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Abstract 

Gene expression is regulated by transcription factors that work together to read cis-regulatory DNA 

sequences. The “cis-regulatory code” - the rules that cells use to determine when, where, and how 

much genes should be expressed - has proven to be exceedingly complex, but recent advances in the 

scale and resolution of functional genomics assays and Machine Learning have enabled significant 

progress towards deciphering this code. However, we will likely never solve the cis-regulatory code if we 

restrict ourselves to models trained only on genomic sequences; regions of homology can easily lead to 

overestimation of predictive performance, and there is insufficient sequence diversity in our genomes to 

learn all relevant parameters. Fortunately, randomly synthesized DNA sequences enable us to test a far 

larger sequence space than exists in our genomes in each experiment, and designed DNA sequences 

enable a targeted query of the sequence space to maximally improve the models. Since cells use the 

same biochemical principles to interpret DNA regardless of its source, models that are trained on these 

synthetic data can predict genomic activity, often better than genome-trained models. Here, we provide 

an outlook on the field, and propose a roadmap towards solving the cis-regulatory code by training 

models exclusively on non-genomic DNA sequences, and using genomic sequences solely for evaluating 

the resulting models. 

 

Background 

In contrast to the protein code (Box 1), deciphering the cis-regulatory code remains one of the biggest 

unsolved problems in biology 1–3. Cis-regulation comprises the mechanisms by which DNA sequence 

determines transcription rates, and mRNA splicing and stability of nearby genes. Factors affecting mRNA 

splicing and stability has been reviewed recently elsewhere4–7. In this perspective, we will focus on how 

transcription factors (TFs) interpret cis-regulatory DNA sequences to control the rate of gene 

transcription. While the field has characterized many mechanisms used in cis-regulation (reviewed in 8–

12), we lack sufficient understanding to combine this knowledge into predictive models13. At its core, cis-

regulation is a quantitative process, relating DNA sequence to an amount of gene expression. 

Accordingly, building a quantitative predictive understanding is vital to our efforts to design synthetic 

regulatory sequences (e.g. genetic circuits, cell-type specific gene therapies), and to understand how 

mutations to cis-regulatory sequences change their function. Perhaps nowhere is this more important 

than in regulatory sequence evolution, where we seek to ask how genetic variation impacts past, 

present, and future gene regulatory activity, and, consequently, organismal phenotype14–16. For instance, 

most of the common genetic variation associated with human traits (including diseases) appears to be 

regulatory, changing when, where, and the degree to which genes are expressed 17,18. Because of the 

astronomical number of potential cis-regulatory alleles, experimentally determining how they impact 

expression of nearby genes in every cell type is not feasible. However, a comprehensive cis-regulatory 

model would enable us to predict variant function, and could be equally applied to common, rare, de 

novo, and hypothetical variation, shedding significant light onto the mechanisms underlying diseases 
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and other traits. A quantitative model will also be critical for fully understanding the molecular 

mechanisms of gene regulation, since it enables us to gauge the relative contributions of the different 

molecular mechanisms involved in driving transcription. 

Box 1: Contrasting the protein and cis-regulatory codes. 

We have made great strides in deciphering the protein code, and while there are many parallels 

between the protein and cis-regulatory codes, there are also key differences. At the lowest level, 

proteins are encoded in the genome by the Genetic Code, which is shared amongst almost all life on 

Earth. The Genetic Code is essentially a discrete deterministic mapping between each triplet codon 

sequence and the amino acid to be incorporated into the protein. In contrast, the cis-regulatory code is 

quantitative, with TFs recognizing and binding to the DNA in proportion to their sequence affinities and 

cellular concentrations. Some regulatory proteins, like the histones that comprise nucleosomes, have 

extremely weak DNA sequence binding preferences that are nonetheless important to their function19.  

At higher levels, proteins fold into a 3-D shape that determines their function. How a protein folds is 

relatively deterministic as well, with the same amino acid sequence folding into the same protein in 

every cell type of the body, and even across distantly related species. This enables repurposing of useful 

genes, like the Green Fluorescent Protein, across species. The conservation of folding biochemistry also 

enables us to use examples of structures of bacterial proteins to learn how human proteins fold. Indeed, 

the field has made significant progress in predicting protein structure from amino acid sequence 

recently, with ML programs like AlphaFold now able to predict protein structure from amino acid 

sequence accurately20. In contrast, higher order cis-regulatory features are much less deterministic and 

vary by species, cell type, cell state, and genomic locus because they depend on the concentrations and 

identities of the transcriptional regulators and the relative arrangement of the cis-regulatory elements 

along the DNA. This complexity makes predicting genome regulation from DNA sequence - let alone 

changes in regulation resulting from mutations - a major challenge. However, even for protein 

structures, predicting mutation effects remains a major challenge21,22. 

 

The multi-layered and convoluted nature of the cis-regulatory code partly explain why it remains 

unsolved. Cis-regulation is determined largely by TFs, proteins that recognize specific sequences in the 

DNA via their affinities to different DNA sequences (Fig. 1A). To a first approximation, cis-regulation 

appears to be quite simple, with the activities of most elements being consistent with a “billboard” 

model of gene regulation23,24, where the overall activity of a sequence can be reasonably approximated 

as the sum of its parts25. Recent studies have found that most regulatory sequences have 5-6 strong TF 

binding sites, with little preference for specific positioning or orientation between them24. This is 
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consistent with the biochemistry of TFs, where TFs mutually compete with nucleosomes and their 

effector domains appear to be largely unstructured and interact transiently and in a variety of ways with 

co-regulator proteins 26–28 (Fig. 1B). Further, cis-regulation also appears to be hierarchical, with some TFs 

having outsized impact in any particular cell type29,30, but with many shared features between cell types 

as well30,31. While most gene expression can be explained with a billboard model, there are also clearly 

positional effects of TF binding as well that can modify TF activities 25,32–37, substantially complicating 

things. Finally, there is feedback between the chromatin state and transcriptional regulation38. Here, 

histone modifications and CpG dinucleotide methylation are added to chromatin by TFs and 

transcription38–41. These same modifications can then, in turn, modify how TFs read the DNA42–44. CpG 

methylation, and some repressive chromatin modifications such as H3K27 trimethylation can also 

persist through cell division44–48 to form a memory of past TF activity. Finally, adjacent regulatory 

elements interact via 3-D looping49–51, insulation52, competition53–55, and condensate formation56,57 to 

regulate the expression of nearby genes. There may also be hitherto undescribed mechanisms that 

further complicate cis-regulation. A predictive model of cis-regulation requires accurately capturing how 

all these layers of regulation work together. 

A second reason why cis-regulation remains unsolved is the very large number of parameters needed to 

describe the process. TFs can bind to DNA individually and in concert (Fig. 1A), interacting with each 

other both negatively, for instance by competing with each other for binding to overlapping DNA 

sequences, and positively, for instance by competing with nucleosomes58, and via biochemical 

cooperativity. Biochemical cooperativity is often mediated through direct physical interactions between 

TFs that are bound to adjacent DNA sequences that increase the affinity of one or both of the TFs to the 

DNA 36,59 (Fig. 1C). Because of the strict orientation, spacing, and DNA rotational requirements (e.g. each 

base pair results in a ~34° rotation around the DNA double helix), such interactions often occur at only 

one of the many possible relative arrangements of the TF pair, although less stringent interactions are 

possible as well59–63. Since any of the ~1,639 human TFs could potentially interact with any other, we 

estimate that there are approximately 220 million parameters needed to explain TF-TF cooperative 

interactions (Fig. 1C). However, this is likely to be an underestimate as this does not account for TF 

isoforms and post-translational modifications, and interactions with cofactors, which differ by cell type 

and are likely to modify these interactions. Systematic query of the TF-TF interaction space revealed that 

approximately 3% of TF pairs interact in specific binding site arrangements37, indicating that this 

parameter space, though sparse, is nonetheless important. Taken together, the multi-layered nature of 

the regulatory code, and the vast number of parameters required to define it makes creating 

comprehensive cis-regulatory models a major challenge.  
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Figure 1: Cis-regulation requires learning hundreds of millions of parameters. (A) Some of the potential 

interactions between TFs (small amorphous blobs), DNA (black line), and nucleosomes (cylinders; histone 

modifications as small red circles). (B) At higher levels, regulatory information is compressed into few pathways via 

shared interactions with common factors (e.g. nucleosomes and Mediator). (C) TF-TF cooperativity includes ~220 

million parameters that impact TF binding. For each orientation, the TFs (coloured blobs) are shown bound to DNA 

as viewed as a cross-section of the DNA (left) and along the DNA’s length (right). A star highlights the cooperative 

interaction. 

There have been several major successes in creating genome-trained models that predict cis-regulatory 

activity from DNA sequence alone. Many of the recent advances rely on deep neural networks 60,64–70, 

which are sufficiently complex to capture many of the parameters of cis-regulation. For instance, the BP-

NET model trained on ChIP-nexus data learned an interaction between Nanog and other TFs that 

followed a periodic dependency consistent with the helical period of DNA60. The Enformer model, which 

was trained to predict thousands of chromatin profiles across 200 kb sequences, has also proven to be 

quite useful in predicting perturbations, including CRISPRi-mediated repression65,71. Further, several 

neural network models trained on human genomic sequences have shown that they can predict how 

variants impact gene expression to some degree when considered in aggregate, but are generally 

unreliable for individual variants65,71,72, and more reliable for promoter than for enhancer variants71. 

While such models are quite useful for many applications in their current state, they remain quite far 

from the models we require to reliably predict variant function. Given the large number of parameters 

needed to capture cis-regulation, building reliable quantitative models will require much more data. 

Why not just measure the genome more? 

While we could continue functionally profiling the human genome, yielding ever more data and better 

models, we think this approach will soon reach a ceiling because of the limited length and sequence 

diversity of our genomes. Our genome consists of only ~3 billion base pairs73–75. While ~488 million base 

pairs appear to be cis-regulatory (open chromatin) in one or more cell types76, most cell types have ~30 

million cis-regulatory base pairs, little of which is specific to that cell type76. In contrast, if we were to 

query TF-TF interactions by instantiating one of every possible arrangement and offset for each TF-TF 

pair, this would take ~5.7 billion bp (Fig. 1B)). Even if we had a genome comprised entirely of these TF-

TF interaction query sequences, we still could not learn the interactions because multiple independent 

examples are required to distinguish the interaction-specific sequence features from those that are 
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merely present. Accordingly, our genomes are simply too short to learn the many parameters describing 

cis-regulation. 

In machine learning, it is important for the data to be independent and identically distributed (i.i.d.), 

which enables robust generalization to new data. For DNA sequences, i.i.d. would mean that the DNA 

sequences in the dataset are unrelated (independent), and that the active sequence features are equally 

likely to occur in any given sequence (identically distributed). In reality, our genomes are far from i.i.d., 

and evolution has shaped them in ways that can seriously confound genome-trained models. Regions of 

homology exist throughout our genomes, originating from individual DNA sequences that have been 

duplicated to other genomic loci and subsequently diverged. Nowhere is this more obvious and 

problematic than with repetitive elements that are estimated to comprise 60% of our genome77. For 

instance, LINE elements are 6-8kb retrotransposons that, through ongoing retroposition, now occupy 

~21% of our genomes74. Indeed, our genomes are so repetitive that the vast majority of pairs of 200 kb 

human genomic sequences from distinct chromosomes share thousands of 20 bp sequences (20-mers), 

with a median of >22,000 shared 20-mers representing a minimum of 11% overlap (if all 20-mers 

overlap maximally; Fig. 2A-C), despite the fact that 20 bp would be sufficient to uniquely specify each 

position in a non-repetitive sequence of 3 Gbp. Further, evolution favours clustering of related 

elements, with many loci containing multiple functionally related genes78–80, many genes having multiple 

enhancers with similar activity profiles81–84, and many enhancers having multiple binding sites for the 

same or functionally related TFs85,86. All this bias means that sequences sampled from the human 

genome are neither independent (due to homology) nor identically distributed (due selection favoring 

clustering of sequences with related functions). This will lead to the models trained on genomic data to 

mistake correlations for causation71,87,88 (Fig. 2D,E), resulting in unreliable predictions of regulatory 

element and variant function. 

As a consequence of the many biases and dependencies of the human genome, determining the true 

predictive power of models trained on genomic sequences is a major challenge. Model training is an 

ongoing race between fitting, where the model is learning things that are generally true about the 

system, and overfitting, where the model is learning spurious relationships that happen to be present in 

the training data. “Validation” data are used to determine when the rate of overfitting has surpassed 

the rate of fitting (when validation performance stops improving), at which point we should stop model 

training. Finally, “test” data are used to gauge the model’s true performance. In general, training, 

validation, and test data should be separate and distinct to ensure that overfitting and model 

performance estimates are accurate. Overfitting is surprisingly difficult to detect and avoid for genome-

trained models88–91. Even initializing a model with TF motifs that were derived from the entire genome 

(which includes the test data) can lead to undetected overfitting 92,93. A major source of overfitting for 

genome-trained models is the abundant homology across the genome (Fig. 2), which makes it difficult - 

if not impossible - to avoid shared sequences in the training, validation, and testing datasets (termed 

“data leakage”), even when holding out entire chromosomes. Shared sequences in training and 

validation data will mask overfitting since the peculiarities the model has memorized from the training 

data are also present in the validation data, increasing the model’s performance on the validation data 

despite being overfit89,90. If these sequences are also shared with the test data, the overfitting will go 

completely undetected since the overfitting will improve test data performance too. For instance, rather 

than learning the biochemical mechanisms underlying LINE element activity, the model could simply 

associate LINE element activity to the most conserved sequence feature of the element. Because the 
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model’s understanding of reality is flawed, it would then predict activity incorrectly for sequences that 

use similar biochemical features or have similar sequences to LINEs. Worse, this would go undetected if 

the training and test data both contained LINE elements, since it would predict their activity correctly, 

but for the wrong reasons (Fig. 2D). While one could mask repeat elements in an attempt to prevent 

data leakage, deciding which elements to mask is somewhat arbitrary since there is no level of 

divergence at which sequences sharing a common origin cease to be homologous. Further, there are 

many homologous sequences that are not derived from repeats (e.g. gene duplication, microsatellite 

repeats). Finally, the repeat elements are often active94,95, and so masking them would also necessarily 

confound model training and prediction. Even if one could avoid this data leakage, we will always need 

at least two instances of every genome-trained model, so that the predictions for a sequence come from 

a model that has not been trained on that sequence. Finally, the propensity for functionally related 

elements to cluster can also result in models having seemingly correct predictions but for the wrong 

reasons. For instance, if all enhancers within an enhancer cluster encode similar activities81–84 the model 

could ignore all but one of these elements, failing to accurately model the locus but correctly capturing 

the expression program. Consequently, it is incredibly difficult to get an accurate view of genome-

trained model performance when evaluating them on genomic sequences (where we care about 

performance most). 

There are several ways of augmenting the human genome sequence with other genome-derived 

sequences to improve models, but none will resolve the issues we identified above. For instance, 

training models on orthologous genomes (e.g. other mammals) may enable us to learn some of the rules 

of gene regulation, but issues of data leakage between orthologous genomes and our own remain even 

if direct orthologs are avoided. Further, some of the nuances of the cis-regulatory code are likely to be 

specific to humans (e.g. retrotransposon repressors, TF-TF interactions), and so would be learned 

incorrectly using this approach. Alternatively, we can train models with data designed to capture variant 

effects, for instance, using data from chromatin or gene expression profiling across people of diverse 

genetics and then learning genotype-aware models, or using measured expression effects of variants 

from Massive Parallel Reporter Assays (MPRAs)96–99. While training models with examples of variant 

effects will undoubtedly improve their performance, the cryptic homology causing data leakage remains 

problematic.  

Ultimately, we want our models to learn all the causal relationships between sequence and expression 

while ignoring the spurious relationships that will lead us astray. Commonplace cis-regulatory 

mechanisms (e.g. billboard-like) will be learnable from genomic sequence because they are used 

abundantly throughout the genome in a variety of contexts. However, the genome’s abundant 

homology places a limit on the rarity of mechanisms that can be learned from its study; models will 

learn to associate the abundant spurious relationships before the rarer causal relationships (e.g. TF 

cooperativity) because they have no way of distinguishing between the two. Importantly, because of the 

issues described, determining the degree of overfitting of genome-trained models will remain a major 

challenge and we may never know exactly how much we can trust their predictions.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.20.537701doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537701
http://creativecommons.org/licenses/by/4.0/


7 

 

 

Figure 2: Training on the genome is confounded by cryptic homology and correlated but not causal 

features. (A-C) Cryptic homology makes data leakage nearly unavoidable with genomic DNA. (A) 

Histogram of the numbers of sequence pairs (y-axis) with each number of shared 20-mer matches (x-

axis) between pairs of random (blue) and pairs of genomic (orange) 200 kb sequences (1000 pairs, each). 

(B,C) Examples of 20-mer matches (red boxes) between pairs of sequences (x- and y- axes) for (B) 

random sequences and (C) genomic sequences. (D,E) While confounded input sequence features can 

lead to models mistaking correlation for causation (D), causality is correctly inferred from random 

sequences (E). 

Synthetic DNA as a potential solution 

An alternative to training gene regulation models on genomic sequences is to train them on designed 

DNA sequences. Sequences can be designed in a variety of ways, including to test hypotheses about cis-

regulation25,32,100–102 or its evolution14, or to achieve particular expression objectives14,61,103. The flexibility 

in design choices make designed sequences very powerful, but their comparatively high cost (~$0.16 per 

300 nt sequence as of 2023) limits the scale at which they can be applied. Learning cis-regulatory models 

from designed sequences can be challenging for several reasons. Firstly, the designed sequences may 

contain functional elements that were not intentionally added (e.g. cryptic binding sites25), and these 

must be accounted for. Secondly, it is common to use only a few different sequences to represent a TF’s 

binding site32, but models trained on such data will likely have difficulty predicting the effects of TF 

binding sites that do not resemble those designed. Finally, data leakage is easy with designed sequences 

resulting from shared features added by the researcher (e.g. the exact same TF binding site sequence is 
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included in both training and test sets, or the designed sequences incorporate elements derived from 

the genome).  

An alternative to designed sequences is to use random sequences, which has numerous advantages. The 

cost of the random DNA is negligible because it can be synthesized in a pool by a random process (e.g. 

~2,000,000,000,000,000 unique ~120 bp DNA sequences for ~$100). Since independently sampled 

random sequences share no more sequence identity than expected by chance, they are trivially divided 

into independent training, validation, and test datasets without fear of data leakage (although one must 

take care to account for errors in PCR and sequencing if these data were generated in the same 

experiment). Testing random sequences has proven to be an effective strategy for isolating functional 

nucleic acids104 and proteins105, learning 5’UTR 106,107, splicing108,109, and polyadenylation logic110. 

Importantly, random sequences have developmental enhancer activity111, and we recently showed that 

random DNA provides ideal data for deciphering cis-regulation14,25,31. For instance, our (de Boer) recent 

proof-of-principle study in yeast showed that random DNA had diverse cis-regulatory activity, and this 

enabled us to design an experiment for simultaneous quantification of the expression levels encoded by 

each of >30 million random 80 bp sequences (~2.4Gb of regulatory DNA; 184 yeast genome 

equivalents)25. The richness and abundance of these data gave us immense power to detect even 

relatively weak phenomena, including the position-dependence of TF binding on activity for all yeast TFs 

at base pair resolution25, which is simply not possible to learn by studying the yeast genome because of 

its limited sequence diversity. Inspired by this work, we (Taipale group) recently used a similar strategy 

in human cells, identifying transcriptionally active DNA sequences from a sequence space ~100 times 

larger than the human genome. This demonstrated that random DNA has promoter and enhancer 

activity, enabling data generation at unprecedented scale for the creation of human cis-regulatory 

models31. The vast data one can generate with random approaches powers models to learn even rare 

features with modest effect sizes. 

While learning cis-regulation from measurements of random DNA activity may seem counter-intuitive, 

the reason why this works is simple: there are many TFs (~1,639 in humans2), and their binding sites 

occur frequently by chance25,111,112, enabling one to select for binding sites for individual TFs or pairs of 

TFs from random DNA37,113,114. While a random sequence having a binding site for a specific TF is 

unlikely, it is almost certain to have binding sites for some TF, leading to high expression diversity among 

random sequences25, and distinct expression programs across cell types111,115. This propensity for 

random sequences to frequently be active is also consistent with the soft regulatory syntax of the 

billboard model23. The comparative ease at generating regulatory sequences from random DNA is also 

supported by evolutionary study: if it were difficult to generate TF binding sites or active regulatory 

sequences by chance, we would expect that regulatory elements would evolve primarily through 

duplication and divergence, like the protein coding genes. However, this is not what is observed. Cis-

regulatory elements turn over rapidly over evolutionary time116, often with little conservation of TF 

binding sites or enhancer sequences, despite the TFs and expression programs being conserved117,118. 

Thus, most regulatory sequences appear to have evolved from previously non-regulatory DNA119–122, 

demonstrating that the syntax by which TFs act must be relatively permissive such that functional 

elements can emerge by chance. Indeed, the proportion of random sequences with regulatory activity is 

similar to genomic sequences25,31,115. This rather counterintuitive finding makes sense from an 

evolutionary perspective since there is no advantage to increasing the specificity of a cis-regulatory 

element (let alone all elements) beyond what is required for its function, and the small marginal 
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advantages to further specificity beyond this (if they exist at all) can be dominated by the effects of 

genetic drift123,124. Further, a cis-regulatory code that was so specific that it prevented regulatory 

innovation would prevent organisms from adapting to new regulatory optima (e.g. a new environment). 

While highly optimized regulatory elements like the IFN-B “enhanceosome”125,126 exist, they represent 

the exception, and could not have evolved de novo in their current form; evolution must proceed one 

mutation at a time (Fig. 3A). Each mutation in the evolution of a complex cis-regulatory element must 

make use of the same biochemistry used by newly-evolved enhancers and active random sequences127 

(Fig. 3). Reporter assays of random DNA exploit the propensity for regulatory sequences to occur by 

chance to enable quantification of cis-regulatory sequences at unprecedented scales25,31. 

 

Figure 3: Evolved and random regulatory elements use the same biochemical rules. (A) Most 

regulatory elements appear to evolve de novo from previously non-regulatory DNA (left). Random 

mutations in a previously non-regulatory sequence produce an advantageous initial function. Once 

established, there is often little advantage to increasing in complexity, and the mechanisms used by the 

regulatory element can drift so long as its activity is maintained14,117. In some cases, complexity can 

evolve where precise control of a regulatory element is advantageous (middle), but it too evolves via the 

same random mutations and biochemical rules. Meanwhile, it is highly improbable for such a complex 

sequence to evolve from scratch (right). (B) Random sequences are biochemically active via the same 

mechanisms as evolved sequences. 

A second counter-intuitive aspect of using random DNA to learn the cis-regulatory code is that the code 

can be broken despite the experimentally measured random DNA representing a vanishingly small 

fraction of the possible sequence space. In science, we have been trained to systematically test all 

possibilities to determine the impact of each variable in the system. Random DNA sequences achieve this 

isolation of variables precisely because the sequence is random. Features, such as TF binding sites, are 

uncorrelated with their flanking sequences, but are correlated with the regulatory effect of that TF’s 

binding. The only requirement to learn these causal relationships from random DNA is that we have 

sufficient instances of them in the training data to attribute the observed activities to the functional 

elements that generated the activity.  

Regardless of training data source, the ultimate test of models is their ability to predict genomic activity. 

While still at the early stages, our previous work has already illustrated that training cis-regulatory 

models on random DNA sequence activities can produce robust models that predict the activities of 

genomic sequences (and variants thereof) from sequence alone14,25,31. These models can surpass the 

performance of genome-trained models by having access to orders of magnitude more data than the 

genome can provide. Importantly, models that can predict genomic activity but have never seen 
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genomic sequences before cannot be cheating via undetected overfitting, and so we will be able to 

gauge their performance and trust their predictions much more than genome-trained models. 

Current and needed technologies to facilitate large-scale synthetic regulatory DNA 

assays 

For both random and designed sequences, recent advances in DNA synthesis and reporter assays have 

enabled us to quantify the expression of non-genomic sequences at scales surpassing the genome. 

While we have had success with random sequences where each base is randomly sampled from the four 

nucleotides to achieve an overall base content similar to the genome25,31, random sequences can also be 

biased in certain directions, if needed. For instance, the base content (e.g. dinucleotide frequencies) can 

be adjusted or certain positions can be held fixed to increase the frequency of specific TF binding sites or 

adjust the proportion of active sequences. Designed sequences are much more expensive and limited in 

scale, but are extremely powerful because they enable researchers to test whatever sequences they 

like. For instance, one can use computer models to generate sequences designed to maximally improve 

the model (Active Learning). This could include sequences that are predicted to have extreme 

biochemical activity that are rare in both random and genomic sequences. With measurements from 

these extreme sequences, we can create superior models that have never trained on genomic 

sequences. While random sequences have the advantage that they can easily and cheaply explore the 

sequence space, we anticipate that designed short DNA sequences will play an increasingly important 

role in training cis-regulatory models as DNA synthesis continues to get cheaper. 

 

Figure 4: Current and future technologies to solve cis-regulation. (A) Different sequence lengths and 

scales are feasible for different measurement modalities. Using transfer learning, we can learn a single 

cis-regulatory model that incorporates regulatory mechanisms at different scales. (B) The resulting 

model would take as input a DNA sequence and TF expression (to capture cell types/states and associate 

TFs with cognate activities in the model) and would predict higher-level chromatin features based on a 

detailed understanding of cis-regulation. 
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Technologies for measuring the activities of non-genomic sequences will also continue to evolve, 

enabling us to look at different aspects of the cis-regulatory code (Fig. 4A). Reporter assays, which aim 

to directly quantify the relationship between sequence and expression in a controlled system, have 

proven to be invaluable in understanding the cis-regulatory code due to their ease of application and 

relatively high throughput, and indeed most of the non-genomic cis-regulatory data that has been 

generated is via reporter assays. While we have several technologies for reporter assays, none are ideal. 

While STARR-seq128,129 can be applied to quantify tens of millions of sequences, it includes substantial 

measurement noise at this scale due to biases in quantifying the input DNA and output RNA for each 

sequence31. Further, transiently transfected DNA can initiate immune responses in the cells130,131, 

confounding the readout of the assay. Additionally, RNA-based reporter assays cannot capture several 

important aspects of transcriptional regulation that are thought to be important in disease, namely, 

transcriptional responses that happen at short time scales (e.g. transient TF activation132,133), and 

intercellular expression variance134. Stably integrated translated reporters135 and single cell MPRAs136,137 

theoretically overcome many of these limitations, but have so far not been widely applied at scale. 

While reporter assays can produce rich data, it will also be useful to measure the biochemical 

intermediates between sequence and expression, for instance detecting TF binding using enzymatic 

footprinting138. In addition, combining reporter assays with perturbations of regulators139–141 will allow 

us to connect the identities of the regulators with their cognate functions in the models (Fig. 4B). 

Developing systems for testing more DNA in more ways and in more cell types will be an important area 

for future work. 

While many of the low-level features of cis-regulation (e.g. TF binding) can likely be learned from short 

sequence reporter assays, ultimately, we must learn how regulatory elements all work together in the 

context of a chromosomal locus. Learning the higher-order regulatory mechanisms, including 3-D 

looping49–51, insulation52, competition53–55, and condensate formation56,57 will require assaying the 

regulatory activities of longer DNA sequences (Fig. 4A). However, both random and specific DNA 

synthesis of individual oligonucleotides are limited in length to ~300 bp. Technologies for pooled gene 

synthesis (e.g. DropSynth142,143) enable construction of ~1000s of sequences, each less than 1 kb, and so 

may be useful in testing small libraries of regulatory sequences, but this technology has not yet reached 

the scale where training data can be generated in sufficient quantities. It is now possible to synthesize 

~100 kb of designed DNA by assembly of smaller constructs144–147, and these have been used to study 

genome regulation144,145. While major efforts aim to make this more routine148, it is presently far too 

laborious and costly to produce the needed training data at a reasonable scale. Long random DNA 

sequences are predicted to be active in human cells115, suggesting that this strategy may work here as 

well. As before, specific elements could be spiked in to produce data more conducive to model training 

(e.g. higher frequencies of regulatory activity). Synthesis of random or partially random long DNA 

sequences could also be substantially less challenging than synthesis of specific sequences since most 

errors in synthesis, such as point mutations, insertions, and deletions are tolerable as they simply 

generate another random sequence. A second challenge is integrating the DNA into the genome, which 

will have to be made more efficient and accessible across cell types. A final challenge is developing the 

approaches for characterizing the activities of long non-genomic sequences.  All of the same functional 

genomics approaches used on the genome could be used to study the activity of non-genomic DNA (e.g. 

RNA-seq, DNaseI-seq, ATAC-seq, ChIP-seq) by mapping reads to a hybrid genome containing both 

genomic and synthetic DNA. In order to understand the dynamics of the system, developing multiplexed 

readouts of chromatin activity, ideally at single molecule resolution, will become increasingly 
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important149,150. In addition to providing the needed data with which to train our genomic models, the 

scaled assay of long random sequences would also help to define a genomic null hypothesis describing 

how frequently we expect to see regulatory activity by chance115,151.  

Moving forwards 

The limitless supply of non-genomic sequence and its frequent activity make testing non-genomic 

sequences in high throughput a viable path for solving cis-regulation. Using short-sequence genome-

integrated reporters and related assays of both random and designed sequences in extremely high 

throughput (>109 separate elements), we will be able to train cis-regulatory models that understand the 

biochemistry that underlies TF binding and gene expression in the context of chromatin. We can then 

use transfer learning, where parameters learned in one system are used to prime models being trained 

to capture another, to adapt what we have learned on shorter sequences to longer DNA sequences with 

more complex regulation (which cannot yet be assayed in as high throughput) and inaccessible cell types 

(e.g. using scATAC-seq data; Fig. 4). Ultimately, we want models for every cell type in the human body. 

Building the genetic and experimental tools we need to generate non-genomic training data in 

pluripotent cells provides a straightforward way to enable quantification of non-genomic sequence 

activities across cell types and throughout development. Accordingly, it will be important to continue to 

develop systems for cellular differentiation and reprogramming152,153. Since assaying non-genomic DNA 

at large scale across development remains a monumental task, a coordinated effort from the genomics 

community is needed. 

Solving the sequence-to-expression problem will also require continued development of computational 

models. In particular, approaches to integrate data across scales, approaches, and cell types, including 

by transfer learning or multimodal prediction, would enable models to integrate evidence from diverse 

types of input data. For instance, integrating data from in vitro TF binding (e.g. SELEX), reporter assays, 

and chromatin measurements from long sequences would enable the models to learn the parameters 

shared across them more efficiently. In the short-term, transfer learning from non-genomic sequence 

models to genomic sequence models will likely improve their performance since the spurious genomic 

associations are absent in the non-genomic sequence156. Once we have sufficient data, we can use 

transfer learning from short non-genomic sequences to long non-genomic sequences to have fully 

genome-independent cis-regulatory models. Further development of protein-structure/affinity 

prediction models that can predict protein-protein154 and protein-DNA complexes 155 that form on DNA 

in a sequence-dependent manner will also enable us to encode priors for some of the relevant cis-

regulatory parameters, increasing the predictive power of the cis-regulatory models. Finally, having 

standardized datasets and modeling competitions (e.g. DREAM Challenges) will facilitate the continued 

improvement of model efficiency and accuracy. 

While the human genome is too small and too repetitive to learn cis-regulation in the necessary detail, 

continuing to characterize it will be important for generating the datasets required to validate cis-

regulatory models. Establishing Gold Standard genomic datasets will enable the field to identify model 

deficiencies, highlight areas for improvement, motivate experiments designed to complement the 

existing data, and identify new biological phenomena. Measurements of cis-regulatory variant effects 

are particularly useful since predicting their effects is a major motivation for model improvement. In the 

near term, we should continue to develop models trained on genomic data to further our understanding 

of genome regulation in health and disease, keeping in mind their limitations and trying our best to 
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avoid data leakage. As more and more non-genomic data are generated, we can move the genomic data 

to the test set, where it will help us determine when our knowledge of cis-regulation is complete. When 

we can predict the activity of genomic sequences and mutations to them to the degree that is 

explainable given the limitations of the assays using a model that has never seen genomic sequence 

before, we will know that cis-regulation is solved. 
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Methods 

Shared 20-mer analysis 

Random sequences were generated with bases sampled randomly using the human genomic average 

(41% G+C). Chromosomal sequences were sampled from random genomic locations (GRCh38) ensuring 

that any pair being compared were on different chromosomes, and that there were no Ns in the 

sampled DNA sequences. 1000 pairs of random sequences and 1000 pairs of chromosomal sequences 

were generated, with each individual sequence 200 kb long. For each pair, the numbers and locations of 

common 20-mers were identified, considering 20-mers shared between the first sequence and either 

the forward or reverse complemented second sequence. A length of 20 was chosen because a de Bruijn 

DNA sequence, which includes all possible k-mers without repetition, for k=20 is substantially larger 

than the size of our genomes (1012 bp). 
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