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Abstract:

Many clinical and preclinical studies report higher prevalence and severity of chronic pain in females.
We used hyperalgesic priming with interleukin 6 (IL-6) priming and PGE, as a second stimulus as a
model for pain chronicity. Intraplantar IL-6 induced hypersensitivity was similar in magnitude and
duration in both males and females, while both paw and intrathecal PGE, hypersensitivity was more
persistent in females. This difference in PGE, response was dependent on both circulating estrogen
and translation regulation signaling in the spinal cord. In males, the duration of hypersensitivity was
regulated by testosterone. Since the prolactin receptor (Prlr) is regulated by reproductive hormones
and is female-selectively activated in sensory neurons, we evaluated whether Prlr signaling
contributes to hyperalgesic priming. Using APRL, a competitive Prlr antagonist, and a mouse line with
ablated Prlr in the Nav1.8 sensory neuronal population, we show that Prlr in sensory neurons is
necessary for the development of hyperalgesic priming in female but not male mice. Overall, sex-
specific mechanisms in the initiation and maintenance of chronic pain are regulated by the

neuroendocrine system and, specifically, sensory neuronal Prlr signaling.
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Significance Statement:

Females are more likely to experience chronic pain than males, but the mechanisms that underlie this
sex difference are not completely understood. Here, we demonstrate that the duration of mechanical
hypersensitivity is dependent on circulating sex hormones in mice — where estrogen caused an
extension of sensitivity and testosterone was responsible for a decrease in the duration of the
hyperalgesic priming model of chronic pain. Additionally, we demonstrated that Prolactin receptor
expression in Nav1.8" neurons was necessary for hyperalgesic priming in female, but not male mice.
Our work demonstrates a female-specific mechanism for the promotion of chronic pain involving the

neuroendrocrine system and mediated by sensory neuronal prolactin receptor.
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Introduction:

Many chronic pain conditions, such as migraine, fibromyalgia, temporomandibular joint
disorders (TMD/TMJ), irritable bowel syndrome (IBS), and rheumatoid arthritis have a 2 to 6-fold
greater prevalence or symptom severity in women when compared to men (Unruh, 1996; Berkley,
1997; Fillingim et al., 2009; Traub and Ji, 2013). Pain symptoms in women with these chronic pain
conditions can change during the menstrual cycle as gonadal hormone concentrations fluctuate, and
some, but not all, pain conditions decrease in frequency or intensity after menopause (Houghton et
al., 2002; LeResche et al., 2003; Slade et al.,, 2011; Mathew et al., 2013). There is a general
consensus that plasticity mechanisms in peripheral and central nociceptive pathways are critical for
chronic pain development in males and females, but the precise mechanisms governing this plasticity
are increasingly recognized as sex dimorphic and are still largely unknown. Nevertheless, recent
progress was made in understanding underlying mechanisms for sex-dependent mechanisms of
nociceptive plasticity (Mogil et al., 2011; Sorge et al., 2011; Sorge et al., 2015; Rosen et al., 2017,
Martin et al., 2019). These findings on sex differences in nociceptive plasticity mechanisms,
combined with abundant clinical and rodent data on the effects of gonadal hormones on pain,
indicate a critical role for gonadal hormones in regulation of pain chronification (Fillingim et al., 2009;
Traub and Ji, 2013).

Clearly there are gonadal hormone-regulated mechanisms that promote chronic pain in
females, but these mechanisms have not been thoroughly characterized. Prolactin (PRL) and its
receptor (Prlr) are prime candidates for this potential mechanism, since responsiveness to PRL in a
variety of cells, including sensory neurons, is closely regulated by estrogen (Childs et al., 1999; Pi
and Voogt, 2002; Diogenes et al., 2006; Belugin et al., 2013). Thus, Prlr signaling sensitizes pain-
related ion channels and causes increased excitability in nociceptors specifically in females

(Diogenes et al., 2006; Patil et al., 2013b; Liu et al., 2016; Patil et al., 2019b; Patil et al., 2019a).
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Moreover, Prir function in female nociceptors is governed by estrogen signaling via a non-genomic
pathway that involves sex-specific translation of Prlr mRNA (Patil et al.,, 2019b). Based on these
previous studies, we hypothesized that Prir signaling might differentially contribute to female-specific
regulation of chronic pain that can be assessed by use of the hyperalgesic priming model (Aley et al.,
2000). Our work reveals that initiation, maintenance and magnitude of hyperalgesic priming is
governed by estrogen-dependent regulation of Prlr signaling in sensory neurons. Therefore, PRL
signaling to Prilr is a gonadal hormone-dependent mechanism that promotes plasticity in the

nociceptive pathway supporting development of chronic pain specifically in females.

Materials and Methods:

Animals

All animal experiments were approved by the University Texas Health Science Center at San
Antonio (UTHSCSA) and University of Texas at Dallas (UTD) Institutional Animal Care and Use
Committee (IACUC). We followed guidelines issued by the National Institutes of Health (NIH) and the

Society for Neuroscience (SfN) to minimize suffering and the number of animals used.

Key reagents and mouse lines

8-12 week old female and male mice were purchased from Jackson Laboratory (Bar Harbor, ME).
Ovariectomized (OVX) and gonadectomized (GdX) mice were purchased from Jackson Laboratory (Bar
Harbor, ME). The estrous phases in adult females were determine by vaginal gavage as described by
Caligionin (Caligioni, 2009). Estrogen and testosterone replacement procedures to generate OVX-E-2
and GdX-T mice were performed as previously described (Diogenes et al., 2006; Nettleship et al.,
2007). 17B-estradiol (E-2; 300 pg per injection) or testosterone (T; 300 ug per injection) were injected

I.P. two times a week for three weeks into OVX and GdX mice, respectively.
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The Prir"™ line was generated as previously described (Brown et al., 2016). Prir"" line has inverse
lox sites; hence, Cre-recombination ablates the Prlr gene and activates GFP in targeted cells.

Estrogen was purchased from Sigma-Aldrich (cat: PHR1353-1G) Testosterone was purchased
from Sigma-Aldrich (cat: T1875-1G) 4EGI was purchased from Tocris (Minneapolis, MN). Vehicle for IL-
6, PGE;,, PRL and APRL was 0.9% saline or PBS. Vehicle for 4EGI-1 was 0.1% DMSO in 0.9% saline.

Human PRL was generated in an E.coli expression system containing plasmid with human PRL
(Dr. Goffin; INSERM, Paris). Thus, PRL is fully processed, unmodified (i.e. no glycosylation and
phosphorylation) and has molecular weight of =23 kDa. The Prlr antagonist, A1-9-G129R-hPRL (APRL)
(Rouet et al., 2010), which is a modified PRL that binds to and blocks the function of Prlr in rat, mouse
and human (Bernichtein et al., 2003) was also synthesised by Dr. Goffin (INSERM, Paris). We and
others thoroughly confirmed the specificity of APRL using in vitro (Bernichtein et al., 2003; Scotland et

al., 2011), and in vivo studies (Rouet et al., 2010), including using Prlr KO mice (Belugin et al., 2013).

RT-PCR

RT-PCR was performed on hindpaw, L3-L5 DRG, and spinal cord (SC) total RNA. Dissected tissue
was stored in RNA Later at -20 degrees (Qiagen, Valencia, CA, USA). RNA extraction was done using
the QIAzol lysis reagent and the RNAeasy Mini Kit (Qiagen), and manufacturer’s instructions were
followed. cDNA was synthesized using Superscript 1l First Strand Synthesis kit (Invitrogen, CA,
California, USA). Primers were: Prir-F (5-CCATTCACCTGCTGGTGGAATCCT-3"), GFP-F (5'-
AAGGCTACGTCCAGGAGCGCACCA-3), GFP-R1 (5-CGTCCTCGATGTTGTGGCGGATC-3) and
GFP-R2 (5'-TGGTGCGCTCCTGGACGTAGCCTT-3'). Amplification of target sequences was detected

on 1 or 1.5% agarose gel depending on band size.

Behavior experiments
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Hyperalgesic priming was established using a previously described model (Aley et al., 2000;
Kim et al.,, 2016). IL-6 was injected intra-plantarly (I.Pl.), which created a transient mechanical
hypersensitivity and initiated hyperalgesic priming. After IL-6-induced mechanical hypersensitivity
resolved and thresholds returned to a baseline level, PGE, was administered either 1.Pl. or
intrathecally (1.T.) to precipitate the primed state and induce mechanical hypersensitivity. PRL, APRL,
or 4EGI-1 were administered immediately prior to IL-6 or PGE, administration. To evaluate
mechanical hypersensitivity following the I.PI. or I.T. injections, animals were habituated for 45-60
minutes in elevated behavior racks and then paw withdraw threshold was determined using the up-
down von Frey method (Chaplan, et al., 1994). Both the experimenters performing the behavior and

data analysis were done blinded.

Experimental Design and Statistical Analysis

GraphPad Prism 7.0 (GraphPad, La Jolla, CA) was used for all statistical analyses of data. Data
are presented as mean * standard error of the mean (SEM), with “n” referring to the number of
independent animals per group in behavioral experiments. The sex of the animals used in each
experiment is described in the text. Differences between groups were assessed by either mixed effects
or repeated measures ANOVA with Bonferroni post-hoc tests and is noted for each figure. Statistically
significance was determined as p<0.05. Interaction F ratios, and the associated p values are reported

in the text.


https://doi.org/10.1101/2020.04.25.061663
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061663; this version posted June 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Results:

Sex differences in hyperalgesic priming in mice are regulated by gonadal hormones and
translation regulation.
Chronic pain occurs more frequently in females (Unruh, 1996; Berkley, 1997; Fillingim et al., 2009;
Traub and Ji, 2013). This difference could be mediated by sex-dependent mechanisms controlling the
transition from acute to chronic pain. We used the hyperalgesic priming paradigm (Aley et al., 2000) to
gain insight into female-specific mechanisms involved in the acute to chronic pain transition. In our
experiments, hyperalgesic priming was initiated with an intraplantar (I.Pl.) injection of IL-6 (0.5 ng).
When the initial hypersensitivity from this IL-6 injection had resolved, the presence of priming was
assessed with either an I.PI. or intrathecal (I.T.) injection of PGE; (0.1 ug; Figure 1A). Female C57BL/6
mice that were primed with IL-6 and then subsequently received an I.PI injection of PGE; had a slightly
longer persistence of mechanical hypersensitivity when compared to males (repeated measures
ANOVA; F (11, 88) = 1.437; P=0.0.1708; n=5; Figure 1B). L.T. injection of PGE; in females had a
significant longer duration of response to PGE, when compared to males (repeated measures ANOVA;
F (14, 91) = 8.975 P<0.0001 n=5; Figure 1C). To rule out a possible strain-dependent sex effect the
experiment with spinal administration of PGE, following I.PIl. IL-6 was repeated in male and female
Swiss Webster (SW) mice. The difference in the length of the PGE, response following LT.
administration was even longer lasting in this outbred strain (repeated measures ANOVA; F (10, 140) =
8.409; P<0.0001; n=8; Figure 1D). To gain insight into the mechanistic underpinnings of the sex
difference we identified, we did the remaining experiments with I.PIl. injection of IL-6 and I.T.
administration of PGE, in C57BL/6 mice.

In the above and following experiments the female animals were all in the estrous phase of the

estrous cycle at the time of IL-6 injections. The hyperalgesic priming model lasts at least a week, and
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despite controlling for the estrous phase at the time of IL-6 injection, female mice cycle quickly (4-5
days) through other phases of the cycle and circulating blood estrogen (E-2) levels will vary on a day-
to-day basis. Hence, to control for E-2 levels we used ovariectomized (OVX) and OVX with E-2
supplementation (OVX-E-2) female mice. The substantial reduction of circulating E-2 in OVX mice
(Green et al., 2016) did not change the initiation phase of priming, but the persistence of the response
following the PGE; injection was significantly shorter (Mixed measures ANOVA; F (34, 220) = 8.710
P=0.0011; n=5-6, Figure 2A). Administering E-2 to keep circulating E-2 at approximately proestrus
phase levels in OVX-E-2 mice (Green et al., 2016) resulted in a significant extension of both the
initiation (IL-6) and priming (PGE;) phases in comparison to intact females in the hyperalgesic priming
model. Testosterone (T) mediates male-specific nociceptive responses (Sorge et al., 2011).
Gonadectomized (GdX) mice have almost no circulating T (Green et al., 2016). These GdX mice had a
substantially longer response to IL-6 injection than intact male mice. Males with IL-6-induced
mechanical hypersensitivity usually return to baseline mechanical sensitivity within 4-5 days (Kim et al.,
2016) (Figures 1B-1D). In contrast, the initiation phase of hyperalgesic priming lasted >31d in GdX
males, and only partially recovered to baseline levels, which we displayed on a separate graph (Figure
2B). The PGE, phase was also lengthened in GdX compared to intact male mice (Repeated measures
ANOVA; F (12, 84) = 5.016; P<0.0001; n=5-6; Figure 2C). Testosterone rescue in GdX-T animals
returned the initiation and priming phases to the same timeline as intact males (Figure 2C). These
results show that the time course of hyperalgesic priming is more pronounced in female mice when
compared to male mice, and is closely regulated by circulating gonadal hormones in both sexes.
Translation regulation plays a key role in the development of hyperalgesic priming (Price and
Inyang, 2015; Khoutorsky and Price, 2018). In previous experiments that were mostly done in male
animals, we have shown that inhibition of cap-dependent translation at the time of initiation blocks the
development of hyperalgesic priming (Melemedjian et al., 2010; Asiedu et al., 2011; Melemedjian et al.,

2014; Moy et al., 2017). Inhibition of cap-dependent translation during the maintenance phase fails to
9
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reverse established priming (Asiedu et al., 2011). In concordance with previous experiments
(Melemedjian et al., 2010; Asiedu et al., 2011; Melemedjian et al., 2014), the cap-dependent translation
inhibitor 4EGI-1 (10 pg) given I.T. immediately prior to PGE, stimulation did not affect PGE,-induced
mechanical hypersensitivity in males (repeated measures ANOVA; F (8, 64) = 0.3153; P=0.9575; n=5;
Figure 3A). In stark contrast, 4EGI-1 dramatically reduced the persistence of PGE, precipitated
mechanical hypersensitivity in females (repeated measures ANOVA,; F (8, 64) = 10.60; P<0.0001; n=5;
Figure 3B). We next evaluated whether the difference between males and females in the regulation of
maintenance of hyperalgesic priming was defined by gonadal hormone status. Removal of circulating
E-2 using OVX females abolished the influence of 4EGI-1 on the hyperalgesic priming (repeated
measures ANOVA; F (9, 90) = 0.7394; P=0.6719; n=6; Figure 3C). These results indicate that the
magnitude and maintenance of chronic pain is regulated by gonadal hormones in male and female
mice and that the enhanced priming effect seen in intact female mice is dependent on translation
regulation at the level of the DRG and/or spinal cord. Interestingly, previous work done entirely in male
rodents suggested that translation regulation events at the level of the DRG and/or spinal cord were not

involved in maintenance of hyperalgesic priming (Asiedu et al., 2011; Ferrari et al., 2015).

A female-specific role for sensory neuronal Prlr in hyperalgesic priming

Responsiveness to PRL in sensory neurons is substantially higher in females (>40 fold) than in
males (Patil et al., 2013b; Patil et al., 2019b; Patil et al., 2019a), and strictly controlled by E-2
(Diogenes et al., 2006; Patil et al., 2019b). Endogenous and extra-pituitary PRL is elevated in paw and
spinal cord after inflammation and surgical injury (Scotland et al., 2011; Patil et al., 2013a). Accordingly,
we examined whether mimicking the presence of endogenous PRL after injury could prolong
mechanical hypersensitivity induced by spinal PGE; in both females and males. To do this, we primed
the nociceptive pathway with a single injection of exogenous PRL (1ug) I.PI. (this PRL dosage is active

in females but not males (Patil et al., 2019b)) and precipitated hyperalgesic priming with I.T. PGE; at 1d
10
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post-PRL treatment (Figure 4A). We were able to administer PGE; at 24 h post I.Pl. PRL because 1 ug
PRL produces mechanical hypersensitivity for only approximately 3-4 h in females (Patil et al., 2019b).
PGE; evoked mechanical hypersensitivity was substantially longer lasting in PRL treated female mice
compared to vehicle-primed females (repeated measures ANOVA; F (6, 60) = 6.398; P<0.0001; n=6;
Figure 4C), but this was not the case in male mice (repeated measures ANOVA; F (4, 40) = 0.2318;
P=0.9189; n=5-7; Figure 4B).

Our present findings suggest that a translation regulation event at the spinal level is critical for
enhanced pain chronification in female mice. Our previous work demonstrated that Prlr signaling in the
central terminals of nociceptors is important for acute pain models, specifically mechanical
hypersensitivity in response to inflammation and injury in females (Patil et al., 2019b). This sex
difference can be accounted for by increased translation of Prir mRNA in central terminals of female
mice (Patil et al., 2019b) suggesting transport of this mMRNA to central terminals of nociceptors. To gain

M mice and crossed them with

better insight into regulation of Prir mRNA localization, we used Prir
Nav1.8°® animals to generate a Nav1.8°®/Prir" (Prlr CKO) in a set of sensory neurons (Figure 5A).
The Prir" line has inverse lox sites; hence, Cre-recombination ablates the Prlr gene and activates GFP
expression in targeted cells driven by the Prir promoter (Figure 5A). Analysis of the Prlr CKO showed
that the truncated transgene Prlr mRNA contains the entire 5-UTR; 4 exons and an intron between
exon 1-4 (E1-E4) and GFP, but it does not have the remaining Prir exons or the 3'-UTR (Figure 5A).
Thus, RT-PCR with Prir-F and GFP-R1 primers (red arrows; Figure 5A) produced a 2500 bp band
containing an intron sequence from total RNA of female Prir CKO, but not Prif" (Figure 5B).
Interestingly, the 2500bp PCR product was detected in spinal cord mRNA suggesting constitutive
axonal transport of Prir mMRNA (band densities - DRG: 36.06£6.24 vs SC: 123.95+17.12; n=3; Figure
5B). To confirm this result, we PCR-amplified GFP (253 bp-band) with GFP-F and GFP-R2 primers

(blue arrows; Figure 5A) using DRG and spinal cord mRNA from Prlf" and Prir CKO mice. Again, GFP

MRNA was detected not only in DRG of Prlr CKO females, but also in spinal cord (band densities -
11
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DRG: 30.22+5.01 vs SC: 81.58+13.33; n=3; Figure 5C). We next examined PGP9.5 mRNA (Uchll
gene), which undergoes axonal transport in DRG neurons (Willis et al., 2005; Willis et al., 2007). Uchl1
MRNA was found in the hindpaw (HP), but at an apparently lower level than observed in the DRG (HP:
25.38+5.58 vs DRG: 110.93+11.84, n=3; Figure 5D). In contrast, the construct activated in Prlr CKO
containing the Prlr 5’UTR, Prlr E1-E4 and GFP mRNA was at higher levels in the hindpaw than in the
DRG (Figure 5E). These findings suggest that female Prlr mRNA is translocated to sensory neuronal
peripheral and central terminals.

Next, we used Prlr CKO mice to examine the contribution of sensory neuronal Prir to the
regulation of the development of chronic pain in females and males. Prir ablation in male sensory
neurons did not affect either the initiation or persistant phase in the hyperalgesic priming model
(repeated measures ANOVA; F (12, 66) = 9.445; P<0.001; n=4-6; Figure 6A). In contrast, Prlr CKO
female mice showed both a significant reduction in mechanical hypersensitivity in response to IL-6
injection and these mice also showed a greatly reduced response to PGE; injection — persistent phase
- compared to Prir" mice (repeated measures ANOVA; F (12, 120)=1.309, P=0.2219; n=5-7; Figure
6B). We conclude from this experiment that Prlr in sensory neurons plays a key role in initiation and

maintenance of chronic pain in female, but not male, mice.

Prir signaling and the initiation and maintenance of hyperalgesic priming in female mice

Ablation of Prlr in sensory neurons does not allow for identification of peripheral or central sites
driving hyperalgesic priming or the time course of when Prir signaling occurs during hyperalgesic
priming. To explore this in detail, the Prlr antagonist A1-9-G129R-hPRL (APRL) (Rouet et al., 2010;
Patil et al.,, 2019b), was delivered at different locations and time points. A single injection of the
antagonist APRL (5ug) into the paw immediately prior to the I.PIl. IL-6 priming injection did not affect
mechanical hypersensitivity in response to the IL-6 injection (Figure 7A). However, there was a

significant reduction in mechanical hypersensitivity during the persistent, post PGE, phase in animals
12
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that received APRL compared to those that received the vehicle. These APRL treated female mice
returned to baseline levels of mechanical sensitivity within 2 days of the PGE, injection (repeated
measures ANOVA; F(30, 195) = 6.043; P<0.0001; n=5-6; Figure 7A). |.T. administration of APRL (5ug)
immediately prior to I.LPl. IL-6 led to a transient reduction in mechanical hypersensitivity for <3h
following I.Pl. IL-6 injection (Figure 7A). The degree of mechanical hypersensitivity following PGE;
injection was almost identical to that observed with I.Pl. administration of APRL. We then evaluated the
role of Prlr signaling in the maintenance of hyperalgesic priming with I.PI. or I.T. administration of APRL
(5ug) prior to PGE;, administration. Blockage of Prlr signaling in the paw by I.Pl. injection of APRL prior
to the injection of PGE, did not influence mechanical hypersensitivity magnitude or duration. In
contrast, I.T. administration of APRL coupled with IL.T. PGE, administration led to inhibition of
mechanical hypersensitivity and a faster return to baseline (repeated measures; F (30, 210) = 7.192;
P<0.0001; n=5-6; Figure 7B).

The conventional view is that endogenous PRL comes almost exclusively from the pituitary gland
(Ben-Jonathan et al., 2008). However, extra-pituitary sources for PRL have been reported and these
PRL sources are especially abundant in humans (BenJonathan et al., 1996). In rodents, inflammation
and tissue injury cause an increase in PRL in the paw and spinal cord (Scotland et al., 2011; Patil et al.,
2013a). We examined whether endogenous pituitary PRL is involved in the regulation of pain chronicity
in male and female mice. Circulating PRL that has originated in the pituitary can be removed by either
hypophysectomy (Green et al., 2016) or systemic treatment with bromocriptine (Grattan, 2015). Both
approaches have downsides, but we opted to use the systemic bromocriptine approach because
bromocriptine is used in clinical studies and hypophysectomy drastically affects gonadal hormone
production. We systemically treated both male and female mice with bromocriptine as previously
described (Yip et al., 2012). Removal of endogenous pituitary PRL did not influence mechanical

hypersensitivity during IL6 phase of hyperalgesic priming initiation in male mice but did slightly prolong
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the PGE; precipitated hypersensitivity (repeated measures ANOVA,; F (10, 90) = 2.980; P=0.0028; n=5-
6; Figure 8A). In female mice the IL-6 response was enhanced in the bromocriptine treated females but
the priming response to PGE, was equivalent in vehicle and bromocriptine treated mice (repeated
measures ANOVA; F (14, 126) = 3.127; P=0.0.0003; n=5-6; Figure 8B). Collectively, these results
suggest that endogenous extra-pituitary PRL signaling plays a key role in hyperalgesic priming in
female mice. During initiation of chronic pain this source can be peripheral or central but the crucial

source of PRL during the maintenance of pain chronicity is likely central.

Discussion:

Studies in both animals and humans demonstrate sexually dimorphic mechanisms controlling the
development and resolution of chronic pain (Joseph et al., 2003; Sorge et al., 2015; Nasir et al., 2016;
Taves et al., 2016; Lopes et al., 2017; Rosen et al., 2017; Mapplebeck et al., 2018; Paige et al., 2018;
Dance, 2019; North et al., 2019; Patil et al., 2019b; Ray et al., 2019a; Rosen et al., 2019). Among these
sex differences, several factors have been discovered that drive chronic pain specifically in males
(Sorge et al., 2015; Taves et al., 2016; Mapplebeck et al., 2018; Megat et al., 2018; Paige et al., 2018;
Shiers et al., 2018; Martin et al., 2019) but relatively little is known about such chronic pain mechanisms
in females. There is evidence that these mechanisms are closely regulated by gonadal hormones
(Traub and Ji, 2013). For instance, the apparent male-specific effect of microglia-driven P2X4 signaling
in neuropathic pain can be conferred to females with testosterone treatment (Sorge et al., 2015). In
humans, sex differences in tibial nerve transcriptomes also demonstrate a signature for gonadal
hormone influence on sensory neuronal transcriptomes across the lifespan in females (Ray et al.,
2019b). Experiments described here clearly demonstrate differential roles of gonadal hormones in
development of chronicity in painful conditions with estrogen exacerbating priming effects and

testosterone playing a protective role.
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Additionally, we demonstrated that translation regulation plays a sex-specific role in the
maintenance of chronic pain in female mice. This is especially relevant considering that translation
control mechanisms are known contributors to the sensitization of nociceptors (Khoutorsky and Price,
2018; Megat and Price, 2018). Our previous work demonstrated that disruption of translation regulation
signaling in the periphery or spinal cord was only capable of interfering with hyperalgesic priming if
these treatments were given at the time of the priming event (Melemedjian et al., 2010; Asiedu et al.,
2011; Melemedijian et al., 2014). However, these previously published experiments were done entirely
in male mice. Our data suggest that targeting these translation regulation mechanisms for the treatment
of pain may have additional therapeutic benefits in women. A potential explanation for this differential
effect on translation machinery in females is an effect of estrogen on translation machinery (Bronson et
al.,, 2010; Ochnik et al.,, 2016). E-2-dependent connections between translational control of the
Suppressor of Cytokine Signaling (SOCS) and mTOR phosphorylation (Augusto et al., 2010) or
regulation of Rheb signaling (Pochynyuk et al., 2006) have been proposed (Matthews et al., 2005;
Arbocco et al., 2016). These signaling pathways also play key roles in the excitability of nociceptors
(Moy et al., 2017; Khoutorsky and Price, 2018; Megat et al., 2019b; Megat et al., 2019a) and may play
a more prominent role in the maintenance of persistent nociceptor plasticity in females than males.

Previous work indicates that sex-dependent mechanisms regulating hypersensitivity in
inflammatory and neuropathic pain conditions can be attributed to distinct immune cell types: microglia
in males (Sorge et al., 2011; Sorge et al., 2015; Taves et al., 2016; Paige et al., 2018) and T cells in
females (Sorge et al., 2015). Importantly, there is an opinion that these cells are regulated by gonadal
hormones. Altogether, key molecules involved in sex-dependent regulation of the initiation,
maintenance, and resolution would need to (1) be controlled by gonadal hormones, (2) induced by
injury, (3) regulate immune cells, (4) undergo local translation control, and (5) be capable of regulating
many other genes. The neuroendocrine hormone PRL and its receptor Prir fit all these requirements.

First, Prir-mediated PRL effects are sex- and gonadal hormone-dependent in many tissues and cell
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types, including sensory neurons (Torner et al., 2001; Ben-Jonathan et al., 2008; Belugin et al., 2013;
Patil et al., 2013a; Patil et al., 2019b; Patil et al., 2019a). Second, many clinical and preclinical studies
show that endogenous release of PRL from both pituitary and extra-pituitary origins is induced by
inflammation and tissue injury (Chernow et al., 1987; Noreng et al., 1987; BenJonathan et al., 1996;
Yardeni et al., 2007; Scotland et al., 2011; Patil et al., 2013a). Third, PRL is an effective direct and/or
indirect activator of immune cells, especially macrophages and T-cells (Matera et al., 2001; Savino et
al., 2016; Tang et al., 2017). Moreover, many chronic autoimmune diseases affect females more
frequently than males, and a potential role for PRL may in part explain this phenomenon for certain
autoimmune diseases such as lupus (Tang et al., 2017; Rizzetto et al.,, 2018). Fourth, translational
regulation of Prir in sensory neurons has been suggested in our previous work (Patil et al., 2019b), and
herein we show evidence in support of the translocation of Prlr mRNA to peripheral and central
terminals of female or male sensory neurons where it could be translated in a female sex hormone
specific fashion (Patil et al., 2019b). Finally, Prir activation leads to epigenetic changes and
transcription regulation of many genes via the STAT5 pathway (Bole-Feysot et al., 1998; Ben-Jonathan
et al., 2008). The data presented here is one of the first demonstrations of a female-specific chronic
pain initiation and maintenance mechanism acting directly on sensory neurons. Another is calcitonin
gene related peptide (CGRP), which is released from sensory neurons but its site of action to produce
pain specifically in female mice is not known (Avona et al., 2019). Our findings using a sensory neuron
specific knockout of Prlr combined with pharmacological antagonism of Prlr at specific sites suggests
that Prir signaling in sensory neuronal terminals of the spinal cord controls initiation and maintenance of
a chronic pain state in female mice. Having said this, we cannot rule out the possible influence of
immune cells in our observations, including immune cells as a possible source of PRL that acts on Prlir
in the setting of hyperalgesic priming in female mice.

A previous study in rats demonstrated that hyperalgesic priming to carrageenan does not occur in

females (Joseph et al., 2003). Subsequent studies in mice and rats have shown additional sexual
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dimorphisms (Megat et al., 2018; Paige et al., 2018; Inyang et al., 2019), across the lifespan (Moriarty
et al., 2019), but none of them have observed a similar absence of priming in female rodents. In fact,
our work shows, at least with IL-6 as the priming stimulus, that the magnitude and duration of the
response to PGE; given peripherally or intrathecally is longer in female mice than male mice.

In conclusion, our findings demonstrate that sensory neuronal Prlr signaling relies on gonadal
hormones and translation mechanisms to contribute to a female-specific regulation of the initiation and
maintenance of pain chronicity. These results add a new depth to our understanding of sexually
dimorphic signaling pathways involved in chronic pain development. Additionally, our data further
substantiate the critical role that the neuroendocrine system and translation regulation play in
nociceptor and nociceptive circuit excitability in response to a broad variety of important physiological

stimuli.
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Figure 1: Persistence of hyperalgesic priming is greater in female mice.

(A) Schematic of the IL-6-induced hyperalgesic priming model. BL, baseline measurements; SC,
spinal cord. Brown arrows are injection time points. Blue arrows are post-PGE, mechanical
nociception measurement time points. (B) Hyperalgesic priming model; IL6 priming into paw and
PGE; injection into paw of female and male C57BL/6 mice. (C) Hyperalgesic priming model; IL6
priming into paw and PGE; injection into spinal cord of female and male C57BL/6 mice. (D) The same
model as in panel C in female and male ICR mice. Injection time points for IL-6/Veh and PGE, are
indicated by arrows. Repeated measures ANOVA with Bonferroni post-hoc test (For Fig 1C, IL-6-
male compared to Veh-Female: * = p<0.05; *** = p<0.001; **** = p<0.0001. IL6-Female compated to
Veh-Female: % % % %= p<0.0001; * % k= p<0.001. For all others * = p<0.05; *** = p<0.001; **** =

p<0.0001. n=5-8).
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Figure 2: Contribution of gonadal hormones profoundly influence hyperalgesic priming in

female and male mice

(A) Hyperalgesic priming model with spinal PGE; injection in WT female, OVX and OVX+E (B) GdX,
and (C) WT male, GdX and GdX-T C57BL mice where figure 2B displays the disparity in timelines
between GDX animals and those animals that are naive or GdX-T. Injection time points for IL-6 and
PGE; are indicated by arrows. Repeated measures ANOVA with Bonferroni post-hoc test (Fig 1A: *=
p<0.05; **= p<0.01; ***= p<0.001; ****= p<0.0001 for OVX-E compared to female and * %= p<0.01
for OVX compared to female; Fig 1C: *= p<0.05 for GdX compared to Male and * %= p<0.01 for

GdX-T compared to male; n=5-6).
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Figure 3: Spinal local translation only contributes to hyperalgesic priming in intact female

mice

(A) Hyperalgesic priming model with spinal PGE; injection in WT male, (B) WT female and (C) OVX
mice. 4EGI-1 (10ug) or vehicle was administrated spinally at 30 min prior to PGE; injection. Injection
time points for IL-6 and 4EGI-1/PGE; are indicated by arrows. Repeated measures ANOVA with

Bonferroni post-hoc test (**** p<0.0001; n=5-6).
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Figure 4: Peripheral PRL only induces hyperalgesic priming in female mice
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(A) Schematic of the PRL-induced hyperalgesic priming model. BL, baseline measurements after
PRL-induced hypersensitivity is fully resolved; SC, spinal cord. Brown arrows are injection time
points. Blue arrows are post-PGE, treatment mechanical nociception measurement time points. (B,
C) Hyperalgesic priming model; PRL or vehicle priming into paw and PGE; injection into spinal cord
of male (B) or female (C) C57BL mice. Injection time points for PGE, are indicated by arrows.

Repeated measures ANOVA with Bonferroni post-hoc test (*** p<0.001; **** p<0.0001; n=5-7).
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Figure 5: Evidence for translocation of Prlr mRNA to sensory neuronal peripheral and central

terminals in female mice

(A) Schematic of Prir"™ and Nav1.8°®/PrIr"" (Prlr CKO) genes and corresponding transcribed mRNA
from these genes. Location of Prir-F and GFP-R1 (red arrows) and GFP-F and GFP-R2 (blue arrow)
are shown. (B) PCR between Prir exon 4 and GFP with Prlr-F (exon 4) and GFP-R2 primers for DRG
and spinal cord (SC) mRNA from Prif"™ (Con) and Prir CKO of female mice. (C) PCR for GFP with
GFP-F and GFP-R1 primers for DRG and SC mRNA from PriIr"™ (Con) and Prlr CKO of female mice.
PCR for PGP9.5 (D) and GFP with GFP-F and GFP-R1 primers (E) for DRG and hindpaws (HP)

mRNA from Prir" (Con) and Prlr CKO female mice.
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Figure 6: Regulation of hyperalgesic priming by sensory neuronal Prir selectively in female

mice
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(A, B) Hyperalgesic priming model with peripheral IL-6/Veh and spinal PGE, in Prif""

(Prlr-lox;
control) and Nav1.8°*/Prlf"™ (Prir CKO) male (A) and female (B) mice. Injection time points for IL-
6/Veh and PGE, are indicated by arrows. Statistic is repeated measures ANOVA with Bonferroni
post-hoc test (Figure 6A: *= p<0.05; **= p<0.01, ***= p<0.001 for Prir-lox compared to Veh-Prlr-lox;
and % % % %= p<0.0001; * *=p<0.01; for Prlr CKO compared to Veh-Prlr-lox; Figire 6B: *= p<0.05;

**= p<0.01, ***= p<0.001 n=4-7).
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Figure 7: Regulation of the initiation and maintenance of hyperalgesic priming by peripheral

and spinal Prir in female mice

Hyperalgesic priming model in female mice with peripheral IL-6 and spinal PGE,. (A) Schematic of
injection locations and timing for (B) Vehicle (No APRL), Prlr antagonist (APRL; 5ug) was co-
administrated with IL-6 in paw or spinal cord (SC). (C) Schematic of injection locations and timing of
(D) Vehicle (No APRL) was injected into paw. APRL (5ug) was given into the paw or spinal cord (SC)
30 min before spinal PGE,. Repeated measures ANOVA with Bonferroni post-hoc test (*= p<0.05; **=
p<0.01; ***= p<0.001; ****= p<0.0001 for APRL I.T. compared to no APRL and * % % %= p<0.0001;

* % %= p<0.001; * *=p<0.01; *=p<0.05 for APRL I.Pl. compared to no APRL; n=5-7).

34


https://doi.org/10.1101/2020.04.25.061663
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061663; this version posted June 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

N
L

=
tn

Mechanical threshold(g)
e =
¢ ol

0.0 — . . : . . . : . . .
BL 1t 3 1 BL 1t 3h 1 2 3 5
Time (d)
B Female
2.0
IL-6 PGE,

=

%
af—
[

Mechanical threshold(g)
& B

4 Veh
@ Brire

BL1h 3h 1 2 6 B8 10 13 1520 22BL th3h 1 2 3 4 7 12
Time (d)
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mice
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(A, B) Hyperalgesic priming model with peripheral IL-6 and spinal PGE; in vehicle and bromocriptine
(i.p.; BrCre) treatments of male (A) and female (B) mice. Injection time points for IL-6 and PGE; are
indicated by arrows. Statistic is repeated measures ANOVA with Bonferroni post-hoc test (*= p<0.05,

***= p<0.001; n=5-6).
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