methods implemented in GCTA to estimate ĥ2. For genotype-based analysis through 

conventional GCTA approach, we fitted a GRM generated from mothers’ genotypes (M) and 
children’s genotypes (F) separately in LMM or HE-regression whereas for haplotype-based 

analysis through H-GCTA approach, we fitted three GRMs (M1, M2 and P1) simultaneously in 

LMM or HE-regression. We also compared results from our approach with those from M-GCTA. 

Analysis through the M-GCTA approach involved generation of the GRMs using mothers’ and 
children’s genotypes together. The upper left quadrant of the GRM represented genetic 
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relationship matrix of mothers (M’); the lower right quadrant represented genetic relationship 

matrix of children (G) and sum of the lower left quadrant and its transpose represented the genetic 

relationship matrix of mothers and children (D). 

Simulation  

We simulated 3,000 trios consisting of four sets of haplotypes (m1, m2, p1, p2) with 10,000 SNPs. 

Each SNP was simulated as random draw from Bernoulli distribution of minor allele frequency 

(MAF) and repeated 3,000 times for each haplotype. MAF information was picked from randomly 

chosen SNPs from chromosome 20 from 1,000 genomes project European samples data (EUR_AF 

> 0.001). Effect size corresponding to each SNP was simulated as random draw form a normal 

distribution [N(0, 1)]. ĥ2 was assumed 50% and environmental components (e) were random draws 

from a normal distribution [N(0, (1-ĥ2)1/2)]. Three sets of phenotypes were simulated considering 

effects only from the mother (maternal traits), the father (paternal traits) or child (fetal traits). We 

also simulated fetal traits with POE, where m1 had less effect in comparison to p1. We considered 

four scenarios, where varying fractions of causal variants (25%, 50%, 75% and 100%) showed 

maternal imprinting. In each scenario, we simulated different levels of imprinting for m1 (25% - 

100%) by reducing effect sizes of m1 (75% - 0%) as compared to p1. Non-zero effects of m1 as 

compared to p1 represented partial maternal imprinting whereas no effect of m1 represented 

complete imprinting. All simulations were replicated one hundred times. All relatedness matrices 

using simulated data were generated and fitted into LMM in a similar way as mentioned in the 

statistical methods section. 

Analysis of Empirical datasets 

We performed analyses using three sets of markers – all polymorphic SNPs, SNPs with MAF > 

0.001 and SNPs with MAF > 0.01, to include the contribution of very rare, rare and common 

variants to the heritability of pregnancy phenotypes (Supplementary Figure 1). The marker sets 

based on the MAF cutoff were selected in each dataset separately, considering mothers as founders. 

Then, a common set of markers across all datasets was selected in each MAF cutoff category. We 

pooled individual datasets and generated five different GRMs utilizing mothers’ genotypes (M), 
children’s genotypes (F), maternal transmitted haplotypes (M1), maternal non-transmitted 

haplotypes (M2) and paternal transmitted haplotypes (P1) using the imputed genotype data of 

mother/child pairs (Supplementary Table 2). One of the related individuals was removed from 

each GRM (relatedness coefficient > 0.05) and a common set of mother-child pairs across five 

GRMs was selected in each MAF cutoff category (Supplementary Table 3). We fitted these GRMs 

in LMM or HE regression model as described in implementation section. All the analyses were 

adjusted for principal components (PCs) – 20 PCs for analyses through GCTA and M-GCTA and 

30 PCs (10 PCs corresponding to m1, m2 and p1 each) for analyses through H-GCTA 

(Supplementary Figure 3). We also replicated our findings in another Nordic dataset of ~ 8,000 

mother-child pairs. We estimated the ĥ2 of gestational length through REML in replication dataset 

using SNPs with MAF > 0.01. 
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