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Abstract. The filoviruses Ebola (EBOV) and Marburg (MARV) cause fatal disease in humans 

and nonhuman primates but are associated with subclinical infections in bats, with Egyptian 

rousette bat (ERB, Rousettus aegyptiacus) being a natural MARV reservoir. To understand the 

nature of this resistance, we have analyzed how EBOV and MARV affect the transcriptomes of 

multiple ERB tissues. We have found that while the primary locus of infection was the liver, 

gene expression was affected in multiple tissues, suggesting a systemic response. We have 

identified transcriptional changes that are indicative of inhibition of the complement system, 

induction of vasodilation, changes in coagulation, modulation of iron regulation, activation of a 

T cell response, and converting macrophages from the M1 to M2 state. We propose that these 

events are facets of a systemic anti-inflammatory state that enables effective control of the 

infection in bats and suggest that dissecting this state can inform how to control a filovirus 

infection in humans. 
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Introduction 

Ebola (EBOV) and Marburg (MARV) filoviruses cause a severe, frequently fatal disease in 

humans1. For example, the 2004-2005 outbreak of MARV killed 227 out of 252 (90%) infected 

individuals2, while an ongoing EBOV outbreak has killed 2,264 out of 3,444 (66% case fatality)3. 

EBOV and MARV kill by causing a multisystem disease state involving hypotension, multisystem 

organ failure, sepsis-like symptoms, and disseminated intravascular coagulation (DIC) due to 

profound immune dysregulation, including cytokine storm4. Despite the aggressive use of a recently 

approved Ebola vaccine, control of the ongoing outbreak has been difficult, indicating the need to 

look for new prevention and therapeutic approaches by understanding better the pathobiology of 

these viruses. An intriguing clue is a remarkable fact that EBOV and MARV are well tolerated by 

their natural reservoir hosts 3 bats. 

MARV has been isolated from the Egyptian rousette bat (ERB, Rousettus aegyptiacus)537
, and 

ecological and experimental studies have demonstrated that ERB are a reservoir for the virus6,8. 

Experimental infections of ERBs with MARV have consistently demonstrated that despite viral 

replication in multiple tissues, animals develop a mostly subclinical disease, which is characterized 

by mild pathology involving transient elevation of alanine aminotransferase, elevated lymphocyte 

and monocyte counts, and some evidence of minimal inflammatory infiltration in the liver9,10. 

Clinical signs of disease are absent9313.  Transmission has been demonstrated between co-housed 

ERBs, and virus is known to be shed in saliva, urine, and feces8. However, ERBs do not appear to 

develop a chronic infection when exposed to MARV, and instead clear the virus and develop at 

least temporary immunity, including MARV-specific IgG14.  

Whether ERB are a reservoir for EBOV is unclear. While detecting of EBOV RNA and anti-EBOV 

antibodies in ERB 15,16, 17319 suggest that these bats could be a reservoir for this virus, the failure of 

isolating infectious EBOV from a wild bat20 and finding that these animals are refractory to the 

virus21 argue against this possibility.  

The ability of bats to tolerate viral infections has been a topic of considerable interest, and several 

models have been proposed to explain this phenomenon. Most of these are centered on the innate 

immune system, which includes the inflammatory response (induced by cytokines), phagocytosis, 

natural killer cells, and the complement system. One model posits that bats constitutively express 

interferons to maintain a basal level of innate immune activity, ready for pathogens to appear22, 

although the universality of this model in bats has been questioned23,24. An alternative model claims 

that the resistance is due to a weakened innate immune response, which is attenuated by changes in 

some proteins such as the stimulator of interferon genes (STING or TMEM173)25. Along these 

lines, a genomic analysis 24 suggested that tolerance of viral infection, rather than enhanced antiviral 

defenses, explained the bat9s ability to asymptomatically host viruses that cause human diseases. 

The similarity of innate immune responses to MARV and EBOV in bat and human cell lines26 

seems to contradict these theories and suggests that the control of viral infections in bats is more 

complex. Moreover, while these models can explain how viruses can survive in the animal, they 

cannot explain how the infection is eliminated. 
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A potential source of the difficulty to understand how bats tolerate or eliminate the viruses that are 

deadly to humans is the lack of studies that analyze the response to infection in bats rather than in 

cultured bat cells. The results obtained using cell lines have been contradictory. Some studies claim 

both EBOV and MARV replicate to similar levels in ERB and human derived cell lines26, with a 

robust innate immune response mounted by ERB and to a lesser degree, human cells, while others 

claim MARV inhibited the antiviral program in ERB cells, like in primate cells, and did not induce 

almost any IFN gene 27, or little anti-viral gene induction28. An experiment with the pig (PK15A) 

and bat (EhKiT) cells suggested they responded to EBOV through the upregulation of immune, 

inflammatory, and coagulation pathway, in contrast to a limited response in the human (HEK293T) 

cells29. To comprehensively understand the pathways involved in the bat filoviral response, we 

infected bats, rather than their isolated cells, and analyzed tissue-specific RNA expression through 

mRNA-seq in the organs of the infected animals. 

To probe the complexity of the response, we have attempted to test two hypotheses: that the 

response of bats to filoviruses is systemic, involving multiple interrelated processes, and that the 

differences in the responses to infection between bats and humans are due to evolutionarily 

divergent genes. To test these hypotheses, we have analyzed how EBOV and MARV affect global 

gene expression patterns in various tissues, with a particular focus on evolutionarily divergent 

genes. Our analysis of these transcriptomes begins to reveal a systemic organismal response that 

facilitates the ability of bats to survive filovirus infections and suggest potential therapeutic 

strategies for controlling human infection. This is the first in vivo study that focuses on the 

coordinated transcriptional response to filoviruses at the level of individual organs in bats. 

RESULTS 

Inoculation of bats with MARV and EBOV results in detectable viral replication only in some 

organs 

Eleven ERBs were inoculated subcutaneously with 104 PFU of MARV or EBOV. Following 

inoculation, animals were observed at least daily, and bled every other day. Viremia was monitored 

via ddPCR, and animals were euthanized shortly after becoming viremic. Bats inoculated with 

MARV or EBOV showed no apparent clinical signs of disease or changes in behavior, with no 

significant effect on body weight and temperature (Fig. 1-A, B). MARV and EBOV were detected 

by ddRT-PCR in the blood of infected bats, with MARV detected earlier and at a higher copy 

number than EBOV (Fig. 1-C). MARV was detected by plaque assay in livers and spleens of all 

inoculated animals, and in the salivary glands (2 animals) and kidneys (1 animal) of some animals 

(Fig 1-D). By contrast, EBOV was present above the limit of detection in the livers of two 

inoculated animals, which is contrast to prior reports that ERB are refractory to EBOV infection 
13,30. We did not detect EBOV by plaque assay in other organs (Fig 1-E).  

Two of the three EBOV-inoculated animals presented with histopathological lesions in the liver, 

consisting of pigmented and unpigmented infiltrates of aggregated mononuclear cells compressing 

adjacent tissue structures, and eosinophilic nuclear and cytoplasmic inclusions, changes consistent 

with previous reports13,30. In EBOV-infected animals, focal immunostaining with both pan-filovirus 
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and EBOV-VP40 antibodies was observed in the liver of one animal, but very few foci were found, 

suggesting limited viral replication.  

MARV-inoculated animals showed histopathology like that observed in prior experimental 

infection studies10.  Immunohistochemistry with a pan-filovirus antibody suggested that MARV was 

present in mammary glands and testes, despite the lack of histopathological lesions in these organs. 

(Fig 1-F). 

MARV and EBOV infection affects the transcriptome of multiple organs 

To examine the response to filovirus infection, we sequenced mRNA from liver, spleen, kidney, 

lungs, salivary glands, large and small intestine, and testes collected from filovirus inoculated and 

uninfected bats (Methods, Table S1). Consistent with prior reports that liver is the primary target of 

MARV31, and our findings (Fig. 1, Table S2), MARV transcripts were most abundant in this tissue 

(79  transcripts-per-million, tpm), but were also present in spleen (56 tpm), intestine (10 tpm) and 

lungs(2 tpm) (Table S2). EBOV transcripts were detected at very low levels (< 1 tpm) in the livers 

of inoculated bats and were not detectable in other tissues.   

Although viral transcripts were detected primarily in the liver, gene expression patterns were altered 

in all analyzed tissues and involved thousands of genes, suggesting a systemic response (Fig. 2). 

The changes were highest in the livers of MARV-infected animals relative to other organs, 

consistent with the possibility that these changes were induced by the virus, and differed between 

MARV and EBOV (Fig. 3, S1), indicating that the observed changes in gene expression patterns are 

related to the infectious agent.  

Evolutionarily divergent bat genes as tools for understanding the response to filovirus 

infection 

To identify genes that may be relevant to the difference in resistance to filoviruses between humans 

and bats, we reasoned that homologous genes with greater evolutionary divergence between bats 

and humans are also likely to diverge in function or regulation. This hypothesis made the divergent 

genes our primary suspects. We also reasoned that focusing first on divergent genes would also 

simplify the computational analysis of the transcriptomes, further increasing the chance of 

identifying relevant pathways. 

To identify divergent genes, we relied on BLASTn32. Genes detected as homologues (16004, 87% 

out of 18443 bat genes in our database) using BLASTn default settings were labelled <similar=. The 

remaining 2439 genes (13%) were considered <divergent=. Of these genes, 1,548 transcripts (8% of 

the total), could be identified as homologous by reducing the word-size in BLASTn from 11, the 

default, to 9. This approach is equivalent to matching at the protein level, but we find that using 

nucleotide level matches provides a cleaner separation of the two classes than using translated 

proteins (Fig. 4, Methods). From this divergent set, using expression levels, we narrowed down to a 

subset of 264 genes that expressed at more than 20 tpm in at least one set of liver samples (MARV, 

EBOV, or uninfected). Of these 264 genes, 151 were differentially expressed in the livers of either 

MARV or EBOV infected bats relative to uninfected animals (Fig. 4, Methods). These 151 genes 

were then used in the first step of pathway analysis. 
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The most abundant group in this set comprised genes related to mitochondria (20 genes), followed 

by genes involved in the vascular system (19), innate immunity (16), tissue regeneration and 

apoptosis (15), macrophages (13), inflammation (10), metabolism and fatty-acid oxidation (8), T 

cells (4), complement system (2), digestion (5), and toxin processing (3).  

Finding these sets led us focus on the entire transcriptomes (both homologous and divergent genes) 

of the corresponding systems : i) innate immune system which includes the inflammatory response, 

phagocytosis by macrophages, natural killer cells, and the complement system; ii) inflammatory 

response, including acute phase proteins, macrophages activities involving metabolism, fatty-acid 

oxidation, mitochondrial abundance and function, and tissue regeneration and apoptosis; and iii) the 

vascular system, involving the regulation of blood pressure, coagulation, and iron homeostasis.    

MARV and EBOV infection induce inflammation, indicated primarily by an acute phase 

response 

Acute phase proteins (APP) are produced by hepatocytes in the liver in response to inflammatory 

cytokines, such as Interleukin-1(IL-1), IL-6, and TNF³,  and are an important part of the innate 

immune response33335. Serum concentration of positive APPs36, including SAA1 and SAA2 can 

increase more than 10-fold as a part of the response, while the concentration of negative APPs, 

including transferrin and albumin, decreases37.  

We found that MARV, and to a lesser extent EBOV, infection induced APP response in liver, 

spleen and kidney, with the largest changes in APP expression (>10-fold) observed in the liver 

(Table I, Fig. 5). However, SAA1 and SAA2 expression also increased to a similar degree in most 

tissues, not only in the tissues in which the viruses were detected. At the same time, we detected no 

expression of C-reactive protein (CRP), an APPs used as a marker for measuring inflammation 

acute-phase-response in humans (Table 1, Fig. 5). Bats may lack a CRP response as we could not 

detect the CRP transcript in public mRNA-seq data from lab-infected samples from various species 

of bats (data not shown). Consistent with the induction of SAA1 and SAA2, we also detected 

induction of other markers of inflammation including, ORM2, CP, HAMP and the microsomal 

glutathione S-transferases, MGST1 and MGST238 (Table 1, Fig. 5).   

MARV and EBOV infection is associated with an early transition from M1- to M2-dominated 

populations of macrophages  

Macrophages recognize and phagocytize foreign organisms and damaged host cells, as a part of the 

innate immune response, and are an important early target for filoviruses31. Macrophages can either 

be in the M1 state, an inflammatory state enabling apoptosis, or in the M2 state, anti-inflammatory 

state assisting tissue regeneration.  A key difference between the M1 and M2 states lies in their 

metabolism, with the M1 state characterized by hypoxia and glycolysis metabolism39 and the M2 

state is characterized by fatty acid metabolism and abundant mitochondria40.   

We have found that key markers of the M1 state were upregulated in livers of infected bats (more so 

in MARV infected animals). These included IRF5, NF-»B, AP1G1 (a subunit of the AP-1 

complex), STAT1, and SOCS3 (Fig. 5, S4, S5). Likewise, HIF1A41343, which promotes mitophagy 

and glycolysis metabolism to induce M1 polarization was also upregulated in infected livers, again 
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more so in MARV infection. PKM, which activates HIF1A, and the pyruvate dehydrogenase, 

PDK1, involved in the response to hypoxia were also upregulated, to a greater degree in MARV 

than EBOV (Fig. 5, S4, S5)44. 

The M2 state markers,  MRC1, arginase-1(ARG1), IL-10 and TGF-�45, were highly expressed in 

livers of bats infected with both viruses (Fig. 5,S4,S5), suggesting the presence of M2 macrophages. 

Several genes related to fatty acid oxidation in M2 macrophages were upregulated by filovirus 

infection (Tables S3-8). CPT2, a gene associated with fatty acid transport was upregulated under 

filoviral infection (greater in MARV infection). Infected bats also exhibited upregulation of 

multiple markers of mitochondria abundance another characteristic of M2 macrophages. These 

included TFAM, OPA1, MFN1/2, and DNM1L. Two genes involved in mitochondrial biogenesis46, 

HGF-MET and PPARGC1A, are also upregulated upon MARV infection.  

Prolonged M1 activity can be harmful to tissues as these cells can induce inflammation and 

apoptosis. Thus a negative feedback system that shifts macrophages from the M1 state to the M2 

state47,48,  controlling inflammation during infection and facilitating the transition to tissue repair 

and regeneration49,50. In our data, the transcriptomes of the MARV-infected liver samples suggest a 

more equal representation of M1 and M2 macrophages, while in the EBOV-infected liver samples, 

gene expression suggests an M2-dominated macrophage population, suggesting a conversion from 

M1 to M2 state is underway over the course of the infection, as the virus is cleared.  

The M1 to M2 transition is associated with a change in cellular energy metabolism. GPD2, the 

mitochondrial glycerol-3-phosphate dehydrogenase, identified as a contributor to the shift in core 

macrophage metabolism associated with the M1 to M2 transition during infection51, was found to be 

upregulated by filovirus infection (Fig. 5, S6A). Inactivating HIF1A also promotes M2 polarization. 

HIF1AN, the inhibitor of HIF1A, is upregulated in filovirus infected bats. Increased availability of 

iron also promotes the M1 to M2 polarization shift 52. Gene expression patterns in EBOV-infected 

bats, notably ferritin and HBB expression, suggest that iron levels may be elevated in these animals. 

This supports our other findings of an M2 polarization bias.   

Expression of key components of the classical complement pathway is inhibited by filovirus 

infection 

The complement pathway, a part of the immune system, has three branches: the classical pathway, 

the mannose-binding lectin pathway and the alternative pathway53.  The classical pathway 

recognizes antigens bound to antibodies; the lectin pathway binds to sugar molecules on the virus 

particles, and the alternative pathway is a component of the innate defense against infections. 

Several key gene associated with the complement pathway were upregulated by filovirus infection, 

including C3P1, C4B, C5, C9, C6, and MASP1, while others (C1R, C3, C8G, and MASP2) were 

downregulated or not expressed (Fig. 5, S6B). This indicates that the complement pathway is 

impacted by filovirus infection in the liver and suggests that aspects of the immune response 

dependent upon complement such as some forms of antibody-mediated viral neutralization, are 

compromised. 

Infected bats exhibit transcriptional signatures of T cell activity 
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Previous studies on the adaptive immune response to Ebola and Marburg viruses in humans, non-

human primates, and non-primate mammals, shows that long-term immunity is conferred by both T 

cell and antibody responses. Mostly CD8+ T cells were elicited and helpful against Ebola in 

mice54,55, while SUDV infection in humans56)  and MARV  infection in cynomolgus monkeys57 and 

humans58 ) elicited mostly CD4+ T cells . In most human EBOV infections, CD8+ T cells against 

the EBOV NP protein dominated the responses, while a minority of individuals harbored memory 

CD8+ T cells against the EBOV-GP 59.  

Consistent with this, in MARV-infected bats, CD4 expression (specific to CD4+ T cells) was 

higher, while in EBOV-infected bats, CD8 expression (specific to CD8+ T cells)  was higher, the 

overall levels are low, because the tissue samples are heterogenous and expression of these markers 

is not high in the T cells to begin with. T cell markers (such as CCL3, ANAX1, TIMD4 and 

MAGT1) are also upregulated in liver, suggesting a T cell response is mounted.  

EBOV and MARV infection affects the vascular system 

The vascular system carries nutrients, oxygen and the cells and molecules involved in the immune 

response and inflammation. The proper functioning of the system requires control of iron 

metabolism, blood pressure, and blood coagulation. We found that MARV and EBOV affected the 

expression of genes involved in all these processes.  

Genes involved in iron homeostasis. The absorption and availability of iron, an essential 

component of heme needed for oxygen transport, is tightly regulated60. Most iron is in hemoglobin 

(66%), the remainder is stored mostly in macrophages in the liver, which take up iron through the 

CD163 receptor. Iron is exported from macrophages and absorbed from food61 through Ferroportin 

(SLC40A1/FPN1).   

MARV and EBOV changed the expression of multiple genes involved in iron homeostasis. 

Hepcidin (HAMP)62 , which controls iron homeostasis by binding ferroportin, leading to its 

degradation as well as blocking the export of iron, was induced in infected livers (Fig. 5,S8 Table 

1). Infection induced ceruloplasmin (an APP, Table 1), which enables the formation of the 

transferrin-iron complex and is also involved in processing copper63. In the cytosol, iron is bound to 

ferritin (comprised of a heavy chain, FTH1 and a light chain FTL), synthesized by cells in response 

to increased iron64. In mitochondria, iron is bound to FTMT, the mitochondrial ferritin65.  Both 

FTH1 and FTMT were downregulated in MARV-infected bats but upregulated in EBOV-infected 

animals (Fig. 5, S8). MARV infection was associated with lowered hemoglobin expression, 

suggesting impairment of red blood cell production, potentially resulting in anemia. Consistent with 

this conclusion, CD164, which suppresses hematopoietic cell proliferation, was also upregulated by 

MARV infection (Fig. 5, S8), while HBB was suppressed EBOV-infected samples.  

These observations suggest that hematopoiesis was impaired in MARV-infected bats, but not in 

EBOV-infected bats, and that regulation of iron by HAMP in bats might diverge from the 

homologous process in humans. 

Genes regulating vasodilation. The primary means of blood pressure regulation is renal expression 

of renin, which converts angiotensinogen (AGT) to angiotensin I. Angiotensin converting enzyme 
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(ACE) converts angiotensin I to angiotensin II, which constricts blood vessels to increase blood 

pressure. AGT is down regulated by MARV and EBOV infection, which would be expected to 

deplete the substrate for ACE, limiting the potential for blood pressure to increase even with 

upregulation of ACE (Fig. 5, S8). Low blood pressure would be consistent with our finding that 

filovirus infection induced expression of Prostaglandin I2 synthase (PTGIS), a potent vasodilator 

and inhibitor of platelet aggregation. However, blood pressure was not directly measured in the bats 

before euthanasia. 

Genes involved in blood coagulation. Mechanisms that control blood pressure also impact 

coagulation. MARV and EBOV induced PTGIS, which reduces blood pressure and also inhibits 

platelet aggregation (Fig. 5, S9) and repressed AGT, the precursor of angiotensin II which enhances 

production of active plasmin to increase coagulation66. MARV and EBOV also induced CYP11B1, 

which increases cortisol that acts to reduce inflammation, and CYP11B2, which increases 

aldosterone levels that increases blood volume67. Together, these would be expected to reduce the 

effects of inflammation on the vascular system. 

DISCUSSION 

Recently, multiple filoviruses associated with bats have emerged or re-emerged as threatening 

human pathogens, such as EBOV, MERS-CoV and SARS-CoV-2. As a result, the role of bats as 

reservoirs for a diverse array of viruses and their ability to tolerate viral infections that cause severe 

disease in humans have become a topic of considerable interest. A number of hypotheses have been 

proposed to explain this unique aspect of bat biology, most of which are centered on the innate 

immune system. In these hypotheses, various aspects of bat innate immunity are either more or less 

potent than their human counterparts. One hypothesis in posits that some bat species22324 

constitutively express interferons, leading to a basal level of innate immune activation. However, 

prior work with filoviruses demonstrating that the innate response in bat cells is robust, and similar 

to that observed in human cell lines26 is inconsistent with this hypothesis. Another hypothesis 

suggests that components of the innate immune response (e.g., STING/TMEM173) are less 

effective in bats25, allowing viruses to survive in the host. Although this mechanism helps to explain 

the ability of bats to serve as reservoirs for a diverse range of viruses, it is less useful in explaining 

the ability of bats to survive and clear infection and may indicate at the involvement of the adaptive 

immune system in virus clearance.  

All MARV-inoculated bats were productively infected, and our virology and histopathology data in 

MARV-infected bats are consistent with previous reports, including viral replication in the 

mammary glands and testes13 Evidence of successful, if limited, infection was identified in two of 

three EBOV inoculated animals. In particular, virus was detected by plaque assay in the livers of 

two of three animals, and immunohistochemistry identified a small number of foci in the liver of 

one animal. This contrasts with prior reports30 and suggests that ERBs may not be truly refractory to 

EBOV infection. However, given the very low titers detected, and the limited nature of the observed 

immunostaining, it is unlikely that the virus could be maintained in animals in nature 
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There are hundreds of genes involved in the interferon response, some key components can mutate 

to change specificity of their interactions, but most, especially those in the core ISG category68, 

evolve slowly and have conserved function and sequence69. Our analysis of gene divergence shows 

that the majority of interferon response genes are not divergent from their human homologs, 

consistent with prior observations that the innate responses are quite similar between human and bat 

cell lines26. This implies that other systems are involved in generating the difference in response 

between bats and humans.  

We developed a framework to understand the observations with the interconnections between 

various systems as pertains to our study shown in Fig. 6.  A key feature of filovirus infection is an 

inflammatory response leading to the expression of APPs and stimulation of M1 macrophages. C-

reactive protein (CRP), which binds to micro-organisms, assists in complement binding to foreign 

and damaged cells, and enhances phagocytosis by macrophages (opsonin-mediated phagocytosis)70 

appears to be absent in bats, based on the lack of CRP sequences in our mRNA-seq data. In mice, 

CRP is not an acute phase protein71, and as such, it is unclear if this apparent lack of CRP is 

consequential in regards to the innate immunity of bats. Aside from CRP, however, the other APPs 

are conserved. We found evidence that the effector component of the antibody response may be 

weakened by incomplete complement activation. This is consistent with the previous reports that 

antibody-mediated virus neutralization is not the dominant mechanism of filovirus clearance in R. 

aegyptiacus bats72. The robust CD8+ T cell activity implied by our mRNA-seq data suggests that 

control and clearance of filovirus infection in bats may instead depend upon a robust T cell 

response. This is consistent with what is known in humans, where individuals who recover from 

filovirus infections tend to mount robust T cell responses73375, and have higher levels of CD40L 

expression, a marker for T cell activity75. 

The macrophage response was one of the more notable points of divergence between the human 

response to filovirus infection and what we observed in infected bats. We identified markers of both 

M1 and M2 macrophages in ERBs infected with MARV, suggesting that macrophage populations 

in the animals were in the process of switching from the classically pro-inflammatory M1 

polarization to the M2 state, which is conventionally associated with anti-inflammatory processes, 

tissue repair, and regeneration. In particular, the modulation of the innate response facilitated by M2 

macrophages is important for T cell mediated clearing of the virus. In EBOV-infected animals, 

where viral replication was far more limited, our sequencing data indicate that the macrophage 

population was further along in the transition to M2 polarization by the time of euthanasia. The 

generalized anti-inflammatory state observed in bats during filovirus infection, especially the early 

switch to M2 macrophage polarization, may be key to preventing the immunopathology associated 

with filovirus infection in humans, including cytokine storm and DIC. Supporting this, an mRNA-

seq study conducted with PBMCs isolated from EBOV-infected humans found that individuals who 

succumbed to disease showed stronger upregulation of interferon signaling and acute phase 

response-related genes than survivors during the acute phase of infection76, suggesting that a 

tempered response may be more beneficial. 
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Comparing our observations to human responses to filoviruses is limited by the scarcity of studies 

in humans. Nevertheless, this comparison suggests potential directions to explore. In one study, 

individuals who succumbed to the disease showed stronger upregulation of interferon signaling and 

acute phase responses compared to survivors during the acute phase of infection76, consistent with 

the anti-inflammatory response gene expression signature identified in this study in bats. However, 

most of the genes used in the study by Liu et al. to classify survivors are either barely expressed in 

bats or do not respond to filoviral infection (Table 2), the differences that provide potential clues to 

find why bats can tolerate the infection.  

A study of patients infected with Sudan Ebola virus (SUDV) analyzed protein levels for a panel of 

genes using a Luminex multiplex assay (using antibodies)77. The panel was based on results from 

other studies and pathways involved in the response to infections. The patients were classified into 

3 possible dichotomies (fatal/non-fatal, hemorrhaging/non-hemorrhaging, or high/low viremia) 

correlated with genes that characterized these states. Most of these genes either are barely 

expressed, if at all, or are unaffected by infection in bats, except for ferritin (FTL, FTH1) whose 

expression is lowered by MARV infection, consistent with the observation that ferritin is higher is 

fatal human cases (Table 3).  

Our data suggest that the vascular response in bats differs from that in humans. Humans infected 
with EBOV or MARV frequently present with hemorrhagic manifestations and dysregulated 

coagulation in the form of disseminated intravascular coagulation78. We identified transcriptional 

patterns consistent with vasodilation and reduced potential for coagulation. This could result in a 

state in which blood pressure is lower than normal, and coagulation is reduced. This state m be 

protective, as it might be expected to prevent DIC. Our findings are consistent with results from a 

study in humans infected with EBOV77 which analyzed 55 biomarkers in blood. This report found 

that viremia was associated with elevated levels of tissue factor and tissue plasminogen activator, 

consistent with coagulopathy.  

Our results also suggest that reducing the hyperinflammatory response79 or controlling the 

coagulopathies80 in humans during filovirus infection may have a therapeutic benefit by preventing 

damage to the host and allowing other processes to clear the infection. This could be achieved by 

the inhibition of IL-6 by agents such as siltuximab (Sylvant)81, or by targeting the IL-6 receptor via 

an antibody such as tocilizumab (Actemra)82 

In bats, filovirus infection upregulates MGST1 and MGST2 which both induce leukotrienes (LTC4) 

and prostaglandin E, both of which are mediators of inflammation38. This is a potential druggable 

target, as these are targeted by several therapeutic agents. Thus, this inflammation could also be 

targeted by another class of anti-inflammatory agents such as LTC4 inhibitors, used to treat asthma. 

Our observations let us to surmise that upon filovirus infection bats may naturally vasodilate and 

reduce their blood pressure (mimicking the action of ACE inhibitors) while the endothelial system 

becomes anti-thrombotic. In fact, field trials of ACE inhibitors and statins in human Ebola virus 

disease have already seen some success83. Along these lines, another potentially useful drug is 

prostaglandin I2 (PGI2, known as epoprostenol as a drug), a powerful vasodilator and anti-coagulant 
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that acts by binding to the prostacyclin receptor. This has potential for use in human filovirus 

infections as a means of emulating the physiological conditions (low blood pressure and 

coagulation) in bats that our data suggest may have protective effects84. 

In humans, high levels of HAMP causes iron to be sequestered in the liver, reducing levels of iron 

in blood (lower ferritin). Our observations indicate that in EBOV infected bats high HAMP 

expression is decoupled from the levels of iron, as both ferritin and HAMP are induced. Thus, 

HAMP inhibitors, which are used to treat anemia, might recreate in humans the state seen in bats 

under filoviral infection. Two HAMP inhibitors, Heparin85 and erythropoietin (EPO)86,87, have 

additional beneficial effects, anti-coagulation and RBC synthesis respectively, which might make 

them particularly efficacious. Vitamin D is also a HAMP inhibitor88. 

Overall, the changes in gene expression patterns that we have observed in infected bats suggest that 

the filovirus pathogens induce a systemic response that involves pathways regulating coagulation, 

vasodilation, iron homeostasis, inflammation, the interferon response and the adaptive response. 

The most important outcome of this systemic response appears to be a tempering of the overall 

response to infection, avoiding immunopathology. In particular, the anti-inflammatory state 

observed, and the altered state of the vascular system appear to be important to preventing 

pathology and facilitating the ultimate clearance of the virus.  

CONCLUSIONS 

Our observations and analyses provide an experimental and computational framework for 

understanding the resistance of bats to filovirus infection. This framework and the data that we 

report and make public have the potential to aid in the development of new strategies to effectively 

mitigate and treat the effects of filovirus infections in humans. 

Data 

All data underlying the balloon plots is available as csv files on the filobat website 

(http://katahdin.girihlet.com/shiny/bat/). Additionally, a fasta file containing all the mRNA 

sequences used in our analysis is also available on the website. The raw sequencing reads will be 

deposited with GEO, and the filobat site has several tools for analysis and exploration of data. 

MATERIALS AND METHODS 

Experimental methods 

Viruses. Recombinant wild-type EBOV, strain Mayinga, was recovered from the full-length clone 

and support plasmids in HEK 293T cells and passaged twice in Vero E6 cells for amplification29. 

Recombinant wild-type MARV, strain Uganda, was recovered similarly in BHK-21 cells89 and 

passaged twice in Vero E6 cells for amplification. 

Bat experimental protocol. All animal procedures were performed in compliance with protocols 

approved by the Institutional Animal Care and Use Committee at the University of Texas Medical 

Branch at Galveston. 

Adult ERBs were obtained from a commercial source and quarantined for 30 days under ABSL-2 

conditions. Animals were implanted with microchip transponders for animal ID and temperature 
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data collection. For studies with EBOV and MARV, animals were transferred to the Galveston 

National Laboratory ABSL-4 facility. Animals were segregated into groups of three. Except for one 

MARV-infected male, all bats were female. Each group was housed in a separate cage for 

inoculation with the same virus. After acclimation to the facility, animals were anesthetized with 

isoflurane and infected subcutaneously in the scapular region with 105 focus forming units (FFU; 

titrated on Vero E6 cells) of EBOV or MARV. Every other day, animals were anesthetized by 

isoflurane, weighed, temperature was determined via transponder, and 100-150 µL of blood was 

collected from the propatagial vein. Blood was inactivated in 1 mL of TRIzol reagent (Thermo-

Fisher Scientific). Samples were then removed from ABSL-4 containment, and RNA was extracted. 

Droplet-digital RT-PCR (ddRT-PCR) with primers specific to the nucleoprotein (NP) gene was 

used to detect viremia. If fewer than 106 MARV RNA copies/mL viremia were detected in a 

MARV-inoculated bat, the animal was observed for additional 2 days to allow the animal to reach a 

higher viral RNA load. All EBOV-inoculated bats were euthanized 48 hours after the first detection 

of viremia, regardless of viral RNA load. Animals were euthanized under deep isoflurane sedation 

via cardiac exsanguination confirmed by bilateral open chest. Tissues were collected (listed in Table 

S1) and immediately homogenized in an appropriate volume of TRIzol reagent and stored at -80°C. 

1 cubic centimeter (cc) tissue sections were homogenized in minimal essential media (MEM) 

supplemented with 10% fetal bovine serum and stored at -80°C. Additional tissue sections were 

fixed in 10% neutral buffered formalin for histopathology. Tissues and PBMCs were also collected 

from three uninfected control animals. 

Leukocyte isolation. Leukocytes were isolated using ACK lysis buffer (Gibco). Ten volumes of 

lysis buffer were added to whole blood, incubated for 2-3 minutes, and then neutralized with 

complete DMEM media containing 10% FBS. Following neutralization, samples were centrifuged 

at 250 g for 5 minutes at 4°C, after which the supernatant was decanted from the pellet. This 

process was repeated several times per sample until a white pellet of cells free of contaminating red 

blood cells remained. Because density gradient purification was not performed on these samples 

prior to or after red blood cell lysis, these leukocyte preparations were assumed to contain 

granulocytes in addition to PBMCs. 

mRNA sequencing. Total RNA was isolated from bat tissues using Ambion9s RNA isolation and 

purification kit. For most samples, polyA-tailed mRNA was selected using beads with oligo-

deoxythymidine and then fragmented. A few samples with poor RIN (RNA Integrity Number) 

scores were treated with Ribominus (targeting human ribosomal RNA) to enrich for polyA-tailed 

mRNA before fragmentation. cDNA was synthesized using random hexamers and ligated with bar-

coded adaptors compatible with Illumina's NextSeq 500 sequencer. A total of 88 samples were 

sequenced on the NextSeq 500, as 75 base pair single reads.  

Analytical methods   

Bat mRNA sequence database. The extant bat genomes are nowhere near completion and a 

comprehensive mRNA database does not exists. Thus, for this study, we constructed a custom non-

redundant reference bat mRNA sequence database, which is available at 

https://katahdin.girihlet.com/shiny/bat/. We started with existing genome annotations90. The 
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complications arising from splice variants were avoided by keeping only the longest transcript for 

each gene.  We added missing annotations/sequences (e.g., CYP11B2 and PLG) to our database by 

assembling reads from our own sequence data. These required custom scripts as there often was not 

enough reads covering a transcript, which precluded the use of standard assembly tools. The gene 

sequences were collected from different bat species, so error-free reads might not map perfectly to 

the transcripts in the database. The database has sequences of 18,443 bat mRNAs, and include 

EBOV and MARV sequences, the infectious agents used in our studies. The genes were identified 

by homology to mouse and human genes, 16,004 bat genes had high similarity to human or mouse 

homologues, as defined by BLASTn with default settings identifying matches spanning the length 

of the mRNA.  

The set of remaining genes (2439) were labelled as divergent. Of these, 1,548 transcripts could be 

identified by increasing the sensitivity of BLASTn by reducing the word-size from 11 to 9, which is 

equivalent to matching at the protein level. Of the remaining 891 putative transcripts, homologues 

for 182 could be identified on the basis of partial homology and domain structure, while the 

remainder (709 sequences whose names start with UNDEF) belonged to one of four classes, 1) 

aligned to un-annotated transcripts in the human genome,  2)  non-coding RNAs, 3) transcripts 

unique to bats, or 4) assembly errors. We use capitalizations to represent bat gene symbols, as in the 

human gene nomenclature. 

To identify genes within these divergent set that are relevant to our study, we then selected a subset 

of genes that had good expression (defined as tpm > 20) in at least one class of liver samples 

(MARV-, EBOV- or mock-infected) and  responsive in either MARV- or EBOV- infected bat 

livers, which we defined as up- (log2 ratio > 0.6), or down- (log2 ratio < -0.6) regulated. We were 

left with 151 genes that are the foundation of our analyses of pathways involved in the response to 

filoviruses (Tables S3-S8).  

Expression Analyses. To determine transcript expression levels, we used Kallisto, because this tool 

uses pseudo-alignments and is relatively more tolerant of errors/variants in reads91, which we expect 

here because the reads and mRNA sequences in the database do not always come from the same 

species.  Kallisto uses a parameter <k= while indexing the database to specify how sensitive it is to 

matches with smaller k values leading to more spurious hits. We empirically determined k=23 to be 

an appropriate parameter value with which to index the reference mRNA dataset. We used the 

transcripts-per-million (tpm) value as the transcript expression levels to determine changes in 

expression across samples. 

We used viral transcripts to identify infected samples, which has previously helped us to identify 

and correct mistakes of annotation in some of the cell line data and also identified a problem with a 

published dataset28, where all the naïve (uninfected)  samples showed signs of viral infection. 

Furthermore, to ensure there was no mislabeling of tissue samples from different bats, we used 

single nucleotide variants in the sequenced reads to confirm that all tissue samples from an 

individual had the same set of variants.  

Using clustering based on expression profiles and considering individual interferon responsive 

genes, it was clear that one non-infected control bat liver sample (labeled cb1 in the shiny tool) was 
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reacting to some stimulus (injury or infection) compared to the other two control samples (cb2 and 

cb3 in the shiny tool); Since we are interested in the innate response to infections, we had to exclude 

cb1 from the controls, but cb1 data are available for exploration in the filobat tool. 

As such, most of our analyses concentrated on liver RNA transcripts since it had the strongest 

response and the genes indicated that a variety of cell types were involved in the response, capturing 

the systemic nature of the response. Liver function impacts a wide range of systems involving 

inflammation, iron homeostasis, and blood pressure.  Other organs, such as kidney and spleen 

provide additional support for what is observed in the liver.  For some genes, we also used the 

transcriptional response in kidney (Renin) and/or spleen (STING) in order to understand the 

regulation of pathways (e.g., Renin is expressed in kidney and regulates the blood pressure system). 

Tools for data exploration and interrogation. To allow exploration of the data across various 

samples on a gene-by-gene basis, as well as analysis of viral expression in the samples, we 

developed a browser-based tool, filobat, using Shiny in R (http://katahdin.girihlet.com/shiny/bat/). 

Samples can also be compared using scatter plots and hierarchical clustering.  

Statistics. Large changes in expression profiles were readily detected by comparing averages across 

replicates, since such changes are less affected by noise; however, subtle changes (less than 2-fold) 

were difficult to reliably detect due to lack of power in the sample size and variability between 

samples and are mostly not considered.  

Pathway analyses. A fundamental assumption underlying our study is that bats are mammals that 

possess innate and adaptive responses to infections that roughly mirror those seen in humans. The 

data from comparative filovirus infections in human and bat cell lines supports this assumption26.  

To identify pathways of interest from particular genes, we used GO/pathways annotations of the 

human counterparts92 and grouped them into functions that provided themes in the dataset. Using 

these themes, we identified other differentially expressed genes sharing these themes, identified by 

the GO annotations for human and mouse genes. This allowed us to build a picture of the pathways 

triggered by filovirus infections and delineate the ways in which the systemic bat responses differs 

from those seen in humans.  
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Figures 

Underlying data and tools for exploring the data available at 
http://katahdin.girihlet.com/shiny/bat/
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Figure 1: Bat infection with filovirus, MARV and EBOV.  

Time course after infection for A) Weight, B) temperature and 

C) viremia (MARV Bat 2 sensor failed). Viremia measured in 

total RNA extracted from whole blood via ddRT-PCR targeting 

the viral NP gene. Animals were euthanized 48 hours after last 

viremic timepoint. Tissue viral loads (D and E) were 

determined by conventional plaque assay on Vero E6 cells. F) 

Histopathology in EBOV infected livers showing F.a) EBOV 

Bat 1 liver with marked histopathological changes, including 

cytoplasmic and nuclear inclusions (arrows), F. b.) EBOV Bat 2 

liver displaying a less dramatic presentation compared to Bat 1, 

F.c) IHC detection of filovirus antigen in EBOV Bat 1 liver, and 

F.d.)  IHC detection of EBOV VP40 in EBOV Bat 1 liver. 

Controls for the IHC images are shown in Fig. S1. 

A

B

D    MARV viral load

C

F          Histopathology

E    EBOV viral load 
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Figure 2: Broad response of bat liver genes to filoviral infection. Many genes in the liver 

respond to filoviral infections, with MARV having a bigger impact compared to EBOV (840 genes 

that are responsive to MARV alone, compared to the 43 specific to EBOV alone). The EBOV-

specific (EBOV/MARV) and MARV-specific (MARV/EBOV) genes are likely host responses 

specific to the viral VP40, VP35 and VP24 genes. In the plot, mock refers to mock-infected bats, 

EBOV to EBOV-infected bats, and MARV to MARV-infected bat livers. Each row in the lower 

panel represents a set, there are six sets of genes based on various comparisons, e.g., 

EBOV/mock is the set of genes at least 2-fold up regulated in EBOV infection, compared to the 

mock samples. The gray bars at the lower left representing membership in the sets. The vertical 

blue lines with bulbs represent set intersections, e.g., the last bar is the set of genes common to 

EBOV/MARV, EBOV/mock and MARV/mock, so the genes in this set are up 2-fold in EBOV 

compared to the mock and MARV samples, and at least 2-fold up in MARV compared to mock.  

The main bar plot (top) is number of genes unique to that intersection, so the total belonging to a 

set, say mock/EBOV, is a sum of the numbers in all sets that have mock/EBOV as a member 

(41+203+6+31=281).

1822
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Figure 3: MDS plots along the two leading dimensions (the x and y axis respectively). There is clear 

separation between different infections (MARV and EBOV) and the mock-infected  A) Liver and B) Spleen 

samples. Despite the paucity of viral transcripts, Spleen and other tissues (PBMC, kidney, salivary gland, 

lung, large and small intestine, Fig. S2) also exhibit virus-specific signatures, implying the response to 

filovirus infections extends to the whole bat. The top panel shows a mock-infected liver sample (the blue 

dot in lower right) that seems to be different from the other two mock-infected samples. This bat seems to 

be reacting to some stimulus, either an infection or injury, and has been excluded from our analysis. 

A

B
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Figure 4. Pathways from mRNA-seq. The process used in the paper to identify pathways 

relevant to the bat9s resilience in the face of filoviral infection. It is assumed that most 

homologous genes perform similar functions in bats and humans. Bat genes evolutionarily 

divergent from their human homologs have a greater probability of having altered functions, 

Of these, those responsive in liver to filovirus infection were identified. The pathways they 

influence were explored to evaluate the systemic response to filovirus infections in bats and 

identify key differences from human responses. The vascular system (Blood pressure, 

Coagulation and Iron homeostasis) was a prominent pathway. Glycolysis, which is 

controlled by Hypoxia, shifts the balance between M1 and M2 states of macrophage 

activation. These changes create an anti-inflammatory state that modulate the response and 

allows the adaptive immune system to clear the infection. The complement system is not 

fully activated, likely compromising the antibody response, but T cells are active and play a 

major role in clearing the infection The pathways are interconnected, as shown in Fig. 6. 
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Figure 5. Regulation of pathways by MARV and EBOV infections in liver.  On the left are genes in  Acute 

Phase Response (APP), Complement (Cmpl), Hypoxia (Hyp), Tissue regeneration/apoptosis (Tissue), and 

genes specific to macrophages in the M1 state (M1),  M2 state (M2) or both (M1M2). On the right are genes 

for Blood Pressure(BP), Coagulation (COAG), iron homeostasis (IRON) and Interferon stimulated genes 

(ISG). The columns show the three liver samples from EBOV-infected bats, and MARV-infected bats, as well 

as two un-infected samples. The values are log2 of the fpm values, with the mean value of the EBOV 

samples subtracted out. Broadly, majority of the genes are in a quiescent, low expression state in the mock 

infected samples, and get stimulated upon infection, with large effects in the case of MARV and intermediate 

effects in the case of EBOV. A * after a gene name signifies the bat version is diverged from its human 

counterpart.  Fig. S11A and S11B show corresponding figures for kidney and spleen. 
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Figure 6: Overview of the response to filovirus replication. Interferon stimulated genes (ISG Fig. 

5,S3,S4)  cause inflammation, which triggers an acute phase response (APR, Table 1, Fig. 5), leading to a 

cascade of vascular events, affecting regulation of HAMP (iron, Fig. 5,S8), coagulation (Fig. 5,S10) blood 

pressure (Fig. 5,S9) and M1 macrophage stimulation (Fig. 5,S5,S6). The inflammatory M1 macrophages are 

stimulated by infection and  phagocytize infected cells and promote apoptosis. Over the course of MARV or 

EBOV infection, they get converted to anti-inflammatory M2 macrophages. Fatty acid oxidation and 

mitochondrial activity are up, which are hallmarks of M2 macrophages (Fig 5,S5,S6,S7A). The complement 

system is incompletely stimulated by the acute phase response, leading to potentially restricted antibody 

activity (Fig. 5,S7B). Blood pressure (Fig. 5,S9)  and coagulation (Fig. 5,S10)  are down regulated in MARV 

and EBOV infection, while iron levels (Fig. 5,S8) are high, especially in EBOV infection (contrary to the levels 

of HAMP). T cell (CD8+) activity (Fig. S7C) is also upregulated, leading to the infection being cleared. Dotted 

boundaries show functions that likely distinguish the response of the bats from the human response to 

filovirus infections. 
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Positive APPs MARV 
(fold change) 

EBOV
(fold change)

Mock
(tpm)

Serum Amyloid A 1 (SAA1) 21X 3X 6858

Serum Amyloid A 2 (SAA2) 39X 5X 440

Ceruloplasmin (CP) 10X 5X 129

HAMP* 8.5X 10X 211

Orosomucoid 2 Alpha1-Acid glycoprotein 

(ORM2*)
34X 47X 14

Microsomal Glutathione S-Transferase  

MGST1
4X 4X 277

MGST2* 11X 16X 5.5

MGST3 0.4X 0.7X 461

Fibrinogen (FGA) 2X 1X 1277

Fibrinogen (FGB) 2X 1X 9007

Fibrinogen(FGG) 1X 1X 6070

C4B 2X 1X 1015

C3P1 6X 1X 31

Haptoglobin (HP) 1.1X 0.7X 15906

Alpha2-Macroglobulin (A2M) 1.3X 1X 409

C-reactive protein (CRP) N/A N/A N/A

Negative APPs

Albumin (ALB) 0.6X 1.2X 51400

Transferrin (TF) 1X 1X 22856

Transthyretin (TTR) 2X 2X 1

Retinol Binding protein (RBP4) 0.5X 0.6X 3107

Table 1 Acute Phase Proteins (APPs) in livers respond strongly to inflammatory cytokines 

(IL-6, TNF³ etc.). Inflammation upregulates positive APPs and downregulates negative APPs. 

Basal expression levels in tpm units are shown in the mock column. The fold change upon 

infection is shown in the EBOV and MARV columns.  SAA1/2, CP are highly expressed in livers 

normally and also get highly up regulated by the filovirus  (MARV more than EBOV). ORM2, 

MGST2 are highly upregulated, but from a low basal expression level. CRP, used as a marker for 

acute phase response in humans, is not expressed in these bats and might be absent in bats 

altogether. TF is highly expressed in all samples, but does not react to filoviral infection, while 

TTR is not expressed in any of the samples.  There is similar inflammation in the liver upon both 

MARV and EBOV infection, despite the lack of viral transcripts in the liver of EBOV infected 

animals.* signifies the bat gene is divergent from its human homolog.
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Gene Log2(MARV-

liver/mock-

liver)

Log2(EBOV-

liver/mock-liver)

mock-

liver

Description

EOMES 0.5 0.3 0.3 Maybe important in 

differentiation of 

effector CD8+ T cells

TGFBI 0.7 0.2 13.2 Inhibits cell adhesion

DBN1

-0.4 -0.4 1.1 Cytoplasmic, actin-

binding , role in 

Neuronal growth

HIST1H3J(H3C12)

NA NA NA Core Component of 

nucleosome

GUK1

-0.3 0 290 Essential for recycling 

GMP and indirectly 

cGMP

ADGRL2/LPHN2 1.8 0.4 7.3 Regulates exocytosis

VCAM1

1.1 0.3 0.5 member of the Ig 

superfamily, encodes cell 

surface sialoglycoprotein

expressed by cytokine-

activated endothelium

HOPX

NA NA NA homeodomain protein 

that doesn't bind DNA

PLPP/PPAP2B

2.0 0.7 14.8 Important in receptor-

activated signal 

transduction mediated 

by phosphlipase D

GBP1

1 1 123 ISG, hydrolyzes GTP to 

GMP

Table 2 Panel of genes used in a human study to classify survivors versus non-survivors 

(Liu et. al. 2017) . Our data from bats for this panel suggests that except for GBP1, which 

goes up 2-fold in EBOV and MARV infections and is highly expressed, most of these genes 

have low expression and do not exhibit significant response to filoviral infections in bats. 
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Name Fatal Hemorrhage Viremia Log2(MARV/mock-

liver)

Log2(EBOV/mock-liver) Mock-

liver

Gene

Inflammation

IL1A higher - - - - - interleukin 1A 

IL1RN higher - - 4.3 3.1 1.9 IL-1RA

IL6 higher - - 0.2 0 0 IL6

IL8 higher - - - - - IL8

IL10 higher - - 1.2 0.7 0.1 IL10

IL1B - - - 1.6 0.1 0.6 IL-1B

CCL4 higher - - - - - MIP-1B

CCL2 higher - - - - - MCP-1

CSF1 higher higher - 1.1 -0.2 1 MCSF

CCL3 higher higher - 3.6 0.9 2.3 MIP-1A

Coagulopathy

PLAT - - higher 1.4 0.7 0.5 TPA

higher - - - - - D-dimer(DIC)

THBD higher higher - 0.4 0.3 0 thrombomodulin

FGA - - - 0.9 0.2 1269 Fibrinogen

FGB - - - 1.1 0.4 8954 Fibrinogen

F3 higher 0.1 0.1 0.3 Tissue Factor

APP

CRP - - - N/A N/A N/A C-Reactive Protein

SAA1 - - - 4.4 1.5 6812 SAA

SAA2 5.3 2.3 437

ALB - - - -0.8 0.2 50742 Albumin

ICAM1 - higher -

2.4 0.2 3.6

soluble 

intracellular 

adhesion molecule 

1 

FTL higher higher - -1.9 -0.1 3596 ferritin

FTH1 higher higher - -1.4 0.3 7878 ferritin

CD40LG higher 

non-

fatal

- -

0 0 0

sCD40L

CXCL10 - higher - 5.2 1.5 1.5 IFN-G inducible 

protein 10 (IP-10)

Complement/adaptive

SELE - - - 0 0 0 soluble E-selectin 

FASLG - - - -0.2 -1 3.5 soluble Fas ligand

TNF - - - 1.2 -0.2 0.7 tumor necrosis 

factor A

VEGFA - - - -1.1 -0.2 180 VEGF-A

CCL5 - - - 1.3 1 1.1 RANTES

Table 3 Genes analyzed using a Luminex multiplex assay (antibodies) on patients infected with Sudan 

virus (SUDV) in Gulu district of Uganda (McElroy et al. 2014) The authors classified the patients into 3 

possible dichotomies (fatal/non-fatal, hemorrhaging/non-hemorrhaging, or high/low viremia) and identified 

genes that characterized these states. The first column provides the official names of the genes, while the 

last column shows the names used in the publication. The columns 2-4 list information provided by the 

human study (higher in fatal column implies fatal cases exhibit higher levels of the gene), and columns 5-7 

show expression in infected and non-infected bat livers. Most genes are low-expressed and/or do not show 

much change under infection in bat livers.  Acute phase response (APP) genes respond to inflammation 

induced by filoviral infection, except for the CRP gene, which is not expressed in these bats. Ferritin is 

lower in the MARV infected bats compared to the uninfected bats, which is consistent with the claim that 

Ferritin is higher is fatal human case. 
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