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Abstract. The filoviruses Ebola (EBOV) and Marburg (MARYV) cause fatal disease in humans
and nonhuman primates but are associated with subclinical infections in bats, with Egyptian
rousette bat (ERB, Rousettus aegyptiacus) being a natural MARYV reservoir. To understand the
nature of this resistance, we have analyzed how EBOV and MARYV affect the transcriptomes of
multiple ERB tissues. We have found that while the primary locus of infection was the liver,
gene expression was affected in multiple tissues, suggesting a systemic response. We have
identified transcriptional changes that are indicative of inhibition of the complement system,
induction of vasodilation, changes in coagulation, modulation of iron regulation, activation of a
T cell response, and converting macrophages from the M1 to M2 state. We propose that these
events are facets of a systemic anti-inflammatory state that enables effective control of the
infection in bats and suggest that dissecting this state can inform how to control a filovirus
infection in humans.


https://doi.org/10.1101/2020.04.13.039503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.13.039503; this version posted July 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

Ebola (EBOV) and Marburg (MARYV) filoviruses cause a severe, frequently fatal disease in
humans!. For example, the 2004-2005 outbreak of MARYV Kkilled 227 out of 252 (90%) infected
individuals?, while an ongoing EBOV outbreak has killed 2,264 out of 3,444 (66% case fatality)’.
EBOV and MARY kill by causing a multisystem disease state involving hypotension, multisystem
organ failure, sepsis-like symptoms, and disseminated intravascular coagulation (DIC) due to
profound immune dysregulation, including cytokine storm*. Despite the aggressive use of a recently
approved Ebola vaccine, control of the ongoing outbreak has been difficult, indicating the need to
look for new prevention and therapeutic approaches by understanding better the pathobiology of
these viruses. An intriguing clue is a remarkable fact that EBOV and MARYV are well tolerated by
their natural reservoir hosts — bats.

MARY has been isolated from the Egyptian rousette bat (ERB, Rousettus aegyptiacus)>~’, and
ecological and experimental studies have demonstrated that ERB are a reservoir for the virus®S.
Experimental infections of ERBs with MARYV have consistently demonstrated that despite viral
replication in multiple tissues, animals develop a mostly subclinical disease, which is characterized
by mild pathology involving transient elevation of alanine aminotransferase, elevated lymphocyte
and monocyte counts, and some evidence of minimal inflammatory infiltration in the liver®!°,
Clinical signs of disease are absent’~!*. Transmission has been demonstrated between co-housed
ERBs, and virus is known to be shed in saliva, urine, and feces®. However, ERBs do not appear to
develop a chronic infection when exposed to MARYV, and instead clear the virus and develop at

least temporary immunity, including MARV-specific IgG'4.

Whether ERB are a reservoir for EBOV is unclear. While detecting of EBOV RNA and anti-EBOV
antibodies in ERB 316, 1719 gugoest that these bats could be a reservoir for this virus, the failure of
isolating infectious EBOV from a wild bat°
virus?! argue against this possibility.

and finding that these animals are refractory to the

The ability of bats to tolerate viral infections has been a topic of considerable interest, and several
models have been proposed to explain this phenomenon. Most of these are centered on the innate
immune system, which includes the inflammatory response (induced by cytokines), phagocytosis,
natural killer cells, and the complement system. One model posits that bats constitutively express
interferons to maintain a basal level of innate immune activity, ready for pathogens to appear??,
although the universality of this model in bats has been questioned?*?*. An alternative model claims
that the resistance is due to a weakened innate immune response, which is attenuated by changes in
some proteins such as the stimulator of interferon genes (STING or TMEM173)%. Along these
lines, a genomic analysis >* suggested that tolerance of viral infection, rather than enhanced antiviral
defenses, explained the bat’s ability to asymptomatically host viruses that cause human diseases.
The similarity of innate immune responses to MARV and EBOV in bat and human cell lines?®
seems to contradict these theories and suggests that the control of viral infections in bats is more
complex. Moreover, while these models can explain how viruses can survive in the animal, they
cannot explain how the infection is eliminated.
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A potential source of the difficulty to understand how bats tolerate or eliminate the viruses that are
deadly to humans is the lack of studies that analyze the response to infection in bats rather than in
cultured bat cells. The results obtained using cell lines have been contradictory. Some studies claim
both EBOV and MARY replicate to similar levels in ERB and human derived cell lines?S, with a
robust innate immune response mounted by ERB and to a lesser degree, human cells, while others
claim MARYV inhibited the antiviral program in ERB cells, like in primate cells, and did not induce
almost any IFN gene 27, or little anti-viral gene induction?®. An experiment with the pig (PK15A)
and bat (EhKiT) cells suggested they responded to EBOV through the upregulation of immune,
inflammatory, and coagulation pathway, in contrast to a limited response in the human (HEK293T)
cells?. To comprehensively understand the pathways involved in the bat filoviral response, we
infected bats, rather than their isolated cells, and analyzed tissue-specific RNA expression through
mRNA-seq in the organs of the infected animals.

To probe the complexity of the response, we have attempted to test two hypotheses: that the
response of bats to filoviruses is systemic, involving multiple interrelated processes, and that the
differences in the responses to infection between bats and humans are due to evolutionarily
divergent genes. To test these hypotheses, we have analyzed how EBOV and MARYV affect global
gene expression patterns in various tissues, with a particular focus on evolutionarily divergent
genes. Our analysis of these transcriptomes begins to reveal a systemic organismal response that
facilitates the ability of bats to survive filovirus infections and suggest potential therapeutic
strategies for controlling human infection. This is the first in vivo study that focuses on the
coordinated transcriptional response to filoviruses at the level of individual organs in bats.

RESULTS

Inoculation of bats with MARYV and EBOYV results in detectable viral replication only in some
organs

Eleven ERBs were inoculated subcutaneously with 10* PFU of MARYV or EBOV. Following
inoculation, animals were observed at least daily, and bled every other day. Viremia was monitored
via ddPCR, and animals were euthanized shortly after becoming viremic. Bats inoculated with
MARYV or EBOV showed no apparent clinical signs of disease or changes in behavior, with no
significant effect on body weight and temperature (Fig. 1-A, B). MARYV and EBOV were detected
by ddRT-PCR in the blood of infected bats, with MARYV detected earlier and at a higher copy
number than EBOV (Fig. 1-C). MARYV was detected by plaque assay in livers and spleens of all
inoculated animals, and in the salivary glands (2 animals) and kidneys (1 animal) of some animals
(Fig 1-D). By contrast, EBOV was present above the limit of detection in the livers of two
inoculated animals, which is contrast to prior reports that ERB are refractory to EBOV infection
1330, We did not detect EBOV by plaque assay in other organs (Fig 1-E).

Two of the three EBOV-inoculated animals presented with histopathological lesions in the liver,
consisting of pigmented and unpigmented infiltrates of aggregated mononuclear cells compressing
adjacent tissue structures, and eosinophilic nuclear and cytoplasmic inclusions, changes consistent
with previous reports'3-*°. In EBOV-infected animals, focal immunostaining with both pan-filovirus
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and EBOV-VP40 antibodies was observed in the liver of one animal, but very few foci were found,
suggesting limited viral replication.

MARV-inoculated animals showed histopathology like that observed in prior experimental
infection studies'?. Immunohistochemistry with a pan-filovirus antibody suggested that MARV was
present in mammary glands and testes, despite the lack of histopathological lesions in these organs.
(Fig 1-F).

MARY and EBOYV infection affects the transcriptome of multiple organs

To examine the response to filovirus infection, we sequenced mRNA from liver, spleen, kidney,
lungs, salivary glands, large and small intestine, and testes collected from filovirus inoculated and
uninfected bats (Methods, Table S1). Consistent with prior reports that liver is the primary target of
MARV3!, and our findings (Fig. 1, Table S2), MARYV transcripts were most abundant in this tissue
(79 transcripts-per-million, tpm), but were also present in spleen (56 tpm), intestine (10 tpm) and
lungs(2 tpm) (Table S2). EBOV transcripts were detected at very low levels (< 1 tpm) in the livers
of inoculated bats and were not detectable in other tissues.

Although viral transcripts were detected primarily in the liver, gene expression patterns were altered
in all analyzed tissues and involved thousands of genes, suggesting a systemic response (Fig. 2).
The changes were highest in the livers of MARV-infected animals relative to other organs,
consistent with the possibility that these changes were induced by the virus, and differed between
MARYV and EBOV (Fig. 3, S1), indicating that the observed changes in gene expression patterns are
related to the infectious agent.

Evolutionarily divergent bat genes as tools for understanding the response to filovirus
infection

To identify genes that may be relevant to the difference in resistance to filoviruses between humans
and bats, we reasoned that homologous genes with greater evolutionary divergence between bats
and humans are also likely to diverge in function or regulation. This hypothesis made the divergent
genes our primary suspects. We also reasoned that focusing first on divergent genes would also
simplify the computational analysis of the transcriptomes, further increasing the chance of
identifying relevant pathways.

To identify divergent genes, we relied on BLASTn*2. Genes detected as homologues (16004, 87%
out of 18443 bat genes in our database) using BLASTn default settings were labelled “similar”. The
remaining 2439 genes (13%) were considered “divergent”. Of these genes, 1,548 transcripts (8% of
the total), could be identified as homologous by reducing the word-size in BLASTn from 11, the
default, to 9. This approach is equivalent to matching at the protein level, but we find that using
nucleotide level matches provides a cleaner separation of the two classes than using translated
proteins (Fig. 4, Methods). From this divergent set, using expression levels, we narrowed down to a
subset of 264 genes that expressed at more than 20 tpm in at least one set of liver samples (MARV,
EBOV, or uninfected). Of these 264 genes, 151 were differentially expressed in the livers of either
MARYV or EBOV infected bats relative to uninfected animals (Fig. 4, Methods). These 151 genes
were then used in the first step of pathway analysis.
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The most abundant group in this set comprised genes related to mitochondria (20 genes), followed
by genes involved in the vascular system (19), innate immunity (16), tissue regeneration and
apoptosis (15), macrophages (13), inflammation (10), metabolism and fatty-acid oxidation (8), T
cells (4), complement system (2), digestion (5), and toxin processing (3).

Finding these sets led us focus on the entire transcriptomes (both homologous and divergent genes)
of the corresponding systems : 1) innate immune system which includes the inflammatory response,
phagocytosis by macrophages, natural killer cells, and the complement system; i1) inflammatory
response, including acute phase proteins, macrophages activities involving metabolism, fatty-acid
oxidation, mitochondrial abundance and function, and tissue regeneration and apoptosis; and iii) the
vascular system, involving the regulation of blood pressure, coagulation, and iron homeostasis.

MARY and EBOYV infection induce inflammation, indicated primarily by an acute phase
response

Acute phase proteins (APP) are produced by hepatocytes in the liver in response to inflammatory
cytokines, such as Interleukin-1(IL-1), [L-6, and TNFa, and are an important part of the innate
immune response®3>. Serum concentration of positive APPs*®, including SAA1 and SAA2 can
increase more than 10-fold as a part of the response, while the concentration of negative APPs,
including transferrin and albumin, decreases®’.

We found that MARYV, and to a lesser extent EBOV, infection induced APP response in liver,
spleen and kidney, with the largest changes in APP expression (>10-fold) observed in the liver
(Table I, Fig. 5). However, SAA1 and SAA2 expression also increased to a similar degree in most
tissues, not only in the tissues in which the viruses were detected. At the same time, we detected no
expression of C-reactive protein (CRP), an APPs used as a marker for measuring inflammation
acute-phase-response in humans (Table 1, Fig. 5). Bats may lack a CRP response as we could not
detect the CRP transcript in public mRNA-seq data from lab-infected samples from various species
of bats (data not shown). Consistent with the induction of SAA1 and SAA2, we also detected
induction of other markers of inflammation including, ORM2, CP, HAMP and the microsomal
glutathione S-transferases, MGST1 and MGST2 (Table 1, Fig. 5).

MARY and EBOYV infection is associated with an early transition from M1- to M2-dominated
populations of macrophages

Macrophages recognize and phagocytize foreign organisms and damaged host cells, as a part of the
innate immune response, and are an important early target for filoviruses®'. Macrophages can either
be in the M1 state, an inflammatory state enabling apoptosis, or in the M2 state, anti-inflammatory
state assisting tissue regeneration. A key difference between the M1 and M2 states lies in their
metabolism, with the M1 state characterized by hypoxia and glycolysis metabolism* and the M2
state is characterized by fatty acid metabolism and abundant mitochondria®.

We have found that key markers of the M1 state were upregulated in livers of infected bats (more so
in MARYV infected animals). These included IRF5, NF-xB, AP1G1 (a subunit of the AP-1
complex), STATI1, and SOCS3 (Fig. 5, S4, S5). Likewise, HIF1 A*'~# which promotes mitophagy
and glycolysis metabolism to induce M1 polarization was also upregulated in infected livers, again
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more so in MARYV infection. PKM, which activates HIF1 A, and the pyruvate dehydrogenase,
PDK1, involved in the response to hypoxia were also upregulated, to a greater degree in MARV
than EBOV (Fig. 5, S4, S5)*.

The M2 state markers, MRC1, arginase-1(ARG1), IL-10 and TGF-*, were highly expressed in
livers of bats infected with both viruses (Fig. 5,5S4,S5), suggesting the presence of M2 macrophages.
Several genes related to fatty acid oxidation in M2 macrophages were upregulated by filovirus
infection (Tables S3-8). CPT2, a gene associated with fatty acid transport was upregulated under
filoviral infection (greater in MARYV infection). Infected bats also exhibited upregulation of
multiple markers of mitochondria abundance another characteristic of M2 macrophages. These
included TFAM, OPA1, MFN1/2, and DNMI1L. Two genes involved in mitochondrial biogenesis*,
HGF-MET and PPARGCIA, are also upregulated upon MARYV infection.

Prolonged M1 activity can be harmful to tissues as these cells can induce inflammation and

apoptosis. Thus a negative feedback system that shifts macrophages from the M1 state to the M2
state748
and regeneration**~°, In our data, the transcriptomes of the MAR V-infected liver samples suggest a
more equal representation of M1 and M2 macrophages, while in the EBOV-infected liver samples,

, controlling inflammation during infection and facilitating the transition to tissue repair

gene expression suggests an M2-dominated macrophage population, suggesting a conversion from
M1 to M2 state is underway over the course of the infection, as the virus is cleared.

The M1 to M2 transition is associated with a change in cellular energy metabolism. GPD2, the
mitochondrial glycerol-3-phosphate dehydrogenase, identified as a contributor to the shift in core
macrophage metabolism associated with the M1 to M2 transition during infection®!, was found to be
upregulated by filovirus infection (Fig. 5, S6A). Inactivating HIF1A also promotes M2 polarization.
HIF1AN, the inhibitor of HIF1A, is upregulated in filovirus infected bats. Increased availability of
iron also promotes the M1 to M2 polarization shift 2. Gene expression patterns in EBOV-infected
bats, notably ferritin and HBB expression, suggest that iron levels may be elevated in these animals.
This supports our other findings of an M2 polarization bias.

Expression of key components of the classical complement pathway is inhibited by filovirus
infection

The complement pathway, a part of the immune system, has three branches: the classical pathway,
the mannose-binding lectin pathway and the alternative pathway”3. The classical pathway
recognizes antigens bound to antibodies; the lectin pathway binds to sugar molecules on the virus
particles, and the alternative pathway is a component of the innate defense against infections.

Several key gene associated with the complement pathway were upregulated by filovirus infection,
including C3P1, C4B, C5, C9, C6, and MASP1, while others (CIR, C3, C8G, and MASP2) were
downregulated or not expressed (Fig. 5, S6B). This indicates that the complement pathway is
impacted by filovirus infection in the liver and suggests that aspects of the immune response
dependent upon complement such as some forms of antibody-mediated viral neutralization, are
compromised.

Infected bats exhibit transcriptional signatures of T cell activity
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Previous studies on the adaptive immune response to Ebola and Marburg viruses in humans, non-
human primates, and non-primate mammals, shows that long-term immunity is conferred by both T
cell and antibody responses. Mostly CD8+ T cells were elicited and helpful against Ebola in
mice>*,>®, while SUDV infection in humans®®) and MARV infection in cynomolgus monkeys®’ and
humans>?® ) elicited mostly CD4+ T cells . In most human EBOV infections, CD8+ T cells against
the EBOV NP protein dominated the responses, while a minority of individuals harbored memory

CD8+ T cells against the EBOV-GP %,

Consistent with this, in MARV-infected bats, CD4 expression (specific to CD4+ T cells) was
higher, while in EBOV-infected bats, CD8 expression (specific to CD8+ T cells) was higher, the
overall levels are low, because the tissue samples are heterogenous and expression of these markers
is not high in the T cells to begin with. T cell markers (such as CCL3, ANAXI, TIMD4 and
MAGTT1) are also upregulated in liver, suggesting a T cell response is mounted.

EBOV and MARY infection affects the vascular system

The vascular system carries nutrients, oxygen and the cells and molecules involved in the immune
response and inflammation. The proper functioning of the system requires control of iron
metabolism, blood pressure, and blood coagulation. We found that MARV and EBOV affected the
expression of genes involved in all these processes.

Genes involved in iron homeostasis. The absorption and availability of iron, an essential
component of heme needed for oxygen transport, is tightly regulated®. Most iron is in hemoglobin
(66%), the remainder is stored mostly in macrophages in the liver, which take up iron through the
CD163 receptor. Iron is exported from macrophages and absorbed from food®! through Ferroportin
(SLC40A1/FPN1).

MARYV and EBOV changed the expression of multiple genes involved in iron homeostasis.
Hepcidin (HAMP)%2 , which controls iron homeostasis by binding ferroportin, leading to its
degradation as well as blocking the export of iron, was induced in infected livers (Fig. 5,S8 Table
1). Infection induced ceruloplasmin (an APP, Table 1), which enables the formation of the
transferrin-iron complex and is also involved in processing copper®’. In the cytosol, iron is bound to
ferritin (comprised of a heavy chain, FTH1 and a light chain FTL), synthesized by cells in response
to increased iron®*. In mitochondria, iron is bound to FTMT, the mitochondrial ferritin®. Both
FTHI and FTMT were downregulated in MARV-infected bats but upregulated in EBOV-infected
animals (Fig. 5, S8). MARYV infection was associated with lowered hemoglobin expression,
suggesting impairment of red blood cell production, potentially resulting in anemia. Consistent with
this conclusion, CD164, which suppresses hematopoietic cell proliferation, was also upregulated by
MARY infection (Fig. 5, S8), while HBB was suppressed EBOV-infected samples.

These observations suggest that hematopoiesis was impaired in MARV-infected bats, but not in
EBOV-infected bats, and that regulation of iron by HAMP in bats might diverge from the
homologous process in humans.

Genes regulating vasodilation. The primary means of blood pressure regulation is renal expression
of renin, which converts angiotensinogen (AGT) to angiotensin I. Angiotensin converting enzyme
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(ACE) converts angiotensin I to angiotensin II, which constricts blood vessels to increase blood
pressure. AGT is down regulated by MARYV and EBOV infection, which would be expected to
deplete the substrate for ACE, limiting the potential for blood pressure to increase even with
upregulation of ACE (Fig. 5, S8). Low blood pressure would be consistent with our finding that
filovirus infection induced expression of Prostaglandin 12 synthase (PTGIS), a potent vasodilator
and inhibitor of platelet aggregation. However, blood pressure was not directly measured in the bats
before euthanasia.

Genes involved in blood coagulation. Mechanisms that control blood pressure also impact
coagulation. MARYV and EBOV induced PTGIS, which reduces blood pressure and also inhibits
platelet aggregation (Fig. 5, S9) and repressed AGT, the precursor of angiotensin II which enhances
production of active plasmin to increase coagulation®®. MARV and EBOV also induced CYP11B1,
which increases cortisol that acts to reduce inflammation, and CYP11B2, which increases
aldosterone levels that increases blood volume®’. Together, these would be expected to reduce the
effects of inflammation on the vascular system.

DISCUSSION

Recently, multiple filoviruses associated with bats have emerged or re-emerged as threatening
human pathogens, such as EBOV, MERS-CoV and SARS-CoV-2. As a result, the role of bats as
reservoirs for a diverse array of viruses and their ability to tolerate viral infections that cause severe
disease in humans have become a topic of considerable interest. A number of hypotheses have been
proposed to explain this unique aspect of bat biology, most of which are centered on the innate
immune system. In these hypotheses, various aspects of bat innate immunity are either more or less
potent than their human counterparts. One hypothesis in posits that some bat species?*2*
constitutively express interferons, leading to a basal level of innate immune activation. However,
prior work with filoviruses demonstrating that the innate response in bat cells is robust, and similar
to that observed in human cell lines?® is inconsistent with this hypothesis. Another hypothesis
suggests that components of the innate immune response (e.g., STING/TMEM173) are less
effective in bats?®, allowing viruses to survive in the host. Although this mechanism helps to explain
the ability of bats to serve as reservoirs for a diverse range of viruses, it is less useful in explaining
the ability of bats to survive and clear infection and may indicate at the involvement of the adaptive
immune system in virus clearance.

All MARV-inoculated bats were productively infected, and our virology and histopathology data in
MARV-infected bats are consistent with previous reports, including viral replication in the
mammary glands and testes!® Evidence of successful, if limited, infection was identified in two of
three EBOV inoculated animals. In particular, virus was detected by plaque assay in the livers of
two of three animals, and immunohistochemistry identified a small number of foci in the liver of
one animal. This contrasts with prior reports®® and suggests that ERBs may not be truly refractory to
EBOV infection. However, given the very low titers detected, and the limited nature of the observed
immunostaining, it is unlikely that the virus could be maintained in animals in nature
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There are hundreds of genes involved in the interferon response, some key components can mutate
to change specificity of their interactions, but most, especially those in the core ISG category®®,
evolve slowly and have conserved function and sequence®. Our analysis of gene divergence shows
that the majority of interferon response genes are not divergent from their human homologs,
consistent with prior observations that the innate responses are quite similar between human and bat
cell lines?¢. This implies that other systems are involved in generating the difference in response
between bats and humans.

We developed a framework to understand the observations with the interconnections between
various systems as pertains to our study shown in Fig. 6. A key feature of filovirus infection is an
inflammatory response leading to the expression of APPs and stimulation of M1 macrophages. C-
reactive protein (CRP), which binds to micro-organisms, assists in complement binding to foreign
and damaged cells, and enhances phagocytosis by macrophages (opsonin-mediated phagocytosis)”
appears to be absent in bats, based on the lack of CRP sequences in our mRNA-seq data. In mice,
CRP is not an acute phase protein’!, and as such, it is unclear if this apparent lack of CRP is
consequential in regards to the innate immunity of bats. Aside from CRP, however, the other APPs
are conserved. We found evidence that the effector component of the antibody response may be
weakened by incomplete complement activation. This is consistent with the previous reports that
antibody-mediated virus neutralization is not the dominant mechanism of filovirus clearance in R.
aegyptiacus bats’?. The robust CD8+ T cell activity implied by our mRNA-seq data suggests that
control and clearance of filovirus infection in bats may instead depend upon a robust T cell
response. This is consistent with what is known in humans, where individuals who recover from
filovirus infections tend to mount robust T cell responses’>~">, and have higher levels of CD40L
expression, a marker for T cell activity”>.

The macrophage response was one of the more notable points of divergence between the human
response to filovirus infection and what we observed in infected bats. We identified markers of both
M1 and M2 macrophages in ERBs infected with MARYV, suggesting that macrophage populations
in the animals were in the process of switching from the classically pro-inflammatory M1
polarization to the M2 state, which is conventionally associated with anti-inflammatory processes,
tissue repair, and regeneration. In particular, the modulation of the innate response facilitated by M2
macrophages is important for T cell mediated clearing of the virus. In EBOV-infected animals,
where viral replication was far more limited, our sequencing data indicate that the macrophage
population was further along in the transition to M2 polarization by the time of euthanasia. The
generalized anti-inflammatory state observed in bats during filovirus infection, especially the early
switch to M2 macrophage polarization, may be key to preventing the immunopathology associated
with filovirus infection in humans, including cytokine storm and DIC. Supporting this, an mRNA-
seq study conducted with PBMCs isolated from EBOV-infected humans found that individuals who
succumbed to disease showed stronger upregulation of interferon signaling and acute phase
response-related genes than survivors during the acute phase of infection’®, suggesting that a
tempered response may be more beneficial.
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Comparing our observations to human responses to filoviruses is limited by the scarcity of studies
in humans. Nevertheless, this comparison suggests potential directions to explore. In one study,
individuals who succumbed to the disease showed stronger upregulation of interferon signaling and
acute phase responses compared to survivors during the acute phase of infection’®, consistent with
the anti-inflammatory response gene expression signature identified in this study in bats. However,
most of the genes used in the study by Liu et al. to classify survivors are either barely expressed in
bats or do not respond to filoviral infection (Table 2), the differences that provide potential clues to
find why bats can tolerate the infection.

A study of patients infected with Sudan Ebola virus (SUDV) analyzed protein levels for a panel of
genes using a Luminex multiplex assay (using antibodies)’’. The panel was based on results from
other studies and pathways involved in the response to infections. The patients were classified into
3 possible dichotomies (fatal/non-fatal, hemorrhaging/non-hemorrhaging, or high/low viremia)
correlated with genes that characterized these states. Most of these genes either are barely
expressed, if at all, or are unaffected by infection in bats, except for ferritin (FTL, FTH1) whose
expression is lowered by MARYV infection, consistent with the observation that ferritin is higher is
fatal human cases (Table 3).

Our data suggest that the vascular response in bats differs from that in humans. Humans infected
with EBOV or MARYV frequently present with hemorrhagic manifestations and dysregulated
coagulation in the form of disseminated intravascular coagulation’®. We identified transcriptional
patterns consistent with vasodilation and reduced potential for coagulation. This could result in a
state in which blood pressure is lower than normal, and coagulation is reduced. This state m be
protective, as it might be expected to prevent DIC. Our findings are consistent with results from a
study in humans infected with EBOV7” which analyzed 55 biomarkers in blood. This report found
that viremia was associated with elevated levels of tissue factor and tissue plasminogen activator,
consistent with coagulopathy.

Our results also suggest that reducing the hyperinflammatory response’ or controlling the
coagulopathies® in humans during filovirus infection may have a therapeutic benefit by preventing
damage to the host and allowing other processes to clear the infection. This could be achieved by
the inhibition of IL-6 by agents such as siltuximab (Sylvant)3!, or by targeting the IL-6 receptor via
an antibody such as tocilizumab (Actemra)??

In bats, filovirus infection upregulates MGST1 and MGST2 which both induce leukotrienes (LTC4)
and prostaglandin E, both of which are mediators of inflammation?®. This is a potential druggable
target, as these are targeted by several therapeutic agents. Thus, this inflammation could also be
targeted by another class of anti-inflammatory agents such as LTC4 inhibitors, used to treat asthma.

Our observations let us to surmise that upon filovirus infection bats may naturally vasodilate and
reduce their blood pressure (mimicking the action of ACE inhibitors) while the endothelial system
becomes anti-thrombotic. In fact, field trials of ACE inhibitors and statins in human Ebola virus
disease have already seen some success®’. Along these lines, another potentially useful drug is
prostaglandin I (PGI2, known as epoprostenol as a drug), a powerful vasodilator and anti-coagulant
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that acts by binding to the prostacyclin receptor. This has potential for use in human filovirus
infections as a means of emulating the physiological conditions (low blood pressure and
coagulation) in bats that our data suggest may have protective effects®*.

In humans, high levels of HAMP causes iron to be sequestered in the liver, reducing levels of iron
in blood (lower ferritin). Our observations indicate that in EBOV infected bats high HAMP
expression is decoupled from the levels of iron, as both ferritin and HAMP are induced. Thus,
HAMP inhibitors, which are used to treat anemia, might recreate in humans the state seen in bats
under filoviral infection. Two HAMP inhibitors, Heparin®® and erythropoietin (EPO)®¢%7, have
additional beneficial effects, anti-coagulation and RBC synthesis respectively, which might make
them particularly efficacious. Vitamin D is also a HAMP inhibitor®.

Overall, the changes in gene expression patterns that we have observed in infected bats suggest that
the filovirus pathogens induce a systemic response that involves pathways regulating coagulation,
vasodilation, iron homeostasis, inflammation, the interferon response and the adaptive response.
The most important outcome of this systemic response appears to be a tempering of the overall
response to infection, avoiding immunopathology. In particular, the anti-inflammatory state
observed, and the altered state of the vascular system appear to be important to preventing
pathology and facilitating the ultimate clearance of the virus.

CONCLUSIONS

Our observations and analyses provide an experimental and computational framework for
understanding the resistance of bats to filovirus infection. This framework and the data that we
report and make public have the potential to aid in the development of new strategies to effectively
mitigate and treat the effects of filovirus infections in humans.

Data

All data underlying the balloon plots is available as csv files on the filobat website
(http://katahdin.girihlet.com/shiny/bat/). Additionally, a fasta file containing all the mRNA
sequences used in our analysis is also available on the website. The raw sequencing reads will be
deposited with GEO, and the filobat site has several tools for analysis and exploration of data.

MATERIALS AND METHODS
Experimental methods

Viruses. Recombinant wild-type EBOV, strain Mayinga, was recovered from the full-length clone
and support plasmids in HEK 293T cells and passaged twice in Vero E6 cells for amplification?’.
Recombinant wild-type MARYV, strain Uganda, was recovered similarly in BHK-21 cells® and
passaged twice in Vero E6 cells for amplification.

Bat experimental protocol. All animal procedures were performed in compliance with protocols
approved by the Institutional Animal Care and Use Committee at the University of Texas Medical
Branch at Galveston.

Adult ERBs were obtained from a commercial source and quarantined for 30 days under ABSL-2
conditions. Animals were implanted with microchip transponders for animal ID and temperature
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data collection. For studies with EBOV and MARYV, animals were transferred to the Galveston
National Laboratory ABSL-4 facility. Animals were segregated into groups of three. Except for one
MARV-infected male, all bats were female. Each group was housed in a separate cage for
inoculation with the same virus. After acclimation to the facility, animals were anesthetized with
isoflurane and infected subcutaneously in the scapular region with 10° focus forming units (FFU;
titrated on Vero E6 cells) of EBOV or MARV. Every other day, animals were anesthetized by
isoflurane, weighed, temperature was determined via transponder, and 100-150 pL of blood was
collected from the propatagial vein. Blood was inactivated in 1 mL of TRIzol reagent (Thermo-
Fisher Scientific). Samples were then removed from ABSL-4 containment, and RNA was extracted.
Droplet-digital RT-PCR (ddRT-PCR) with primers specific to the nucleoprotein (NP) gene was
used to detect viremia. If fewer than 10 MARV RNA copies/mL viremia were detected in a
MARV-inoculated bat, the animal was observed for additional 2 days to allow the animal to reach a
higher viral RNA load. All EBOV-inoculated bats were euthanized 48 hours after the first detection
of viremia, regardless of viral RNA load. Animals were euthanized under deep isoflurane sedation
via cardiac exsanguination confirmed by bilateral open chest. Tissues were collected (listed in Table
S1) and immediately homogenized in an appropriate volume of TRIzol reagent and stored at -80°C.
1 cubic centimeter (cc) tissue sections were homogenized in minimal essential media (MEM)
supplemented with 10% fetal bovine serum and stored at -80°C. Additional tissue sections were
fixed in 10% neutral buffered formalin for histopathology. Tissues and PBMCs were also collected
from three uninfected control animals.

Leukocyte isolation. Leukocytes were isolated using ACK lysis buffer (Gibco). Ten volumes of
lysis buffer were added to whole blood, incubated for 2-3 minutes, and then neutralized with
complete DMEM media containing 10% FBS. Following neutralization, samples were centrifuged
at 250 g for 5 minutes at 4°C, after which the supernatant was decanted from the pellet. This
process was repeated several times per sample until a white pellet of cells free of contaminating red
blood cells remained. Because density gradient purification was not performed on these samples
prior to or after red blood cell lysis, these leukocyte preparations were assumed to contain
granulocytes in addition to PBMCs.

mRNA sequencing. Total RNA was isolated from bat tissues using Ambion’s RNA isolation and
purification kit. For most samples, polyA-tailed mRNA was selected using beads with oligo-
deoxythymidine and then fragmented. A few samples with poor RIN (RNA Integrity Number)
scores were treated with Ribominus (targeting human ribosomal RNA) to enrich for polyA-tailed
mRNA before fragmentation. cDNA was synthesized using random hexamers and ligated with bar-
coded adaptors compatible with Illumina's NextSeq 500 sequencer. A total of 88 samples were
sequenced on the NextSeq 500, as 75 base pair single reads.

Analytical methods

Bat mRNA sequence database. The extant bat genomes are nowhere near completion and a
comprehensive mRNA database does not exists. Thus, for this study, we constructed a custom non-
redundant reference bat mRNA sequence database, which is available at
https://katahdin.girihlet.com/shiny/bat/. We started with existing genome annotations®’. The
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complications arising from splice variants were avoided by keeping only the longest transcript for
each gene. We added missing annotations/sequences (e.g., CYP11B2 and PLG) to our database by
assembling reads from our own sequence data. These required custom scripts as there often was not
enough reads covering a transcript, which precluded the use of standard assembly tools. The gene
sequences were collected from different bat species, so error-free reads might not map perfectly to
the transcripts in the database. The database has sequences of 18,443 bat mRNAs, and include
EBOV and MARYV sequences, the infectious agents used in our studies. The genes were identified
by homology to mouse and human genes, 16,004 bat genes had high similarity to human or mouse
homologues, as defined by BLASTn with default settings identifying matches spanning the length
of the mRNA.

The set of remaining genes (2439) were labelled as divergent. Of these, 1,548 transcripts could be
identified by increasing the sensitivity of BLASTn by reducing the word-size from 11 to 9, which is
equivalent to matching at the protein level. Of the remaining 891 putative transcripts, homologues
for 182 could be identified on the basis of partial homology and domain structure, while the
remainder (709 sequences whose names start with UNDEF) belonged to one of four classes, 1)
aligned to un-annotated transcripts in the human genome, 2) non-coding RNAs, 3) transcripts
unique to bats, or 4) assembly errors. We use capitalizations to represent bat gene symbols, as in the
human gene nomenclature.

To identify genes within these divergent set that are relevant to our study, we then selected a subset
of genes that had good expression (defined as tpm > 20) in at least one class of liver samples
(MARV-, EBOV- or mock-infected) and responsive in either MARV- or EBOV- infected bat
livers, which we defined as up- (log2 ratio > 0.6), or down- (log2 ratio < -0.6) regulated. We were
left with 151 genes that are the foundation of our analyses of pathways involved in the response to
filoviruses (Tables S3-S8).

Expression Analyses. To determine transcript expression levels, we used Kallisto, because this tool
uses pseudo-alignments and is relatively more tolerant of errors/variants in reads’!, which we expect
here because the reads and mRNA sequences in the database do not always come from the same
species. Kallisto uses a parameter “k” while indexing the database to specify how sensitive it is to
matches with smaller k values leading to more spurious hits. We empirically determined k=23 to be
an appropriate parameter value with which to index the reference mRNA dataset. We used the
transcripts-per-million (tpm) value as the transcript expression levels to determine changes in
expression across samples.

We used viral transcripts to identify infected samples, which has previously helped us to identify
and correct mistakes of annotation in some of the cell line data and also identified a problem with a
published dataset?®, where all the naive (uninfected) samples showed signs of viral infection.
Furthermore, to ensure there was no mislabeling of tissue samples from different bats, we used
single nucleotide variants in the sequenced reads to confirm that all tissue samples from an
individual had the same set of variants.

Using clustering based on expression profiles and considering individual interferon responsive
genes, it was clear that one non-infected control bat liver sample (labeled cb1 in the shiny tool) was
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reacting to some stimulus (injury or infection) compared to the other two control samples (cb2 and
cb3 in the shiny tool); Since we are interested in the innate response to infections, we had to exclude
cbl from the controls, but cb1 data are available for exploration in the filobat tool.

As such, most of our analyses concentrated on liver RNA transcripts since it had the strongest
response and the genes indicated that a variety of cell types were involved in the response, capturing
the systemic nature of the response. Liver function impacts a wide range of systems involving
inflammation, iron homeostasis, and blood pressure. Other organs, such as kidney and spleen
provide additional support for what is observed in the liver. For some genes, we also used the
transcriptional response in kidney (Renin) and/or spleen (STING) in order to understand the
regulation of pathways (e.g., Renin is expressed in kidney and regulates the blood pressure system).

Tools for data exploration and interrogation. To allow exploration of the data across various
samples on a gene-by-gene basis, as well as analysis of viral expression in the samples, we
developed a browser-based tool, filobat, using Shiny in R (http://katahdin.girihlet.com/shiny/bat/).
Samples can also be compared using scatter plots and hierarchical clustering.

Statistics. Large changes in expression profiles were readily detected by comparing averages across
replicates, since such changes are less affected by noise; however, subtle changes (less than 2-fold)
were difficult to reliably detect due to lack of power in the sample size and variability between
samples and are mostly not considered.

Pathway analyses. A fundamental assumption underlying our study is that bats are mammals that
possess innate and adaptive responses to infections that roughly mirror those seen in humans. The
data from comparative filovirus infections in human and bat cell lines supports this assumption?é.
To identify pathways of interest from particular genes, we used GO/pathways annotations of the
human counterparts®? and grouped them into functions that provided themes in the dataset. Using
these themes, we identified other differentially expressed genes sharing these themes, identified by
the GO annotations for human and mouse genes. This allowed us to build a picture of the pathways
triggered by filovirus infections and delineate the ways in which the systemic bat responses differs
from those seen in humans.
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Figures

Underlying data and tools for exploring the data available at
http://katahdin.girihlet.com/shiny/bat/
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Figure 1: Bat infection with filovirus, MARV and EBOV.
Time course after infection for A) Weight, B) temperature and
C) viremia (MARV Bat 2 sensor failed). Viremia measured in
total RNA extracted from whole blood via ddRT-PCR targeting
the viral NP gene. Animals were euthanized 48 hours after last
viremic timepoint. Tissue viral loads (D and E) were
determined by conventional plaque assay on Vero EG6 cells. F)
Histopathology in EBOV infected livers showing F.a) EBOV
Bat 1 liver with marked histopathological changes, including
cytoplasmic and nuclear inclusions (arrows), F. b.) EBOV Bat 2
liver displaying a less dramatic presentation compared to Bat 1,
F.c) IHC detection of filovirus antigen in EBOV Bat 1 liver, and
F.d.) IHC detection of EBOV VP40 in EBOV Bat 1 liver.
Controls for the IHC images are shown in Fig. S1.
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Figure 2: Broad response of bat liver genes to filoviral infection. Many genes in the liver
respond to filoviral infections, with MARV having a bigger impact compared to EBOV (840 genes
that are responsive to MARV alone, compared to the 43 specific to EBOV alone). The EBOV-
specific (EBOV/MARYV) and MARV-specific (MARV/EBQOV) genes are likely host responses
specific to the viral VP40, VP35 and VP24 genes. In the plot, mock refers to mock-infected bats,
EBOV to EBOV-infected bats, and MARYV to MARV-infected bat livers. Each row in the lower
panel represents a set, there are six sets of genes based on various comparisons, e.g.,
EBOV/mock is the set of genes at least 2-fold up regulated in EBOV infection, compared to the
mock samples. The gray bars at the lower left representing membership in the sets. The vertical
blue lines with bulbs represent set intersections, e.g., the last bar is the set of genes common to
EBOV/MARV, EBOV/mock and MARV/mock, so the genes in this set are up 2-fold in EBOV
compared to the mock and MARV samples, and at least 2-fold up in MARV compared to mock.
The main bar plot (top) is number of genes unique to that intersection, so the total belonging to a
set, say mock/EBQV, is a sum of the numbers in all sets that have mock/EBOV as a member
(41+203+6+31=281).
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Figure 3: MDS plots along the two leading dimensions (the x and y axis respectively). There is clear
separation between different infections (MARV and EBOV) and the mock-infected A) Liver and B) Spleen
samples. Despite the paucity of viral transcripts, Spleen and other tissues (PBMC, kidney, salivary gland,
lung, large and small intestine, Fig. S$2) also exhibit virus-specific signatures, implying the response to
filovirus infections extends to the whole bat. The top panel shows a mock-infected liver sample (the blue
dot in lower right) that seems to be different from the other two mock-infected samples. This bat seems to
be reacting to some stimulus, either an infection or injury, and has been excluded from our analysis.
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Figure 4. Pathways from mRNA-seq. The process used in the paper to identify pathways
relevant to the bat’s resilience in the face of filoviral infection. It is assumed that most
homologous genes perform similar functions in bats and humans. Bat genes evolutionarily
divergent from their human homologs have a greater probability of having altered functions,
Of these, those responsive in liver to filovirus infection were identified. The pathways they
influence were explored to evaluate the systemic response to filovirus infections in bats and
identify key differences from human responses. The vascular system (Blood pressure,
Coagulation and Iron homeostasis) was a prominent pathway. Glycolysis, which is
controlled by Hypoxia, shifts the balance between M1 and M2 states of macrophage
activation. These changes create an anti-inflammatory state that modulate the response and
allows the adaptive immune system to clear the infection. The complement system is not
fully activated, likely compromising the antibody response, but T cells are active and play a
major role in clearing the infection The pathways are interconnected, as shown in Fig. 6.
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Figure 5. Regulation of pathways by MARV and EBOV infections in liver. On the left are genes in Acute
Phase Response (APP), Complement (Cmpl), Hypoxia (Hyp), Tissue regeneration/apoptosis (Tissue), and
genes specific to macrophages in the M1 state (M1), M2 state (M2) or both (M1M2). On the right are genes
for Blood Pressure(BP), Coagulation (COAG), iron homeostasis (IRON) and Interferon stimulated genes
(ISG). The columns show the three liver samples from EBOV-infected bats, and MARV-infected bats, as well
as two un-infected samples. The values are log2 of the fpm values, with the mean value of the EBOV
samples subtracted out. Broadly, majority of the genes are in a quiescent, low expression state in the mock
infected samples, and get stimulated upon infection, with large effects in the case of MARV and intermediate
effects in the case of EBOV. A * after a gene name signifies the bat version is diverged from its human
counterpart. Fig. S11A and S11B show corresponding figures for kidney and spleen.
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Figure 6: Overview of the response to filovirus replication. Interferon stimulated genes (ISG Fig.
5,83,54) cause inflammation, which triggers an acute phase response (APR, Table 1, Fig. 5), leading to a
cascade of vascular events, affecting regulation of HAMP (iron, Fig. 5,88), coagulation (Fig. 5,S10) blood
pressure (Fig. 5,89) and M1 macrophage stimulation (Fig. 5,85,56). The inflammatory M1 macrophages are
stimulated by infection and phagocytize infected cells and promote apoptosis. Over the course of MARV or
EBOQV infection, they get converted to anti-inflammatory M2 macrophages. Fatty acid oxidation and
mitochondrial activity are up, which are hallmarks of M2 macrophages (Fig 5,55,56,S7A). The complement
system is incompletely stimulated by the acute phase response, leading to potentially restricted antibody
activity (Fig. 5,S7B). Blood pressure (Fig. 5,89) and coagulation (Fig. 5,510) are down regulated in MARV
and EBOV infection, while iron levels (Fig. 5,88) are high, especially in EBOV infection (contrary to the levels
of HAMP). T cell (CD8+) activity (Fig. S7C) is also upregulated, leading to the infection being cleared. Dotted

boundaries show functions that likely distinguish the response of the bats from the human response to
filovirus infections.
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Positive APPs MARV EBOV Mock
(fold change) | (fold change) | (tpm)
Serum Amyloid A 1 (SAA1) 21X 3X 6858
Serum Amyloid A 2 (SAA2) 39X 5X 440
Ceruloplasmin (CP) 10X 5X 129
HAMP* 8.5X 10X 211
Orosomucoid 2 Alpha1-Acid glycoprotein 34X 47X 14
(ORM2%)
Microsomal Glutathione S-Transferase 4X 4X 277
MGST1
MGST2* 11X 16X 5.5
MGST3 0.4X 0.7X 461
Fibrinogen (FGA) 2X 1X 1277
Fibrinogen (FGB) 2X 1X 9007
Fibrinogen(FGG) 1X 1X 6070
C4B 2X 1X 1015
C3P1 6X 1X 31
Haptoglobin (HP) 1.1X 0.7X 15906
Alpha2-Macroglobulin (A2M) 1.3X 1X 409
C-reactive protein (CRP) N/A N/A N/A
Negative APPs
Albumin (ALB) 0.6X 1.2X 51400
Transferrin (TF) 1X 1X 22856
Transthyretin (TTR) 2X 2X 1
Retinol Binding protein (RBP4) 0.5X 0.6X 3107
Table 1 Acute Phase Proteins (APPs) in livers respond strongly to inflammatory cytokines
(IL-6, TNFa etc.). Inflammation upregulates positive APPs and downregulates negative APPs.
Basal expression levels in tpm units are shown in the mock column. The fold change upon
infection is shown in the EBOV and MARYV columns. SAA1/2, CP are highly expressed in livers
normally and also get highly up regulated by the filovirus (MARV more than EBOV). ORM2,
MGST2 are highly upregulated, but from a low basal expression level. CRP, used as a marker for
acute phase response in humans, is not expressed in these bats and might be absent in bats
altogether. TF is highly expressed in all samples, but does not react to filoviral infection, while
TTR is not expressed in any of the samples. There is similar inflammation in the liver upon both
MARYV and EBOV infection, despite the lack of viral transcripts in the liver of EBOV infected
animals.” signifies the bat gene is divergent from its human homolog.
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Table 2 Panel of genes used in a human study to classify survivors versus non-survivors
(Liu et. al. 2017) . Our data from bats for this panel suggests that except for GBP1, which
goes up 2-fold in EBOV and MARYV infections and is highly expressed, most of these genes
have low expression and do not exhibit significant response to filoviral infections in bats.

DBN1

HIST1H3J(H3C12)

ADGRL2/LPHN2

PLPP/PPAP2B

Log2(MARV-
liver/mock-

Log2(EBOV-
liver/mock-liver)

Description

Maybe important in
differentiation of
effector CD8+ T cells
Inhibits cell adhesion
Cytoplasmic, actin-
binding, role in
Neuronal growth
Core Component of
nucleosome

Essential for recycling
GMP and indirectly
cGMP
Regulates exocytosis
member of the Ig
superfamily, encodes cell
surface sialoglycoprotein
expressed by cytokine-
activated endothelium
homeodomain protein
that doesn't bind DNA
Important in receptor-
activated signal
transduction mediated
by phosphlipase D
ISG, hydrolyzes GTP to
GMP
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Table 3 Genes analyzed using a Luminex multiplex assay (antibodies) on patients infected with Sudan
virus (SUDV) in Gulu district of Uganda (McElroy et al. 2014) The authors classified the patients into 3
possible dichotomies (fatal/non-fatal, hemorrhaging/non-hemorrhaging, or high/low viremia) and identified
genes that characterized these states. The first column provides the official names of the genes, while the
last column shows the names used in the publication. The columns 2-4 list information provided by the
human study (higher in fatal column implies fatal cases exhibit higher levels of the gene), and columns 5-7
show expression in infected and non-infected bat livers. Most genes are low-expressed and/or do not show
much change under infection in bat livers. Acute phase response (APP) genes respond to inflammation
induced by filoviral infection, except for the CRP gene, which is not expressed in these bats. Ferritin is
lower in the MARYV infected bats compared to the uninfected bats, which is consistent with the claim that
Ferritin is higher is fatal human case.

higher - - - - - interleukin 1A

higher - - 4.3 3.1 1.9 IL-1RA

higher - - 0.2 0 0 IL6

higher - - - - - IL8

higher - - 1.2 0.7 0.1 IL10

- - - 1.6 0.1 0.6 IL-1B

higher - - - - - MIP-1B

higher - - - - - MCP-1

higher  higher - 1.1 -0.2 1 MCSF

higher higher - 3.6 0.9 2.3 MIP-1A

- - higher 1.4 0.7 0.5 TPA

higher - - - - - D-dimer(DIC)

higher  higher - 0.4 0.3 0 thrombomodulin

- - - 0.9 0.2 1269 Fibrinogen

- - - 1.1 0.4 8954 Fibrinogen

higher 0.1 0.1 0.3 Tissue Factor
- - - N/A N/A N/A C-Reactive Protein
- - - 4.4 1.5 6812 SAA
5.3 2.3 437

- - - -0.8 0.2 50742  Albumin

- higher = soluble
intracellular
adhesion molecule

2.4 0.2 3.6 1

higher  higher - -1.9 -0.1 3596 ferritin

higher  higher - -14 0.3 7878 ferritin

higher - - sCD40L

non-

fatal 0 0 0

- higher - 5.2 1.5 1.5 IFN-G inducible
protein 10 (IP-10)

= = = 0 0 0 soluble E-selectin

- - - -0.2 -1 3.5 soluble Fas ligand

- - - 1.2 -0.2 0.7 tumor necrosis
factor A

- - - -1.1 -0.2 180 VEGF-A

= = = 13 1 1.1 RANTES
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