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Abstract

Whole-genome data has become significantly more accessible over the last two decades.
This can largely be attributed to both reduced sequencing costs and imputation models
which make it possible to obtain nearly whole-genome data from less expensive genotyping
methods, such as microarray chips. Although there are many different approaches to impu-
tation, the Hidden Markov Model (HMM) remains the most widely used. In this study, we
compared the latest versions of the most popular HMM-based tools for phasing and imputa-
tion: Beagle5.4, Eagle2.4.1, Shapeit4, Impute5 and Minimac4. We benchmarked them on
four input datasets with three levels of chip density. We assessed each imputation software
on the basis of accuracy, speed and memory usage, and showed how the choice of imputa-
tion accuracy metric can result in different interpretations. The highest average concordance
rate was achieved by Beagle5.4, followed by Impute5 and Minimac4, using a reference-
based approach during phasing and the highest density chip. IQS and R® metrics revealed
that Impute5 and Minimac4 obtained better results for low frequency markers, while Bea-
gle5.4 remained more accurate for common markers (MAF>5%). Computational load as
measured by run time was lower for Beagle5.4 than Minimac4 and Impute5, while Minimac4
utilized the least memory of the imputation tools we compared. ShapelT4, used the least
memory of the phasing tools examined with genotype chip data, while Eagle2.4.1 used the
least memory phasing WGS data. Finally, we determined the combination of phasing soft-
ware, imputation software, and reference panel, best suited for different situations and anal-
ysis needs and created an automated pipeline that provides a way for users to create
customized chips designed to optimize their imputation results.

Introduction

Genome wide association studies (GWAS) remain one of the most critical and powerful meth-
ods of identifying key genes and variants that play a role in many common human diseases [1,
2]. Identification of disease-associated variants in GWAS is dependent on successful tagging of
millions of common variants in the human genome, and the ability to make inferences about
genotypes of rare variants which are often not in linkage disequilibrium (LD) with common
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variants [1, 2]. Commercial single nucleotide polymorphism (SNP) genotyping arrays can con-
tain up to 2.5 million markers, but none provide complete coverage of the human genome [3].
Despite the advances of the last two decades which have led to increasingly rapid and extensive
genotyping, it is still prohibitively expensive to obtain whole genome sequencing (WGS) for
the tens of thousands of individuals in GWAS [4, 5]. Individual GWAS may also use distinct
chips with different markers. To combine these GWAS for meta analysis, we require a method
by which to identify genotypes at all markers utilized in each of these studies [6]. Thus, we con-
tinue to rely on imputation, the process of probabilistically estimating non-genotyped alleles
for individuals in GWAS samples.

Genotype imputation is a method that infers the alleles of un-genotyped single-nucleotide
polymorphisms (SNPs) based on linkage disequilibrium (LD) with directly genotyped markers
using a suitable reference population [7]. It is predicated on the idea that seemingly unrelated
individuals from the human population sampled at random can share short stretches of DNA
within chromosomes derived from a shared ancestor [8]. Imputation can be used to improve
SNP coverage and increase the statistical power of GWAS [9, 10]. Genotype imputation also
facilitates fine mapping of causal variants, plays a key role in the meta-analyses of GWAS, and
can be utilized in downstream applications of GWAS such as estimation of disease risk [9].
However, an important limitation of imputation is that only variants that were previously
observed in a reference panel can be imputed [9]. Furthermore, rare variants are often poorly
represented in reference panels making accurate imputation of rare and infrequent variants
difficult. In addition, the choice of whether to pre-phase the data can impact imputation.
Finally, imputation accuracy, sensitivity and computational efficiency are greatly affected by
the choice of imputation software or tool [9].

Over the last twenty years, multiple research groups have developed and published a number
of phasing and imputation models, the majority of which are based on the Li and Stephens Hid-
den Markov Model (HMM) [10]. First described in 2003, it was applied to haplotype estimation
methods, termed "phasing", and used to handle large stretches of chromosome where individual
haplotypes share contiguous, mosaic stretches with other haplotypes in the sample [8, 9]. Unlike
previous coalescent approaches, it was computationally tractable, and methods based on the Li &
Stephens HMM were soon shown to be more accurate and efficient than other methods [8, 11].
Landmark and popular phasing algorithms are listed in Table 1, as a brief tabular history of the
field. Currently, the most commonly used Li and Stephens HMM-based software’s are BEAGLE,
EAGLE, and SHAPEIT for phasing, and BEAGLE, IMPUTE and MINIMAC for imputation.

Imputation accuracy is measured by several key sets of metrics which can be classified into
two overarching types: statistics that compare imputed genotypes to ‘gold standard’ genotyped
data and statistics produced without reference to true genotypes [32]. Concordance rate,
squared correlation (R?), and Imputation Quality Score (IQS) are examples of the first type
[32, 33]. In practice, the purpose of imputation is to predict SNPs for which we do not have
genotyped data; statistics of the second type are typically relied upon during imputation, and
generally output by the various imputation programs. Although the rapid increase in the num-
ber of deeply sequenced individuals will soon make it possible to assemble increasingly large
reference panels that greatly increase the number of imputable variants, the choice of phasing
and imputation software currently has a significant impact on accuracy [34].

While several studies have evaluated and compared imputation models, or phasing models,
or imputation models in combination with different reference panels, no recent studies have
compared imputation and phasing algorithms in combination with different reference panels
and datasets, in tandem, and evaluated the relative computational efficiency and accuracy of
each combination [34, 35]. Previous studies which have examined differences between phasing
and imputation tools have worked with earlier iterations of these or similar tools. A 2018
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Table 1. A brief history of phasing and imputation tools.

Phasing

Phasing &
Imputation

Imputation

Software
PHASE v 1.0 [12]

HAPI-UR [13]
Eagle 2 [14]

fastPHASE [8]
Beagle v. 1.0 [15]

Beagle v. 2.0, 3.0
(16, 17]

Beagle v. 4.0 [18]
Beagle v. 5.2 [19]
IMPUTE 2 [20]
IMPUTE 4 [21]

IMPUTE 5 [22]
MACH [23]
SHAPEIT 1 [24]
SHAPEIT 2 [25]

SHAPEIT 3 [26]

SHAPEIT 4 [27]
Minimac [28]
Minimac 2 [29]
Minimac 3 [30]
Minimac4 [31]

Published Based on Features Complexity

2001 Coalescent Improved error rates are reduced by >50% relative to its nearest quadratic O
approximation competitor (%)

2012 Li & Stephens HMM | Used windows of sites instead of specific markers; led to higher accuracy | linear O(nm)

2016 Li & Stephens HMM | pBWT on a large reference panel condensed into a set of compact tree linear O(nm)

structures that losslessly model haplotype structure

2006 Li & Stephens HMM | Faster but less accurate than Phase linear O(nm)

2007 Li & Stephens HMM | Uses bifurcating tree structure (aka haplotype-cluster model) quadratic O
(0%

2009 Li & Stephens HMM | Uses bifurcating tree structure (aka haplotype-cluster model) quadratic O
(n*)

2018 Li & Stephens HMM | Abandoned bifurcating model to adopt a flexible choice of haplotypes for | quadratic O
reference similar to IMPUTE 2 (n?)

2021 Li & Stephens HMM | Introduction of progressive phasing algorithm to handle hundreds of linear O(nm)

millions of markers

2009 Li & Stephens HMM | Flexible choice of haplotypes for reference panel; quadratic linear O(nm)
computational complexity meant inefficient
2018 Li & Stephens HMM | Speed up haplotype imputation step quadre;tic O
(%)
2019 Li & Stephens HMM | Uses positional BWT to choose haplotypes for each window linear O(nm)
2010 Li & Stephens HMM | An iteratively updated phase of each study sample linear O(m+n)
2011 Li & Stephens HMM | Flexible choice of the panel but computationally efficient linear O(n+m)
2013 Li & Stephens HMM | Combined best aspects of SHAPEIT 1 and IMPUTE 2 to increase quadratic O
accuracy and efficiency (mn?)
2016 Li & Stephens HMM | Increased scalability from SHAPEIT 2 quadratic O
(0%
2018 Li & Stephens HMM | pBWT to choose haplotypes for local window linear O(nm)
2012 Li & Stephens HMM | Pre-phased imputation linear O(nm)
2014 Li & Stephens HMM | Improved version and bug fixing linear O(nm)
2015 Li & Stephens HMM | State-space reduction to reduce computational complexity and cost linear O(nm)
2018 Li & Stephens HMM | Improved version and bug fixing linear O(nm)

A timeline and brief description of landmark and popular phasing and imputation algorithms and their computational complexities

https://doi.org/10.1371/journal.pone.0260177.t001

comparison of phasing tools by Choi et al. [36] examined switch error rates and percent of var-
iants phased using either the Haplotype Reference Consortium or the 1000 Genomes Project

as a reference panel, by then state-of-the-field tools: Eagle2, SHAPEIT, Beagle, Illumina’s Hap-
CUT, and less popular tools such as CPT, Moleculo and Fosmid [36].
In this study, we evaluate the latest versions of the most commonly used tools for phasing

and imputation in terms of accuracy, computational speed and memory usage, using 2 differ-

ent versions of the 1000 Genome Project as reference panels and four different microarray

chip datasets as inputs (S1 Table). We combine each tool for phasing with a method for impu-
tation to understand which combination achieves the best overall results and which method is
the best at imputing rare variants. Our goal was to determine the combination of phasing and
imputation software and reference panel that is best suited for different situations and needs.

Methods
Data

We used four different chip datasets, with differing marker density and input dataset sizes.
The first chip dataset Estonian Biobank (EBB) was composed of 2280 unrelated individuals, a
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whole genome sequencing (WGS) dataset converted into chip data, EBB is a volunteer-based
sample of the Estonian resident adult population (aged >18 years) (AbGAP Accession Num-
ber: phs001230.v1.p1). The second (Affymetrix) was composed of 3450 unrelated individuals
from The 1000 Genomes Project genotyped with the Affymetrix 6.0 900K array (Affymetrix,
ThermoFisher), the third one (Omni) of 2318 unrelated individuals from the 1000 Genomes
Project genotyped with the Omni 2.5 chip by Illumina 2.4 Million unphased SNP markers,
and the forth one (Customized) was a subset of the Affymetrix and Omni chip and consisted
of the intersection of the Affymetrix and Omni chips with another chip, GSA version 3 with
direct-to-consumer booster by Illumina (S1 Fig). This Customized chip is the intersection of
commonly used chips, resulting in a low-density chip with fewer overall sites, to allow us to
assess imputation and phasing accuracy when the input data is limited to a relatively small
number of SNPs.

Data called from EBB, Affymetrix and Omni data were normalized using BCFtools [37].
The resulting chip data was processed separately for each chromosome. Chromosome 20 was
chosen for use in all downstream analyses as it is generally representative of autosomal chro-
mosomes. Sample data were converted to GRCh38 with Picard Toolkit. 2019. Broad Institute.
GitHub Repository. https://broadinstitute.github.io/picard, to match the reference panels,
multiallelic sites were split, variants left-normalized to the reference genome, and duplicate
variants removed (Fig 1). Finally, because Beagle does not allow skipping imputation of spo-
radic missing data, variants with missing genotype information were removed from both the
chip datasets, the WGS EBB data and the reference panels.

Finally, we converted the WGS EBB data (1,071,486 variants for chr20) in chip genotype
size using a variant filtering with GSA chip data (15,635 variants for chr20), we kept only the
variants in common, resulting in 13,990 variants left for chr20. We will refer to this new data-
set as EBB chip data.

Reference panel collection and sample selection

We drew our reference panels for imputation and phasing from the “The 1000 Genomes Proj-
ect” (1000GP). We used the phase 3 low coverage WGS which has a mean depth of 7X as one
reference panel and the high coverage WGS, with a mean depth of 30x, as a second reference
panel [38, 39]https://www.zotero.org/google-docs/?broken=00Rgs5. We refer to these as the
1000GP-Phase3 and 1000GP-30x reference panels.

We selected 2280 unrelated individuals from the EBB collection. Imputation accuracy was
assessed by looking at the concordance between the imputed EBB chip data and the whole
genome sequences for these 2280 samples from the original WGS EBB dataset.

Further, in order to test imputation accuracy between different populations, we randomly
selected 190 unrelated individuals (S2 Fig) taken from the set of 1686 individuals found in all
three collections—the Omni, Affymetrix and WGS 1000 Genomes Project sample collections
[39] as shown in S2 Fig. Our sample consisted of 5 males and 5 females per population, for 19
different populations and 5 super-populations (S3 Fig). These 190 individuals, and their rela-
tives, were removed from the reference panels and used to create chip datasets for testing.
Imputation accuracy was assessed by looking at the concordance between the imputed chips’
data and the whole genome sequences for these 190 samples.

Quality control of reference panels

For both 1000GP reference panels and EBB data, we used BCFtools [37] to split multiallelic
sites, remove duplicates and missing data, and align variants to the reference genome. Both the
1000GP-30x and 1000GP-Phase3 panels were preprocessed by prepending the contig name
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Fig 1. Pre-processing of the HD genotype chips, reference panels and WGS EBB data. Pre-processing of the HD genotype chips, reference panels and WGS
EBB data downloaded from the International Genome Sample Resource (IGSR) and Estonian Biobank Estonian Genome Center respectively. Steps highlighted
in orange are specific to the 1000GPphase3 reference panel only; steps highlighted in red are specific to EBB data only and steps highlighted in cyan (light blue)
are specific for chip Affymetrix and Omni to isolate only a portion of the dataset to perform analysis on it. All other steps were performed for both reference
panels and datasets.

https://doi.org/10.1371/journal.pone.0260177.9001

with the prefix ‘chr’. We created another 1000GP-30x where filtered out all the non-common
variants that weren’t inside the WGS EBB data because imputation accuracy could not be
assessed for those. Two additional steps were performed for the 1000GP-Phase3 panel to con-
vert it to GRCh38 with Picard liftover, and discard rare variants singletons and doubletons to
evaluate if their removal increased imputation accuracy for common variants (MAF>5%).
This last operation was done only for the reference panel in chip data Affymetrix, Omni, Cus-
tomized, while for EBB data we kept all the variants in common between these 2 reference pan-
els and looked at the imputation accuracy differences between 1000GP-Phase3 and 1000GP-
30x. The workflow for the quality control and pre-processing of the reference panels is shown
in Fig 1.

Phasing and imputation pipeline

The EBB, Affymetrix, Omni and Customized chips were used as inputs for 9 combinations of
phasing and imputation tools to assess which combination performed best for our sample set
(Fig 2), using one of the two reference panels. Phasing was performed using both reference-
free and reference-based approaches for each method, to compare their respective imputation
accuracy. This yielded a total of 144 combinations of 4 input chip datasets, 3 phasing tools, ref-
erence-based or reference-free phasing approach, 2 imputation reference panels, and 3 impu-
tation tools (S1 Table).

The haplotype phasing software we compared are: Eagle2 v2.4.1 [14], Beagle5 v5.4 [18], and
Shapeit4 v4.2.1 [27]. All phasing software was launched with default parameters using 4 cores
for each analysis on an Intel Corporation 82371AB/EB/MB PIIX4 ACPI 64-bit 32Gb RAM
and the saved log file was used to evaluate the total run time. The imputation methods we
tested are: Beagle5 v5.4 [18], Impute5 v1.1.5 [22] and Minimac4 v1.0.0 [30].

Each input chip dataset was processed using Imputation_score.sh an automated pipeline
we built in bash that combines the phasing and imputation software and evaluates accuracy at
each step to speed up the process of analysis and comparison. The inputs to the pipeline are
the chip data file, a reference panel, the number of threads to use and the chromosome to pro-
cess. The pipeline first checks that the correct version of the reference panel already exists for
each imputation software and if the input file is available both in BCF format and in VCF for-
mat. This means that the original reference panel is converted to bref3 for Imputation with
Beagle5.4 using bref3.29May21.d6d.jar, to m3mv for Minimac4 using Minimac3 and to imp5
for Impute5 using imp5Converter_1.1.5_static. If any of these files don’t exist, they are
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Fig 2. Workflow of the analysis, combinations tested. Affymetrix, Omni, Customized, and EBB input chip datasets were analyzed using
the 36 combinations of 3 different phasing software, 2 phasing approaches, 3 imputation software, and 2 imputation reference panels.
EBB input chip dataset was analyzed using the 36 combinations of 3 different phasing software, 2 Reference panels, 2 phasing approaches
and 3 imputation software.

https://doi.org/10.1371/journal.pone.0260177.9002

automatically created by the pipeline. After this initial check, the pipeline begins phasing the
haplotypes using Eagle2.4.1, Beagle5.4 and Shapeit4. Each of these softwares was run twice with
default parameters, once with the reference panel and once without, using 4 threads on chromo-
some 20 with recombination rates drawn from the genetic map. This step generated 2 phased
VCE files for each software, yielding a total of 6 phased VCEF files. After phasing, VCF files were
moved to imputation with Beagle5.4, Minimac4 and Impute5. All were run using default
parameters with a genetic map for the recombination rate and 4 threads. There are options to
speed up both Minimac4 and Impute5, but these tend to reduce the accuracy rate. To maximize
the accuracy of each tool and preserve the validity of the comparison, we ran them with the
default parameters, avoiding the steps required to optimize for computational load.

Accuracy measurement

Imputation accuracy was assessed by comparing the imputation data resulting from each of
the different combinations of phasing tool, imputation tool, and choice of reference, against
the WGS dataset of the chosen 190 target samples for Affymetrix Omni and customized chip
and against the WGS EBB dataset of the chosen 2280 target samples for the EBB chip data.
Variables considered were population/ancestry, sex, choice of tools, choice of reference, use of
areference panel, chip density, and the effect of MAF. We also looked at computational effi-
ciency and memory usage. To check the effects of MAF on imputation accuracy, we used R* as
the metric of choice as it can distinguish between different MAF stratifications and is the most
widely used metric for assessing imputation accuracy [40]. We also used IQS [32].

Phasing accuracy was evaluated using 540 children from the 1000GP-30x reference panel.
These 540 children were phased using trioPhaser, a mendelian inheritance logic, to improve
genomic haplotypes phasing. To ensure the greatest possible phasing accuracy, trioPhaser
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phases by parent’s genomes (mother and father) to identify switch errors by comparing the
phasing of the children against the phased parent chromosomes; for a total of 1620 individuals
analyzed. These 540 phased children have been used as a ground truth set to determine phas-
ing accuracy in our analysis. In addition, a new reference panel (non-representative reference
panel) was generated to assess reference-based phasing performance against the reference-free
approach. It was composed of 2280 individuals from the Estonian BioBank and all unrelated
individuals from the 1000GP-30x (932 individuals), for a total of 3212 individuals and 502,377
variants. Only the variants in common between EBB and 1000GP-30x were selected, in order
to assess the phasing accuracy.

Imputation and phasing accuracy were evaluated using a custom, faster version of the
imputation accuracy calculation software available on Github the accuracy metrics described
in the work of Ramnarine et al. 2015 [32]. A detailed report with the concordance ratio (Po),
F-measure score, square correlation (R*) and imputation quality score (IQS) was generated
and written to the output file. To accurately assess IQS and R” results, we removed all variants
with MAF equal to 0 in our target population (allele count equal to 0) of 2280 individuals from
the analysis; IQS is zero when MAF is equal to zero and is not indicative of accuracy or impu-
tation quality. The entire code for accuracy metrics can be found in the script Simpy.py (sec-
tion Data Available).

Results
Genotyping data

After performing quality control on chromosome 20, 13,990 variants with a genotyping call
rate of 100% remained in the EBB chip dataset, 17,861 variants with a genotyping call rate of
100% remained in the Affymetrix chip dataset, and 37,334 variants with a genotyping call rate
of 100% remained in the Omni Illumina dataset. In total, 4,911 SNP markers overlapped
between Omni and Affymetrix chips. The customized chip had 5963 markers shared between
the GSA and the Affymetrix and Omni chips. The number of variants shared between the chip
datasets is shown in Fig 3.

Phasing

Accuracy. The phasing accuracy has been evaluated using 540 children coming from trios
in the 1000GP-30x reference panel. We calculated precision and recall to determine which
haplotype estimation software was the most accurate amongst the three we compared: Bea-
gle5.4, ShapelT4, and Eagle2.4.1. The results were compared with those from the trioPhaser
software. ShapelT4 had the highest accuracy, on average, with 0.991 precision and 0.9964
recall. On the other hand, Beagle5.4 had the lowest precision at 0.9848, and 0.9942 recall, on
average. Eagle2.4.1 was in the middle with 0.98899 precision and 0.9958 recall (Fig 4).

We tested the effect of using a non-representative reference panel on phasing accuracy to com-
pare against reference-free phasing in the hypothetical scenario where a representative panel is
not available. Non-representative reference panel was used to phase trio children present in the
same release of the 1000GP. In this test case, using a non-representative reference panel, we found
that reference-free phasing accuracy was higher than reference-based phasing (Table 2).

Speed and memory usage in phasing. The phasing of the 540 children coming from trios
in the 1000GP-30x reference panel required on average 2722 secs (~45mins) CPU time (Fig
5A) and ~8 Gb of memory usage (Fig 5B). During phasing, Eagle2.4.1 and ShapeIT4 used less
memory than Beagle5.4, while Beagle5.4 was faster.

In Affymetrix, Omni and Customized chip data during phasing, Eagle2.4.1 and ShapelT4
used less memory than Beagle5.4 and were less affected by the input size of the chip (Fig 6).
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Fig 3. Number of shared variants between datasets. Variants in common between the different chips on
chromosome 20.

https://doi.org/10.1371/journal.pone.0260177.9003

Averaged across the datasets, Eagle2.4.1 was the slowest phasing software while ShapelT4 was
the fastest.

The EBB chip dataset required 4x more memory usage and 4.7x more CPU time compared
to the other 3 datasets. The increased number of samples highlighted differences between the
tools with respect to computational efficiency in phasing. With smaller datasets, where the
number of individuals was low, Eagle2.4.1 was the slowest phasing tool Fig 6A, but as the size
of the dataset increased (2280 instead of 190), Shapeit4 required increasingly greater runtime
for phasing, exceeding the run time of Beagle5.4 (Fig 7A).

We were also interested to see how these phasing softwares dealt with a bigger number of
variants; thus, we used the WGS EBB dataset to include an additional whole genome sequenc-
ing phasing test to simulate a real-life scenario. We phased the entire WGS EBB dataset with
2280 individuals and ~1 million variants for chr20. The WGS Estonian Biobank dataset
resulted in 3x more memory usage and 23x more CPU time compared to the EBB chip dataset
(lower number of variants 13,990, same number of individuals 2280). We applied a reference-
free and a reference-based approach using the entire 1000GP-30x data. With more variants
and individuals, ShapelT had higher CPU time (40232sec ~ 11.2h) (Fig 8A) and memory
usage (19Gb) (Fig 8B) compared to a smaller dataset using a reference-free approach. Fig 8C
and 8D show a reference-based approach.

Imputation

Accuracy and Minor Allele Frequency (MAF) and reference panel. For the EBB chip
data we stratified variants based on MAF and assessed imputation accuracy for common,
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highest scores over Eagle2.4.1 and Beagle5.4 respectively.

https://doi.org/10.1371/journal.pone.0260177.9004

infrequent, and rare variants to obtain a more nuanced understanding of how well each impu-
tation tool performs (Table 3).

Based on the accuracy metric, the False Positive Rate (FPR), and the sensitivity, Beagle5.4
outperformed other imputation tools when MAF was greater than 5%, with Impute5 a close sec-
ond. However, for uncommon variants (MAF<5%), Minimac4 was the better imputation tool,
with the lower FPR. Similar results were obtained using R* as the metric (Fig 9). When it comes to
reference panels, only with shared variants in common, 1000GP-30x has conducted to slightly
higher results in accuracy, compared to 1000GP-Phase3. The slope of the curve was always higher
for 1000GP-30x (Fig 9). The best phasing and imputation tool combination was ShapelT4-Mini-
mac4 using EBB chip with reference-based phasing and 1000GP-30x reference panel, resulting in
an average imputation R of 0.536. Slightly worse results were obtained for 1000GP-Phase3 with
an average imputation R? 0f 0.527 for the same combination tested (S1 Table).

When using Affymetrix, Omni and customized chips the best combination overall was Sha-
pelT4-Beagle5.4 imputed from the Omni chip dataset (S4 Fig), with a reference-based phasing

Table 2. Reference-free and reference-based phasing accuracy based on 502,377 variants.

Method Phasing Software Accuracy %
Reference Based Beagle5.4 93.400
Eagle2.4.1 93.554
ShapelT4 93.597
Reference Free Beagle5.4 94.176
Eagle2.4.1 94.164
ShapelT4 94.154

https://doi.org/10.1371/journal.pone.0260177.t1002
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approach, and using the 1000GP-Phase3 reference panel, resulting in an average imputation
R? 0f 0.839 (S1 Table). The usage of 1000GP-Phase3 brings better results in terms of R* impu-
tation accuracy compared to the results gained with the 1000GP-30x reference panel in the
same chip data when we discarded rare variants singletons and doubletons. On the other
hand, for the 1000GP-30x reference panel, the best phasing and imputation tool combination
was ShapelT4-Impute5 using an Omni chip with reference-based phasing, resulting in an aver-
age imputation R?0f0.728 (S1 Table).

A good alternative metric to R is IQS. Fig 10 depicts an increase in IQS with increasing
MAF. Impute5 produced better results at lower MAF than either Beagle5.4 or Minimac4,
while Beagle5.4 imputed better above 5% allele frequency. Ultra-rare variants were imputed
badly with all available software. A similar trend was also observed in Affymetrix, Omni and
customized chip data (S5 Fig).

To get a better overall representation of how MAF affects imputation accuracy and error
rates, we plotted IQS against the Error rate (Fig 11), where each dot represents an imputed var-
iant. The markers clustered according to their MAF and followed a waterfall trend. The results
of this analysis are shown in Fig 11, which illustrates that IQS is generally higher and error
rates overall lower for more common variants. Rare variants, with MAF<1%, tend to have

lower IQS and higher error rates.
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Fig 6. CPU run time and memory usage of phasing software using chip Omni, Affymetrix and Customized. Average run time for phasing (6A). Average
memory usage for phasing (6B) in chips data.

https://doi.org/10.1371/journal.pone.0260177.g006
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The effect of phasing software choice on imputation accuracy. In EBB chip data choos-
ing ShapeIT4 as the phasing tool for reference-based phasing, followed by any choice of impu-
tation tool, resulted in the highest R for either imputation reference panel (S1 Table). For the
Affymetrix and customized chips, ShapelT4 remained the best choice of phasing tool for refer-
ence-free phasing, with respect to R% for Omni, Beagle5.4 was the superior phasing tool. How-
ever, when we instead considered IQS as the metric of choice, both Beagle5.4 and ShapelT4
performed equally well for reference-based phasing for higher density input chip datasets, but
ShapelT4 outperformed Beagle5.4 for the customized chip dataset, which had low chip density.
For reference-free phasing, with respect to IQS, there was no clear winner between ShapelT4
and Beagle5.4 (S1 Table). If we consider Concordance as a metric of choice, the Reference
panel 1000GP-30x is the best choice to get higher imputation accuracy in every combination.
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Fig 8. CPU run time and memory usage of phasing software in EBB WGS dataset. ShapelT CPU time and memory usage are higher with a bigger input data of
variants and individuals. (8A-8B) highlights a reference-free approach while (8C-8D) a reference-based approach.

https://doi.org/10.1371/journal.pone.0260177.9g008
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Table 3. MAF-stratified comparison of imputation software for EBB data.

MAF Imputation Software Sensitivity % FPR % #Variants
MAF <5% Beagle5.4 99.538 1.252 72,493
Impute5 99.546 1.272 72,493
Minimac4 99.496 1.201 72,493
MAF >5% Beagle5.4 97.951 3.282 429,884
Impute5 97.911 3.303 429,884
Minimac4 97.841 3.408 429,884

MAF<5% indicates all the variants that are below or equal to 5% in minor allele frequencies and MAF>5% indicates all the variants above 5% in minor allele

frequencies. A comparison of the sensitivity and false positive rate (FPR) of the imputation results, for each phasing-imputation combination, stratified in two MAF

categories.

https://doi.org/10.1371/journal.pone.0260177.t1003

Population, sex, chip density, and phasing approach. Accuracy as measured by concor-
dance (Po) was fairly close across superpopulations, with small differences between frame-
works (Table 4, Fig 12). However, the mean imputation accuracy was lowest in individuals of
African ancestry, and highest in individuals of European and American populations—groups
which both have significant recent European ancestry (Table 4). Furthermore, despite reaching
similar average imputation accuracy, a greater proportion of EUR individuals had very high
imputation accuracy compared with a progressively smaller proportion of target individuals
with higher concordance for East Asian, American, African and South Asian ancestry, respec-
tively (Fig 12B). Thus, although we were able to reach similar mean imputation concordance
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https://doi.org/10.1371/journal.pone.0260177.9009
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Table 4. Accuracy for different superpopulations in chips Affymetrix, Omni, Customized. Accuracy as measured by concordance (Po) of the imputation results for

each of the five main super populations.

Superpopulation name Mean Std #Individuals

African 0.984396 0.012613 40
American 0.993112 0.005104 40
East Asian 0.991575 0.004868 50
European 0.99274 0.004655 50
South Asian 0.991464 0.004989 10

https://doi.org/10.1371/journal.pone.0260177.t004
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for each of the different populations, imputation tools performed the best when applied to
EUR populations and the worst for AFR and South Asian populations.

Differences in imputation accuracy by population and phasing approach are shown in Fig
12. The reference-based approach produced better results than the reference-free approach,
for most combinations of imputation and phasing algorithms, based on a comparison of IQS
across all combinations (Fig 12D). There was also a clear relationship between chip density
and imputation accuracy, as measured by concordance; as chip density increased, imputation
accuracy improved. The Omni chip had the greatest chip density and accuracy and the cus-
tomized chip the lowest (Figs 12C and 13). From the shape of the chip distributions, we see
that the vast majority of the Omni dataset was imputed with very high concordance, whereas
less of the Affymetrix input dataset and much less of the Customized chip dataset was imputed
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Fig 12. Imputation concordance rate over four different features. Stacked density plot of accuracy stratified by (A) sex; (B)
superpopulation; (C) chip data; (D) phasing type (reference-free and reference-based).

https://doi.org/10.1371/journal.pone.0260177.9012
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with similar accuracy. We also compared imputation accuracy by sex as a check to ensure our
QC process does not introduce any artificial differences. Sex had no effect on imputation accu-
racy for autosomal chromosome 20 (Fig 12A). Accuracy for females was on average

0.9907 + 0.0078 while for males it was 0.9906 + 0.0080.

Speed and memory usage in imputation. Of the imputation software’s, Minimac4
appeared to be the most computationally efficient in terms of memory but had the slowest run
time, followed by Beagle5.4 and Impute5 using chip data Affymetrix, Omni, Customized (Fig
14B). Memory usage for Impute5 increased drastically with the size of the input dataset used
(EBB chip data with 2280 individuals), while Beagle5.4 and Minimac4 were not significantly
affected (Fig 15). Beagle5.4 had the shortest run time, followed by Impute5 and Minimac4 (Fig
14A). Fig 15 shows the average computational run time for each combination. Phasing with
ShapelT4 and imputing with Beagle5.4 was the fastest combination, while phasing with
Eagle2.4.1 and imputing with Minimac4 was the slowest.

Minimac4’s remained the most computationally efficient with regard to memory usage for
both large and small sample sizes and Beagle5.4 continued to be fastest, but Impute5’s run
time and memory usage increased exponentially with increased sample size, in absence of
chunking (Fig 15). Fig 16A shows the average computational run time for each combination,
while Fig 16B shows the differences in computation highlighted by the increase in sample size.
Phasing with ShapelT4 and imputing with Beagle5.4 remained the fastest combination, while
phasing with Eagle2.4.1 and imputing with Impute5 dropped below the Eagle-Minimac com-
bination to become the slowest with 3x more CPU time.
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Discussion

We performed a rigorous comparison of the most popular phasing and imputation tools cur-
rently used by genomics research groups to examine how the process of genotype imputation
is affected by different factors, including the choice of reference panel, population, chip den-
sity, and allele frequency. We also compared the computational load of different datasets, tools
and software combinations.

Factors affecting imputation accuracy

Imputation accuracy decreased with chip density; the Affymetrix chip resulted in lower accu-
racy than the Omni chip and the customized chip had the lowest imputation accuracy. While
this was expected, it also shows how our processing and comparison pipeline may help
researchers design better chips by choosing the number and distribution of SNPs for each spe-
cific population and assessing the impact of density and SNP choice on phasing and imputa-
tion accuracy; it can also be used to determine whether different sets of chips are likely to
perform better with certain combinations of phasing and imputation tools.

Next, we assessed both reference-free and reference-based phasing. Although reference-free
phasing was less accurate than reference-based phasing with a reference panel containing
admixed populations, increasing chip density reduced the degree of difference in phasing
accuracy caused by the lack of reference. The difference between reference-free and reference-
based phasing was small, suggesting that reference-free phasing may be acceptable in the
absence of a representative reference panel. Further, the reference-free approach was more
accurate when the reference panel populations did not match the target sample populations
well. Similarly, previous studies comparing phasing accuracy with and without the use of a ref-
erence panel have shown that reference-free phasing, such as with Eagle2.4.1, can even lead to
higher accuracy in cases where the reference panel ancestry and populations do not well match
the sample individuals [14].

Furthermore, the choice of the reference panel may affect imputation accuracy, across all
imputation metrics utilized. Interestingly, during the imputation of chips Affymetrix, Omni,
and Customized, we got slightly better results in terms of R” imputation accuracy, using
1000GP-Phase3, compared to the results gained with the 1000GP-30x reference panel in the
same chip data when we discarded rare variants singletons and doubletons. This was due to
the panel 1000GP-30x had more rare SNPs and the fact that R* and IQS are heavily affected by
the degree of uncertainty due to the rare SNPs. Indeed, if we look at the concordance rate, we
will notice that concordance is higher (S1 Table) compared to the 1000GP-Phase3 reference
panel suggesting that R* and IQS are affected by rare SNPs (present only in the 1000GP-30x
for Chip data Affymetrix, Omni, Customized), but this doesn’t happen to the overall accuracy
that is higher in reference panel 1000GP-30x with the same combinations of tools and phasing
approach (S1 Table). To check if the reference panel 1000GP-Phase3 was better for imputa-
tion, all the analyses with the EBB data, instead, have been conducted using both 1000GP-30x
and 1000GP-Phase3 reference panels only with shared variants in common. We found higher
values of R* and IQS imputation accuracy for 1000GP-30x compared to the 1000GP-Phase3
reference panel, in all combinations tested. This suggests that the removal of variants single-
tons and doubletons increase the values of R* and IQS but does not increase the imputation
accuracy itself; this is a practice that should be avoided by scientists to prevent inflating the
imputation accuracy results assessed with R,

However, the use of concordance can also be confounding, as shown in Table 3. Sensitivity
and False Positive Rate (FPR) are based on concordance rate; they are heavily affected by the
number of variants that we are looking at, while R* and IQS are less sensitive to these changes
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and in this case will better highlight the overall accuracy. MAF<5% appears to be higher in
concordance compared to the MAF>5%, because the vast majority of the variants will be
imputed correctly as homozygous reference and only few samples will have heterozygous or
homozygous variants imputed wrongly.

Accuracy was further affected by population but not by sex using autosomal chromosomes.
Different populations are characterized by differences in LD as a result of differences in genea-
logical history, and thus have different characteristic LD blocks and LD block sizes, which
affect imputation accuracy [41]. We presume that lower imputation accuracy seen in individu-
als of AFR ancestry is attributable to the smaller LD blocks characteristic of AFR ancestry,
which make it more difficult to correctly impute genotypes.

In agreement with previous research [42], we found that variants with low allele frequency
are generally imputed poorly. In general, imputation works poorly for variants with low MAF
as a function of both bias in the reference panels and bias in the software [42]. We can address
reference-associated bias by significantly increasing the size of the chosen reference panel and
including sufficient population-specific samples in the reference. However, addressing soft-
ware bias would require developing improved imputation algorithms.

Finally, the choice of statistics is important when examining the imputation accuracy of
rare and low frequency variants. We found that IQS and R” produced similar means and stan-
dard deviations, though this does not necessarily represent similarity of values for particular
SNPs. For rare and low frequency variants, concordance rates produce inflated assessments of
accuracy [43] but reflect the real overall evaluation of an imputation software. The higher con-
cordance rate values could mislead a researcher into assuming that these variants were
imputed well. However, accuracy for less common variants is best measured using IQS and R*
[32].

Choice of phasing and imputation tools

There was a discrepancy in accuracy based on different metrics. Highest average concordance
rate was achieved by Beagle5.4 at 0.986, followed by Impute5 and Minimac4, using a refer-
ence-based approach during phasing, with the highest density chip dataset as input. In general,
choosing Beagle5.4 for imputation and ShapelT4 for phasing tended to get highly accurate
results and was computationally faster even in larger datasets. When looking to improve the
imputation of rare variants, however, researchers may want to use a mix of Beagle5.4, Impute5
and Minimac4 by applying Beagle5.4 to common variants and Minimac4, Impute5 to rare
ones. Minimac4 and Impute5 tended to perform better on rare variants, because unlike Bea-
gle5.4, which computes clusters of haplotypes and does its calculations based on those,
Impute5 and Minimac4 search the whole space of haplotypes. This is more effective when
imputing uncommon variants, but there is a tradeoff of increased computational load.

On the other hand, we see imputation accuracy for Beagle5.4 was better than Impute5 for
the filtered phase3 reference panel; this was expected since the phase 3 panel has fewer rare
alleles. Beagle5.4 was also the most stable tool to use across different input sizes. Minimac4
required the least amount of memory but took more time, which can be a good tradeoft
depending on the purpose of the imputation. If the memory usage is limited, and the loss of
accuracy is acceptable, then Minimac4 may be the optimal choice of imputation software. It is
also important to note that the default parameters have been used for all software. For example,
we could reduce the computational load of Impute5 by using parallel processing, but this
could negatively affect the accuracy results; this negative impact was sufficient to reduce
Impute5’s accuracy to below that of Beagle5.4 (data not shown). In conclusion, Beagle5.4
might have the best tradeoff between imputation quality and computational efficiency.

PLOS ONE | https://doi.org/10.1371/journal.pone.0260177  October 19, 2022 18/22


https://doi.org/10.1371/journal.pone.0260177

PLOS ONE

A comparative analysis of current phasing and imputation software

In closing, knowing the differences in imputation and phasing performance may prove use-
ful in choosing imputation and phasing tools, depending on the intended downstream usage
of the imputed results. However, this study also highlights that current tools are not accurate
enough to impute rare and ultra-rare variants, showing that, when corrected for chance con-
cordance and MAF bias, they result only in acceptable imputation accuracy and that there is
significant scope for improvement.
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