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40  Summary (218 words)

41 Goal-directed motor corrections are surprisingly fast and complex, but little is
42  known on how they are generated by the central nervous system. Here we show that
43  temporary cooling of dorsal premotor cortex (PMd) or parietal area 5 (AS) in behaving
44  monkeys caused impairments in corrective responses to mechanical perturbations of the
45  forelimb. Deactivation of PMd impaired both spatial accuracy and response speed, whereas
46  deactivation of A5 impaired spatial accuracy, but not response speed. Simulations based on
47  optimal feedback control demonstrated that ‘deactivation’ of the control policy (reduction
48 of feedback gain) impaired both spatial accuracy and response speed, whereas
49  ‘deactivation’ in state estimation (reduction of Kalman gain) impaired spatial accuracy but
50 not response speed, paralleling the impairments observed from deactivation of PMd and
51 A5, respectively. Furthermore, combined deactivation of both cortical regions led to
52  additive impairments of individual deactivations, whereas reducing the amount of cooling
53  (i.e. milder cooling) to PMd led to impairments in response speed, but not spatial accuracy,
54  both also predicted by the model simulations. These results provide causal support that
55  higher order motor and somatosensory regions beyond primary somatosensory and primary
56 motor cortex are involved in generating goal-directed motor responses. As well, the
57  computational models suggest that the distinct patterns of impairments associated with
58 these cortical regions reflect their unique functional roles in goal-directed feedback control.
59

60 Main text (1685 words)

61 The motor system can generate a broad range of motor actions and flexibly adjust
62  them to manage errors or unexpected changes in the environment. It is commonly assumed
63  that these goal-directed motor corrections are generated through a rapid transcortical
64  pathway involving primary somatosensory (S1) and primary motor cortex (M1), leading to
65 muscle responses in as little as 60ms for the arm'-. However, our recent study highlighted
66  that short latency neural responses to mechanical disturbances applied to the forelimb of a
67 monkey can be observed in as little as 25ms across frontoparietal circuits, including in
68  higher order motor (dorsal premotor cortex, PMd) and somatosensory regions (parietal area
69  5,A5)* These cortical regions are normally associated with motor planning and movement

70  initiation>S, yet their contribution to online motor control remain poorly understood. The
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71 objective of this study is to provide causal support that these cortical regions are also
72 involved in goal-directed feedback control by quantifying how transient deactivation of
73 each cortical region, induced with cortical cooling’, impacts goal-directed feedback
74 responses.
75 How could changes in a feedback circuit alter goal-directed feedback responses?
76 We made theoretical predictions for the motor deficits that may occur from deactivating a
77  brain region using an optimal feedback control (OFC) model, a common framework for
78  interpreting voluntary motor function (Fig. 1a)®°. We first optimized model parameters to
79  reproduce the monkey’s intact feedback response (Fig. 1b). Then, we applied ‘deactivation’
80 to the model parameters (Fig. 1a), including (1) the feedback gain of the control policy (L),
81  (2) Kalman gain in state estimation (K), (3) parameters in the internal forward model (4,
82 B and H), and (4) the sensory observation matrix (H). Since cooling reduces neural
83  excitability in adjacent tissue’, we modeled a cooling effect as a reduction of each
84  parameter (for a different deactivation method based on increases in noise, see
85  supplementary discussion). First, large reductions in any parameter ultimately led to failure
86  ofthe model to generate appropriate motor corrections to mechanical disturbances (Fig. 1d).
87  Of particular interest is that smaller reductions of parameters led to unique patterns of
88  feedback impairments for each parameter (Fig. 1c-d). Reduction of the feedback gain (L),
89 that converts estimates of system state into motor commands, generates a broad range of
90 impairments, including reduction in spatial accuracy (endpoint error) and several metrics
91 related to response speed (return time, max deviation and max deviation time, Fig. 1c-d,
92 red, p <0.05). Reduction of Kalman gain (K) degrades the use of external sensory feedback,
93  making state estimation more reliant on internal feedback. This generated impairments in
94  spatial accuracy (endpoint error), but interestingly, did not impair response speed (return
95 time and max deviation time) until the gain was reduced more than ~60% (Fig. 1c-d, blue,
96 p > 0.05). This reflects that reduction of the Kalman gain induces only a small delay in
97  updating the state estimation about the presence of a disturbance using external sensory
98 feedback, but once updated, internal feedback can then appropriately counter the external
99  perturbation. Even small reductions of parameters in the internal forward model (4, B and
100  H) providing internal feedback for state estimation quickly leads to severe oscillations (4,

101 Fig. lc, green; B and H, Fig. Sla), with rapid degradation in spatial accuracy (Fig. 1d,
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102  green and Fig. S1b, p < 0.05). Finally, reduction of the sensory observation matrix (H)
103  degrades sensory information. This generated impairments in spatial accuracy and response
104  speed (Fig. 1c-d, orange, p < 0.05), qualitatively similar to impairments associated with
105  the feedback gain (L). Taken together, our simulations highlight that deactivation of
106  different model parameters generate unique patterns, or signatures, of motor impairments
107  which can be used to dissociate cortical functions.

108 The traditional view is that frontal motor cortex is involved in ‘motor’ processing
109  and parietal cortex is involved in ‘sensory’ processing>®. Thus, we hypothesized that PMd
110  cooling would parallel impairments associated with reductions in the feedback gain (spatial
111 accuracy and response times) and A5 cooling would parallel impairments associated with
112 the Kalman gain (only spatial accuracy).

113 To test our hypotheses, we chronically implanted cooling probes over the surface
114  of PMd and A5 (Fig. 2a). By circulating chilled methanol through the probes, we are able
115  to cool down the cortical temperature and deactivate each area’ while observing changes
116 in motor performance during a single experimental session reversibly and temporarily
117 (Fig. 2b). Monkeys were trained to maintain their fingertip at a central target and to make
118  corrections to mechanical perturbations unexpectedly applied to the forelimb (posture
119  perturbation task'?, Fig. 2¢). On separate days, the task was performed before (pre-cool),
120  during (cool) and after cooling (post-cool) each cortical region, including sham controls
121 when cooling was not applied (monkey A: PMd n=23, A5 n=31, Sham n=28; monkey R:
122 PMd n=10, A5 n=18, Sham n=51 sessions). When PMd was cooled, motor responses were
123 slowed (Fig. 3a, bottom) and response accuracy was reduced (Fig. 3a, top), resulting in a
124  significant increase in endpoint errors (#(79.7) = 4.8, p < 0.05) and response speed (Fig. 3c,
125 return time, max deviation and max deviation time, #87.2)=15.7, #83.8) =44,
126 #(88.1) = 5.4, p <0.05, respectively). Correspondingly, the muscle stretch response was
127 reduced beginning in the long-latency time epoch (R3 epoch, 75-120ms after perturbation
128  onset, #(92.3) = 3.6, p < 0.05, Fig. 3d), which is the first instance that transcortical feedback
129  can contribute to feedback corrections!>!12, These results are consistent with our
130  hypothesis that PMd is involved in the feedback control policy. We confirmed that these
131 behavioural effects were consistent between two monkeys (Fig. S2) and not due to direct

132 cooling of M1 (Fig. S3).
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133 In contrast, A5 cooling significantly increased endpoint errors (#162)=15.3,
134 p <0.05), but did not impair response speed (return time, max deviation and max deviation
135  time, #(200)=0.4, #(162)=0.4, #(201)=1.4, p> 0.5, respectively), suggesting that the
136  earlier motor response was preserved (Fig. 3b-c), which was confirmed by the lack of
137  significant changes in EMG during the R3 epoch (#(63) = 1.8, p = 0.42, Fig. 3d). These
138  results are consistent with our hypothesis that AS is involved in state estimation.

139 Since our simulation showed that reductions of feedback control gain (L) and
140  sensory observation (H) caused qualitatively similar effects (Fig. 1d), we could not separate
141 whether PMd cooling impaired feedback gain or sensory observation. Therefore, we further
142 dissociate their effects by simulating the simultaneous cooling of PMd and A5 with a
143  simultaneous reduction of L and K (L & K), or H and K (H & K). We found that reduction
144  of L & K led to impairments that were a linear sum or a sublinear interaction of impairments
145  for deactivation of each parameter separately (Fig. S4a). In contrast, reduction of H & K
146  induced supralinear impairments of each parameter separately (Fig. S4b). When we
147  simultaneously cooled PMd and A5 (n =20 and 10 in monkey A and R), we found that
148  impairments were a linear sum (endpoint error, return time and max deviation time) or a
149  trend of the sublinear interaction (max deviation) of impairments induced by individual
150  cooling of each area separately (Fig. 4a, endpoint error, return time, max deviation time,
151 #(59)=0.7, #59) = 0.1, #59) = 0.3, p > 0.9; max deviation, ,#(59) = 1.2, p =0.47). These
152 results provide further support for our hypotheses that PMd and A5 are involved with the
153  feedback control policy (L) and state estimation (K), respectively.

154 Finally, we tested a further prediction of the model that a small reduction in the
155  feedback gain L (< 20%) would lead to a unique pattern of impairments in which most
156  motor parameters would be affected (return time, max deviation, and max deviation time)
157  but not endpoint error (e.g. 10% deactivation of L in Fig. 1d). We tested this prediction by
158  applying milder cooling of PMd in one animal (8 °C instead of 1 °C in probe temperature,
159  n =35 in monkey R). Results showed that less cooling significantly impaired all parameters
160  (return time, max deviation, max deviation time, #(11)=3.2, #10)=3.3, #10)=4.0,
161 p <0.05, respectively) except endpoint errors (Fig. 4b, pink, #(12) =0.8, p = 1.0). This

162  result further validates our simulation model of cortical cooling.
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163 Taken together, these results provide clear support that PMd and A5 are causally
164  involved in generating goal-directed feedback responses. Interpreting their potential
165  contribution to feedback responses was possible by comparing the pattern of impairments
166  associated with deactivation of each cortical region with simulation of deactivation using
167  an OFC model. We expect qualitatively similar results would be observed for other control
168  models that possess a control policy and state estimation that integrates internal feedback
169  with external sensory feedback, known features of the voluntary motor system!3!4, It is
170  interesting to note that reductions in parameters associated with the forward model led to
171 oscillatory behavior (Fig. 1c and Fig. S1a), which resembles ataxia of cerebellar patients
172 and a pattern of impairment when the dentate nucleus in the cerebellum was cooled!>-!®,
173  Comparison of signatures of motor impairments of cortical deactivations and model
174  simulations can be a powerful tool to unravel the computational basis of sensorimotor
175  systems and their dysfunctions.

176 Monkeys were still able to generate goal-directed responses during cortical cooling,
177 likely reflecting that only a portion of these cortical regions were impacted by the cooling

3,17

178  and/or that these processes are distributed across brain regions®'’. For example, M1 is

179  almost certainly involved in processes associated with the control policy!-!1:18-20 Tt is
180  possible that deactivation of PMd, traditionally associated with motor planning, caused
181  motor impairments by degrading ongoing input to M 1212, However, PMd may also have
182 a more direct influence in generating motor corrections through its corticospinal
183  projections®*. Recent studies highlight how neural activity can reflect multiple distinct
184  processes using orthogonal subspaces®2°. For example, M1 can reflect simultaneous
185  motor actions of different limbs with the associated neural activity for each limb segregated
186  to orthogonal subspaces®. Thus, it is plausible that PMd could simultaneously be involved
187  in motor planning in one subspace, while it also contributed to online feedback control in
188  another orthogonal subspace.

189
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282  Methods

283  Subjects and apparatus

284 Two male rhesus monkeys (Macaca mulatta, 10—17 kg, monkeys A and R) were
285  used in this study following procedures approved by the Queen’s University Animal Care
286  Committee. They were trained to perform upper limb motor tasks with their left arm while
287  wearing a robotic upper-limb exoskeleton (Kinarm Exoskeleton; Kinarm Technologies,
288  Kingston, Ontario, Canada) that permitted and monitored horizontal shoulder and elbow
289  motion®. A virtual reality system presented visual targets and a cursor representing hand
290  position in the workspace while direct view of their limb was occluded.

291

292 Behavioral task

293 We trained monkeys to perform a posture perturbation task, which has been
294  described previously!?. In the task, the monkey was required to maintain a small cursor
295 (0.2 cm radius) representing the position of the index fingertip at a visual target (0.6 cm
296  radius) displayed near the center of the arm’s workspace (~30° and 90° degrees at the
297  shoulder and elbow joints, respectively, Fig. 2c). The monkeys initiated each trial by
298  moving their hand to the visual target and maintaining it within the target’s acceptance
299  window for 0.5 to 2.5 s (monkey A) or from 0.5 to 1.25 s (monkey R). The size of the
300 acceptance window was individually adjusted to each monkey (0.8 and 1.0 cm radius for
301 monkey A and R, respectively). Then, one of three mechanical loads was applied to the
302 monkeys’ arm. The load conditions included shoulder extension and elbow flexion
303  (SE+EF), shoulder flexion and elbow extension (SF+EE), and an unloaded condition (catch
304 trials). These loads stayed until the end of the trial (a step-torque perturbation) and the
305 monkeys were required to counter the load to return to the target within 0.5 s and maintain
306 it there for another 3.0 s (monkey A) or 2.0 s (monkey R) to receive a liquid reward.
307  Shoulder and elbow torques of magnitude 0.28 Nm (monkey A) or 0.20 Nm (monkey R)
308  were used. Each block consisted of four SE+EF trials, four SF+EE trials and one catch trial
309 inrandom order (total nine trials per block). To mitigate the contribution of visual feedback
310  for the rapid motor responses, we removed the hand cursor feedback for 200 ms after
311 perturbation onset.

312
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313  Cortical Cooling

314 After behavioural training was complete, we performed surgical procedures to
315  implant two cooling probes over PMd and A5 as well as a head fixation post. In monkey
316 A, we also made a craniotomy over M1 and implanted a recording chamber to record the
317  temperature of M1. The surgeries were performed using isoflurane anesthesia (1.0-2.0%
318  in O2) and under aseptic conditions. PMd and A5 locations were identified based on sulcus
319  structures on the cortical surface according to a previous electrophysiological study®!'. PMd
320 probe was implanted between upper limb of arcuate sulcus and superior precentral sulcus,
321  whereas A5 probe was implanted between intraparietal sulcus and postcentral dimple
322 (Fig. 2a).

323 Cooling probes were made with 23G stainless-steel tubing in 3 x 5 mm dimension’.
324 A thermocouple is attached to the tip of the probe to monitor probe temperature. By
325 circulating chilled methanol, the probe temperature was controlled at the desired
326  temperature. Previous work has shown that cooling the probe to 1°C deactivates cortex up
327  to a distance of 1.5 mm, which covers most of the cortical layers’. Thus, the estimated
328  volume of deactivated cortical tissue is 72126 mm?.

329

330  Experimental procedure

331 On each experimental day, one of the cooling conditions was chosen. In experiment
332 1, one of the probes (PMd and AS) was cooled or no cooling was applied (sham). In
333  experiment 2, PMd and A5 was simultaneously cooled (dual cooling). In experiment 3,
334  PMd in monkey R was cooled to a milder target temperature (8 + 1°C in probe temperature)
335 instead of 0 — 1°C (milder cooling).

336 Each experiment was initiated with a brief practice set (3 and 2 blocks of trials for
337  monkey A and R, respectively) with a normal acceptance window (0.8 and 1.0 cm radius
338  for monkey A and R). After that, the pre-cooling epoch started (Fig. 2b). In the pre-cooling
339  epoch, the monkeys performed 6 (monkey A) or 3 blocks (monkey R) of trials, which
340  consisted of 48 or 24 perturbed trials and 6 or 3 catch trials, respectively. Since we expected
341  a motor impairment during cooling, we relaxed the acceptance window to 1.8 and 2.0 cm
342  radius (monkey A and R) and we used the same window during all epochs (pre-cool, cool

343  and post-cool) except for the initial practice set.
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344 After the pre-cooling epoch, we started to circulate chilled methanol through the
345  cooling probes and manually controlled the flow to keep the probe temperatures at the
346  target temperature (0 — 1°C for experiment 1 and 2 and 8 &+ 1°C for experiment 3). It took
347 80 =+ 39 sec to reach the target temperature (0 — 1°C). After that, we waited ~5 min for the
348  temperatures to become stable. Then we collected behavioural data in the cooling epoch.
349 In the cooling epoch, the monkeys performed 9 (monkey A) or 5 — 6 blocks (monkey R),
350  which consisted of 72 or 40 — 48 perturbed trials and 9 or 5 — 6 catch trials, respectively. It
351  took ~20 min to complete all blocks.

352 Then, methanol circulation was stopped and after ~5 min the post-cooling epoch
353  started. It took 126 + 45 sec for the temperature to return back to normal (> 36°C). In the
354  post-cooling epoch, the monkeys performed 9 (monkey A) or 5 — 6 blocks (monkey R),
355  which consisted of 72 or 40 — 48 perturbed trials and 9 or 5 — 6 catch trials, respectively. In
356  some recording sessions (9/94 sessions), monkey R did not complete the post-cooling
357  epoch and we included only pre-cool and cool epoch data. We verified that inclusion of
358 these incomplete sessions did not qualitatively affect the cooling results.

359

360 Data analyses

361 All subsequent analyses were performed off-line using MATLAB (The MathWorks,
362 RRID: SCR _001622).
363

364  Kinematics analyses

365 Kinematic data and applied torques were acquired directly by the Kinarm device
366  and were sampled at 4000 Hz with Plexon systems (Plexon Inc., Dallas TX, USA) and low-
367  pass filtered (6th order double-pass filter, cutoff = 10Hz). We quantified four behavioural
368 measurements related to spatial accuracy and response speed of the mechanical
369  perturbation (Fig. 2d).

370 Endpoint error was quantified to measure spatial accuracy of the feedback response.
371  First, we identified the endpoint of the initial corrective response after the perturbation. To
372 do this, we calculated radial hand velocity relative to the center of the target and identified
373  the timing of the maximum inward (i.e. returning) velocity. After this time point, we sought

374  the first timing when the monkey’s hand had stopped moving according to a two-threshold
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375  method?2: (1) the first local minimum in hand speed below 0.05m/s or (2) when hand speed
376  dropped below 0.005m/s (endpoint, Fig. 2d square). Endpoint error was measured as a
377  distance between hand position at the endpoint and the center of the target.

378 Return time was measured as the time interval from perturbation onset to when the
379  hand cursor reentered the target area. Practically, we used a larger acceptance window (1.8
380 and 2.0 cm for monkey A and R) to keep animals rewarded even with motor impairments.
381  However, when we calculated the return time, we used the original target size (0.8 and
382 1.0 cm for monkey A and R) that the monkeys were trained with (Fig. 2d circle).

383 Max deviation was defined as the peak hand displacement from the pre-perturbation
384  hand position (Fig. 2d triangle). Pre-perturbation hand position was calculated as the
385 averaged hand position during an interval from 100 to 0 ms before perturbation onset. Max
386  deviation time is the time when max deviation occurred relative to perturbation onset.

387 Modulation of behavioural measures was tested by using a two-way ANOVA
388 (cooling epochs x target areas, p < 0.05). As post hoc analyses, Welch’s t-tests were
389 performed to compare between cooling and sham conditions (p < 0.05 with Bonferroni
390 correction). Since we verified the difference of torque directions (SE+EF or SF+EE) did
391  not qualitatively affect cooling results, we pooled the data into one dataset.

392

393  Sample size selection

394 After we collected the data from the first animal (monkey A), we estimated a sample
395  size that was required for a statistical test (#-test) between sham and each cooling condition
396 to have a power of (1 — ) = 0.90 with a significance level of o = 0.01. This calculation was
397  done with the SAMPSIZEPWR function of MATLAB. The mean and standard deviation
398  of the null hypothesis was set to those of the sham condition and the sample size was
399  estimated for endpoint error, which showed significant impairment in both PMd and A5
400 cooling (Fig. 3c). Results showed that the optimal sample size was 9 and 11 sessions for
401 PMd and AS cooling. Given the high variability of behaviours between animals, we set a
402  minimal sample size for the second animal to 10 sessions for each condition.

403

404  EMG analyses
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405 In some recording sessions (n=33 and 58 in monkey A and R, respectively),
406  electromyographic (EMG) activity was recorded from upper-limb muscles by attaching
407  surface EMG electrodes over each muscle belly (Delsys, Natwick MA, USA). Muscles
408  were selected that predominantly contributed to flexion and extension movements at the
409 shoulder and elbow (biceps, brachioradialis, brachialis, long/lateral triceps,
410  anterior/middle/posterior deltoid, pectoralis major)**. Muscle activity was recorded at 4000
411 Hz, band-bass filtered (25-350Hz, 6th order Butterworth), full-wave rectified and
412 downsampled to 1000 Hz before analysis.

413 EMG signals were aligned to perturbation onset and averaged across trials.
414  Preferred torque direction (PTD) of each EMG was determined as the torque combination
415  (SE+EF or SF+EE) that produced the larger response in a time window from 50 to 100 ms
416  after perturbation onset. We identified EMG as perturbation responsive if the EMG
417  response (50 — 100 ms after perturbation) in the PTD was significantly higher than that in
418  an unloaded catch condition (paired z-test, p < 0.05). In total, we identified 293 EMG
419  samples (n = 165 and 128 in monkey A and R) to be perturbation responsive and analyzed
420  further (n = 140, 90 and 63 in sham, PMd and A5 cooling conditions, respectively).

421 EMG traces were first normalized by their mean activity during the last 2 sec of the
422  trials when the monkey was countering the load in the PTD. This normalization value was
423  calculated with data only from the pre-cool epoch, and then the same value was applied to
424  all EMG data in the pre-cool, cool and post-cool epochs. Then, we averaged the normalized
425 EMG traces across muscles separately for each cooling condition. From our pilot
426  observation, we found that EMG signals had much higher noise than kinematic signals.
427  Therefore, we performed a selection process of the EMG data based on the behavioural
428  effects of cooling. Our behavioural analyses showed both PMd and A5 cooling increased
429  endpoint errors (Fig. 3¢c). Therefore, we selected EMG data in sessions when the endpoint
430  error was higher than the 90th percentile of the endpoint error from sham conditions. As a
431  result, we selected 64 out of 153 EMG datasets (33 /90 and 31/ 63 for PMd and A5
432  cooling). Importantly, we only used endpoint error for the selection and we used the same
433  criteria for PMd cooling and A5 cooling. For the sham cooling data, no selection was

434  applied (n = 140).
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435 Muscle activity was compared across predefined epochs (baseline, 100-0 ms before
436  perturbation onset; R1, 20-50 ms post-perturbation; R2, 50-75 ms post-perturbation; R3,
437 75-120 ms post-perturbation; voluntary 120-180 ms post-perturbation)!®-34. Welch’s t-test
438  was used to evaluate whether the binned muscle activity was significantly modulated from
439  sham condition (p < 0.05 with Bonferroni correction).

440

441 Temperature measurement in M1

442 In order to evaluate the change of M1 temperature during PMd cooling sessions,
443  we recorded intracortical temperature of M1 on PMd cooling (n = 2) or dual cooling of
444  PMd and A5 (n = 1) sessions. Prior to the temperature recording, we mapped the arm area
445  of MI using intracortical microstimulation (11 pulses, 333 Hz, 0.2 ms pulse width,
446 <20pA). In each recording day, we inserted a thermocouple (HYPO-33-1-T-G-60-SMPW-
447 M, Omega Engineering Inc, CT, USA) into the arm area of M1. We then started the
448  experimental procedure to collect pre-cool, cool and post-cool epochs. The temperatures
449  were sampled at 4000 Hz along with the kinematic signals.

450 Mean temperature during pre-cool (for 5 min before cooling onset) and cool (for
451 5 min before cooling offset) epochs were compared in M1 and PMd (probe temperature)
452  separately (Fig. S3). Significant modulation of temperature was evaluated with paired ¢-
453  test (p < 0.05 with Bonferroni correction)

454

455  Model simulation

456 We used an optimal feedback control (OFC) model developed in our previous
457  report®>. We considered the translation of a single-point mass (m = 1 kg) in one dimension.
458  The control system was described by the following differential equations:

459 mp = —Gp + Foppp + Foye

460 Ty = U = Foery

461  where m is mass, p(f) is the position of the point mass as a function of time (¢), G is the
462  viscous constant, Fers and Fex are the control and external forces, respectively, u is the
463  motor command and 7 is the time constant of the linear filter for the motor command. Each
464  trial began with Fi set to 0 Nm (no external load) and after 500ms F.; was suddenly
465 changed to +2 Nm and maintained for another 1000 ms until the end of the trial (a step-
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466  torque perturbation). G was set to 1 N-s'm!, and r was set to 40 ms, which is compatible
467  with the first approximation of muscle dynamics®®. Stochastic dynamics and noise
468  disturbances are described in a discrete time system with a 10-ms time step:

469 Xr+1 = Axy + Bug, + motor noise

470  where xx+; is the state vector at time k+/, 4 and B are matrices that describe the system
471 dynamics, and u; is the motor command at time k. Motor noise is a signal dependent
472  Gaussian noise with variance of (0.125)*> x u?’. The state vector is represented with the
473  four-dimensional vector,

474 X = [p(k) P(K) Ferri (k) Fexe (k)]

475  which was augmented with previous states to take feedback delays into account®®. The
476  feedback delay was set to 50ms (5 time steps) to reflect the transmission delay of the long-
477  latency response!’. This resulted in the augmented state vector with 24 dimensions.

478 The feedback signal at each time step (yx) can be written as,

479 Vir+1 = Hxj + sensory noise

480 where H is the observation matrix, which allows the system to observe only the most
481  delayed state (50ms before). Otherwise, the system is fully observable. Sensory noise is an
482  additive Gaussian noise with variance 107'°. To compensate the time delay of the feedback
483  signal, the OFC model includes an optimal linear state estimator (Kalman filter) that
484  consists in weighting prior beliefs about the next state of the system with sensory feedback
485  to derive a maximum likelihood estimate of the system state. Let X, be the estimated state
486  at time k. The prior belief about the next state (x*i+;) is defined as

487 X1 = A% + Buy, + prediction noise

488  where A and B are the internal model of the system dynamics, 4 and B. Prediction noise is
489  an additive Gaussian noise with variance 1078, Then, the feedback correction yields the
490  state estimation by taking yx+; into account as

491 Rir1 = Xiexr + Kiwr (Vierr — HXjern)

492  where Ky, is the Kalman gain at time k+/ and H is the internal model of the observation
493  matrix, H. Finally, the feedback control policy is defined as

494 Up = —Ly %y,

495  where L, represents the optimal feedback gain at time k.

496 The cost function for the task was defined as:
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407 ] =) ap@p®) + g, (OpO)? + ru(®)?

498  where J is the total-cost including error cost (position and velocity) and motor cost over a
499  time-course of the trial. g, and ¢, are time-dependent factors which define the cost of
500 position and velocity errors, respectively. Both were set to 1 before and 500 ms after the
501  perturbation, but they were set to 0 between 0 and 500 ms after the perturbation. This means
502 that the model is required to stay at (p, p) = (0, 0) except for just after the perturbation. r is
503  a constant factor which defines the cost of control and it was set to 107,

504 With these definitions of the system dynamics, feedback signals, noise parameters,

505 and cost functions, we computed the optimal feedback gains (L) and Kalman gains (K)

506  following algorithms adapted for the presence of signal-dependent noise®°.

507

508  Simulation for cortical deactivations

509 To apply deactivation of the optimized model parameters, we used two different

510  methods: downscaling and noise addition. For downscaling, we multiply a scalar between
511  0—1 to deactivate the parameter. For example, when we deactivate a parameter by 20%,
512 we multiply 0.8 (= 1 —0.2) to the optimized value of the parameter. The rational of this
513  method is that cortical cooling is known to reduce neural excitability at mainly post-
514  synaptic terminals*’, suggesting that cooling reduced the gain to the pre-synaptic inputs.
515  Another possibility is that cortical cooling adds some noise to the neural computations. To
516  replicate this scenario, we added scaled Gaussian noise to the target parameters. To control
517  for deactivation size, the noise was chosen from a normal distribution whose standard
518  deviation was scaled with the absolute value of each parameter:

519 noise ~ N(0, a|x]|)

520  where |x]| is absolute of the optimal value for the target parameter and « is a scaling factor
521  of added noise chosen from O to 1. This means that noise size was normalized to the
522  coefficient of variation (CV): a = 0 indicates that no noise was added (0% CV), whereas o
523 =1 indicates that noise chosen from normal distribution with standard deviation of |x|
524  (100% CV).

525 With either deactivation method, we applied deactivation to each target parameter

526  and evaluated the behavioural measures with the same algorithms used for the monkey
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527  behavioural analyses (Fig. 2d). Then we applied a two-way ANOVA (deactivation size x
528  deactivated parameters) and post hoc paired t-tests to evaluate whether the behavioural
529 measures were modulated from the optimal conditions (p < 0.05 with Bonferroni
530  correction). Deactivation size for downscaling was chosen from 0 — 100% with a 5% step
531  size, whereas deactivation size for noise addition was chosen from 0 —40% with a 2 % step
532  size.

533
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579  Figure 1. Simulation for the effect of cortical deactivations on feedback motor
580 responses to mechanical perturbations.

581  a, Optimal feedback control model. b, Response of the model to mechanical perturbations
582  in optimized condition. ¢, Response of the model in deactivated conditions. Black lines
583 denote the optimized condition (same to b). Coloured lines denote trials when each
584  parameter was reduced by 50%. Red, feedback gain in feedback controller (L). Blue,
585 Kalman gain in state estimator (K). Green, a parameter of forward model (4). Yellow,
586  observation matrix in sensory observation (H). d, Performance measures impaired by the
587  deactivation of model parameters. All measures showed significant interaction and main
588 effects in two-way ANOVA (deactivation size x deactivated parameters) suggesting unique
589  patterns of motor impairments for each parameter (p < 0.05). Filled circles, significant
590 difference from optimal condition (#-test, p < 0.05).
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Figure 2. Experimental setups for cortical cooling.

a, Cooling probes were implanted over dorsal premotor cortex (PMd) and parietal area 5
(AS) in the right hemisphere of monkeys. b, Feedback motor responses were tested before
(pre-cool), during (cool) and after (post-cool) cooling. ¢, Postural perturbation task.
Monkey must maintain its hand at a central target. A mechanical load was applied to the
limb and the monkey must return its hand to the same spatial target in less than 500 ms and
maintain its hand for another 3 seconds. d, Hand position and speed in an exemplar trial.
Symbols denote behavioural measures: max deviation (triangle), return time (circle) and
endpoint (square).
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604  Figure 3. Effects of PMd and AS cooling.

605 a, b, Hand trajectories (top) and hand displacements (bottom) when the limb was
606 unexpectedly perturbed in pre-cool, cool and post-cool PMd conditions (a) and
607  corresponding A5 conditions (b). Calibration bars, 1cm. Ellipses, 95% confident interval
608  of endpoints. Time = 0, perturbation onset. ¢, performance measures for PMd (red), AS
609  (blue) and sham (black) cooling sessions. Averages across two monkeys and two torque
610  directions after normalized to pre-cool condition. Error bars, SEM. All measures displayed
611  significant interaction and main effects in two-way ANOVA (cooling epochs x target areas)
612 indicating different effects of cortical cooling (p < 0.05). * Significant difference from
613 sham condition (z-test, p <0.05). d, e, Averaged EMG responses to mechanical
614  perturbations in PMd (red), A5 (blue) and sham (black) cooling sessions. Responses were
615  binned to baseline (100-0 ms before perturbation), R1 (20-50 ms post-perturbation), R2
616  (50-75 ms), R3 (75-120 ms), and voluntary (120-180 ms) time windows (gray and dark
617  gray rectangles). Shaded areas, SEM. * Significant difference from sham condition (z-test,
618  p <0.05).
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a Experiment 2. Dual cooling of PMd and A5
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621  Figure 4. Effects of dual cooling and milder PMd cooling.

622  a, Performance measures of dual cooling of PMd and A5 (filled circle, “Dual”) were
623  compared with a linear summation of the effects of single PMd and A5 cooling (open circle,
624  “Sum”). * Significant difference between dual cooling and linear sum (z-test, p < 0.05). b,
625  Comparison of original cooling (1°C in probe temperature, red) and milder cooling of PMd
626  (8°C, pink). * Significant difference from sham condition (z-test, p < 0.05). Error bars,
627  SEM. All measures showed significant interaction and main effects in two-way ANOVA
628  (cooling epochs x target areas) indicating different effects of cortical cooling (p < 0.05).
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629 SUPPLEMENTARY MATERIALS
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632

633  Figure S1. Deactivation of internal model parameters (B and H).

634  a, Response of the model in deactivated conditions. Same format as Fig. 1c but for 50%
635 deactivation of B (light green) and H (green). b, Performance measures impaired by the
636  deactivation of model parameters. Same format as Fig. 1d (filled circles, #-test, p < 0.05).
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639  Figure S2. Behavioural results for each monkey (monkey A or R).

640  Performance measures for PMd (red), AS (blue) and sham (black) cooling sessions for
641  monkey A (a) and monkey R (b). Same format as Fig. 3c. Error bars, SEM. * Significant
642  difference from sham condition (z-test, p < 0.05). The results confirmed that our main
643  finding holds across animals: PMd cooling impaired spatial accuracy (endpoint errors) and
644  response speed (return time, max deviation, max deviation time), whereas A5 cooling
645  impaired spatial accuracy but not response speed.
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Figure S3. PMd and M1 temperature changes during PMd cooling.

a, Example of cortical temperature measured from M1 during a PMd cooling experiment.
Cooling probe on PMd was cooled to 1 °C and the probe temperature was measured (top).
An independent thermocouple was acutely inserted to M1 arm area (bottom). b, Averaged
temperature of PMd probe and M1 in pre-cool and cool epochs of PMd only (n = 2) and
dual PMd and A5 cooling (n=1). * Significant difference between pre-cool and cool
conditions (z-test, p < 0.05). ns, non-significant. Note that during PMd cooling or dual

cooling, a change of M1 temperature was minimal (< 2°C) and did not reach significant
limit.
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a Simulation of simultaneous deactivation of L and K
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b Simulation of simultaneous deactivation of H and K
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658

659  Figure S4. Simulation of the effect of dual deactivations.

660 a, b, Results for dual deactivation of feedback gain and Kalman gain (L & K, a) and
661  observation matrix and Kalman gain (H & K, b). Top: Performance measures were
662 normalized to the optimal condition (dashed line). Bottom: Difference from the K100%
663  condition. Horizontal dashed lines denote the linear sum of the deactivation of parameters
664 (L & Kor H & K). Filled circle, significant difference from the linear sum (#-test, p < 0.05).
665 Note that the effects are linear or sublinear for L & K deactivation, whereas they are
666  supralinear for H & K.
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669  Figure SS5. Simulation of cortical deactivation with noise addition.

670 a, Response of the model when a scaled Gaussian noise (20% coefficient of variation) was
671  added to each parameter. Same format as Fig. l1c. b, Impairment of behavioural measures
672 as a function of deactivation size. Filled circles, significant difference from optimal
673  condition (#-test, p < 0.05). Note that this deactivation method produced largely similar
674  effects to the downscaling (Fig. 1). First, the deactivation of feedback gain (L) impaired
675 both spatial accuracy (endpoint error) and response speed (return time), whereas the
676  deactivation of Kalman gain (K) impaired the endpoint error but less effect on response
677 speed at smaller deactivation size (10—30 % coefficient of variation). Second, the
678  deactivation of forward models (4, B, H) led severe oscillations. Finally, deactivation of
679  sensory observation () impaired both spatial accuracy and response speed (max deviation
680 and max deviation time).
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681  Supplementary Discussion: Simulation of cortical cooling with noise addition

682 In addition to downscaling, we also simulate the effect of cortical cooling by adding
683  scaled Gaussian noise to each OFC parameter (see Methods). This method was based on
684  an assumption that cortical cooling increases noise on neural processing. Results showed
685 that the noise addition produced qualitatively similar effects on behavioural parameters to
686  the downscaling, shown in Fig. 1. First, the deactivation of feedback gain (L) impaired both
687  spatial accuracy (endpoint error) and response speed (return time), whereas the deactivation
688 of Kalman gain (K) impaired the endpoint error but less for return time at smaller
689  deactivations (10 — 30 % coefficient of variation). Second, the deactivation of forward
690 models (4, B, H) led to severe oscillations. Lastly, deactivation of sensory observation (H)
691  impaired both spatial accuracy and response speed (max deviation and max deviation time).
692 It is noteworthy, however, that there were some discrepancies between simulation
693  results with noise addition and the cortical cooling. First, the max deviation and max
694  deviation time was less impaired by the deactivation of feedback gain (L) or Kalman gain
695  (K). This is inconsistent with the results of PMd cooling, where all these parameters were
696  significantly impaired (Fig. 3c). Second, a smaller deactivation of parameters was not able
697  to predict the results of milder cooling of PMd (8 °C in probe temperature), which impaired
698  response speed but not spatial accuracy. Although both mechanisms (reduction of gain and
699 increase of noise) might underlie the effect of cortical cooling, the downscaling of model

700  parameters appears to be a better model for the effects of cortical cooling.
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