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ABSTRACT

Reliable prediction of protein thermostability from its
sequence is valuable for both academic and industrial
research. This prediction problem can be tackled using
machine learning and by taking advantage of the recent
blossoming of deep learning methods for sequence analysis.
We propose applying the principle of transfer learning to
predict protein thermostability using embeddings generated
by protein language models (pLMs) from an input protein
sequence. We used large pLMs that were pre-trained on
hundreds of millions of known sequences. The embeddings
from such models allowed us to efficiently train and
validate a high-performing prediction method using over 2
million sequences that we collected from organisms with
annotated growth temperatures. Our method, TemStaPro
(Temperatures of Stability for Proteins), was used to predict
thermostability of CRISPR-Cas Class II effector proteins
(C2EPs). Predictions indicated sharp differences among
groups of C2EPs in terms of thermostability and were largely
in tune with previously published and our newly obtained
experimental data. TemStaPro software is freely available
from https://github.com/ievapudz/TemStaPro.

INTRODUCTION

Biotechnological research and development often involves
searching for proteins that can remain stable (maintain their
spatial structures) in a high-temperature setting. In many
cases, the only information initially known about a protein
is its sequence of amino acids. Therefore it is beneficial
to have computational tools that can efficiently predict
protein thermostability from a protein sequence alone. Several
machine learning-based methods were developed for that in
the past (1, 2, 3, 4, 5, 6) and in recent years (7, 8, 9, 10, 11),
but these efforts did not focus on drastically increasing the
amount of data used for training and validation, which could
potentially lead to better-performing methods with an ability
to distinguish multiple levels of thermostability.

In general, most of the current state-of-the-art sequence-
based methods (7, 8, 9, 10) were trained and tested
using protein sequences taken from datasets of proteins
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annotated with experimentally-determined thermal stability
information. Such datasets are inevitably small because
gathering experimental data on a per-protein basis is usually
very expensive and time-consuming. There is an alternative
way of collecting protein thermostability data — taking
the available information about optimal growth temperatures
of organisms that have sequenced genomes converted to
proteomes, grouping the proteomes by the corresponding
growth temperature intervals, collecting the protein sequences,
and annotating them with temperature values (11, 12). This
approach is not as precise as gathering experimental data for
every protein separately, but the optimal growth temperature
of an organism provides a reliable lower bound for the
melting temperature of proteins in that organism (13). Most
importantly, the proteomes-based data gathering can provide
millions of sequences for machine learning. Nevertheless,
even the most recent deep learning-based method (11) was
trained only on a small subset (less that 1%) of sequences from
available proteomes with known growth temperatures.

Training using big data when starting from raw amino
acid sequences is extremely challenging due to the need to
construct or learn a complex protein representation suitable
for making predictions. However, there is a possibility to
take a shortcut and apply a transfer learning approach
— use protein representations generated by other methods
trained for different tasks. More specifically, it is possible
to use protein sequence embeddings generated by encoders
of protein language models (pLMs) that were trained on
hundreds of millions of natural protein sequences (14, 15).
Such pLM embeddings are rich representations that were
already shown to be suitable inputs for various predictive tasks
(16).

In this work we propose using pLM embeddings for training
simple binary classifiers that predict whether a protein remains
stable above some temperature threshold. We collected over
2 million of protein sequences from organisms with known
optimal growth temperatures and we used that data to train,
validate, and test multiple classifiers for multiple temperature
thresholds. We also showed that our classifiers: perform
exceedingly well on a previously published benchmark
dataset; show similar performance for both water-soluble
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and membrane proteins; do not suffer performance drops
when applied to longer proteins. We combined the classifiers
into a software tool that, given a protein sequence as input,
predicts protein stability for multiple temperature thresholds
and checks if the predictions are not contradicting each other.
The resulting method, TemStaPro (Temperatures of Stability
for Proteins), is freely available as a standalone program.

We tested TemStaPro software to predict thermostability
of CRISPR-Cas Class II effector proteins (C2EPs). C2EPs
are usually found in bacteria that grow best in moderate
temperatures (20 to 45 ◦C). However, there are few Cas9 and
Cas12b variants that can function at temperatures above 60
◦C (17, 18). Thermostable C2EPs are important because they
can be used in conjunction with nucleic acid amplification
methods to detect SARS-CoV-2 variants of concern in a
single reaction (18), for genome engineering of thermophilic
organisms (19), or in aid to increase lifetime of gene
editing tools in human plasma (20). Our results indicate that
thermostability differs among groups of C2EPs, for example
Cas12f and TnpB-like proteins are more likely to function at
higher temperatures than ones from Cas9 and Cas13 groups.

MATERIALS AND METHODS

Data preparation

The data source that was used to construct training, validation,
and testing datasets was composed of 21 498 annotated
organisms (12, 21). The taxonomy identifiers given in the
data source were used to fetch UniParc (22) identifiers
for the corresponding proteome. UniParc identifiers were
used to download FASTA files with proteins composing the
proteomes.

The main objective was to develop a binary protein
classification model into thermostability classes: proteins that
are stable (class ’1’) or not stable (class ’0’) at 65 ◦C and
higher temperatures. The threshold of 65 ◦C was chosen
because primary envisioned purpose of our method was to
detect C2EP proteins that can withstand >60 ◦C temperatures
during isothermal amplification step in a one-pot SARS-CoV-
2 detection kit (23). However, to get a more universally
informative output of the tool, the class ’0’ was divided into
subintervals from 40 to 65 ◦C using a step of 5 degrees.

The collection of datasets (24) that were used to train,
validate, and test the tool is given in Table 1. The data source
of proteomes was filtered from eukaryotes and duplicate
taxonomy identifiers. TemStaPro-Minor is composed of 162
proteomes and TemStaPro-Major - of 5491 proteome. Both
datasets were constructed in a way so that there would be
no duplicate protein sequences and that a single proteome
identifier from the collection of proteomes would be present
only in either training, validation, or testing subset, which have
approximate proportions of 70%, 15%, and 15%, respectively
(regarding numbers of protein sequences). Since the datasets
were intended to be used for a classification model that
uses ESM-1b (14) embeddings as input, all subsets originally
contained sequences no longer than 1022 amino acids.

Due to the random sampling of proteomes, TemStaPro-
Minor set contains protein sequences mostly from organisms,
whose growth temperatures are in ranges 20-40 ◦C or 60-
80 ◦C (Supplementary Figure S1), thus the cases, which are

not included in these intervals, are not sufficiently covered.
Since this set was small, it was convenient for preliminary
investigations of choosing the best input representations and
architecture for the neural network model.

TemStaPro-Major is a set designated to train the final
version of the classifier. To include more data, it resulted
as an imbalanced set with sequences to cover the range of
temperatures between 0 and 100 ◦C (Supplementary Figure
S2).

It is important to note that the collected data is not suitable
for training multiclass classification (where classes represent
non-overlapping temperature intervals) or regression models
because the temperature values used for ground truth are only
lower bounds for the possible temperatures of stability of
proteins. For example, a protein from an organism living in 45
◦C environment may (or may not) also be stable at 60 ◦C. This
also means that a single binary classifier is not very versatile.
A binary classifier trained using 45 ◦C threshold cannot tell if
a protein predicted as stable at over 45 ◦C is also stable at over
60 ◦C — a classifier trained using at least 60 ◦C threshold is
needed for that. Thus, it was decided to train and use multiple
binary classifiers in TemStaPro.

The final tool is composed of 6 classifiers trained to
distinguish between 6 different temperature thresholds. For a
more accurate evaluation of each model, there were 6 balanced
versions of the testing subset of TemStaPro-Major created.
Balancing was done by the random sampling of proteomes
in the class ’0’ to collect the number of protein sequences
composing the class ’1’ and keep as many different proteomes
of the class ’0’ as possible.

In the process of development, we tested whether the
tool makes predictions for longer protein sequences no less
accurately than for shorter sequences. Therefore the original
Major testing subset was supplemented with 47 831 sequences
longer than 1022 amino acids.

Additional data for benchmarking

SAPPHIRE dataset One more dataset that was used to assess
our method is SAPPHIRE (9) testing dataset, which is
balanced and has 742 sequences. This dataset was used
to evaluate SCMTPP (8) and ThermoPred (4) tools as
well. The SAPPHIRE dataset contains thermophilic and

Table 1. All datasets that were used in the development of the tool.

Dataset Subset
All

sequences

Class 0

sequences

Class 1

sequences

Max.

length

TemStaPro-Minor-bal65 Training 283 360 141 600 141 760 1 022

Validation 63 158 32 790 30 368 1 022

Testing 73 308 37 739 35 569 1 021

TemStaPro-Major-imbal Training 1 835 664 1 688 495 147 169 1 022

Validation 395 964 365 370 30 594 1 022

Testing 435 182 408 518 26 664 27 313∗

TemStaPro-Major-bal65 Testing 52 872 26 436 26 436 1 022

TemStaPro-Major-bal60 Testing 68 186 34 093 34 093 1 022

TemStaPro-Major-bal55 Testing 116 340 58 170 58 170 1 022

TemStaPro-Major-bal50 Testing 165 414 82 707 82 707 1 022

TemStaPro-Major-bal45 Testing 207 108 103 554 103 554 1 022

TemStaPro-Major-bal40 Testing 233 640 116 820 116 820 1 022

SAPPHIRE Testing 742 371 371 1 643

∗UniProt entry of the protein sequence that determined the maximum length of the subset:

A0A222VTR7.
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non-thermophilic proteins, although the exact temperature
threshold for group distinction is not mentioned: according to
the creators of the dataset, proteins labelled as thermophilic
(TPP) are those that are stable at 80-100 ◦C temperature
range (8). The dataset’s thermophilic proteins were taken
from thermophilic organisms - organisms that grow at the
mentioned temperature range, meanwhile non-thermophilic
proteins were collected from non-thermophilic organisms.

Sequence dataset of Class II effector proteins Initial datasets
of Cas12 and Cas9 were taken from (25) and (17),
respectively. Cas13 sequence dataset was constructed by
building HMMER (26) sequence profiles for Cas13 groups
(27) and using them to search NR (28), UniRef100
(29), MGnify (30), and IMG/VR v4 (31) databases with
hmmsearch (26). Only sequences with E-value ≤1e-20
were extracted. In case the same sequence was found
using different queries, the hit having lower E-value
was assigned to the group. Latter dataset was combined
with Cas12 and Cas9 datasets to form final dataset of
16376 sequences (SupplementaryFileC2EPsPredictions.tsv).
Thermostability predictions were done for all those sequences,
but to check the thermostability of different C2EP groups, we
only used sequences having more than 300 residues.

Protein language models

Figure 1. The scheme of embeddings from protein language model usage in
the application neural network model.

ESM-1b (14) and ProtTrans (15) protein language models
are transformer models trained on protein sequences. Due to
the properties of transformer architecture, they are usually
applied to natural language processing (NLP) tasks (32).
However, since amino acid sequences can be considered as
a particular language, transformer architectures were also
applied to solve tasks related to protein biology. Attention
mechanisms in models of transformer architecture, taking
BERT-like model as an example (33), are capable to capture
the folding structure, binding sites, and complex biophysical
properties of proteins.

This work exploits the transfer learning by taking protein
representations from the last layer of protein language models
and passing them as input to the classification model (Figure
1).

The potential suitability of both ESM-1b and ProtTrans
embeddings for thermostability classification was detected
using principal component analysis (PCA) of mean
embedding vectors. Plots of the first two principal components
(Figure 2) demonstrated the distinct separation of points
corresponding to different thermostability classes.

Figure 2. PCA visualizations of ESM-1b mean embeddings (left) and
ProtTrans mean embeddings (right) computed for the validation subset of
the TemStaPro-Minor-bal65 dataset. Plots were generated using Scikit-Learn

Python library (version 0.24.2).

A notable advantage of ProtTrans model is that it does not
have a limit for protein’s length, while ESM-1b does not work
for protein sequences that are longer than 1022 amino acids.

Binary classifier design process

Classifiers in this study were implemented as feed-forward
densely connected neural network (NN) models with up to
two hidden layers. The classifier design process involved
training, validation, and testing of multiple NN architectures
using multiple types of input representation derived from pLM
embeddings. In order to try more variations in a reasonable
amount of time, the initial design stage was done using
TemStaPro-Minor-bal65 dataset.

The comparison of ESM-1b and ProtTrans embeddings
was done extensively: not only mean, yet also other kinds
of representations (Supplementary Table S1) were tested as
input to the single-layer perceptron (SLP) classifier. The
representation performance analysis, done using common
metrics for binary classification (MCC, accuracy, precision,
recall, and ROC AUC), demonstrated that ProtTrans
representations, normalization of embeddings, and including
more information about the distribution of embeddings’
components in the representation (for instance, octiles
embeddings) give the best results (Supplementary Table S2,
Supplementary Figures S3 and S4).

In addition to the representation analysis, the search
for the best model’s architecture was executed as well.
Architectures that were chosen to run experiments with had
one or two hidden layers, whose sizes were chosen to be
original embeddings size divided by several multiples of 2
(Supplementary Figure S5, Supplementary Table S3). The
results of the architecture analysis showed that the bigger the
predictor’s architecture is taken, the more accurate predictions
are done (Supplementary Figure S6). Such conclusion was
made in the scope of the defined set of models.

The results of the analysis performed using TemStaPro-
Minor-bal65 dataset allowed to make the following decision:
for further development of the final method ProtTrans mean
and octiles embeddings were chosen. Although models that
used mean ProtTrans embeddings did not provide as good
results as the octiles representations, due to less resource-
intensive training procedure with mean embeddings, both
these representations were chosen to be used for the further
training of binary classifiers on TemStaPro-Major-imbal
dataset using multiple thresholds. The trained classifiers
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were then tested on TemStaPro-Major-bal datasets, and the
results (Supplementary Figure S7) showed no significant
performance differences between using means and octiles for
input. Since mean embeddings take up less storage space, they
were chosen to be used in the final predictor tool.

Final binary classifiers training and testing

The functionality of the TemStaPro method is carried out by
multiple binary classifiers that accept mean ProtT5-XL (from
ProtTrans) representations (vectors of length 1024) as input.
Classifiers were implemented as neural network models using
PyTorch. Each model is a multi-layer perceptron with 2 fully-
connected hidden layers of sizes 512 and 256. After each layer
(except the last one), rectified linear unit (ReLU) activation
function is applied. Sigmoid activation function is used after
the last layer.

A single binary classifier was trained using mini-batch
training principle (with batch size of 24) and Adam optimizer
(34) with learning rate of 0.0001. Since the datasets were
imbalanced, training and validation sets were loaded using
weighted random sampler and the loss function was chosen
to be weighted cross entropy. The loss function used weights
that were calculated based on the training subset.

The validation of each binary classifier was done after each
training epoch for the whole validation set. For each epoch
model evaluation metrics were retrieved: MCC, accuracy, loss,
precision, recall, ROC AUC, and precision-recall (PR) AUC.

Testing of each model was done for the whole chosen
(imbalanced or balanced corresponding to the tested model)
testing set. As in the validation stage, model evaluation metrics
for the testing stage were calculated as well.

Predictor application

The TemStaPro user’s input is a FASTA file with amino
acid sequences with proteins’ identifiers in the headers. For
each protein in the FASTA file a mean ProtTrans (15)
embedding is generated, which is the input of the classification
model. In addition to this, there is an option available to
pass embeddings of each residue to the model. Per-residue
embeddings can also be averaged over a residue window
of size k, which can be customized, to get per-segment
embeddings. Then each segment (of size k) of amino acids
gets a prediction.

The classification predictions are made by 6 ensembles each
composed of 5 neural network models that were trained to
make binary classification of proteins with respect to one of
6 temperature thresholds, which were chosen to be: 40, 45,
50, 55, 60, and 65. The output list of 6 predictions is created
from averaged predictions of each ensemble.

Based on the sequence of all 6 classification predictions,
each input protein is assigned two labels: left-hand and
right-hand. These labels are determined by scanning the
binary predictions starting from the left or right-hand side,
respectively. For example, the left-hand label is assigned the
temperature range, where the last positive prediction (class
’1’) is encountered. If outputs are only negative (class ’0’),
then the label is the first temperature range. On the other
hand, the right-hand label is assigned by reading the outputs
starting from the right: the label is assigned the temperature

range, where the first ’1’ is encountered. The treatment of the
’0’-only case coincides with the left-hand principle.

Since binary predictions are made independently, conflicts
might occur between the outputs of the classifiers: for
instance, the predictor of 40 ◦C threshold would predict
that protein is not stable at 40 ◦C and higher temperatures,
although the predictor of 50 ◦C threshold would state
otherwise. When such conflict occurs, left-hand and right-
hand labels differ. On the contrary, if the labels report the same
temperature interval, that interval can be interpreted as the
highest temperature range at which the protein was predicted
to still be thermostable.

RESULTS

Performance of binary classifiers

Trained classifiers were tested with imbalanced and balanced
(for each temperature threshold) testing sets (Table 2,
Supplementary Tables S4 and S5).

In the imbalanced testing case, the maximum MCC score
that was reached by the binary classifier for 50 ◦C temperature
threshold was 0.691.

In the balanced testing for each temperature threshold case,
the highest MCC score was achieved by the classifier adjusted
for 65 ◦C threshold.

Misclassification analysis in terms of protein solubility

Since there is a script presented in ProtTrans GitHub
repository (15) to predict, whether a protein is membrane-
bound or water-soluble, it was attempted to use it to label
proteins in TemStaPro-Major dataset in terms of solubility.
We checked whether the thermostability predictors are biased
towards one solubility class of proteins.

Binary classifiers were used to make thermostability
predictions for the balanced (for 65 ◦C threshold) subset from
TemStaPro-Major dataset, which consisted of 52872 proteins,
of which 11961 were membrane-bound and 40911 were
water soluble. After counting the misclassification cases and
calculating the frequency of mistakes (Table 3), we observed
that predictors are not biased to any group: on average 9
percent of proteins were misclassified in each case.

Sequence length effect analysis

Since the classifiers were trained using the dataset with
sequences no longer than 1022 amino acids, we decided to
assess the predictors with a testing set that includes longer

Table 2. TemStaPro models’ MCC and precision-recall (PR) AUC scores

after testing with imbalanced and balanced (for each temperature threshold)

TemStaPro-Major datasets.

TemStaPro-Major-imbal TemStaPro-Major-bal

Model MCC PR AUC MCC PR AUC

TemStaPro-t65 0.647 0.781 0.838 0.971
TemStaPro-t60 0.570 0.786 0.801 0.963
TemStaPro-t55 0.613 0.740 0.725 0.927
TemStaPro-t50 0.691 0.826 0.756 0.939
TemStaPro-t45 0.677 0.840 0.703 0.924
TemStaPro-t40 0.635 0.810 0.640 0.896
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sequences to see if the classifier performs on longer sequences
no worse than on the shorter ones.

The original TemStaPro-Major testing set was
supplemented with sequences longer than 1022 amino
acids. The predictions for this set were made using a
standalone classifier for the temperature threshold of 65
◦C trained on TemStaPro-Major-imbal training dataset and
were analysed with respect to the length threshold, so that at
least 5% of the sequences would fall into each bin - the last
such bin consisted of sequences that were longer than 1200
amino acids. Additionally, each of the bins were balanced
with respect to the temperature labels of 65 ◦C threshold.
The plot (Figure 3) demonstrates that the alteration of the
predictor’s performance using longer sequences for testing
was not substantial.

Figure 3. MCC and ROC AUC evaluation scores of the classifier trained on
TemStaPro-Major-bal65 at various length thresholds.

Performance comparison with other predictors

TemStaPro was also tested on SAPPHIRE tool’s testing
dataset (9), which was previously used to test SCMTPP
(8) and ThermoPred (4) tools for protein thermostability
prediction.

ThermoPred is a tool that uses support vector machine
(SVM) model and amino acid along with dipeptide
composition as input. This method was trained to identify
thermophilic proteins by choosing the lower and upper bounds
for optimal growth temperature of organism for which the
protein belongs: 60 ◦C was a lower limit for thermophilic
organisms and 30 ◦C - an upper limit for mesophilic
organisms.

SCMTPP and SAPPHIRE are methods that are trained
to identify thermophilic proteins that are considered to be
stable at 80-100 ◦C temperature range. SCMTPP uses scoring
card method (SCM) and dipeptide composition as input,
whereas SAPPHIRE is a method that uses partial least
squares (PLS) regression and 12-dimensional vectors as input.

Table 3. Frequency of protein misclassification cases.

Frequency of mistakes among:

Model membrane-bound proteins soluble proteins

Model trained on
TemStaPro-Major-bal65

0.098
(1171/11961)

0.087
(4730/40911)

Model trained on
TemStaPro-Major-imbal65

0.092
(1095/11961)

0.084
(4518/40911)

These vectors are constructed out of outputs of 5 different
types of models combined with 8 types of composition,
physicochemical property, composition-transition-distribution
(CTD), and evolutionary information-based features.

The tool with the highest MCC score among other
published predictors is SAPPHIRE. The results showed that
TemStaPro predictors for temperature thresholds 55-65 ◦C
perform better than SAPPHIRE (Table 4). The MCC scores of
remaining predictors (for thresholds 40-50 ◦C) differed from
SAPPHIRE tool’s score by no more than 0.05, which makes
the TemStaPro a prospective tool for accurate thermostability
predictions.

Software tool

We implemented TemStaPro as a command-line software
tool, it is freely available at https://github.com/ievapudz/
TemStaPro. By default, TemStaPro provides global
thermostability scoring for each input protein sequence.
An example output table of the global scoring is given in
Figure 4: each protein gets 6 raw thermostability scores from
the predictor of every temperature threshold together with
left-hand and right-hand labels.

Conflicting cases, when left-hand and right-hand labels
differ, are marked with ’*’ in the ’clash’ column. TemStaPro-
Major testing set (without longer sequences included) and a
standalone classifier for 65 ◦C threshold was used to check
how frequently such conflicts occur: 18945 out of 387351
proteins had conflicting predictions, which makes up to 5%
of all cases.

Besides the default global protein scoring, the user might
opt for per-residue or per-segment predictions. For the per-
residue case each amino acid in the protein sequence gets
a distinct set of thermostability predictions (Supplementary
Figure S8), similarly for per-segment option, where each full
segment of the chosen size in the sequence gets its set of
predictions. Additionally, there is an option to plot per-residue
and per-segment predictions (Figure 5).

The speed of the TemStaPro software is mostly determined
by whether the ProtTrans embeddings are produced on GPU or
not. Using NVIDIA GeForce RTX 2080 Ti GPU, TemStaPro
processes 10000 sequences with average length of 1000
residues in less than 2 hours. Without GPU, the operating time
increases several times (up to 60 times if run on a laptop with
Intel i7-8565U CPU).

Table 4. Models’ scores after testing with an independent SAPPHIRE

dataset.

Model Accuracy
Sensitivity
(Recall)

Specificity MCC
ROC
AUC

TemStaPro-t65 0.958 0.938 0.978 0.917 0.990
TemStaPro-t60 0.961 0.984 0.938 0.923 0.996
TemStaPro-t55 0.949 0.989 0.908 0.901 0.990
TemStaPro-t50 0.923 0.992 0.854 0.854 0.976
TemStaPro-t45 0.914 0.989 0.838 0.837 0.975
TemStaPro-t40 0.914 0.997 0.830 0.839 0.984
SAPPHIRE 0.942 0.951 0.933 0.884 0.980
SCMTPP 0.865 0.849 0.881 0.731 -
ThermoPred 0.860 0.938 0.782 0.729 -
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Figure 4. An example tab-separated table that is the output of the global prediction mode of TemStaPro program. The main output of the method is a TSV table
with 8 columns: ’protein id’ - a header taken from the FASTA file of the input protein; ’sequence’ - an amino acid sequence of the protein; ’length’ - a length
of the protein’s amino acid sequence; ’t?? binary’ - a binary prediction label for a given temperature threshold (one of the six thresholds is written in the place
of question marks) - the label is assigned by rounding the raw prediction (see the next point) at this temperature threshold; ’t?? raw’ - a raw prediction value
for a given temperature threshold (real numbers from the interval [0, 1]); ’left hand label’ - a label of the highest temperature range, at which the protein was
predicted to still be thermostable (possible labels of temperature ranges are: ’<40’, ’[40-45)’, ’[45-50)’, ’[50-55)’, ’[55-60), ’[60-65)’, ’≥65’); ’right hand label’
- a label that is interpreted as ’left hand label’, yet the label is assigned by reading the outputs starting from the right (possible values of the label coincide with
the ’left hand label’); ’clash’ - a Boolean identifier, whether a contradiction between the models’ predictions was observed - the expected output is a decreasing
sequence of binary predictions if the outputs are read from left to right in the increasing order of the temperature thresholds (expected output is labelled as ’-’ and
other cases are assigned ’*’).

Figure 5. An example plot for the output of per-residue mode (left) and per-
segment mode with default window size of 41 (right).

Thermostability of Class II effector proteins

To get a better view on thermal stability among different
C2EP groups, we tested our method on a large dataset
(16376 sequences) of Cas9, Cas12, TnpB, and Cas13
proteins (SupplementaryFileC2EPsPredictions.tsv). For
further analysis, we considered only sequences longer
than 300 residues. There were 11341 such sequences,
10324 (91%) of them had clash-free predictions
(SupplementaryC2EPClashAnalysis.xlsx). Thermostability
prediction varied greatly between groups of Cas12 and TnpB
(Figure 6). This might be explained by the fact that members
of Cas12 and TnpB differ greatly in sequence similarity
and length (35, 36). The Cas12a group, which is currently
actively studied and used in biotechnology applications (37),
did not have thermostable (≥65 ◦C) sequences (Figure 6) as
predicted by our method.

In contrast to Cas12a, more than half of the members
of Cas12b group were predicted to function at 50 ◦C or
higher temperature (Figure 6). Such observation corresponds
to the experimental data because most of the characterized
thermostable Cas12 proteins belong to the Cas12b group
(23, 38). Interestingly, we predicted that most thermostable
Cas12 groups are Cas12f1, Cas12f2, and Cas12g (Figure 6).
However, the latter groups were not studied experimentally
for thermostability. On the other hand, some of the members
(e.g. Un1, Un2, Mi1, and Mi2) of Cas12f1 and Cas12f2
groups are found in archaea, which is an indication of
possible thermostability of these C2EPs. Two groups of
TnpBs (namely, TnpB2 and TnpB-Kra, which contains TnpB
from Ktedonobacter racemifer (39)) showed higher predicted
thermal stability compared to a group represented by TnpB
from Deinococcus radiodurans ISDra2.

Just a few Cas9 groups (namely, Cas9-C3 and Cas9-
C7; Supplementary Table S6) contain thermostable members.

This observation is in tune with experimental data. The
Cas9-C3 group contains characterized thermostable proteins
CaldoCas9, GeoCas9, and ThermoCas9 (19, 20, 40). Cas9-
C7 group includes NsaCas9 which was shown to function at
temperatures above 60 ◦C in our previous study (17).

Cas13 groups tend to have predicted lower thermostability
except for Cas13x (Figure 6), which contains only 8 members,
thus it is too early to draw any conclusions about their thermal
stability.

In rare cases our method predicted lower (differences
>10 ◦C) than experimentally characterized temperatures for
thermostable proteins (e.g. TccCas13a; Supplementary Table
S6). However, these are exceptions, in 92% of the cases (35
out of 38) predicted thermostability varied no more than 10
◦C from the experimental data (Supplementary Table S6).

Experimental validation of thermostability predictions

To validate the accuracy of the thermostability prediction
model, we have experimentally characterized two potentially
thermostable proteins. Ghy2Cas9 was previously identified
and described in (17). This enzyme showed dsDNA cleavage
activity in cell free lysates, but protein thermostability was
not characterized. We also identified a putative thermostable
Cas12b ortholog from Clostridia bacterium, CbaCas12b
(NMA13999.1), in publicly available genome databases. We
expressed the enzymes in E. coli and purified them. The
proteins along with SpyCas9, as a control, were subjected to
analysis by nano differential scanning fluorimetry (nanoDSF)
to ascertain the temperatures at which they unfold. The
enzymes were tested either without their guide RNA (apo)
or with single guide RNA (RNP), except for CbaCas12b,
for which we could not identify a tracrRNA. Ghy2Cas9
was shown to begin to unfold at around 54 ◦C, CbaCas12b
at 57 ◦C, and SpyCas9 at 45 ◦C, with their respective
RNPs unfolding at around 2-3 ◦C higher temperature (Figure
7a, Supplementary Figure S9). Predicted temperatures of
thermal stability for both Ghy2Cas9 and SpyCas9 ([60-65)
and <40 ◦C, respectively) did not differ more than 7 ◦C from
their experimentally determined melting point temperatures.
Following this, we evaluated the dsDNA cleavage activity of
Ghy2Cas9 as well as SpyCas9 across a range of temperatures
from 37 ◦C to 70 ◦C using fluorophore-labelled dsDNA
substrates. As shown in Figure 7b, Ghy2Cas9 and SpyCas9
retained robust nuclease activity at temperatures up to 55 ◦C
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and 50 ◦C, respectively, which correlates with the determined
unfolding temperature of the RNPs by nanoDSF.

Figure 6. Predicted thermostability of various C2EP groups. Numbers in
brackets correspond to the amount of sequences used for predictions.

Figure 7. (a) Thermal stability of Cas proteins without guide RNA (apo)
or loaded with sgRNA (Ghy2Cas9 and SpyCas9) (RNP). Protein unfolding
was measured using nano differential scanning fluorimetry (nanoDSF) over
a temperature range from 20 ◦C to 80 ◦C. Fluorescence was monitored as
temperature increased at a rate of 1 ◦C per second. The inflection point
of the fluorescent curve is interpreted as the unfolding point of the protein
(Tm). Data points collected from replicate experiments are plotted as circles,
the means are plotted as dashes. (b) The double-stranded DNA (dsDNA)
cleavage activities of Ghy2Cas9 and SpyCas9 RNPs were measured using in
vitro assays containing fluorophore-labeled dsDNA target substrates. Cleaved
fragments were quantitated and are represented in a heatmap showing overall
activity at temperatures ranging from 37 ◦C to 70 ◦C. The intensity of the
blue colour indicates the fraction of substrate cleaved.

DISCUSSION AND CONCLUSIONS

Embeddings from pre-trained protein language models can
be highly suitable for the task of protein thermostability
prediction — this became nearly apparent even after our
initial principal component analysis of ESM and ProtTrans
embeddings. We further showed that a simple dense neural
network can be efficiently trained to predict a protein thermal
stability class from the mean of per-residue embedding
vectors (we also showed that quantile values can be used
as an alternative to mean values). With that established,
we endeavored to make a better thermostability prediction
method not by complicating the machine learning model, but
rather by preparing and using more data for training and
validation. We prepared and utilized a dataset of over 2 million
sequences annotated with temperatures. The considerable

amount and diversity of our data allowed us to train, validate,
and test classifiers for multiple temperature thresholds (from
40 to 65 ◦C), and to establish that the performance of our
predictors was not affected by the sequence length or protein
solubility. When tested on a recent independent dataset,
SAPPHIRE (9), our trained and validated method, named
TemStaPro, performed better than state-of-the-art sequence-
based predictors.

As the final TemStaPro version uses mean pLM embedding
vectors as input, we added a possibility to consider not
only the full-sequence mean, but also means on the level
of subsequences and even single residues — the resulting
local thermostability scoring can be used to visualize how
different parts of the protein sequence contribute to the global
classification outcome.

We tested our method on CRISPR-Cas Class II effector
proteins. Interestingly, we saw large variation in thermal
stability among groups of Cas12 and TnpB. For example,
more than a half of the members of groups Cas12b, Cas12f1,
Cas12f2, Cas12g, TnpB2 and TnpB-Kra have predicted
temperatures of ≥50 ◦C (Figure 6). In contrast, members
of Cas12a, Cas9, and Cas13 groups might function at lower
temperatures.

We also observed that TemStaPro is a more pessimistic than
optimistic predictor — it tends to slightly underestimate the
highest temperature at which the protein is still stable. We
attribute this trait to the particularity of the training data, where
sequences were annotated not with exact melting temperature
values, but with their lower bounds.

To conclude, considering that the large majority (92%) of
our predictions for well-characterized proteins were confirmed
experimentally, we believe that TemStaPro can be useful for
pre-screening potentially thermostable candidate proteins and
thus reducing the number of experiments needed to determine
protein thermostability in biotechnology.
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