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Abstract 16 

Objectives: Staphylococcus aureus Smith strain is a historical strain widely used for research 17 

purposes in animal infection models for testing the therapeutic activity of antimicrobial 18 

agents. We found that it displayed higher sensitivity towards lysocin E, a menaquinone (MK) 19 

targeting antibiotic, compared to other S. aureus strains. Therefore, we further explored the 20 

mechanism of this hypersensitivity. 21 

Methods: MK production was analyzed by high-performance liquid chromatography and 22 

mass spectrometric analysis. S. aureus Smith genome sequence was completed using a hybrid 23 

assembly approach, and the MK biosynthetic genes were compared with other S. aureus 24 

strains. The hepT gene was cloned and introduced into S. aureus RN4220 strain using phage 25 

mediated recombination, and lysocin E sensitivity was analyzed by the measurement of 26 

minimum inhibitory concentration and colony-forming units. 27 

Results: We found that Smith strain produced MKs with the length of the side chain ranging 28 

between 8 – 10, as opposed to other S. aureus strains that produce MKs 7 – 9. We revealed 29 

that Smith strain possessed the classical pathway for MK biosynthesis like the other S. aureus. 30 

HepT, a polyprenyl diphosphate synthase involved in chain elongation of isoprenoid, in 31 

Smith strain was unique with a Q25P substitution. Introduction of hepT from Smith to 32 

RN4220 led to the production of MK-10 and an increased sensitivity towards lysocin E. 33 

Conclusions: We found that HepT was responsible for the definition of isoprenoid chain 34 

length of MKs and antibiotic sensitivity. 35 

  36 
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Introduction  37 

Menaquinone (MK), found in the cytoplasmic membrane, is an essential component of the 38 

electron transport chain in Gram-positive bacteria. Apart from respiration, it plays vital roles 39 

in oxidative phosphorylation and the formation of transmembrane potential. Given the 40 

importance of MK in cellular survival, MK and its biosynthesis has been extensively 41 

studied.1-3 It has been shown that MK analogs inhibit the bacterial growth4 and several 42 

enzymes involved in MK biosynthesis such-as isoprenoid precursor;5 naphthoquinone;6 and 43 

incorporation of the isoprenoid side chain to naphthoquinone moiety7 can independently be 44 

targeted for antimicrobial agent discovery against Gram-positive and acid-fast microbes. 45 

Recently, we reported that lysocin E, a non-ribosomally synthesized peptide8, 9 produced by 46 

Lysobacter sp. RH2180-5, directly targets MK in the bacterial membrane exerting rapid and 47 

potent bactericidal activity.10  48 

 49 

MK is a 2-methyl-1,4-naphthoquinone with an isoprenoid side chain attached at the 3-50 

position. MK is generally referred to as MK-n, where n denotes the number of isoprenoid 51 

units between 4 and 13 attached to the naphthoquinone core. The units of isoprene in the 52 

MKs differ among different species and sometimes even within the same species.11 The 53 

difference in MK isoprenoid chain formed a basis of bacterial chemotaxonomic identification 54 

in pre genomic era.12 55 

 56 

Staphylococcus aureus is a human commensal and an opportunistic pathogen responsible for 57 

a large number of hospitalization and deaths. Global spread and rise of methicillin-resistant13, 58 

14 59 

and vancomycin-resistant S. aureus strains 15-17 have added the burden to health-care systems. 60 

S. aureus uses MKs with the length of the side chain ranging between 7 – 9, where MK-8 is 61 
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the most predominant.12 S. aureus strain Smith, isolated in 1930, is widely used in the 62 

laboratory for the development of mouse infection model as it displays a high degree of 63 

virulence against mouse model.18 Previously, we found that it displayed a higher 64 

susceptibility towards menaquinone targeting antibiotic- lysocin E.10 This led to speculation 65 

that MK biosynthetic machinery in S. aureus Smith might be different from other S. aureus. 66 

In this study, we report the complete genome sequence, MK analysis of S. aureus Smith and 67 

the factor responsible for its hypersensitivity towards lysocin E. To the best of our knowledge, 68 

this is the first report of the identification of S. aureus strain producing MK-10, and the 69 

involvement of a single substitution in HepT for MK-10 production and sensitivity towards 70 

antibiotic. 71 

 72 

Materials and Methods 73 

Microorganisms and culture conditions 74 

The bacterial strains and plasmids used in this study are summarized in Table 1. S. aureus 75 

strains were routinely grown on tryptic soy broth, and Escherichia coli was grown on Luria-76 

Bertani medium. Antibiotics were supplemented to the medium as required. 77 

Table 1: Bacterial strains and plasmids used in this study 78 
Strain/Plasmid Details/Source 

Staphylococcus aureus  

Smith Isolated in 1930,18 obtained from ATCC13709 

RN4220 Restriction deficient strain, laboratory stock 

Newman Isolated in 1952,19 laboratory stock 

NCTC8325-4 Parent strain of RN4220, laboratory stock 

JE2 USA300 strain obtained from BEI Resources 

MRSA4 Clinical isolate 20, 21 
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71101 Clinical isolate 22 

NCTC5663 Public Health England 

Escherichia coli HST08 Competent cells for routine cloning from Takara 

pND50-pfbaA pND50 with fbaA promoter inserted in EcoRI/BamHI site23 

pND50-pfbaA-hepTSmith hepTSmith in pND50-pfbaA 

pND50-pfbaA-hepTRN4220 hepT RN4220 in pND50-pfbaA 

 79 

Table 2: Primers used to amplify hepT gene 80 

Primer Sequence 5’-3’ (underline indicate the restriction site) 

BamF CGCGGATCCATGAACAATGAAATTAAGAA 

SalR1 ACGCGTCGACAATACTATGTGTTTCTTGAC 

SalR2 ACGCGTCGACCTACGTGTTTCTTGAACCCA 

 81 

Whole-genome sequencing, assembly and comparative genomic analysis 82 

The complete genome of S. aureus Smith was sequenced using hybrid genome assembly as 83 

explained previously24-26 using 1 µg and 100 ng of genomic DNA for Oxford Nanopore 84 

MinION and ThermoFisher Ion PGM, respectively. The assembled genome was annotated 85 

using the NCBI Prokaryotic Genome Annotation Pipeline. The draft genome of S. aureus 86 

71101 was obtained by Illumina sequencing.22 The complete genome sequences of 324 S. 87 

aureus strains were obtained from NCBI GenBank, and amino acid sequences of MK 88 

biosynthetic genes were obtained using BLAST search. 89 

 90 

hepT cloning and heterologous expression: 91 

The hepT gene from S. aureus was amplified using the primer sets BamF vs SalR1 and BamF 92 

vs SalR2 for Smith and RN4220 strains, respectively (Table 2). The BamHI SalI digested 93 
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PCR product was then ligated to pND50-pfbaA vector23 digested with the same enzymes to 94 

construct pND50-pfbaA-hepTSmith and pND50-pfbaA-hepTRN4220, respectively. The ligated 95 

plasmid was then transformed to Escherichia coli HST08 (Takara Bio) and selected on 96 

chloramphenicol plates. The strains with correct sequences were selected for transformation 97 

into electrocompetent S. aureus RN4220. Insertion in the RN4220 strain was then confirmed 98 

by PCR.  99 

 100 

Menaquinone extraction and HPLC analysis 101 

S. aureus strains were cultured overnight in 5 mL TSB supplemented with antibiotics as 102 

required in a shaking incubator maintained at 37oC. The full growth was then diluted 100-103 

fold in the 5 mL TSB medium without antibiotics and incubated in the same shaker for 16 104 

hours. A 300 µL of the culture broth was extracted twice with 1.5 mL of hexane 5: ethanol 2. 105 

The supernatant was pooled, dried in-vacuo, dissolved in 200 µL ethanol and 80 µL of it was 106 

analyzed using a Waters Alliance high-performance liquid chromatography (HPLC) system 107 

equipped with a Senshu Pak PEGASIL ODS SP100 column (4.6φ x 250 mm) maintained at 108 

40oC. After the application of the sample to the column equilibrated with 1 mL�min-1 of 109 

20% diisopropyl ether in methanol, the column was eluted with the same solvent. Detection 110 

was made using a fluorescent detector using wavelengths 320 and 430 nm for excitation and 111 

emission, respectively, after post-column reduction using a platinum column. 112 

 113 

High resolution mass spectrometric analysis  114 

High resolution mass spectrometric analysis was performed on a UPLC/MS system using a 115 

Waters Acquity UPLC consisting of 2.1 x 50 mm Acquity UPLC® BEH C18 1.7 µm column. 116 

After the injection of the sample to the column equilibrated with 0.3 mL�min-1 of 100% 117 

methanol, the eluate was continuously applied to a Waters Xevo G2-XS QTof mass 118 
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spectrometer. The data at the mass range of 100 – 1700 Da were collected in ESI positive 119 

mode using a source capillary voltage of 2.00 kV. The data were obtained using MassLynx 120 

4.1 (Waters Milford, MA, USA) and analyzed by UNIFI Scientific Information System 121 

(Waters). 122 

 123 

Lysocin E susceptibility 124 

Clinical and Laboratory Standards Institute broth microdilution method was used to 125 

determine the minimum inhibitory concentrations (MIC).27 Briefly, serial dilutions of lysocin 126 

E were prepared in cation-adjusted Mueller-Hinton Broth (Difco, Franklin Lakes, NJ, USA) 127 

and a 100 µL aliquot was then dispensed to each well of a 96-well plate. Inoculum containing 128 

approximately 1x106 colony forming units (CFU)/mL of bacteria was prepared from 129 

Staphylococci colonies grown at 37oC on Tryptic Soy Broth (Difco) agar plates. 10 µL of it 130 

was added to each well of the 96-well plate and incubated at 37oC for 18 h. The minimum 131 

concentration that inhibited the growth of bacteria was considered as the MIC value. 132 

 133 

Viability of S. aureus upon treatment with lysocin E was determined as described previously 134 

21, 28 following NCCLS protocol.29 Briefly, the overnight full growth of Staphylococci was 135 

diluted 100 fold with 5 mL TSB and incubated at 37oC with shaking. After the OD600 reached 136 

0.1, 1 mL aliquot was collected and treated with 1 mg/L of lysocin E, and incubation was 137 

continued for 30 minutes. The number of the surviving bacteria was counted by spreading on 138 

Mueller Hinton agar plates. Untreated samples at time zero were considered as 100% and 139 

used to calculate percentage survival.   140 

 141 

Results and Discussion: 142 

 143 
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Higher Sensitivity of S. aureus Smith towards lysocin E 144 

Lysocin E (Figure 1a) is a recently discovered antibiotic effective against Gram-positive 145 

bacteria that utilize MK for respiration.10, 30 Lysocin E has a potent and rapid bactericidal 146 

activity. It has a minimum inhibitory concentration (MIC) value of 4 mg/L against most of 147 

the laboratory S. aureus strains, which we tested, except for Smith strain, against which 148 

lysocin E consistently displayed an MIC value of 2 mg/L (Figure 1b). We further found a 149 

more potent bactericidal activity of lysocin E against Smith compared to Newman and JE2 150 

strains (Figure 1c), suggesting its hypersensitive nature. As lysocin E targets MK,10 and S. 151 

aureus has MK as the sole quinone known to be utilized for respiration,31 we speculated that 152 

the MKs in Smith strain could be different from other S. aureus strains. However, there is no 153 

study about the type, content, and biosynthesis of MKs in S. aureus Smith. Therefore, we 154 

extracted MKs form the overnight cultures of the S. aureus Smith, Newman, and JE2 strains 155 

and analyzed by HPLC. Consistent with the previous report,32 Newman strain mainly 156 

produced MK-7 and MK-8, MK-8 being the most abundant, and trace amounts of MK-9. 157 

While MK production in JE2 was similar to that of Newman strain, Smith strain mainly 158 

produced MK-8 and MK-9, with MK-9 being the most abundant, and there appeared an 159 

undefined peak at the retention time of 34 minutes (Figure 2a, b). We then extracted MKs 160 

from a 50-mL volume of culture and separately collected each peak and analyzed by high-161 

resolution mass spectrometry. We found that the peaks were 739.5449, 807.6043 and 162 

875.6648 corresponding with [M+Na]+ of MK-8, MK-9, and MK-10, respectively (Figure 163 

2c). The undefined peak was thus identified as MK-10. Therefore, as opposed to the major 164 

quinone MK-8 in S. aureus,12 Smith strain produced MK-9 predominantly. In addition, Smith 165 

strain produced MK-10, an MK that has not been reported in S. aureus. These results 166 

suggested that longer chain MKs in Smith strain might be responsible for its hypersensitivity 167 

towards lysocin E. Previously we found that S. aureus strains with mutation and/or deletions 168 
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in the genes involved in MK biosynthesis were resistant to lysocin E10 suggesting that 169 

analysis of MK biosynthetic genes in Smith would give an insight upon its hypersensitivity.  170 

 171 

Figure 1: Lysocin E and its antimicrobial activity. (a) Chemical structure of lysocin E. 172 

(b) Minimum inhibitory concentrations of lysocin E against various S. aureus. MIC was 173 

determined by broth microdilution assay and represented as the median value obtained from 174 

10 experiments. (c) Bactericidal activity of lysocin E. S. aureus strains were treated with 1 175 

mg/L lysocin E for 30 minutes, and bacterial viability was determined. Triplicate data are 176 

represented as mean ± SEM and statistical analysis was performed by one-way ANOVA 177 

using Dunnett’s multiple comparison test in GraphPad Prism. The asterisk indicates a p-value 178 

of <0.0001. 179 
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 180 

 181 

Figure 2: Analysis of MKs from S. aureus. (a) Chemical structure of MK-n and calculated 182 

exact mass of MK-8, 9, and 10 in positive ion analysis. (b) Analysis of MK extract from S. 183 

aureus Smith, Newman, and JE2. (c) High-resolution mass spectrometric analysis of peaks 184 

that appeared in Smith at 19, 25 and 34 minutes.  185 

 186 

Analysis of MK biosynthetic pathway in S. aureus Smith 187 

The ability of the Smith strain to produce MK-10 and an association of mutations in MK 188 

biosynthetic genes with lysocin E resistance10 triggered us to analyze the MK biosynthetic 189 

pathway of this strain so that we could identify the genetic basis of this unique feature. We 190 

obtained the complete genome sequence of the Smith strain using a hybrid Ion PGM and 191 

Nanopore MinION sequencing approach24, 26. We performed a BLAST search against the 192 

genes involved in MK biosynthetic pathway. We found that the Smith strain harbored 193 

orthologs of all the genes involved in the classical pathway (Figure 3). We further aligned 11 194 
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MK biosynthetic enzymes among Newman, JE2 and Smith strains to find that Newman and 195 

JE2 shared an end to end sequence identity in all the enzymes, while Smith strain had amino 196 

acid substitution(s) in enzymes except MenA, MenG, and MenI (Figure 3, Supplementary 197 

Figure S1). 198 

 199 

Among the Smith MK biosynthetic enzymes that harbored amino acid substitution(s), the 200 

majority were involved in the formation of 1,4-dihydroxy-2-naphthoate. Among the enzymes 201 

involved in isoprenoid side chain biosynthesis, IspA (CFC57_08195) and HepT 202 

(CFC57_07900) had 2, and 3, amino acid substitutions, respectively. IspA is predicted to be 203 

involved in the formation of Farnesyl-PP, and HepT is predicted to be involved in the 204 

condensation of Isopentenyl-PPs and Farnesyl-PPs, resulting in the formation of all-trans-205 

polyprenyl-PP. Based on this, we speculated that Smith HepT (HepTSmith now onwards) 206 

might be involved in the formation of longer chain polyprenyl-PPs to be attached to 1,4-207 

dihydroxy-2-naphthoate by MenA (CFC57_05630).  208 

 209 
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  210 

Figure 3: The classical MK biosynthetic pathway in S. aureus Smith. The highlighted 211 

enzymes have an end to end sequence identity between S. aureus Smith, JE2 and Newman 212 

strains. 213 

 214 

Analysis of Staphylococcal HepT involved in polyprenyl diphosphate biosynthesis 215 

We then analyzed the HepT sequence of all S. aureus strains whose complete genome 216 

sequence was available in NCBI. We focused on three substitutions (Pro-25, Leu-170, and 217 

Asp-288) that were different in Smith strain from Newman and JE2 strains (Figure 4a) and 218 

found that the HepT from 325 S. aureus strains could be categorized to five types which we 219 

named type 1 to type 5. Type 1 – 4 were present in at least 10 strains while type 5 was unique 220 

for Smith strain with Pro-25 (Figure 4b). Among these, we analyzed the MK content from 221 

strains harboring four available types of HepT and found that only Smith could produce MK-222 

10 (Figure 4c). This result suggests that Pro-25 of HepTSmith could be responsible for longer 223 

chain MK biosynthesis. 224 
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 225 

Figure 4. Analysis of Staphylococcal HepTs (a) Alignment of HepT from strains Smith, 226 

NCTC5663, 71101, and Newman. (b) Five types of S. aureus based on the position of amino 227 

acids at 25, 170, and 288 in the HepT sequence. Numbers in parenthesis indicate the number 228 

of strains in each type. Type 5 only contained Smith strain. (c) MK content of representative 229 

S. aureus strains to harbor four HepT types. 230 

 231 

HepTSmith is involved in chain length determination of MK 232 

To confirm the role of HepTSmith in longer chain MK biosynthesis, we cloned the hepT gene 233 

from the Smith strain and expressed it under the control of the constitutive expression 234 

promoter.23 The plasmid thus obtained was introduced into the restriction deficient strain S. 235 

aureus RN4220. We also cloned the hepT gene from the RN4220 strain and introduced it into 236 

the RN4220 strain. We compared the MK production among Smith strain, RN4220 with 237 

empty vector, hepTSmith, and hepTRN4220. While the production of shorter chain MKs (MK-7 238 

and MK-8) were similar in all the transductants, the introduction of hepTSmith in RN4220 239 

025

Smith    MNNEIKKVEQRLEKAIKSKDSVLEPASLHLLSSGGKRVRPAFVILSSQFGKDEQTSEQTYQVAVALELIHMATLVHDDVIDKSDKRRGKLTISKKWDQTTAILTG

NCTC5663 MNNEIKKVEQRLEKAIKSKDSVLEQASLHLLSSGGKRVRPAFVILSSQFGKDEQTSEQTYQVAVALELIHMATLVHDDVIDKSDKRRGKLTISKKWDQTTAILTG

71101    MNNEIKKVEQRLEKAIKSKDSVLEQASLHLLSSGGKRVRPAFVILSSQFGKDEQTSEQTYQVAVALELIHMATLVHDDVIDKSDKRRGKLTISKKWDQTTAILTG

Newman   MNNEIKKVEQRLEKAIKSKDSVLEQASLHLLSSGGKRVRPAFVILSSQFGKDEQTSEQTYQVAVALELIHMATLVHDDVIDKSDKRRGKLTISKKWDQTTAILTG

************************ ********************************************************************************

170

Smith    NFLLALGLEHLMAVKDNRVHQLISESIVDVCRGELFQFQDQFNSQQTIINYLRRINRKTALLIQ LSTEVGAITSQSDKETVRKLKMIGHYIGMSFQIIDDVLDFT

NCTC5663 NFLLALGLEHLMAVKDNRVHQLISESIVDVCRGELFQFQDQFNSQQTIINYLRRINRKTALLIQ LSTEVGAITSQSDKETVRKLKMIGHYIGMSFQIIDDVLDFT

71101    NFLLALGLEHLMAVKDNRVHQLISESIVDVCRGELFQFQDQFNSQQTIINYLRRINRKTALLIQ LSTEVGAITSQSDKETVRKLKMIGHYIGMSFQIIDDVLDFT

Newman   NFLLALGLEHLMAVKDNRVHQLISESIVDVCRGELFQFQDQFNSQQTIINYLRRINRKTALLIQ ISTEVGAITSQSDKETVRKLKMIGHYIGMSFQIIDDVLDFT

**************************************************************** ****************************************

288
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resulted in significantly higher production of MK-9 and the appearance of MK-10 (Figure 240 

5a-c). RN4220 harboring empty vector or hepTRN4220 predominantly produced MK-7 and 241 

MK-8, with a trace amount of MK-9, and the MK pattern was indifferent from that of the 242 

wild type strain (Figure 5a-c).  These results suggest that HepTSmith is responsible for the 243 

biosynthesis of longer chain MKs. 244 

 245 

Figure 5. Analysis of MKs from S. aureus RN4220 with heterologously expressed HepT. 246 

(a) Representative HPLC chromatograms. (b) Peak area of MK-7 and MK-8. (c) Peak area of 247 

MK-9 and MK-10. Data are from three independent experiments and represented as mean ± 248 

SEM. Statistical analysis was performed by one-way ANOVA using Dunnett’s multiple 249 

comparison test in GraphPad Prism, and a p-value less than 0.05 was considered significant. 250 

ns: non-significant. # indicates an undetectable amount of MK-10. 251 
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The hypersensitivity of Smith strain towards lysocin E, the presence of MK-10 in Smith 254 

strain, its unique HepT, and evidence showing the involvement of HepTSmith in MK-10 255 

production led us further to explore the role of HepTSmith in lysocin E sensitivity. To 256 

elucidate this, we compared the viability of Smith and RN4220 strains harboring the empty 257 

vector and HepTSmith upon treatment with 1 mg/L of lysocin E to find that a 30 minutes 258 

treatment drastically reduced the number of viable bacteria (Figure 6). Furthermore, Smith 259 

and RN4220 expressing HepTSmith were hypersensitive to lysocin E treatment, suggesting that 260 

increased production of MKs harboring longer isoprenoid side chain might be responsible for 261 

the phenomena. 262 

 263 

Figure 6. Survival of S. aureus in the presence of lysocin E. Exponentially growing 264 

bacteria were treated with 1 mg/L of lysocin E for 30 min, and the colony-forming units were 265 

counted Triplicate data are represented as mean ± SEM. Statistical analysis was performed by 266 

one-way ANOVA using Dunnett’s multiple comparison test in GraphPad Prism, and the 267 

asterisk indicates a p-value of <0.0001. 268 
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In addition to MK biosynthesis, isoprenoids are critical for the biosynthesis of membrane 270 

lipids, carotenoids, sterols, and other components of the bacterial cell wall.33 Isopentenyl-PP, 271 

one of the substrates of HepT and the starting molecule for other isoprenoid biosynthesis, is 272 

synthesized either via 2-C-methyl-D-erythritol-4-phosphate (MEP) and/or mevalonate 273 

pathway.34, 35 The enzymes of the MEP pathway have been used as targets for antibiotic 274 

discovery against microbes that harbor the MEP pathway.5, 36 Given that S. aureus relies on 275 

the mevalonate pathway,37 HepT or other enzymes from this pathway can be targeted for the 276 

antistaphylococcal drug development.38, 39  277 

 278 

In summary, we completed the genome sequence of S. aureus Smith and performed the 279 

genomic analysis of the MK biosynthetic pathway to show that a classical pathway for MK 280 

biosynthesis is present in this strain. We demonstrated that Pro-25 substitution in HepT was 281 

responsible for longer chain MK biosynthesis, and this was associated with hypersensitivity 282 

towards lysocin E. This indicated that lysocin E might disrupt the bacterial membranes 283 

containing longer chain MKs more efficiently which requires further analysis. To the best of 284 

our knowledge, this is the first report of the identification of S. aureus strain producing MK-285 

10. 286 

 287 
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