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Abstract

In recent years, advances in cryoEM have dramatically increased the
resolution of Coulomb potential maps and, with it, the number of solved atomic
models. It 1s widely accepted that the quality of cryoEM maps varies locally;
therefore, the evaluation of the maps-derived structural models must be done
locally as well. In this article, a method for the local analysis of the map-to-
model fit is presented. The algorithm uses a comparison of two local resolution
maps. The first is the local FSC (Fourier shell correlation) between the full map
and the model, while the second is calculated between the half maps normally
used in typical single particle analysis workflows. We call the new quality
measure “FSC-Q”, and it is a quantitative estimation of how much of the model
is supported by the signal content of the map. Furthermore, we show that FSC-
Q may be helpful to avoid overfitting. It can be used to complement other

methods, such as the Q-score method that estimates the resolvability of atoms.
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1- Introduction

Single-particle cryo-electron microscopy (cryoEM) has become a powerful
technique for the structural determination of biological macromolecules. In
recent years, new direct detection cameras and better reconstruction algorithms
have allowed to obtain Coulomb potential maps with a high level of detail. The
next logical step is to build an atomic model that fits into the density map.
Both, the quality of the reconstructed map and the derived model must be
evaluated carefully to identify errors and poorly resolved regions. The quality
of the maps is usually expressed in terms of a resolution measure. The typical
resolution measure reported is based on a threshold in the Fourier shell
correlation (FSC) curve between two independent reconstructions (Harauz and
van Heel, 1986). The agreement of a model with a map can be done in a similar
way by calculating the FSC between the experimental map and a map
calculated from the model.

However, it is well known that the quality of a reconstruction depends on the
region of the macromolecule and the resolution must be calculated locally
(Cardone et al., 2013, Kucukelbir et al., 2014, Vilas et al., 2018, Ramirez-
Aportela et al., 2019), and even directionally (Tan et al., 2017, Vilas et al.,
2020). To evaluate the quality of an atomic model, different steric
measurements have been integrated into Molprobity (Chen et al., 2010).
However, these measures are based on the model itself, regardless of the
cryoEM map. Local map-to-model fit measurements have been introduced,
such as EMRinger (Barad et al., 2015), which takes into account density values
near carbon-B atom, and the recent Q-score (Pintilie et al., 2020), which
measures the correlation between the map values at points around the atom and
a reference Gaussian-like function.

In this paper we present a new measure (FSC-Q) for local quality estimation

of the fit of the atomic model to the Coulomb potential map. The key
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difference with previously proposed methods is that we objectively and
quantitatively estimate the specific parts of the model that are truly supported
by the map on the bases of its local resolution. The rational of the method is
based on the differences between local resolution values calculated with
blocres (Cardone et al., 2013), considering the appropriate statistics to make
each of the comparisons meaningful. The process involves the subtraction of
the local resolution map between the final full map and the map generated from
the atomic model, from the local resolution map between the two half-maps
(where a half-map refers to a map reconstructed from half of the data set). This
latter subtraction, when properly statistically scaled, provides an estimation of
the signal content of the map itself, that is then compared with the signal
content implied in the fitting of the structural model. When the fitting would
require a signal content that, simply, is not present in the experimental data,
FSC-Q flags it, providing in this way very objective information on how the
structural model is supported, or not, by the local resolvability (the local
resolution) present in the experimental map. It reveals potential modelling
errors as well as poorly defined parts of models. The approach is conceptually
simple, fully objective and quantitative, and lends itself very well to decision-

making in a meta (or multi) criteria approach (Sorzano et al., 2020).

2- Methods
2.1. Local quality of fit

A common practice to globally assess the quality of the fit between the
reconstructed map and the refined model is the use of the FSC. However, this
practice only allows the fitting to be assessed as a whole. Here, we
implemented an algorithm to evaluate the quality of the fitting of the atomic

model into the density map following a similar strategy, but locally.
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Our algorithm follows the general principle of making a comparison
between the local FSC map calculated using the map obtained from the full
data set and the map generated from the atomic model (FSCpqp—_model)-
However, the key novelty is that this comparison is not performed involving
directly the full reconstruction but, instead, it involves the local FSC map

obtained when using the half maps (FSCpqr). We define FSC-Q as the

difference between FSCopap_moder a0d FSChqyf.
FSC-Q = FSCmap—model - FSChalf (D

Obviously, this combination of local FSC’s calculated from half the data set
and from the full data set requires the appropriate statistical analysis, that will
be addressed in the next section. For the calculation indicated in Equation (1), a
sliding window of size between five to seven times the overall resolution
reported is used. A mask is applied to enclose the region of interest of the
macromolecule. Those points of the map where there are ‘“significant”

differences between FSCopap_moder a0d FSChqys, allow us to detect errors in

the refinement of the model or uncertainties in positions of parts of the model.
2.2. FSC threshold

Equation 1 compares an FSC determined from half the data set with an FSC
obtained from the complete data set. Certainly this is not a simple issue and in
the following we present how we perform this task using a rather simple and,
we think, quite uncontroversial and widely accepted reasoning. We recall that
(Cardone et al., 2013), proposed a FSC threshold of 0.5 to report the local
resolution. We will start by choosing this threshold for the analysis of the FSC
between two half maps. The approximate relationship between the FSC and the

signal-to-noise ratio (SNR) in each of the half-maps is:
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SNR

FChatr ~ T9NR

The threshold of 0.5 then corresponds to an SNR of 1. Note that this
relationship is only approximate (Sorzano et al., 2017), but it can be taken as
guidance to choose a FSC threshold related in some way to the corresponding

SNR level. We may expand the relationship between the FSC and SNR to get

SNR _ S/N S
1+SNR 1+S/N S+N

FSChair =

When we compare the full map versus the PDB converted to a map, the full
map has half of the noise power than the two half maps, while the PDB does

not have any noise. We may now reason

b S _ S/N _ 2SNR
map-model ™ g 'N/2 T S/N+1/2 1+ 2SNR

Choosing the same SNR value as for the half maps (SNR=1), we get a FSC
threshold of 3. We must always bear in mind that this relationship is only valid
on average and based on a 0-th order Taylor expansion (Sorzano et al., 2017),
consequently its absolute values should not be taken too precisely. Indeed, any
pair of thresholds can be used, as long as they represent a consistent SNR. Note
that the distribution of FSC-Q values fluctuates around 0 when the map and

model match (Supplementary Figure 1).
2.3. Input and output

The algorithm requires as input a 3D cryoEM density map, the fitted atomic
model, the two half maps, and a mask enclosing the macromolecule. The

blocres program (Cardone et al.,, 2013) is used to calculate the FSCp,qp—moder
and FSCpqir. To assess the quality of the model fit, the FSCpq map is

subtracted from the FSCyqp—moder Map (equation 1), generating a difference
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map. However, we have found it useful to project this difference map onto
atomic models (PDB format). We created a specific tool
xmipp_pdb_label from volume, in XMIPP3 (de la Rosa-Trevin et al., 2013);
which represents the map values in the occupancy column for each atom in the
model.

In all the cases analyzed in this work, the function xmipp volume from pdb
(Sorzano et al., 2015) was used to generate the density map from the atomic
model. From this map, a mask was generated using the xmipp—create 3d mask
protocol in Scipion (de la Rosa-Trevin et al., 2016). A threshold of 0.02 and a
dilation of 3 pixels were applied. In all cases, a sliding window of five times

the reported resolution was used.
2.4. Code availability

The protocol used here has been integrated into the image-processing
framework Scipion (de la Rosa-Trevin et al., 2016), in the development branch
https://github.com/I2PC/scipion-em-xmipp (this branch will eventually become
the next release of Scipion3). Different visualization options have been
implemented to analyze the results. For example, the display of the map or the
atomic model in UCSF Chimera (Pettersen et al., 2004) colored according to

the calculated FSC-Q values.

3- Results
3.1. Fitting Analysis

To test our algorithm, we initially used the known 20S proteasome structure
with a global resolution of 2.8 A as reported by the gold-standard FSC of 0.143
(emd-6287) (Campbell et al., 2015). Figure 1 shows the FSC-Q values
represented on a map generated from the atomic model (Figure 1A) or on the

atomic model itself (PDB: id-6bdf) (Figure 1B). Atoms with FSC-Q close to
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zero means that the model is supported by the signal in the half-maps, while
positive values far from zero corresponds to parts of the model that have a poor
fit or that corresponds to areas in which the map had a poorer resolvability.
Negative values correspond to areas where atoms are correlating with noise, or
where, in general, there is not enough information to support the model. In this
specific case there are few negative values and they correspond to external
atoms of some side chains where there is no signal in the map.

To test the usefulness of this measure, we artificially modified the side chain
rotamers of some amino acids of the 20S proteasome using Coot (Emsley et al.,
2010). Figure 1C, D and E shows the altered amino acids divided into 3 blocks.
A first block (Figure 1C) is made up of 3 long-chain amino acids (LYS and
GLN) that are clearly out of the density. In the second block (Figure 1D) there
are very subtle modifications and short side chains errors such as SER and
GLN; finally, in the third block (Figure 1E) we show cases in which the
modified rotamers overlap with other densities. In all cases the FSC-Q of the
side chain increased compared to the original rotamer. This shows that even
subtle changes such as aromatic ring rotation of the PHE-35 or side chain
rotation of the SER-105 can indeed be detected by our method.

Furthermore, we analyzed the recent structure of the spike glycoprotein of
SARS-CoV-2 in the closed state (emd-21452), using half-maps kindly
provided by Prof. David Veesler (Walls et al., 2020). Two refined models were
obtained from the repository of Prof. Andrea Thorn at https://github.com/thorn-

lab/coronavirus_structural task force, the one proposed by the authors and a

model corrected using ISOLDE (Croll, 2018). As expected, the corrected
model as a whole has a lower average FSC-Q (FSC-Q = 0.96) compared to the
original model (FSC-Q = 0.99). Furthermore, our method identified some
regions, such as amino acids LEU-533 to VAL-534 and THR-323 to GLU-324,

where the corrected model clearly fits better to the experimental data than the
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original model (Figure 2). In both areas a considerable reduction of FSC-Q is

observed.
3.2. Overfitting

One of the big issues during the refinement of an atomic model is to detect
and avoid overfitting. In the context of this work, overfitting occurs when the
generated model is not supported by the reproducible signal on the half-maps.
Different strategies have been presented to detect it. For example, the
calculation of the FSC between one half-map and a map generated from the
model refined against another half-map (DiMaio et al., 2013) or a comparison
between the FSC of the original data and the FSC obtained using data with
noise introduced at high resolutions (Chen et al., 2013). However, in both cases
the problem is addressed globally.

The method we present here allows detecting the overfitting locally. Figure
1E and Figure 3A show that when the side chains are adjusted to densities
corresponding to refinement artifacts, the FSC-Q values largely diverges from
0. Another example is shown in Figure 4, where the FSC-Q for PAC1 GPCR
Receptor complex (emd-20278) (Liang et al., 2020) has been represented.
Figure 4A shows several areas in red, which coincide with side chains that fall
on densities corresponding to the detergent micelle. Examples of some of these
amino acids are shown in the Figure 4B. In all these cases we observe that
when the atoms fit to the detergent densities, FSC-Q moves away from zero

and, importantly, FSC-Q gets negative values.
3.3. FSC-Q as a complement to Q-score

The Q-score method measures the correlation between the map values at
points around the atom and a reference Gaussian-like function (Pintilie et al.,
2020). In this way, the Q-score estimates the resolvability of each atom with

respect to the map from which the model has been refined. On the other hand,


https://doi.org/10.1101/2020.05.12.069831
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.069831; this version posted May 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

the method we present in this work measures how much of the model is
supported by the signal in the half-maps. Additionally, we also include the
environment of that atom within the local resolution window, spanning 5-7
times the global resolution. Although these methods measure different
quantities, they both give a measure of the local quality-of-fit and complement
each other.

The Q-score method is a good tool to estimate the resolvability of atoms.
However, due to its normalization with respect to the mean, it is not capable of
differentiating between the signal corresponding either to atoms or to densities
generated by noise or artifacts of the reconstruction. Figure 3A shows the
modified rotamers of the third block of Figure 1E with the FSC-Q and Q-score
values for the atoms of the side chain. Several atoms are observed where the Q-
score indicates a very good resolvability (in red color), however, these atoms
are fitting into densities corresponding to noise. In contrast, the FSC-Q values
for these atoms are very high, indicating a poor fit. This issue may have
significant implications depending on the type of specimens. Particularly, for
the very important biomedical case of membrane proteins, while FSC-Q 1is
capable to identify the side chains where the fit is on the densities correspond
to the detergent micelle (Figure 4), the Q-score is not, reporting values that
would still show these fits as good (Figure 4B).

Both the Q-score method and our method depend on the B-factor that has
been applied to the reconstructed map. In our method, this is due to the mask
used in calculating the local resolution. For simplicity, we restrict ourselves to
those cases in which sharpening is done globally, rather than on more precise
local methods (such as Ramirez-Aportela et al. (Ramirez-Aportela et al., 2020),
that, however, would complicate the presentation of these results significantly.
To evaluate this dependence, the proteasome (emd-6287) was sharpened using
different B-factor values, in the same way as in Ramirez-Aportela et al., 2019.

In that paper we showed that a B-factor greater than -60 produced over-


https://doi.org/10.1101/2020.05.12.069831
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.069831; this version posted May 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

sharpening. The results obtained for the average value of Q-score and FSC-Q
for each B-factor are graphically represented in Figure 3B. The charts show
that FSC-Q decreases slightly, reaching the minimum approximately for a B-
factor of -50 (in this particular case), with a difference of 0.018 with respect to
the unsharpened map. From that point on, it begins to grow abruptly with the
increase in the B-factor. This result indicates that as over-sharpening increases,
FSC-Q increases. On the other hand, the charts show an increase in the Q-
score, which reaches the maximum for a B-factor of -100, with a difference of
0.053 with respect to the unsharpened map. From there the Q-score decreases
slightly. This indicates that the Q-score may correspond to some extent to over-

sharpening, and this effect may be a consequence of the normalization used.

4- Discussion

The ultimate goal of a cryoEM experiment is to generate an atomic model
from the refined density map. The resolution of cryoEM maps may change in
different areas and building an accurate atomic model using the map can be a
real challenge. The development of metrics for map-to-model fit validation is a
critical step towards robust generating high accuracy models from cryoEM
maps.

In this paper, we proposed a new approach to analyze the fit of the models to
the density maps. Our method is a significant extension of the map-to-model
FSC calculation that is commonly used to assess goodness-of-fit (Lyumkis,
2019), since it explicitly introduces locality. Here we calculate the map-to-
model local FSC and compare it with the half-maps local FSC. Differences
between them allow us to select an objective signal threshold so that we can
identify those areas where the model disagrees with the consistent signal on the

half maps.
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We have shown that FSC-Q enables identification of errors in fit and local
detection of overfitting. Overfitting is one of the main challenges during model
refinement and new metrics to detect it are needed (Lawson et al., 2020). The
Q-score has been indicated by the authors (Pintilie et al., 2020) that is
particularly sensitive to overfitting. Furthermore, we have shown that our
method has less dependence on sharpening than the map Q-score and that they
complement each other to better estimate the resolvability of atoms. Indeed, the
combination of these (and other) methods probably will lead to meta validation
measurements where the combination of methods as “orthogonal” as possible
will lead to new simple metrics, yet to be explored, which could be directly

incorporated into modeling workflows.
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Figure Legends

Figure 1. Detection of map-model fit errors using FSC-Q. FSC-Q values
calculated for the 20S proteasome structure (emd-6287) are represented on the
map generated from the atomic model (pdb id: 6bdf) (A) or on the atoms of
chain Q of the atomic model (B). Panels C, D and E show rotamers of several
amino acids in the 20S proteasome structure that have been altered. In each
panel, the original rotamer is shown on the left and the modified rotamer on the
right with their corresponding average FSC-Q scores. For the calculation of the
average, the absolute FSC-Q value of each atom was considered. C) Rotamers
of 3 long-chain amino acids that are clearly out of the density [LYS-163 chain
B, GLN-36 chain V and GLN-141 chain T]. D) Very subtle modification of the
residues: PHE-35 chain 1, SER-105 chain Q and THR-39 chain R. E) Residues
in which the modified rotamers overlap with other densities [LYS-9 chain L,

LYS-29 chain R and THR-58 chain Z].

Figure 2. Improvement in the fit of the structure of the spike
glycoprotein of SARS-CoV-2 in the closed state (emd-21452). In each panel,
the left side shows the original fit and the right side shows the improved fit
using ISOLDE (Croll, 2018). A) Fragment composed of amino acids LEU-533
and VAL-534 and B) THR-323 and GLU-324. Under each fragment the

average FSC-Q is shown.

Figure 3. Comparison between FSC-Q and Q-score. A) FSC-Q and Q-

scores for each side chain atom for the same residues as in Figure 1C. B) The
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plots show the effect of B-factor sharpening on FSC-Q and Q-scores analyzed

using the 20S proteasome map.

Figure 4. FSC-Q for a fragment of the PAC1 GPCR Receptor complex
(emd-20278). A) FSC-Q values superimposed on the map generated from the
atomic model (pdb id: 6p9y). Red areas indicate side chains that fit into
densities of the detergent micelle. Blue areas correspond to atoms with very
low resolvability. B) FSC-Q and Q-scores values are shown on each side chain
atom of some residues that fit to the detergent [ARG-42 chain B, ARG-333
chain A, ARG-179 chain R, ARG-46 chain B, GLU-58 chain G and ARG-177
chain R].

Supplementary Figure 1. FSC-Q distribution for optimal map-to-model
fit. For optimal fit, a map was reconstructed from the B-galactosidase atomic
model (pdb 1d: 3j7h), carrying out the following protocol on Scipion. First, a
map was generated from the atomic model. Using the map, projections were
generated in all directions with an angular sampling of 1.5 degrees, for a total
of 18,309 projections. Gaussian noise with zero mean and a standar desviation
of 50 was added to the set of projections and map reconstruction was carried

out using the RELION software (Scheres, 2012).
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Figure 1. Detection of map-model fit errorsusing FSC-Q. FSC-Q values calculated for the
20S proteasome structure (emd-6287) are represented on the map generated from the atol
model (pdb id: 6bdf) (A) or on the atoms of chain Q of the atomic model (B). PanBls C,
and E show rotamers of several amino acids in the 20S proteasome strutthexd¢haeen
altered. In each panel, the original rotamer is shown on the left and theedaditamer on
the right with their corresponding average FSC-Q scores. For the calculationagkthge,
the absolute FSC-Q value of each atom was considered. C) Rotamers of 3 longnthain a
acids that are clearly out of the density [LYS-163 chain B, GLN-36 chain V ahd1@1
chain T]. D) Very subtle modification of the residues: PHE-35 chain 1, SER-105Qlzaid
THR-39 chain R. E) Residues in which the modified rotamers overlap with othereensit
[LYS-9 chain L, LYS-29 chain R and THR-58 chain Z].
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Figure 2
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Figure 2. Improvement in the fit of the structure of the spike glycoprotein of
SARS-CoV-2 in the closed state (emd-21452). In each panel, the left side shows
the original fit and the right side shows the improved fit using ISOLDE (Croll,
2018). A) Fragment composed of amino acids LEU-533 and VAL-534 and B)
THR-323 and GLU-324. Under each fragment the average FSC-Q is shown.
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Figure 3
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Figure 3. Comparison between FSC-Q and Q-score. A) FSC-Q and Q-scores for each side chain
atom for the same residues as in Figure 1C. B) The plots show the effectaibBsfzarpening on
FSC-Q and Q-scores analyzed using the 20S proteasome map.
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Figure 4
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Figure 4. FSC-Q for a fragment of the PAC1 GPCR Receptor complex (emd-20278). A) FSC-Q
values superimposed on the map generated from the atomic model (pdb id: 6p9y). Rl meda

side chains that fit into densities of the detergent micelle. Blwes a@respond to atoms with very

low resolvability. B) FSC-Q and Q-scores values are shown on each side tdrairofasome
residues that fit to the detergent [ARG-42 chain B, ARG-333 chain A, ARG-179 chaiR®R4A
chain B, GLU-58 chain G and ARG-177 chain R].
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Supplementary Figure 1
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Supplementary Figure 1. FSC-Q distribution for optimal map-to-model fit. For optimal fit, a map
was reconstructed from the [3-galactosidase atomic model (pdb id: 3j7h), carryihg Gaitawing
protocol onscipion. First, a map was generated from the atomic model. Using the map, prgecti
were generated in all directions with an angular sampling of 1.5 degrees, fal @ftdi8,309
projections. Gaussian noise with zero mean and a standar desviation of B@deal to the set of
projections and map reconstruction was carried out usingBEhEON software (Scheres, 2012).


https://doi.org/10.1101/2020.05.12.069831
http://creativecommons.org/licenses/by-nc-nd/4.0/

