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Motivation: Data from the single-cell assay for transposase-accessible chromatin using sequencing
(scATAC-seq) is now widely available. One major computational challenge is dealing with high dimension-
ality and inherent sparsity, which is typically addressed by producing lower-dimensional representations
of single cells for downstream clustering tasks. Current approaches produce such individual cell embed-
dings directly through a one-step learning process. Here, we propose an alternative approach by building
embedding models pre-trained on reference data. We argue that this provides a more flexible analysis
workflow that also has computational performance advantages through transfer learning. Results: We
implemented our approach in scEmbed, an unsupervised machine learning framework that learns low-
dimensional embeddings of genomic regulatory regions to represent and analyze scATAC-seq data. scEm-
bed is competitive with alternative scATAC embedding approaches in terms of clustering ability and has the
advantage of learning patterns of region co-occurrence that can be transferred to other, unseen datasets.
Moreover, pre-trained models on reference data can be exploited to build fast and accurate cell-type an-
notation systems without the need for other data modalities. scEmbed is implemented in Python and it is
available to download from GitHub. We also make our pre-trained models available on huggingface for
public use. Availability: scEmbed is open source and available at https://github.com/databio/geniml.

Pre-trained models from this work can be obtained on huggingface: https://huggingface.co/databio.

Introduction

Data from the single-cell assay for transposase-accessible
chromatin using sequencing (scATAC-seq) can inter-
rogate complex regulatory networks at the single-cell
level, elucidating the cellular mechanisms that drive
cell-to-cell heterogeneity. The power of scATAC-seq data
has motivated the development of new computational
approaches for its analysis [1-12]. Despite these ad-
vances, SCATAC-seq analysis continues to face two key
challenges: the 1) high dimensionality and 2) inherent
sparsity of the data [13, 14].

SCATAC-seq analysis often includes two critical tasks:
1) dimensionality reduction followed by clustering and
2) cell-type annotation of cell clusters. For the dimen-
sionality reduction task, numerous methods have been
developed, such as SCALE and scBasset, which use vari-
ational autoencoders and convolutional neural networks
to learn low-dimensional representations of single cells
for downstream clustering tasks [1, 2]. Other methods
include ChromVAR, cisTopic, SnapATAC, and ArchR,
which leverage latent semantic indexing (LSI) and topic
modeling to cluster individual cells [3-5, 9]. These
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methods usually require complex processing pipelines
and large compute power. The second task, cell-type
annotation, is less well served, with most current
methods simply repurposing cell-type annotation tools
from scRNA-seq [15]. Methods developed for scATAC
are few and suffer notable limitations. First, they mainly
take a cross-modality approach, integrating data from
reference scRNA-seq sets, so they are limited in relying
on a secondary data modality. Finding an appropriate
secondary dataset to complement the unlabeled set can
be difficult [16]. Second, many supervised methods
require model training to predict cell types from a fixed
output. This can make the discovery of novel cell types
a challenge [12]. Finally, these methods are notoriously
compute-intensive [17], a limitation that has grown
more problematic as atlas-level datasets have emerged.

Here, we address these challenges with an alternative
approach to scATAC-seq dimensionality reduction and
cell-type annotation using pre-trained embedding
models. Our method improves both dimensionality
reduction and cell-type annotation by significantly
reducing the computational time and complexity of
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Figure 1 Overview of the scEmbed model. A. scEmbed leverages Word2Vec as its model. Word2Vec learns to predict words given a semantic
context. Similarly, scEmbed learns to predict genomic regions, given a genomic context. This is unsupervised, and uses the patterns of genomic region
co-occurrence to learn representations of individual regions. B. Overview of the scEmbed learning process, starting with scATAC-seq data. C. Once
region embeddings are learned, they can be used to construct cell embeddings by averaging the embeddings of regions accessible in each cell. We use
cell embeddings for downstream tasks of clustering and cell-type prediction.

these workflows with the added benefit of leveraging in-
formation from high-quality reference data sets. Instead
of analyzing datasets end to end, we use unsupervised
learning to model the patterns of regulatory region co-
occurrence in reference datasets, and then transfer this
knowledge to new, unseen data. We implemented this
method in scEmbed, an unsupervised machine-learning
method that learns low-dimensional representations of
genomic regions from scATAC-seq datasets.

We first show that scEmbed performs as well as es-
tablished methods for dimensionality reduction and
clustering while maintaining robustness to data loss.
Moreover, by leveraging models pre-trained on refer-
ence data, scEmbed drastically reduces the time and
complexity of scATAC-seq analysis. Finally, we build a
cell-type annotation system by exploiting the learned
embeddings produced by pre-trained embedding mod-
els without needing any external data modalities. Our
system can accurately annotate unseen data in seconds
using pre-trained reference models. scEmbed takes
a new approach to scATAC-seq analysis by focusing
on ATAC-seq data alone, by building high-quality em-
beddings of genomic regions en route to single-cells,
which offers flexibility and speed for a wide range of
downstream tasks.

2- Transfer learning for scATAC

Results
scEmbed architecture

scEmbed adapts our previous work, Region2Vec [18],
to single cells. The model is a modified unsupervised
word2vec [19] model that learns to predict genomic re-
gion co-accessibility (Fig. 1A). Briefly, scEmbed treats
each cell as a document and its accessible regions as
words (see Methods). Context is simulated by shuffling
these regions in each document (Fig. 1B). After train-
ing, cell embeddings are constructed by averaging re-
gion vectors for each cell, which are then used for tasks
like clustering, analysis, or transfer learning (Fig. 1C).

scEmbed model validation

To validate scEmbed, we followed an earlier approach
[13] to benchmark it on clustering tasks using published
reference scATAC data from hematopoietic cells [20]
(Fig. 2A). We trained scEmbed for 100 epochs (Fig. S1)
then used the resulting region embeddings to construct
cell embeddings. Visually, scEmbed clusters cells of
the same type (Fig. 2B). Following previous bench-
marking procedures, we clustered the cell embeddings
with three clustering methods: K-means, hierarchical
clustering (HC), and Louvain clustering. The clusters
were then compared to ground truth labels using
three metrics: adjusted rand index (ARI), the adjusted
mutual information score (AMI), and the homogeneity
score (see Methods). scEmbed performs similar to the
best-performing scATAC-seq methods, including SCALE,
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Figure 2. scEmbed benchmarks competitively with existing approaches. A. Diagram showing 3 steps of the benchmarking process. B. UMAP of
scEmbed cell embeddings. C. Benchmark results of 3 clustering methods: Hierarchical clustering (HC), K-means, and Louvain. Results were evaluated
using three metrics: adjusted mutual information (AMI), adjusted rand index (ARI), and homogeneity. D. UMAP plots showing clusters of scEmbed
cell embeddings following data loss. E. Line plots showing the change in three clustering metrics (ARI, AMI, and Homogeneity) as a function of
dropout rate. scEmbed accurately clusters single cells up to nearly 80% data loss.

scBasset, cisTopic, and SnapATAC (Fig. 2C). It does
so with almost no preprocessing of the data and a
completely unsupervised learning workflow.

scEmbed is robust to data loss

We were curious to explore the potential of scEmbed for
transfer learning tasks. One common challenge in trans-
fer learning is handling the nuances and disparities be-
tween the original training data and new data on which
inference is performed. These differences can sometimes

3- Transfer learning for scATAC

lead to a perceived loss of information or data incon-
sistencies. As such, we sought to evaluate its ability to
cluster data with increasing levels of information loss.
To test scEmbed’s robustness to missing data, we trained
the model on datasets of increasing sparsity. Starting
with the Buenrostro2018 dataset (2.8% non-zero) [20],
we randomly dropped non-zero values in the binary ac-
cessibility matrix until approximately 80% of the non-
zero data was lost. A dropout rate of 80% resulted in a
matrix that was 0.5% non-zero (Methods, Fig. S2). Even
at a dropout rate of 80%, scEmbed was able to visually
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Figure 3. scEmbed enables knowledge transfer to unseen datasets. Transfer learning with scEmbed occurs in three steps. A. Diagram showing
the high-level workflow of other scATAC-seq methods (top) compared to scEmbed (bottom) B. Diagram of the overlap analysis procedure. Using
interval overlap analysis, a new cell from a new dataset (blue) can be cast in the feature space of the data used for the pre-trained model (red). C.
Diagram showing the computation of embeddings for new, unseen data. This is achieved using basic average pooling of region embeddings. D. UMAP
plots of both projected (right) and unprojected (left) datasets. The plots show nearly identical clustering of embeddings learned from the original
dataset versus projection. E. RAGI score plots for both the original dataset embeddings and projected cell embeddings. RAGI scores are computed for

three clustering methods: Hierarchical clustering, K-means, and Louvain.

cluster cells of the same type (Fig. 2D). To quantify this,
we computed three scores for each dropout dataset: 1)
Adjusted Rand Index (ARI), 2) Adjusted Mutual Infor-
mation (AMI), and 3) Homogeneity scores. We found
that scEmbed retained clustering accuracy comparable
to other scATAC-seq analysis methods [13] even when
faced with substantial data loss (Fig. 2E). These findings
confirm that scEmbed can learn rich biological knowl-
edge, even for the most sparse datasets. The ability to
handle sparseness is a critical characteristic of scATAC-
seq analysis, and particularly so for scEmbed, which can
be used to transfer information from existing models.
Knowledge is transfered through region overlap analy-
sis which is an imperfect process. Therefore scEmbed
should learn even when data is incomplete. We describe
this next.

scEmbed transfers knowledge of genomic
co-occurrence to unseen datasets

region

A key innovation in scEmbed is that it uses a two-step
training process, rather than the common single step

4- Transfer learning for scATAC

approach (Fig. 3A). In the first step, scEmbed learns
embeddings of genomic regions rather than cells. In
the second step, the region embeddings are used to
build cell embeddings. An advantage of this two-step
approach is that the region embeddings can be used to
build cell embeddings for new datasets. This transfer ap-
proach allows scEmbed to take advantage of pre-trained
reference models. We call this “projection” because we
“project” new data into the latent space of the original
dataset, creating cell embeddings for new data using
a pre-trained model. Projection occurs in three steps:
First, we train a model on reference data to produce
region embeddings for each region in the reference
consensus region set. Second, we take a new single-cell
dataset and map the regions to the reference consensus
region set using region overlaps (Fig. 3B, Methods).
This represents each single cell in the new dataset using
the set of regions from the reference dataset, for which
we also have region embeddings from the reference
model. Finally, we compute the average of all region
embeddings for each cell in the new dataset (Fig 3C).
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This approach leverages the information from a larger
atlas of accessibility data to analyze a new dataset.
In fact, the original training data need not come from
SCATAC-seq at all. Using this approach, a model trained
with bulk ATAC-seq could similarly be used to project
ScATAC-seq data. This provides an enormous advantage
by utilizing the patterns of region co-occurrence from
the vast volume of publicly available region set data to
inform cell embeddings of single-cell data.

Projected cell embeddings cluster cells accurately using
pre-trained models

We next assessed this projection process by asking
whether scEmbed could cluster a new dataset based en-
tirely on a pre-trained model. First, we trained a model
on the original Buenrostro2018 dataset [20]; second,
we took a new dataset, 10X genomics 5k Peripheral
blood mononuclear cells (PBMCs) from a healthy donor,
and projected each cell into the original space. We
used these single-cell embeddings directly for UMAP
visualization and clustering analysis. To assess the
quality of the projection, we assumed that 8 distinct cell
populations existed [13] and took advantage of marker
gene analysis to assign labels to each cell. We use the
Residual Average Gini Index (RAGI) score to evaluate
the clustering ability of scEmbed [13] (Methods).

We found that the projected-cell analysis showed no
marked differences in clustering proficiency when
compared to the embeddings produced by conventional
model training. The UMAP plots were visually similar
(Fig. 3D), and the actual evaluation of clustering using
the RAGI score showed that the projected dataset may
even outperform the model trained on the original data
when clustered using either hierarchical clustering or
k-means (Fig. 3E). In addition, the time to analyze the
new dataset is reduced from more than an hour to 5
minutes, since only overlap analysis and vector algebra
is required prior to clustering.

Pre-trained models from reference datasets can be used
to annotate cell clusters

Given the promising results of our initial experiments
with pre-trained models, we next sought a way to vi-
sualize the projected cells. Furthermore, we reasoned
that this approach could be used to annotate cell clusters
for the projected cells, allowing us to borrow annotation
information from the reference model. To build such
a system, we distinguish between three data flows that
can occur with scEmbed (Fig. 4A). The first data flow is
the no projection flow. This is the standard workflow of
training a new scEmbed model on some input data and
visualizing the resulting embeddings by fitting a UMAP
model to reduce the dimensionality to 2. The second
data flow is the embedding-only projection workflow (E-
projection). In this data flow, new data is embedded
using a pre-trained model trained on reference data, as

5- Transfer learning for scATAC

described above. These embeddings may then be visual-
ized by fitting a UMAP model to reduce dimensionality
to 2 dimensions. The final data flow, and the novel in-
novation that accomplishes our goal of reference-based
visualization, is the embedding and visualization work-
flow (EV-projection; Fig. 4A). In this data flow, new data
is first embedded using a pre-trained model on reference
data, as in E-projection; then, these embeddings are fur-
ther projected through a UMAP model that was fit on the
reference data embeddings, rather than newly fit. With
the EV-projection flow, plotting the 2-dimensional cell
representations on top of the reference data UMAP plot
allows one to visualize where in the original embedding
space the new data ended up (Fig. 4B). This is possi-
ble because the EV-projection re-uses the same topology
from the UMAP model fit to the reference data (Fig. 4C).

To demonstrate this approach for reference-based visu-
alization and annotation of new data, we built a refer-
ence model using the Luekcen2021 multi-omic dataset
[21], a first-of-its-kind multimodal benchmark dataset of
120,000 single cells from the human bone marrow of 10
diverse donors measured with two commercially avail-
able multi-modal technologies. Using scEmbed and the
“no projection” data flow, we trained a model and clus-
tered the resulting embeddings (Fig. 4D). This model
served as the reference for all downstream experiments
with a new PBMC dataset from 10X genomics. Using E-
projection, scEmbed creates visually distinct clusters of
single cells (Fig. 4E, Fig. S3). To visualize these em-
beddings in the context of the original embedding topol-
ogy, we employ EV-projection. Each identified cluster
from E-projection aggregates to a distinct location in the
original UMAP embedding topology of the Luecken2021
model (Fig. 4F).

Confident our pre-trained Luecken2021 embedding
model was distinctly clustering the new PBMC dataset,
we sought to assign cell-type labels to each cluster. We
leveraged Cellcano, a new scATAC-seq cell-annotation
method, to assign ground-truth labels to each cluster
of the E-projected PBMC embeddings for evaluation of
our method [12]. Our cell-type annotation system was
limited by the cell types annotated in Luecken2021; as
such we mapped each scEmbed prediction class to a
corresponding Cellcano class for comparison (Table S1)
after following their annotation procedure (Methods,
Fig. S4). Using a simple k-nearest-neighbor (KNN)
classification algorithm (see Methods), scEmbed was
highly consistent with the Cellcano labels (F1=0.87,
Fig. 4G). Without class mapping, scEmbed offers higher
specificity of cluster identity and even identifies a
cluster of ID2-hi myeloid progenitor cells not found
with Cellcano (Fig. 4H). Thus, we conclude that EV-
projection is a promising approach for visualization and
annotation of new data. Furthermore, the entire process
of dimensionality reduction, clustering, and annotation
took less than 10 minutes on a laptop.
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Figure 4. Pre-trained embedding models can be exploited for cell-type annotation tasks. A. Diagram showing scEmbed’s three projection paths.
B. Overview of the standard “no-projection” data flow. C. Overview of three data flows for new data. EV-projection places the new data in the same
latent space as the reference data. D. UMAP plot of the reference data embeddings built using the standard workflow. E. UMAP plot of the new PBMC
data with E-projection. F. Plots showing the EV-projection data flow applied to the new PBMC dataset. Grey cells represent the reference topology;
colored cells are projected new PBMC data. Separate plots depict individual clusters for visual clarity. G. Confusion matrix of scEmbed classification
results compared to Cellcano. H. UMAP plots showing the cell labels assigned by Cellcano (left) and the cell type labels assigned by scEmbed (right).

Discussion

In this work, we demonstrate the robustness and versa-
tility of scEmbed, a new tool for the analysis of scATAC-
seq data. scEmbed differs from existing methods in that
instead of learning embeddings of individual cells di-
rectly, it first learns embeddings of genomic regulatory
regions and then uses these to compute cell embeddings.
We demonstrate how this approach allows scEmbed to
use pre-trained genomic region embedding models to ef-

6- Transfer learning for scATAC

fectively cluster data not seen by the model. Our evalua-
tion of scEmbed against existing scATAC-seq methodolo-
gies demonstrates its efficacy and competitiveness, even
with a relatively simple network architecture. scEm-
bed performs well, even when faced with severe data
loss. The standout feature of scEmbed is its capability to
repurpose learned region embeddings for downstream
analysis tasks. This approach provides flexibility and ef-
ficiency, setting it apart from other currently available
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tools.

By exploiting region overlaps and applying previously
learned region embeddings, we have formulated a novel
method for representing unseen scATAC-seq data within
the latent space of the original training data. This
process, termed “projection,” yielded superb clustering
of cells, showing no significant decrease in performance
compared to models trained entirely on the new dataset.
This performance underscores the potential of scEmbed
in the context of ATAC-seq transfer learning tasks and
opens exciting possibilities for future research. Future
studies will explore the ability of our model to learn and
extract overarching regulatory patterns from publicly
available data. This learning, coupled with the inherent
transferability of scEmbed, will empower researchers
to fine-tune the models for specific downstream tasks,
enabling gains in performance, efficiency, and flexibility.

Finally, we leveraged embeddings computed by scEm-
bed and its pre-trained models to build a novel cell-type
annotation system. Our method is consistent with cur-
rent ScCATAC-seq cell type annotation implementations
with the added advantage of requiring no external data
modalities. Furthermore, by exploiting pre-trained mod-
els and pre-computed cell embeddings from reference
datasets, the scEmbed annotation system can easily scale
to millions of cells and uses only a fraction of the com-
pute time. We’ve made the pre-trained models used in
this paper available for download and use on hugging-
face. To facilitate model sharing and usability even fur-
ther [22], we’ve built software packages to easily down-
load and use these models within Python. Moreover,
these same packages can be used to train new models
or fine-tune public ones on custom datasets. We hope
that these resources will enable researchers to leverage
the power of scEmbed for their own research.

The integration of unsupervised learning with transfer
learning may offer new directions for other bioinformat-
ics tasks that are similarly burdened by the challenges of
high-dimensionality and data sparsity. Furthermore, the
deployment of pre-trained models for reference datasets
may inspire novel methodologies for efficient and accu-
rate cell-type annotation systems across different data
modalities. In the future, the pre-training approach of
scEmbed could be adapted for use with cross-modality
methods that span data types [23]. In conclusion,
scEmbed’s ability to distill meaningful representations
from vast, complex scATAC-seq datasets, and repurpose
this knowledge for rapid and accurate analysis of new
datasets, has great potential. This work is a step towards
developing more efficient, scalable, and flexible tools for
genomic data analysis. The opportunities unlocked by
scEmbed for research and clinical application promise
exciting advancements in the comprehension of cellular
heterogeneity and the intricate regulatory networks that
drive it.
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Methods

Data and data processing
Overview of datasets

Luecken2021. The Luecken2021 dataset is a multimodal
single-cell benchmarking dataset [21]. The data is
a first-of-its-kind multimodal benchmark dataset of
120,000 single cells from the human bone marrow of
10 diverse donors measured with two commercially-
available multi-modal technologies: nuclear GEX with
joint ATAC, and cellular GEX with joint ADT profiles.
The data was retrieved from the gene expression
omnibus (GEO) using the GEO accession GSE194122.

Buenrostro2018: The Buenrostro2018 dataset consists
of single-cell chromatin accessibility profiles across 10
populations of immunophenotypically defined human
hematopoietic cell types [20]. Deduplicated single-cell
bam files along with a consensus peak set were provided
by Chen et. al. [13]. For datasets where consensus
peaks don’t exist, methods that create such sets from
raw data could be used as a pre-processing step [24].
Using bedtools [25], region overlaps with the con-
sensus peak set were computed for each bam file at a
minimum overlap of 1bp. Using the -c flag, the number
of overlaps with each region in the consensus peak set
was calculated. Overlap count files were subsequently
converted into a cell by peak binary accessibility matrix
formatted as a comma-separated-value file (csv). Fi-
nally, the binary accessibility csv was converted into a
scanpy AnnData object using the scanpy.read _csv APL
This was used as input to the scEmbed model.

5k PBMC:. The PBMC dataset comes from 10X ge-
nomics and consists of peripheral blood mononuclear
cells (PBMCs) from a healthy donor. Three files were
downloaded directly from the 10X genomics website:
1) the sparse peak matrix in .mtx format, 2) the cell
barcode labels in tsv format, and 3) the consensus peak
set in bed format. Using Python, along with pandas
and scanpy, these files were processed into a scanpy
AnnData object. This was used as input to the scEmbed
model.

Synthetic Bone Marrow: The synthetic bone marrow
dataset was described and provided by Chen et. al.[13].
The binary accessibility matrix was downloaded directly
from the Pinello Lab’s GitHub as a .rds file. Using R,
this file was read, parsed, and exported as a csv. Like
the previous two datasets, this csv was processed into a
scanpy AnnData object using pandas and scanpy.

Architecture of scEmbed
Word2Vec model

We used the gensim implementation of Word2Vec as
the core model for scEmbed. Word2Vec has many
configurable hyperparameters [26], including context
window size, embedding size, learning rate scheduling,
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and number of epochs. All experiments were conducted
with a fixed set of hyperparameters. We used defaults
for scEmbed, informed by experiments on Region2Vec
optimization [27]. Specifically, we use a window size
of 5 and an embedding dimension of 100. We also use
100 epochs for all experiments unless otherwise noted.
We adopt an exponential learning rate schedule with a
decay rate of 0.95.

Presenting cells as documents to Word2Vec

Word2Vec takes lists of words as input. To this end, we
designed a way to convert a binary accessibility matrix
into list of words that are compatible with Word2Vec’s
acceptable input corpus format. scEmbed expects bi-
nary accessibility matrices with cells as rows and regions
as columns. Briefly, we treat each cell as a sentence
and each co-accessible region in the cell as a word. Us-
ing this convention, we generate input for Word2Vec in
three steps. First, we take an individual cell and identify
each region where it shows signal. We define signal as
anything greater than zero. Second, we take the corre-
sponding region that shows signal and convert it into a
word by concatenating the chromosome, start, and end
values with an underscore (chr_start_end). This pro-
cess is completed for each region with signal in the cell,
and a list of “words” is constructed. Finally, this list is
shuffled repeatedly to simulate context and used directly
as input to Word2Vec. Shuffling is necessary since co-
accessible regions have no inherent order, and Word2Vec
learns by context. We repeat this process for each cell in
the accessibility matrix.

Clustering

We use three clustering algorithms: Hierarchical clus-
tering (HC), k-means clustering, and Louvain clustering.
For HC and k-means, we use the scikit-learn imple-
mentations. When ground-truth labels were known for a
particular dataset, we used the number of unique labels
to set the number of clusters to generate. Otherwise, we
used prior knowledge to estimate the number of unique
cell populations we would expect to find. For Louvain
clustering, we use the scanpy implementation. Louvain
is agnostic to a specified number of clusters. As such,
we iteratively applied clustering to datasets while slowly
increasing the resolution value from 0 to 3. With each it-
eration, the number of clusters was stored in a list along
with the corresponding resolution. Once complete, we
employed binary search on the list to identify the reso-
lution that gave us the desired number of clusters. This
value was used to generate the final clustering solution.

Visualization

We used uniform manifold approximation and projec-
tion (UMAP) to visualize single-cell embeddings [28].
We used the umap-learn Python package and specified
two dimensions for each visualization. In addition, a
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random state of 42 was set for visualization workflows.
All other parameters were set to package defaults.

Clustering evaluation
Evaluation metric

There are two scenarios for which we can evaluate
clustering: known ground-truth labels and unknown
ground-truth labels. The synthetic bone marrow and
Buenrostro2018 datasets constitute the known ground-
truth label scenarios while the PBMC data constitutes
the unknown ground-truth label scenario. @ When
ground-truth labels are known, we can employ three
different scores: The adjusted rand index (ARI), the
adjusted mutual info score (AMI), and the homogeneity
score. When ground-truth labels are not known, we use
the Residual Average Gini Index (RAGI) [13].

Adjusted Rand Index

The ARI is a metric for evaluating the similarity between
two data clusterings. This is achieved by counting pairs
that are assigned to the same cluster label. Mathemati-
cally, it is computed by:

[3() > ()1 (5
> (5)] - (‘“)z %)1/(3)

where n;;, a;,b; are diagonal values, row sums, and col-
umn sums respectively from the contingency table that
describes the frequency distribution of the cluster labels
from ground-truth and predicted clusterings.

T, (5) -
)

ARI =

We use the adjusted_rand score function from the
scikit-learn python package.

Adjusted Mutual Info Score

The AMI, intuitively, is a measure of the amount of infor-
mation that two clusterings share. It’s used to evaluate
how well two clusterings agree with each other [29]. We
compute AMI through the scikit-learn package using
the adjusted mutual_info_score function.

Homogeneity Score

The homogeneity score is an entropy-based external
cluster evaluation metric that measures how far from
perfect an incorrect clustering solution is [30]. We
employ the scikit-learn homogeneity_score function
to measure this metric for each dataset.

Residual Average Gini Index

When ground truth labels are unknown, all aforemen-
tioned evaluation metrics are no longer applicable. As
such, we need a measure that can still evaluate dataset
clustering based on what one would expect, given some
sort of prior knowledge about the system. For this,
we employ a similar strategy described by Chen et. al.
called the Residual Average Gini Index (RAGI). Briefly,
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the RAGI score compares the accessibility of housekeep-
ing genes with previously characterized marker genes
[31]. RAGI measures the average residual specificity
of a clustering solution with respect to marker genes,
suggesting that a good clustering solution should have
clusters enriched for different marker genes and these
genes should be highly accessible in only a few clusters,
compared to the less informative housekeeping genes.

Data corruption and dropout experiments

To simulate information loss, we iteratively and
randomly dropped non-zero values in the binary ac-
cessibility matrices down to zero at increasing rates.
Following a similar approach described by Xiong et.
al. to evaluate SCALE [1], we randomly dropped out
non-zero values at increments of 10% from 0.1 to
0.8. This resulted in increasingly more sparse feature
matrices (Fig. S2). Using choice from the numpy python
library, we changed all non-zero values in the feature
matrix to 0 with a probability of Dropout Rate. The
resulting matrix was saved and used for downstream
analysis.

Transfer learning and data projection

E-projection

The E-projection method enables the transfer of learned
knowledge from a pre-trained model to unseen datasets.
It translates a new binary accessibility matrix into the
space of the original dataset. For each cell in the new
dataset, this projection occurs in three stages:

Region Overlap Computation. We first calculate region
overlaps between the accessible regions in the new
cell and the consensus peak set from the original
dataset. This is achieved using interval trees, a data
structure that facilitates efficient discovery of all in-
tervals that overlap with any given interval or point.
We use the intervallist package in python for these
computations. To increase speed and performance for
on-disk datasets, the augmented interval list (AIList)
datastrecture could be used [32]. Regions with signal
that overlap are mapped onto the original dataset’s
consensus peak set.

Word-Key Conversion. Subsequently, each of the over-
lapping regions is transformed into its corresponding
word-key. This is accomplished by joining the values
of the chromosome, start, and end with an underscore
(chr_start_end).

Embedding Transformation and Averaging. Finally, these
word-keys are translated into their corresponding em-
beddings. An average is then calculated across these
embeddings to derive a whole-cell embedding E...

Formally, let C denote a single cell from the new dataset,
R the original dataset’s consensus peak set, and O the
set of overlapping regions between C' and R. For each
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region r; € O, we create a word-key k; = f(r;), where f
is a function that maps a region to a word-key.

Then we compute the embedding E,, = g(k;), where
g is a function that maps a word-key to its correspond-
ing embedding. The whole-cell embedding is then com-
puted by averaging these region embeddings:

1 n
Ecell = ﬁ Iz_:l Er,;

where n is the number of regions in O. These vector av-
erages are computed with the numpy package in python.

EV-Projection

The EV-Projection procedure extends the E-Projection
method by incorporating an additional visualization
step. This approach retains all the benefits of E-
Projection, while also providing a means to visualize the
projection results using the pre-fit UMAP model derived
from the original reference data embeddings.

As with E-Projection, we begin by calculating re-
gion overlaps, converting regions to word-keys, and
translating these word-keys into their corresponding
embeddings. We then average these embeddings to
compute a whole-cell embedding for each cell in the
new dataset.

After obtaining the whole-cell embeddings F e from E-
Projection, these embeddings are further transformed
using the UMAP model fitted to the original data embed-
dings. We denote this transformation function as u(:).
The EV-projection cell-embeddings as follows:

EVeenn = u(Ecen)

This transformation facilitates the visualization of the
new data in the same low-dimensional space as the orig-
inal data, providing a spatial relationship between new
and original cells. This step aids in interpreting and com-
paring the accessibility landscape of the new cells in the
context of the original cells.

Cell type classification
Embeddings of the Luecken2021 dataset

To classify new, unseen single cells we first gener-
ate an embedding for every cell in the Luecken2021
dataset [21]. Each cell in the dataset, denoted as
x;, is transformed into a high-dimensional repre-
sentation, or an embedding, denoted as e; using
the pre-trained model. Each embedding has an as-
signed ground-truth cell type label. The embeddings
are generated with the no-projection procedure and
stored alongside their metadata in a Qdrant database.
Qdrant is open sourced and can be found on GitHub:
https://github.com/qdrant/qdrant. Qdrant allows
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fast, convenient approximate nearest neighbor com-
putation. We denote the set of all embeddings as
E =e,eo,...,e,, Where n is the total number of cells in
the Luecken2021 dataset. The corresponding cell type
labels are represented as L = Iy, s, ...

Jn-

Approximate K-nearest-neighbor calculation

Given an unseen data point, z,, the goal is to assign
it a label by using the embeddings of the pre-labeled
dataset. The first step towards this is to compute an em-
bedding for the unseen data point, through E-projection.
Next, we compute the approximate nearest neighbors to
e, using navigable small world graphs with controllable
hierarchy (Hierarchical NSW, HNSW) [33]. This is im-
plemented in Qdrant with cosine distance and we simply
query the database with the new embedding e,,.

Label transfer

Once the approximate k-nearest-neighbors are retrieved,
we assign a label to e, by performing a consensus vote
among its k nearest neighbors. We denote the indices of
these k nearest neighbors as I = i1, 1s,...,7,. We then
assign a label, [,,, to the unseen data point, z,,, based on
the most common label among its k¥ nearest neighbors,
which can be formalized as:

i=1

l, = arg max
leL

where [I;, = [] is the Iverson bracket notation that equals
1 if the condition inside the brackets is met, and equals
0 otherwise. We use the Python collections.Counter
object from the standard library to perform these com-
putations.

Cluster annotation

After performing the label transfer procedure, the
newly clustered dataset, which we’ll denote as
C = (C1,0y,...,C,, where m is the total number
of clusters and each cluster C; is a set of data points,
undergoes a final round of consensus voting for label
assignment.

For each cluster C}, we count the frequency of each label
amongst all the data points within the cluster. Let L¢, =
lj1,1lj2, ..., ljn, represent the labels of data points within
cluster C;, where n; is the total number of data points
in Cj.

The label of cluster C;, denoted as L¢;, is then assigned
based on the most frequent label among all data points
in C;. This can be formally defined as:

L¢, = arg I}leaLx;[lﬂ =1

where [l;; = [] is the Iverson bracket notation that equals
1 if the condition inside the brackets is met, and equals
0 otherwise.

10- Transfer learning for scATAC

In this way, each cluster is assigned the label that is most
represented among its constituent data points. The qual-
ity of cluster labeling is highly dependent on the accu-
racy of the initial label transfer step.

Evaluation of scEmbed cell type annotation

We use Cellcano, a novel scATAC-seq cell annotation
method, to assign ground truth labels to our new
PBMC data [12]. We follow the online tutorials
(https://marvinquiet.github.io/Cellcano/) and leverage
their provided reference dataset to process the new
PBMC data. Once ground truth labels have been as-
signed by Cellcano and putative cell types are assigned
from scEmbed, we can compute the F1 score to measure
the accuracy of our classification.

The F1 score is the harmonic mean of precision and re-
call, and provides a balance between these two mea-
sures. Precision is the number of true positives divided
by the sum of true positives and false positives, and re-
call is the number of true positives divided by the sum
of true positives and false negatives. Formally, these are
defined as:

TP
P= TP+ FP
TP
R= TP+ FN
The F1 score is defined as:
PxR
F1=2
“PTR

To compute these measures, we compare the predicted
labels, denoted as L, = l,1,lp2,...,lpn, to the ground
truth labels, denoted as L, = ly1,lg2, ..., l4n, Wwhere n is
the total number of data points (or clusters). We utilize
the metrics.f1l _score function from scikit-learn to
compute this value.
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Supplementary Table S1. Label mapping between scEmbed and cellcano for consistent comparison of classification performance.
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scEmbed label Cellcano label
B1B B cells
CD4+ T activated CD4 T cells
CD4+ T naive CD4 T cells
CD8+ T CD8 T cells
CD8+ T naive CD8 T cells
CD14+ Mono Monocytes
cDC2 Dendritic cells
NK NK cells
Naive CD20+ B B cells
Epochs: 5 Epochs: 10 Epochs: 25 Epochs: 50
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Supplementary Figure S1. Epoch tests show that scEmbed learns well after 100 epochs. UMAP plots were generated after repeated model
training using 8 different numbers of epochs for training. The model was trained on a synthetic bone marrow dataset described by Chen et al. UMAPs
showed little change after 100 epochs.
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Supplementary Figure S2. Sparsity plots enable visualization of iterative data dropout. Sparsity plots of the original matrix along with the

Regions

Regions

Regions

matrix dropouts. Non-zero values decrease as the dropout rate increases from 10% to 80%.
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Supplementary Figure S3. scEmbed produces visually distinct clusters of the subsetted Luecken2021 dataset. A. UMAP plot of an scEmbed
model trained at 100 epochs for just the T Cells. Looking only at T Cells, the model can visually cluster the different cell types. B. UMAP plot of only
PBMC cells from the Luecken2021 dataset.
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Supplementary Figure S4. Visualization of reference data for Cellcano. tSNE plot output from cellcano showing clustered data from the given
reference dataset.
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